Naskah Publikasi Tugas Akhir Jurusan Teknik Sipil Fakultas Teknik Universitas Muhammadiyah Yogyakarta

dokumen-dokumen yang mirip
BAB III METODE PENELITIAN. Mulai. Studi literatur. Pemodelan numerik Plaxis 2D. Input data 1. Geometri model 2. Parameter material

ANALISI BEBAN DINAMIK PADA STRUKTUR JALAN REL DENGAN PEMODELAN NUMERIK MENGGUNAKAN METODE ELEMEN HINGGA 1

Gambar 2.1 Konstruksi jalan rel

BAB IV HASIL DAN PEMBAHASAN

BAB III STRUKTUR JALAN REL

BAB II TINJAUAN PUSTAKA

LAMPIRAN 1. Langkah Program PLAXIS V.8.2

Adapun langkah-langkah metodologi dalam menyelesaikan tugas akhir ini dapat dilihat pada flow chart sebagai berikut. Mulai.

BAB IV PEMBEBANAN PADA STRUKTUR JALAN REL

BAB II TINJAUAN PUSTAKA

LAMPIRAN 1 LANGKAH PEMODELAN ANALISA STABILITAS TIMBUNAN PADA PROGRAM PLAXIS 8.6

ANALISA PONDASI PILE RAFT PADA TANAH LUNAK DENGAN PLAXIS 2D

BAB I KOMPONEN STRUKTUR JALAN REL DAN PEMBEBANAN NYA

BAB I PENDAHULUAN 1.1. Latar belakang

BAB II TINJAUAN PUSTAKA

DAFTAR ISI. HALAMAN JUDUL ABSTRAK... i ABSTRACT... iii KATA PENGANTAR... v DAFTAR ISI... vii DAFTAR TABEL... xi DAFTAR GAMBAR...

BAB IV HASIL DAN PEMBAHASAN

LANGKAH PEMODELAN ANALISA KAPASITAS LATERAL KELOMPOK TIANG PADA PROGRAM PLAXIS 3D FOUNDSTION

TUGAS AKHIR. Diajukan sebagai syarat untuk meraih gelar Sarjana Teknik Strata 1 (S-1) Disusun Oleh : Maulana Abidin ( )

STUDI GERAKAN TANAH AKIBAT PEMANCANGAN TIANG FONDASI (SQUARE PILE) STUDI KASUS PADA PEMBANGUNAN TERMINAL PENUMPANG BANDARA SUPADIO PONTIANAK

Laporan Tugas Akhir Analisis Pondasi Jembatan dengan Permodelan Metoda Elemen Hingga dan Beda Hingga BAB III METODOLOGI

KOMPONEN STRUKTUR JALAN REL DAN PEMBEBANANNYA. Nursyamsu Hidayat, Ph.D.

Bab III Metodologi Penelitian

BAB III LANDASAN TEORI A. Struktur Jalur Kereta Api

BAB 4 HASIL DAN PEMBAHASAN

BAB I PENDAHULUAN. fisik menuntut perkembangan model struktur yang variatif, ekonomis, dan aman. Hal

2.2 Data Tanah D. YULIANTO 1. PENDAHULUAN

BAB II TINJAUAN PUSTAKA

TUGAS AKHIR ANALISIS BEBAN DINAMIK PADA STRUKTUR JALAN REL DENGAN PEMODELAN NUMERIK MENGGUNAKAN METODE ELEMEN HINGGA

PENGARUH PENAMBAHAN KOLOM PASIR (SAND COLUMN) SEBAGAI PERKUATAN TERHADAP NILAI LENDUTAN PADA TANAH DASAR (SUB GRADE)

STUDI PERILAKU TIANG PANCANG KELOMPOK MENGGUNAKAN PLAXIS 2D PADA TANAH LUNAK ( VERY SOFT SOIL SOFT SOIL )

BAB III PROSEDUR ANALISIS

BAB II TEORI DASAR. Gambar 2.1 Tipikal struktur mekanika (a) struktur batang (b) struktur bertingkat [2]

BAB IV STUDI KASUS 4.1 UMUM

BAB II TINJAUAN PUSTAKA

ANALISIS DEFORMASI VERTIKAL DAN HORISONTAL TANAH LUNAK DI BAWAH PILED-GEOGRID SUPPORTED EMBANKMENT

BAB III METODE PENELITIAN

PERENCANAAN STABILITAS LERENG DENGAN SHEET PILE DAN PERKUATAN GEOGRID MENGGUNAKAN METODE ELEMEN HINGGA. Erin Sebayang 1 dan Rudi Iskandar 2

