Jurnal Foundry Vol. 3 No. 1 April 2013 ISSN :

dokumen-dokumen yang mirip
ELEKTROKIMIA DAN KOROSI (Continued) Ramadoni Syahputra

TUGAS KOROSI FAKTOR FAKTOR YANG MEMPENGARUHI LAJU KOROSI

PROTEKSI KATODIK BAJA AISI 1020 MENGGUNAKAN ANODA ALUMUNIUM

Pertemuan <<22>> <<PENCEGAHAN KOROSI>>

STUDI KINERJA BEBERAPA RUST REMOVER

BAB I PEDAHULUAN. 1.1 Latar Belakang. Pipa merupakan salah satu kebutuhan yang di gunakan untuk

Moch. Novian Dermantoro NRP Dosen Pembimbing Ir. Muchtar Karokaro, M.Sc. NIP

ADLN Perpustakaan Universitas Airlangga BAB II TINJAUAN PUSTAKA. Kata korosi berasal dari bahasa latin Corrodere yang artinya perusakan

BAB II KOROSI dan MICHAELIS MENTEN

Perlindungan Lambung Kapal Laut Terhadap Korosi Dengan Sacrificial Anode. Oleh : Fahmi Endariyadi

Bab II Tinjauan Pustaka

BAB I PENDAHULUAN. juga menjadi bisnis yang cukup bersaing dalam perusahaan perbajaan.

BAB IV PEMBAHASAN. -X52 sedangkan laju -X52. korosi tertinggi dimiliki oleh jaringan pipa 16 OD-Y 5

PENGARUH SUHU HEAT TREATMENT TERHADAP LAJU KOROSI MATERIAL PAGAR.

Handout. Bahan Ajar Korosi

BAB I PENDAHULUAN. terjadinya perubahan metalurgi yaitu pada struktur mikro, sehingga. ketahanan terhadap laju korosi dari hasil pengelasan tersebut.

BAB I PENDAHULUAN 1.1 LATAR BELAKANG

Sudaryatno Sudirham ing Utari. Mengenal. Sudaryatno S & Ning Utari, Mengenal Sifat-Sifat Material (1)

STRATEGI PENGENDALIAN UNTUK MEMINIMALISASI DAMPAK KOROSI. Irwan Staf Pengajar Jurusan Teknik Kimia Politeknik Negeri Lhokseumawe ABSTRAK

Pengaruh Polutan Terhadap Karakteristik dan Laju Korosi Baja AISI 1045 dan Stainless Steel 304 di Lingkungan Muara Sungai

Elektrokimia. Tim Kimia FTP

ANALISA PENGARUH INHIBITOR EKSTRAK RIMPANG JAHE TERHADAP LAJU KOROSI INTERNAL PIPA BAJA ST-41 PADA AIR TANAH

SEMINAR TUGAS AKHIR. Aisha Mei Andarini. Oleh : Dosen Pembimbing : Dr.rer.nat.Triwikantoro, M.Sc. Surabaya, 21 juli 2010

ANALISA PERBANDINGAN LAJU KOROSI MATERIAL STAINLESS STEEL SS 316 DENGAN CARBON STEEL A 516 TERHADAP PENGARUH AMONIAK

Elektrokimia. Sel Volta

Sel Volta KIM 2 A. PENDAHULUAN B. SEL VOLTA ELEKTROKIMIA. materi78.co.nr

I. PENDAHULUAN. Indonesia memiliki lahan tambang yang cukup luas di beberapa wilayahnya.

KOROSI. B. Jenis-jenis Korosi 1. Uniform/General Corrosion (Korosi Menyeluruh)

CARBON STEEL CORROSION IN THE ATMOSPHERE, COOLING WATER SYSTEMS, AND HOT WATER Gatot Subiyanto and Agustinus Ngatin

BAB IV HASIL DAN PEMBAHASAN. 4.1 Korosi Baja Karbon dalam Lingkungan Elektrolit Jenuh Udara