STUDI EFEKTIFITAS TIANG PANCANG KELOMPOK MIRING PADA PERKUATAN TANAH LUNAK

Analisis Daya Dukung dan Penurunan Fondasi Rakit dan Tiang Rakit pada Timbunan di Atas Tanah Lunak

HALAMAN PENGESAHAN PERENCANAAN PONDASI KSLL ( KONSTRUKSI SARANG LABA-LABA ) PADA PROYEK INSTALASI RAWAT INAP YAYASAN RUMAH SAKIT ISLAM SURAKARTA

BAB III METODE PENELITIAN

Kuliah Prasarana Transportasi Kode MK.CEC 611 Kuliah Minggu Ke-2 STRUKTUR JALAN REL DAN POLA DISTRIBUSI BEBAN

JUDUL HALAMAN PENGESAHAN BERITA ACARA MOTTO DAN PERSEMBAHAN KATA PENGANTAR ABSTRAK DAFTAR ISI DAFTAR GAMBAR DAFTAR TABEL DAFTAR NOTASI DAFTAR LAMPIRAN

Reduced Model Behavior of Railway Structure Reinforced by Geosynthetic and Wooden-piles under Ballast with PLAXIS 3D FOUNDATION v 1.

DAYA DUKUNG PONDASI MENERUS PADA TANAH LEMPUNG BERLAPIS MENGGUNAKAN METODE "MEYERHOF DAN HANNA" DAN METODE ELEMENT HINGGA (PLAXIS)

ANALISA PONDASI PILE RAFT PADA TANAH LUNAK DENGAN PLAXIS 2D

REKAYASA GEOTEKNIK DALAM DISAIN DAM TIMBUNAN TANAH

ANALISIS PERUBAHAN TEKANAN AIR PORI PADA TANAH LUNAK DI BAWAH PILED - GEOGRID SUPPORTED EMBANKMENT. Oleh: Adhe Noor Patria.

BAB III METODE PENELITIAN

STUDI ANALISIS PEMODELAN BENDA UJI BALOK BETON UNTUK MENENTUKAN KUAT LENTUR DENGAN MENGGUNAKAN SOFTWARE KOMPUTER

PERENCANAAN JALUR GANDA KERETA API SURABAYA - KRIAN

BAB I PENDAHULUAN 1.2. JENIS PEMBANGUNAN JALAN REL

4 PERHITUNGAN DAN ANALISIS

ANALISIS STABILITAS LERENG PADA JALAN REL SEPANCAR - GILAS STA 217 MENGGUNAKAN METODE IRISAN BISHOP DAN PERANGKAT LUNAK PLAXIS ABSTRAK

III. METODE PENELITIAN. yang berasal dari daerah Karang Anyar, Lampung Selatan yang berada pada

PERENCANAAN GEOMETRI JALAN REL KERETA API TRASE KOTA PINANG- MENGGALA STA STA PADA RUAS RANTAU PRAPAT DURI II PROVINSI RIAU

STUDI DIFERENTIAL SETTLEMENT AKIBAT ADANYA PENAMBAHAN SIRTU PADA KELOMPOK TIANG DI BAWAH PONDASI TANGKI

RINGKASAN. Kata Kunci : Tanah Ekspansif, Repetisi Beban, Tegangan Tanah, Penurunan Tanah

BAB III METODE KAJIAN

PENGARUH METODE KONSTRUKSI PONDASI SUMURAN TERHADAP KAPASITAS DUKUNG VERTIKAL (148G)

PERENCANAAN GEOMETRIK JALAN REL ANTARA BANYUWANGI-SITUBONDO- PROBOLINGGO

BAB 4 PENGUJIAN LABORATORIUM

BAB IV EVALUASI KINERJA DINDING GESER

LANGKAH-LANGKAH PEMODELAN MENGGUNAKAN PLAXIS V8.2. Pada bagian ini dijelaskan tentang cara-cara yang dilakukan untuk memodelkan proyek

REKAYASA JALAN REL. MODUL 8 ketentuan umum jalan rel PROGRAM STUDI TEKNIK SIPIL

DAFTAR ISI. i ii iii iv

BAB IV PERMODELAN DAN ANALISIS STRUKTUR

1. Dosen Jurusan Teknik Sipil Universitas Hasanuddin, Makassar Mahasiswa Jurusan Teknik Sipil Universitas Hasanuddin, Makassar 90245

BAB III LANDASAN TEORI. Tujuan utama dilakukannya analisis interaksi sistem ini oleh para

Keywords: finite element method, subgrade, limestone, deflection. Kata kunci : metode elemen hingga, tanah dasar, limestone, lendutan.

Analisa Pemasangan Ekspansi Loop Akibat Terjadinya Upheaval Buckling pada Onshore Pipeline

BAB IV METODE PERHITUNGAN MENGGUNAKAN SOFTWARE

BAB II TINJAUAN PUSTAKA

BAB III LANDASAN TEORI

BAB 4 HASIL DAN PEMBAHASAN. penambangan batu bara dengan luas tanah sebesar hektar. Penelitian ini

ANALISIS STRUKTUR CULVERT LENGKUNG DI BAWAH LINTASAN LANDAS PACU BANDARA ADISUTJIPTO YOGYAKARTA

ANALISIS KAPASITAS DAYA DUKUNG PONDASI TIANG PANCANG DENGAN MENGGUNAKAN METODE ANALITIS DAN ELEMEN HINGGA

Pemodelan Numerik Pada Perbaikan Tanah Menggunakan Stone Column Di Tanah Lempung Lunak Di Bawah Tanah Timbunan

Mekanika Bahan TEGANGAN DAN REGANGAN

Perencanaan Jalur Ganda Kereta Api Surabaya -Krian

BAB 3 LANDASAN TEORI. perencanaan underpass yang dikerjakan dalam tugas akhir ini. Perencanaan

ANALISA TAHANAN LATERAL DAN DEFLEKSI FONDASI GRUP TIANG PADA SISTEM TANAH BERLAPIS DENGAN VARIASI JUMLAH TIANG DALAM SATU GRUP

Perencanaan Lengkung Horizontal Jalan Rel Kandangan-Rantau Provinsi Kalimantan Selatan

TUGAS PERENCANAAN JALAN REL

PERANCANGAN STRUKTUR ATAS GEDUNG CONDOTEL MATARAM CITY YOGYAKARTA. Oleh : KEVIN IMMANUEL KUSUMA NPM. :

BAB 4 HASIL DAN PEMBAHASAN

BAB III METODE PERANCANGAN JEMBATAN RANGKA BAJA KERETA API. melakukan penelitian berdasarkan pemikiran:

PENGARUH KONFIGURASI RANGKA DAN OPTIMASI PROFIL TERHADAP KINERJA PADA STRUKTUR JEMBATAN RANGKA BAJA

DAFTAR ISI. Judul DAFTAR GAMBAR DAFTAR LAMPIRAN DAFTAR NOTASI DAN SINGKATAN BAB I PENDAHULUAN RUMUSAN MASALAH TUJUAN PENELITIAN 2

STUDI PERILAKU TEKUK TORSI LATERAL PADA BALOK BAJA BANGUNAN GEDUNG DENGAN MENGGUNAKAN PROGRAM ABAQUS 6.7. Oleh : RACHMAWATY ASRI ( )

BAB I PENDAHULUAN. alas pada kapal, body pada mobil, atau kendaraan semacamnya, merupakan contoh dari beberapa struktur pelat. Pelat-pelat tersebut

KONTROL ULANG PENULANGAN JEMBATAN PRESTRESSED KOMPLANG II NUSUKAN KOTA SURAKARTA

BAB I PENDAHULUAN. perencanaan suatu konstruksi bangunan sering dijumpai kondisi tanah yang tidak

Nurmaidah Dosen Pengajar Fakultas Teknik Universitas Medan Area

STUDY PEMODELAN STRUKTUR SUBMERGED FLOATING TUNNEL

BAB 1 PENDAHULUAN. Perkembangan ilmu pengetahuan dan teknologi yang semakin pesat

BAB I PENDAHULUAN 1.1 Latar Belakang

KAJIAN PERILAKU LENTUR PELAT KERAMIK BETON (KERATON) (064M)

Bab 1 PENDAHULUAN. tanah yang buruk. Tanah dengan karakteristik tersebut seringkali memiliki permasalahan

Transkripsi:

Naskah Publikasi Tugas Akhir Jurusan Teknik Sipil Fakultas Teknik Universitas Muhammadiyah Yogyakarta ANALISIS PEMBEBANAN SIKLIK PADA PEMODELAN NUMERIK STRUKTUR JALAN KERETA API Andree Arief Pratama 1, Sri Atmaja P. Rosyidi 2, Agus Setyo Muntohar 3 1 Mahasiswa (20120110242), 2 Dosen Pembimbing I, 3 Dosen Pembimbing II Kereta api merupakan salah satu moda transportasi unggulan di berbagai negara untuk melakukan distribusi jasa dan barang. Untuk mobilisasinya, kereta api memerlukan lintasan tersendiri yang mana kita sebut sebagai jalan rel kereta api. Terdiri dari komponen utama, seperti subgrade, subbalas, balas, bantalan dan rel. Dalam merancang struktur jalan rel, perlu diperhitungkan rancangan struktur jalan rel yang mempunyai tingkat kestabilan tinggi, agar tidak mengalami penurunan tanah yang ekstrim akibat beban dan kecepatan yang dapat membahayakan pengguna kereta api. Komponen balas yang menerima aliran beban dari rel dan bantalan, cukup sering dijadikan objek penelitian. Ketebalan balas pada penelitian ini dimodelkan bervariasi, yaitu: 30 cm, 40 cm dan 50 cm dengan variasi kecepatan (v) 80 km/jam, 100 km/jam dan 120 km/jam. Dalam pemodelan ini digunakan data sekunder untuk selanjutnya dianalisis menggunakan program Plaxis versi 8.2. Output program berupa data besaran deformasi vertikal yang dihasilkan oleh beban akibat kecepatan kereta api menggunakan metode pembebanan siklik (cyclic loads). Pembebanan siklik adalah peningkatan/pengurangan beban pada suatu objek secara bertahap dalam batas tertentu sehingga menghasilkan satu/beberapa siklus/putaran. Penerapan beban siklik sebanyak dua siklus dengan tinjauan 10 titik menunjukkan deformasi vertikal terbesar pada subgrade (tinjauan pada titik J) sebesar 0.07 m, sedangkan deformasi vertikal terkecil diperoleh pada pinggir subbalas (tinjauan pada titik G) sebesar 0.0016 m. Diperoleh juga, balas dengan ketebalan 40 cm dan 50 cm lebih mampu memperkecil deformasi yang diterima akibat laju kereta api dibanding variasi ketebalan balas 30 cm. Kata kunci: rel, balas, beban siklik, kereta api, pemodelan numerik PENDAHULUAN Struktur jalan rel terbagi menjadi dua bagian, yaitu komponen struktur bagian atas (superstructure) yang terdiri dari rel (rail), penambat (fastening), dan bantalan (sleeper). Kedua, komponen struktur bagian bawah (substructure) yang terdiri dari balas (ballast), subbalas (subballast), tanah dasar (improve subgrade) dan tanah asli (natural ground) (Gambar 1.1). Dalam perancangan struktur jalan rel, perlu diperhitungkan rancangan struktur jalan rel yang mempunyai tingkat kestabilan tinggi, agar tidak mengalami penurunan tanah yang ekstrim akibat beban dan kecepatan yang dapat membahayakan pengguna kereta api. Tanah merupakan komponen paling bawah yang dapat berupa tanah asli maupun tanah yang sudah mengalami perbaikan. Perubahan bentuk 1