BAB IV HASIL DAN PEMBAHASAN

LAPORAN PRAKTIKUM ILMU LOGAM DAN KOROSI

JURNAL TEKNIK POMITS Vol. 1, No. 1, (2012) 1-6 1

Redoks dan Elektrokimia Tim Kimia FTP

STUDI DEGRADASI MATERIAL PIPA JENIS BAJA ASTM A53 AKIBAT KOMBINASI TEGANGAN DAN MEDIA KOROSIF AIR LAUT IN-SITU DENGAN METODE PENGUJIAN C-RING

Proteksi Katodik dengan Menggunakan Anoda Korban pada Struktur Baja Karbon dalam Larutan Natrium Klorida

10/16/2015 ELEKTROKIMIA ELEKTROKIMIA ELEKTROKIMIA. Penyebab Korosi. Dampak Korosi

TERSELESAIKAN H+7 P2

BAB IV HASIL DAN PEMBAHASAN

BUKU PRAKTIS KOROSI DAN LOGAM UNTUK MAHASISWA

Sulistyani, M.Si.

9/30/2015 ELEKTROKIMIA ELEKTROKIMIA ELEKTROKIMIA. Elektrokimia? Elektrokimia?

STRESS CORROSION CRACKING (SCC) A. PENGERTIAN KOROSI RETAK TEGANG (SCC)

BAB 2 TINJAUAN PUSTAKA

KINERJA INHIBITOR Na 2 CrO 4 DALAM LARUTAN Nacl UNTUK MELINDUNGI BAJA TAHAN KARAT AUSTENITIK TERSENSITISASI DARI SERANGAN SCC Ishak `*) ABSTRAK

JURNAL TEKNIK ITS Vol. 4, No. 1, (2015) ISSN: ( Print) F-56

PENGARUH KEHADIRAN TEMBAGA TERHADAP LAJU KOROSI BESI TUANG KELABU

HASIL DAN PEMBAHASAN

berat yang terkandung dalam larutan secara elektrokimia atau elektrolisis; (2). membekali mahasiswa dalam hal mengkaji mekanisme reaksi reduksi dan

APLIKASI REAKSI REDOKS DALAM KEHIDUPAN SEHARI HARI Oleh : Wiwik Suhartiningsih Kelas : X-4

BAB II DASAR TEORI. Gambar 2.1 Klasifikasi Baja [7]

REDUKSI-OKSIDASI PADA PROSES KOROSI DAN PENCEGAHANNYA Oleh Sumarni Setiasih, S.Si., M.PKim.

Korosi Retak Tegang (SCC) Baja Karbon AISI 1010 dalam Lingkungan NaCl- H 2 O-H 2 S

Korosi Retak Tegang (SCC) Baja Karbon AISI 1010 dalam Lingkungan NaCl- H 2 O-H 2 S

Mengubah energi kimia menjadi energi listrik Mengubah energi listrik menjadi energi kimia Katoda sebagi kutub positif, anoda sebagai kutub negatif

BAB II DASAR TEORI. sekelilingnya. Adapun proses korosi yang terjadi disamping oleh reaksi kimia, juga diakibatkan

BAB II LANDASAN TEORI

PENERAPAN PENGELOLAAN (TREATMENT) AIR UNTUK PENCEGAHAN KOROSI PADA PIPA ALIRAN SISTEM PENDINGIN DI INSTALASI RADIOMETALURGI

Laju Korosi Baja Dalam Larutan Asam Sulfat dan Dalam Larutan Natrium Klorida

Penghambatan Korosi Baja Beton dalam Larutan Garam dan Asam dengan Menggunakan Campuran Senyawa Butilamina dan Oktilamina

BAB I PENDAHULUAN Latar Belakang Permasalahan. PT Perusahaan Gas Negara (Persero) Tbk adalah perusahaan yang bergerak