(deformation) dari tanah dihasilkan dari distribusi beban oleh lapisan diatasnya seperti balas dan subbalas. Secara umum, tanah akan memampat dan menyebabkan terjadinya penurunan struktur yang ada di atasnya (Muntohar, 2009). Lapisan balas berguna mempertahankan komponen bantalan pada tempatnya dan meneruskan beban yang disalurkan dari bantalan menuju ke tanah dengan pola distribusi beban yang lebih merata. Lapisan balas terletak di daerah yang mengalami konsentrasi tegangan terbesar akibat lalu lintas kereta api, oleh karena itu pemilihan lapisan balas harus tepat. Desain jenis material dan tebal lapisan balas akan mempengaruhi kondisi struktur jalan rel secara umum (Rosyidi, 2015). Oleh karena itu diperlukan suatu pemodelan balas untuk menentukan ketebalan lapisan balas yang efektif. Terdapat tiga gaya yang ditimbulkan dari pembebanan pada struktur jalan rel seperti gaya vertikal, gaya transversal (lateral) dan gaya longitudinal. Oleh karena itu, analisis pembebanan sewaktu perancangan jalan rel berguna untuk meminimalisir resiko kerusakan yang disebabkan oleh respon jalan rel akibat beban yang diterima. Perhitungan beban dan gaya perlu dipahami secara benar untuk dapat merencanakan dimensi, tipe dan desain jalan rel, bantalan, balas dan seterusnya. Balas Penambat Rel Bantalan Rumput Drainasi Subbalas Tanah dasar Gambar 1.1Gambar konstruksi jalan rel METODE PENELITIAN 1. Bagan Alir Penelitian Metode penelitian dimulai dengan mengumpulkan studi literatur yang berkaitan dengan pembahasan sebagai acuan dalam penelitian berupa referensi dari buku dan penelitian-penelitian sebelumnya. Bagan alir dapat dilihat pada Gambar 2.1. 2

Tidak Mulai Studi literatur Pemodelan numerik Plaxis 2D Input data 1. Geometri model 2. Parameter material 1. Mesh 2. Initial condition Stage construction Pembebanan (loading) Calculation stage sekunder yang meliputi data mengenai ukuran struktur jalan rel, parameter material dan pembebanan. Penelitian dan penyusunan laporan berdasarkan pada buku mekanika tanah, buku rekayasa jalan rel kereta api dan jurnal Teknik Sipil yang berkenaan dengan pokok bahasan yang dikaji. 3. Pemodelan Numerik Analisis numerik dilakukan dengan memodelkan jalan rel sebagai model plane strain menggunakan elemen 15-nodes dalam PLAXIS 2D versi 8.2. Model plane strain digunakan pada kondisi tanah dengan regangan pada satu arah bernilai nol (Gambar 3.2). Karena perpindahan yang melibatkan arah sumbu Y ( y) bernilai kecil apabila dibandingkan dengan panjang dari arah sumbu lainnya (Budhu, 1999). Sementara penggunaan elemen 15-nodes digunakan, karena memberikan hasil yang akurat terhadap interpolasi perhitungan 2D dan prediksi tegangan tingkat tinggi untuk masalah yang kompleks (Brinkgreve dkk, 1998). Hasil y Selesai Gambar 2.1 Diagram alir penelitian x 2. Studi Literatur Studi literatur dilakukan untuk mendapatkan acuan dan gambaran mengenai topik penelitian sebagai dasar dalam pembahasan dan penyelesaian masalah. Penelitian ini menggunakan data y, y = Gambar 2.2 Model plane strain 3

Penampang jalan rel dimodelkan pada potongan melintang yaitu potongan dengan arah tegak lurus sumbu jalan rel (Gambar 2.3). Dengan ukuran panjang lapisan subgrade 10 meter, lapisan subbalas 2,65 meter, lapisan balas 1,5 meter dan lapisan bantalan 1 meter. Struktur perkerasan jalan rel yang dimodelkan terdiri dari 4 lapisan, yaitu lapisan subgrade (tanah dasar) setebal 5 meter, lapisan subbalas setebal 50 cm, lapisan balas dengan beberapa variasi ketebalan, dan lapisan bantalan setebal 20 cm (Tabel 2.1). Untuk lapisan balas dilakukan pemodelan dengan beberapa variasi ketebalan yaitu 30 cm, 40 cm dan 50 cm. Pemodelan ini dilakukan untuk mendapatkan nilai penurunan terkecil dari struktur jalan rel tersebut dengan variasi tebal lapisan balas. Sementara untuk beban kereta api diletakkan pada 1 titik sesuai dengan perletakan roda kereta api pada rel. Gambar 2.3 Penampang melintang jalan rel Tabel 2.1 Dimensi penampang melintang jalan rel 4