Oksidasi dan Reduksi

2.1 DEFINISI DAN MEKANISME KOROSI

STT Dr.KHEZ MUTTAQIEN PURWAKARTA IWAN PONGO,ST, MT

ANTI KOROSI BETON DI LINGKUNGAN LAUT

BAB II DASAR TEORI. II.1. Dapur Pemanas Pada Kilang Minyak

Bab IV Hasil dan Pembahasan

PENGARUH ph TERHADAP LAJU KOROSI

2.1 PENGERTIAN KOROSI

BAB 1 PENDAHULUAN. dibandingkan jenis martensitik, dan feritik, di beberapa lingkungan korosif seperti air

Sidang TUGAS AKHIR. Dosen Pembimbing : Prof. Dr.Ir.Sulistijono,DEA

I. PENDAHULUAN. hidupnya. Salah satu contoh diantaranya penggunaan pelat baja lunak yang biasa

BAB IV KOROSI PADA TURBIN UAP

PENGENDALIAN KOROSI DENGAN MENGGUNAKAN ARUS TANDINGAN

PENGHAMBATAN KOROSI BAJA BETON DALAM LARUTAN GARAM DAN ASAM DENGAN MENGGUNAKAN CAMPURAN SENYAWA BUTILAMINA DAN OKTILAMINA

Analisa Desain Sistem Impressed Current Cathodic Protection (ICCP) pada Offshore Pipeline milik JOB Pertamina-Petrochina East Java

PENGARUH KONSENTRASI LARUTAN NaNO 2 SEBAGAI INHIBITOR TERHADAP LAJU KOROSI BESI DALAM MEDIA AIR LAUT

PERANCANGAN ALAT UJI KOROSI SALT SPRAY CHAMBER DAN APLIKASI PENGUKURAN LAJU KOROSI PLAT BODY AUTOMOBILES PRODUKSI EROPA DAN PRODUKSI JEPANG PADA

TUGAS SARJANA. KOROSI GALVANIS PADA STEEL AISI Cu DENGAN VARIASI PEMBIASAN SCRAP STEEL SEBAGAI ANODA KEDUA PADA MEDIUM NaCl

BAB II KAJIAN PUSTAKA. yang tersusun dalam prosentase yang sangat kecil. Dan unsur-unsur tersebut

UH : ELEKTROLISIS & KOROSI KODE SOAL : A

II. LATAR BELAKANG PENGOLAHAN AIR

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB IV DATA DAN HASIL PENELITIAN

BAB II TEORI DASAR. 2.1 Korosi

Studi Perbandingan Kinerja Anoda Korban Paduan Aluminium dengan Paduan Seng dalam Lingkungan Air Laut

TINJAUAN PUSTAKA. logam dengan lingkungannya [Jones, 1996]. Korosi menjadikan logam kembali

BAB II PEMBAHASAN. II.1. Electrorefining

4.1 INDENTIFIKASI SISTEM

Sel Volta (Bagian I) dan elektroda Cu yang dicelupkan ke dalam larutan CuSO 4

BAB I PENDAHULUAN. Indonesia merupakan salah satu negara di dunia yang kaya akan energi panas bumi.

REDOKS dan ELEKTROKIMIA

BAB III LANDASAN TEORI

KIMIA ELEKTROLISIS

Proteksi Katodik Metoda Anoda Tumbal Untuk Mengendalikan Laju Korosi

EKSTRAK DAUN GAMBIR SEBAGAI INHIBITOR KOROSI Oleh: Dr. Ahmad Fadli, Ir.Rozanna Sri Irianty, M.Si, Komalasari, ST., MT. Abstralc

BAB IV HASIL DAN PEMBAHASAN

BAB II TINJAUAN PUSTAKA. (C), serta unsur-unsur lain, seperti : Mn, Si, Ni, Cr, V dan lain sebagainya yang

BAB II DASAR TEORI. H 2 + 2OH - evolusi hidrogen dalam basa M e - M deposisi logam M 3+ + e - M 2+ reduksi ion logam

Skala ph dan Penggunaan Indikator

Transkripsi:

ANALISA KOROSI DAN PENGENDALIANNYA M. Fajar Sidiq Akademi Perikanan Baruna Slawi E-mail : mr_paimin@yahoo.com Abstrak Indonesia merupakan negara yang beriklim tropis dengan tingkat curah hujan dan kelembaban yang tinggi serta intensitas sinar matahari yang tinggi pula, dan sebagai negara berkembang, di Indonesia juga banyak bermunculan industri-industri yang mempunyai pengaruh cukup besar terhadap tingkat pencemaran pada lingkungan. Fenomena alam dan material khususnya logam mempunyai suatu keterikatan dalam suatu sistem dan proses. Hubungan tersebut diimplementasikan dalam suatu proses kerusakan yang dinamakan korosi. Korosi adalah kerusakan material khususnya logam secara umum akibat reaksi dengan lingkungan sekitarnya. Korosi merupakan penurunaan kualitas yang disebabkan oleh reaksi kimia bahan logam dengan unsur-unsur lain yang terdapat di alam. Dua jenis mekanisma utama dari korosi adalah berdasarkan reaksi kimia secara langsung, dan reaksi elektrokimia. Korosi dapat terjadi didalam lingkungan kering dan juga lingkungan basah. Korosi yang terjadi pada logam tidak dapat dihindari, tetapi hanya dapat dicegah dan dikendalikan sehingga struktur atau komponen mempunyai masa pakai yang lebih lama..hasil dari proses kerusakan berupa berbagai produk korosi misalnya berbagai macam oksida logam, kerusakan permukaan logam secara morfologi, perubahaan sifat mekanis, perubahan sifat kimia. Dengan dasar pengetahuan tentang elektrokimia proses korosi yang dapat menjelaskan mekanisme dari korosi, dapat dilakukan usaha-usaha untuk pencegahan terbentuknya korosi Kata Kunci: korosi, elektrokimia, morfologi PENDAHULUAN Korosi merupakan penurunan kualitas yang disebabkan oleh reaksi kimia bahan logam dengan unsur-unsur lain yang terdapat di alam. Korosi yang di berdasarkan proses elektro-kimia (electrochemical process) terdiri dari 4 komponen utama yaitu: a) Anode (Anoda) Anoda biasanya terkorosi dengan melepaskan elektron-elektron dari atomatom logam netral untuk membentuk ionion yang bersangkutan. Ion-ion ini mungkin tetap tinggal dalam larutan atau bereaksi membentuk hasil korosi yang tidak larut. Reaksi pada anoda dapat dituliskan dengan persamaan : M M Z+ + ze - Dengan z adalah valensi logam dan umumnya z = 1, 2, atau 3 b) Cathode (Katoda) Katoda biasanya tidak mengalami korosi, walaupun mungkin menderita kerusakan dalam kondisi-kondisi tertentu. Reaksi yang terjadi pada katoda berupa reaksi reduksi. Reaksi pada katoda tergantung pada ph larutan yang bersangkutan, seperti : 1) ph < 7 : H + + e - H ( atom ) 2H H 2 ( gas ) 2) ph 7 :2H 2 O+O 2 +4e - 4OH - c) Elektrolit Elektrolit adalah larutan yang mempunyai sifat menghantarkan listrik. Elektrolit dapat berupa larutan asam, basa dan larutan garam. Larutan elektrolit mempunyai peranan penting dalam korosi logam karena larutan ini dapat menjadikan kontak listrik antara anoda dan katoda d) Anoda dan Katoda harus terhubung secara elektris Antara anoda dan katoda harus ada hubungan listrik agar arus dalam sel korosi dapat mengalir. Hubungan secara fisik tidak diperlukan jika anoda dan katoda merupakan bagian dari logam yang sama. 25