4. Parameter Material Material tanah dan lapisan jalan rel dimodelkan sebagai model plane strain. Parameter subgrade, subbalas, balas dan bantalan diambil dari berbagai literatur (Tabel 2.2). Berat volume tanah pada subgrade menunjukkan jenis tanah berupa lempung, sedangkan pada subbalas dan balas adalah kerikil, data diperoleh dari penelitian sebelumnya (Dewi, 2015). Modulus elastisitas pada subbalas dan balas dirujuk dari penelitian (Dahlberg, 2010). Nilai poisson ratio untuk subgrade, subbalas dan balas diambil dari penelitian (Rose, 2004). Tabel 2.2 Parameter material subgrade, subbalas, balas dan bantalan Parameter Subgrade Subbalas Balas Bantalan Tipe Soil & interfaces Soil & interface Soil & interface Plates Model material Hardening soil Linier elastic Linier elastic - Tipe material Drained Drained Drained Elastic (kn/m 3 ) 21 16 17 - (kn/m 3 ) 22 20 22 - (kn/m 2 ) 29145,5 30000 100000 - (kn/m 2 ) 29145,5 - - - (kn/m 2 ) 58290 - - - EA (kn/m) - - - 1846800 EI (kn/m 2 /m) - - - 910800 w (kn/m/m) - - - 7,90513834 d (m) - - - 0,2 (nu) 0,4 0,35 0,3 0,2 HASIL DAN PEMBAHASAN A. Kalkulasi pembebanan siklik Kalkulasi pembebanan siklik pada pemodelan ini menggunakan dua fase yang terdiri dari dua siklus pembebanan. Pertama, diberikan fase kondisi awal untuk mengaktifkan gravity loading dengan cara masukkan angka 1 pada - Mweight. Kedua, fase pembebanan, diberikan beban secara bertahap dalam persentase mulai dari 0%, 25%, 50%, 75% dan 100%. Nilai beban secara bertahap untuk kecepatan (v) 120 km/jam sebesar 1 kn/m, 24.86 kn/m, 49.72 kn/m, 74.58 kn/m dan 99.44 kn/m menggunakan loading input: total multipliers. Setelah mencapai beban 100%, beban dikurangi bertahap menjadi 75%, 50%, 25% dan 0%. Hal tersebut berguna untuk menghasilkan satu siklus pada kalkulasi. Untuk memberikan siklus selanjutnya, lakukan pengulangan di atas. B. Besar deformasi vertikal terhadap variasi kecepatan (v) kereta dan ketebalan balas Pemodelan dilakukan dengan tiga variasi kecepatan (v), antara lain: 80 km/jam, 100 km/jam dan 120 km/jam. Variasi ketebalan juga diberikan pada balas sebesar 30 cm, 40 cm dan 50 cm.dengan perhitungan BoEF, kecepatan dikonversi sehingga diperoleh beban yang 5

diterima untuk setiap kecepatan. Secara berturut kecepatan 80 km/jam, 100 km/jam dan 120 km/jam menghasilkan beban 83.02 kn/m, 91.23 kn/m dan 99.44 kn/m. Peninjauan pada pemodelan ini dilakukan dengan melihat respon pembebanan pada beberapa titik tinjauan. Deformasi vertikal (Uy) terbesar untuk semua variasi kecepatan dan tebal lapisan balas terjadi pada titik Jdari 10 titik tinjauan. Secara umum, deformasi vertikal terbesar ditemukan pada model dengan ketebalan balas 30 cm yang diberi kecepatan 120 km/jam sebesar 0.07 m. Tebal balas yang kecil dibanding variasi lainnya memungkinkan pemampatan tanah yang lebih cepat ketika diberi beban maksimum. Deformasi vertikal (Uy) terkecil untuk semua variasi kecepatan dan tebal lapisan balas terjadi pada titik Gdari 10 titik tinjauan. Secara umum, deformasi vertikal terkecil ditemukan pada model dengan ketebalan balas 40 cm yang diberi kecepatan 80 km/jam sebesar 0.0016 m. Titik G berada di pinggir subbalas dan cukup jauh dari pusat beban sehingga penurunan tanah yang terjadi kecil. Gambar 3.1 Tampilan geometri setelah dilakukan Mesh Generate 6

Beban (kn/m) Gambar 3.2 Peninjauan dilakukan pada 10 titik (A-J) 90 80 70 60 50 40 30 20 Balas 30cm v80 Balas 40cm v80 Balas 50cm v80 10 0-0.02 0 0.02 0.04 0.06 0.08-10 Deformasi Vertikal - Uy (m) Gambar 3.3 Grafik deformasi vertikal dengan kecepatan 80 km/jam 7