Jurnal Foundry Vol. 3 No. 1 April 2013 ISSN : 2087-2259 Proses tersebut dapat dilihat dalam bentuk sel korosi basah sederhana berikut : Gb. 2 Kurva Energi Bebas Bijih Logam, Logam, Dan Produk( Trethewey, 1991 ) Tingkat kecenderungan terjadinya korosi pada logam dinyatakan dengan perubahan energi bebas G sedangkan laju korosi ditentukan oleh energi aktivasi G++ yang menunjukan penghalang energi yang harus dilawan oleh atom-atom logam supaya terjadi korosi. Laju reaksi korosi dapat dinyatakan dengan persamaan : Laju = tetapan laju x [ reaktan reaktan ] Gb.1 Sel Korosi Sederhana ( Trethewey, 1991 ) Karena hampir mustahil untuk mencegah korosi, maka mengendalikan tingkat korosi bisa menjadi solusi paling hemat. Insinyur-insinyur korosi kemudian terus dilibatkan di dalam menaksir ongkos solusi-solusi mereka kepada pencegahan korosi dan menaksir masa penggunaan dari peralatan. Dengan mengenali kapan korosi akan terjadi, dan dengan mengerti mekanisme yang yang terjadi maka ahli korosi akan mengeliminasi korosi dengan desain yang bagus. Menurut ilmu thermodinamika, reaksi atau transformasi terjadi dari kondisi dengan energi bebas tinggi ke energi rendah. Sebagai contoh, bijih besi mempunyai energi bebas rendah dan cenderung stabil. Pada proses ekstraksi, besi dipisahkan dari oksigen dan proses ini memerlukan energi sehingga energi bebas besi menjadi tinggi. Besi dengan kondisi energi bebas tinggi cenderung berubah menjadi produk korosi yang mempunyai energi bebas rendah. Besaran dalam kurung menyatakan konsentrasi zat dan tetapan laju dapat dinyatakan dengan penghalang energi sebagai berikut : Tetapan laju = C eksp [ G++ / RT ] Dengan C dan R tetapan, G++ adalah penghalang energi dan T temperatur mutlak. Thermodinamika reaksi korosi Ada beberapa factor yang menentukan terjadinya korosi, antara lain : - Semua interaksi antara unsur dan senyawa tergantung pada perubahan energi bebas - Perubahan secara alami ( spontan ) terjadi jika perubahan energi bebas G negatif yaitu terjadi pelepasan energi kebanyakan logam kecenderungan terjadi korosi mempunyai Sebagai contoh dapat dilihat pada ketiga reaksi berikut, logam Mg dan Cu akan terkorosi secara alamiah dilingkungan basah karena G negative sedangkan emas ( Au ) tidak terkorosi Mg + H2O + ½ O2 Mg ( OH )2 G0 = - 596 kj / mol Cu + H2O + ½ O2 Cu ( OH )2 G0 = - 119 kj / mol Au + 3/2 H2O + 3/4 O2 Au ( OH )3 G0 = +66 kj / mol 26

1. JENIS KOROSI Kebanyakan logam ada secara alami sebagai bijih-bijih yang stabil dari oksida-oksida, karbonat atau sulfida. Diperlukan energi untuk mengubah bijih logam menjadi sesuatu yang bermanfaat,. Korosi hanyalah perjalanan sifat pembalikan satu proses yang tidak wajar kembali kepada suatu keadaan tenaga yang lebih rendah. Secara umum, tipe dari korosi dapat diklasifikasikan sebagai berikut : 1. Korosi Seragam ( Uniform Corrosion ) Korosi seragam merupakan korosi dengan serangan merata pada seluruh permukaan logam. Korosi terjadi pada permukaan logam yang terekspos pada lingkungan korosif. 2. Korosi Galvanik Korosi galvanik terjadi jika dua logam yang berbeda tersambung melalui elektrolit sehingga salah satu dari logam tersebut akan terserang korosi sedang lainnya terlindungi dari korosi. Untuk memprediksi logam yang terkorosi pada korosi galvanic dapat dilihat pada deret galvanik 3. Korosi Celah Mirip dengan korosi galvanik, dengan pengecualian pada perbedaan konsentrasi media korosifnya. Celah atau ketidak teraturan permukaan lainnya seperti celah paku keling ( rivet ), baut, washer, gasket, deposit dan sebagainya, yang bersentuhan dengan media korosif dapat menyebabkan korosi terlokalisasi 4. Korosi Sumuran Korosi sumuran terjadi karena adanya serangan korosi lokal pada permukaan logam sehingga membentuk cekungan atau lubang pada permukaan logam. Korosi logam pada baja tahan karat terjadi karena rusaknya lapisan pelindung ( passive film ) 5. Retak Pengaruh Lingkungan ( environmentally induced cracking ) Merupakan patah getas dari logam paduan ulet yang beroperasi di lingkungan yang menyebabkan terjadinya korosi seragam. Ada tiga jenis tipe perpatahan pada kelompok ini, yaitu : stress corrosion cracking (SSC), corrosion fatigue cracking (CFC), dan hydrogen-induced cracking (HIC) 6. Kerusakan Akibat Hidrogen ( Hidrogen damage ) Kerusakan ini disebabkan karena serangan hydrogen yaitu reaksi antara hydrogen dengan karbida pada baja dan membentuk metana sehingga menyebabkan terjadinya dekarburasi, rongga, atau retak pada permukaan logam. Pada logam reaktik seperti titanium, magnesium, zirconium dan vanadium, terbentuknya hidrida menyebabkan terjadinya penggetasan pada logam. 7. Korosi Batas Butir ( intergranular corrosion ) Korosi yang menyerang pada batas butir akibat adanya segregasi dari unsur pasif seperti krom meninggalkan batas butir sehingga pada batas butir bersifat anodic 8. Dealloying Dealloying adalah lepasnya unsureunsur paduan yang lebih aktif (anodik) dari logam paduan, sebagai contoh : lepasnya unsur seng atau Zn pada kuningan ( Cu Zn ) dan dikenal dengan istilah densification. 9. Korosi Erosi Korosi erosi disebabkan oleh kombinasi fluida korosif dan kecepatan aliran yang tinggi. Bagian fluida yang kecepatan alirannya rendah akan mengalami laju korosi rendah, sedangkan fluida kecepatan tinggi menyebabkan terjadinya erosi dan dapat menggerus lapisan pelindung sehingga mempercepat korosi. 10. Korosi Aliran (Flow induced Corrosion) Korosi Aliran digambarkan sebagai effek dari aliran terhadap terjadinya korosi. Meskipun mirip, antara korosi aliran dan korosi erosi adalah dua hal yang berbeda. Korosi aliran adalah peningkatan laju korosi yang disebabkan oleh turbulensi fluida dan perpindahan massa akibat dari aliran fluida diatas permukaan logam. Korosi erosi adalah naiknya korosi dikarenakan benturan secara fisik pada 27

Jurnal Foundry Vol. 3 No. 1 April 2013 ISSN : 2087-2259 permukaan oleh partikel yang terbawa fluida. Reaksi Anoda : Fe Reaksi katoda : O2 + 2H2O+ 4e 4 Gb. 2. Aliran Fluida Dalam Pipa yang dapat menyebabkan korosi aliran (Uhlig, 2000 ) Untuk lebih jelasnya dapat dilihat pada gambar berikut : Fe2- + 2e OH Karbondioksida (CO2), jika karbon dioksida dilarutkan dalam air maka akan terbentuk asam karbonat (H2CO3) yang dapat menurunkan ph air dan meningkatkan korosifitas, biasanya bentuk korosinya berupa pitting yang secara umum reaksinya adalah: CO2 + H2O H2CO3 Fe + H2CO3 FeCO3+H2 2. Faktor Temperatur Penambahan temperatur umumnya menambah laju korosi walaupun kenyataannya kelarutan oksigen berkurang dengan meningkatnya temperatur. Apabila metal pada temperatur yang tidak uniform, maka akan besar kemungkinan terbentuk korosi. 3. Faktor ph ph netral adalah 7, sedangkan ph < 7 bersifat asam dan korosif, sedangkan untuk ph > 7 bersifat basa juga korosif. Tetapi untuk besi, laju korosi rendah pada ph antara 7 sampai 13. Laju korosi akan meningkat pada ph < 7 dan pada ph > 13. Gb.3. Jenis Jenis Korosi ( Jones, 1991) 2. Faktor-Faktor Yang Mempengaruhi Laju Korosi Umumnya problem korosi disebabkan oleh air, tetapi ada beberapa faktor selain air yang mempengaruhi laju korosi, diantaranya: 1. Faktor Gas Terlarut. Oksigen (O2), adanya oksigen yang terlarut akan menyebabkan korosi pada metal seperti laju korosi pada mild stell alloys akan bertambah dengan meningkatnya kandungan oksigen. Reaksi korosi secara umum pada besi karena adanya kelarutan oksigen adalah sebagai berikut : 4. Faktor Bakteri Pereduksi atau Sulfat Reducing Bacteria (SRB) Adanya bakteri pereduksi sulfat akan mereduksi ion sulfat menjadi gas H2S, yang mana jika gas tersebut kontak dengan besi akan menyebabkan terjadinya korosi. 5. Faktor Padatan Terlarut Klorida (Cl), klorida menyerang lapisan mild steel dan lapisan stainless steel. Padatan ini menyebabkan terjadinya pitting, crevice corrosion, dan juga menyebabkan pecahnya alooys. Karbonat (CO3), kalsium karbonat sering digunakan sebagai pengontrol korosi dimana film karbonat diendapkan sebagai lapisan pelindung permukaan metal, tetapi dalam produksi minyak hal ini cenderung menimbulkan masalah scale. Sulfat (SO4), ion sulafat ini biasanya terdapat dalam minyak. Dalam air, ion sulfat juga ditemukan dalam 28

konsentrasi yang cukup tinggi dan bersifat kontaminan, dan oleh bakteri SRB sulfat diubah menjadi sulfide yang korosif. 3. DAMPAK KOROSI Korosi yang terjadi pada logam tidak dapat dihindari, tetapi hanya dapat dicegah dan dikendalikan sehingga struktur atau komponen mempunyai masa pakai yang lebih lama. Setiap komponen atau struktur mengalami tiga tahapan utama yaitu perancangan, pembuatan dan pemakaian. Ketidakberhasilan salah satu aspek seperti korosi menyebabkan komponen akan mengalami kegagalan. Kerugian yang akan dialami dengan adanya korosi meliputi finansial dan safety, diantaranya : Penurunan kekuatan material Penipisan Downtime dari equipment Retak & Pitting Kebocoran fluida Embrittlement Penurunan sifat permukaan material Penurunan nilai / hasil produksi Modification 4. Metode Pencegahan Korosi Dengan dasar pengetahuan tentang proses korosi yang dapat menjelaskan mekanisme dari korosi, dapat dilakukan usaha-usaha untuk pencegahan terbentuknya korosi a) Pengubahan Media Korosi merupakan interaksi antara logam dengan media sekitarnya, maka pengubahan media sekitarnya akan dapat mengubah laju korosi. Ada tiga situasi yang dapat terjadi yaitu: Media sekitar / lingkungan berupa gas Media sekitar berupa larutan dengan ion-ion tertentu Logam terbenam dalam tanah. b) Seleksi Material Metode umum yang sering digunakan dalam pencegahan korosi yaitu pemilihan logam atau paduan dalam suatu lingkungan korosif tertentu untuk mengurangi resiko terjadinya korosi. c) Proteksi Katodik (Cathodic Protection) Proteksi katodik adalah jenis perlindungan korosi dengan menghubungkan logam yang mempunyai potensial lebih tinggi ke struktur logam sehingga tercipta suatu sel elektrokimia dengan logam berpotensial rendah bersifat katodikdan terproteksi Macam : Impressed Current Galvanic Sacrificial Anode Galvanic Zinc Application Zinc Metallizing Zinc-Rich Paints Hot-Dip Galvanizing d) Proteksi Anodik (Anodic Protection) Adanya arus anodik akan meningkatkan laju ketidak-larutan logam dan menurunkan laju pembentukan hidrogen. Hal ini bisa terjadi untuk logamlogam active-passive seperti Ni, Fe, Cr, Ti dan paduannya. Jika arus yang lewat logam dikontrol seksama (dengan potentiostat) maka logam akan bersifat pasif dan pembentukan logam-logam tak terlarut akan berkurang. e) Inhibitor Korosi Salah satu cara yang dapat dilakukan untuk mencegah terjadinya korosi adalah dengan penggunaan inhibitor korosi. Secara umum suatu inhibitor adalah suatu zat kimia yang dapat menghambat atau memperlambat suatu reaksi kimia. Sedangkan inhibitor korosi adalah suatu zat kimia yang bila ditambahkan kedalam suatu lingkungan, dapat menurunkan laju penyerangan korosi lingkungan itu terhadap suatu logam. Mekanisma penghambatannya terkadang lebih dari satu jenis. Sejumlah inhibitor menghambat korosi melalui cara adsorpsi untuk membentuk suatu lapisan tipis yang tidak nampak dengan ketebalan beberapa molekul saja, ada pula yang karena pengaruh lingkungan 29

membentuk endapan yang nampak dan melindungi logam dari serangan yang mengkorosi logamnya dan menghasilkan produk yang membentuk lapisan pasif, dan ada pula yang menghilangkan konstituen yang agresif. f) Pengubahan Media / Lingkungan Kerja (Environment Change) Korosi merupakan interaksi antara logam dengan media sekitarnya, maka pengubahan media sekitarnya akan dapat mengubah laju korosi. Ada tiga situasi yang dapat terjadi yaitu: Media sekitar / lingkungan berupa gas Media sekitar berupa larutan dengan ion-ion tertentu Logam terbenam dalam tanah. g) Pelapisan (Coatings) Prinsip umum dari pelapisan yaitu melapiskan logam induk dengan suatu bahan atau material pelindung. Jenis - jenis coating : Metallic coatings Paint /organic coatings Chemical conversion coatings Miscellaneous coatings (enamel, thermoplastics) Daftar Pustaka 1. Dalimunthe, I.S., 2004, Kimia Dari Inhibitor Korosi, Universitas Sumatra Utara 2. Jones, D.A., 1991, Principle and Prevention of Corrosion, Mc. Millan Publishing Company, New York 3. Roberge, P. R., 1999, Handbook of Corrosion Engineering, McGraw- Hill Companies, Inc., New York 4. Trethewey, K. R. &Chamberlain, J., 1991, Korosi Untuk Mahasiswa Sains dan Rekayasa, PT. GramediaPustakaUtama, Jakarta 5. Uhlig. H.M., 2000, Uhlig`s Corrosion Handbook, Second Edition, John Wiley & Sons, Inc. 6. Widharto, S., 2001, Karat dan Pencegahannya, P.T. Pradnya Paramita, Jakarta KESIMPULAN 1. Kondisi Indonesia yang beriklim tropis dengan curah hujan dan intensitas sinar mata hari yang tinggi serta polusi udara dari air laut, sungai dan industri mempercepat terjadinya proses korosi 2. Korosi merupakan penurunan mutu logam oleh reaksi elektrokimia dengan lingkungannya. Korosi yang terjadi pada logam tidak dapat dihindari, tetapi hanya dapat dicegah dan dikendalikan sehingga struktur atau komponen mempunyai masa pakai yang lebih lama. 3. Dengan mengenali kapan korosi akan terjadi, dan dengan mengerti mekanisme yang yang terjadi maka ahli korosi akan dapat mengeliminasi korosi dan resikonya. 30