Beban (kn/m) Beban (kn/m) 100 80 60 40 20 Balas 30cm v80 Balas 40cm v80 Balas 50cm v80 0-0.02 0 0.02 0.04 0.06 0.08-20 Deformasi Vertikal - Uy (m) Gambar 3.4 Grafik deformasi vertikal dengan kecepatan 100 km/jam 120 100 80 60 40 Balas 30cm v80 Balas 40cm v80 Balas 50cm v80 20 0-0.02 0 0.02 0.04 0.06 0.08-20 Deformasi Vertikal - Uy (m) Gambar 3.5 Grafik deformasi vertikal dengan kecepatan 120 km/jam 8

Deformasi Vertikal - Uy (m) C. Hubungan antara tebal lapisan balas dengan nilai deformasi vertikal Hubungan yang diberikan pada grafik menunjukkan deformasi vertikal berkurang seiring bertambahnya tebal lapisan balas dan sebaliknya (Gambar 3.6). Nilai deformasi vertikal mengalami banyak penurunan ketika tebal lapisan balas ditambah 10 cm dari 30 cm menjadi 40 cm, sedangkan pada lapisan balas yang ditambah 10 cm dari 40 cm menjadi 50 cm hanya mengalami sedikit penurunan. Berdasarkan variasi kecepatan yang diberikan juga dapat diketahui bahwa semakin kecil kecepatan, maka semakin kecil deformasi vertikal yang terjadi pada semua variasi ketebalan balas. 0.16 0.14 0.07 0.12 0.05 0.1 0.038 0.08 0.06 0.041 0.035 0.029 v 120 km/jam v 100 km/jam 0.04 0.029 0.021 0.018 v 80 km/jam 0.02 0 30 40 50 Ketebalan Balas (cm) Gambar 3.6 Grafik hubungan deformasi vertikal dan ketebalan balas (tinjauan titik J) D. Perbandingan antara pembebanan statik dan pembebanan siklik Penelitian sebelumnya (Dewi, 2015) menghasilkan kesimpulan bahwa deformasi vertikal terbesar untuk semua variasi tebal lapisan balas, terjadi pada bagian tengah bantalan. Sementara untuk nilai deformasi vertikal terkecil untuk semua variasi tebal lapisan balas, terjadi pada bagian ujung bantalan. Membandingkan dengan peneilitian ini, pertambahan ketebalan balas cenderung memperkecil deformasi yang terjadi dan sebaliknya. Pada titik tinjauan bagian bantalan yang terkena rel, deformasi vertikal yang diperoleh jauh berbeda (Gambar 3.7). Hal tersebut dapat terjadi karena perbedaan asumsi data material yang digunakan, metode pembebanan dan jumlah beban yang dimasukkan. 9

Deformasi Vertikal - Uy (m) 0.06 0.05 0.04 0.05 0.039 0.032 0.03 0.02 Beban siklik Beban Statik 0.01 0 0.000465 0.000449 0.000438 30 40 50 Ketebalan Balas (cm) Gambar 3.9 Grafik perbandingan pembebanan statik dan siklik (tinjauan titik B) KESIMPULAN Berdasarkan analisis yang dilakukan pada pemodelan numerik struktur jalan rel kereta api menggunakan Plaxis v 8.2, dapat disimpulkan sebagai berikut: 1. Menggunakan pembebanan siklik (cyclic loads) sebanyak 2 siklus dengan tinjauan 10 titik diperoleh deformasi vertikal terbesar pada titik J sebesar 0.07 m, sedangkan deformasi vertikal terkecil diperoleh pada titik G sebesar 0.0016 m. 2. Variasi ketebalan balas yang dimodelkan menunjukkan pentingnya menentukan ukuran balas yang tepat untuk digunakan. Balas dengan ketebalan 40 cm dan 50 cm lebih mampu memperkecil deformasi yang diterima akibat laju kereta api dibanding variasi 30 cm. SARAN Adapun saran yang diberikan untuk penelitian selanjutnya, yaitu: 1. Pemilihan metode numerik yang sesuai dan data yang tepat, akan membuat hasil pemodelan semakin mendekati kondisi di lapangan. 2. Lakukan pengukuran deformasi langsung di lapangan menggunakan strain gauge. 3. Perlu dilakukan penilaian pada mutu lapis jalan rel yang diteliti. 10

DAFTAR PUSTAKA Dahlberg, T., 2010. Railway Track Stiffness Variations Consequences and Countermeasures. Jurnal Internasional. Desai, C.S., 1996. Dasar Dasar Metode Elemen Hingga. Alih Bahasa: Sri Jatno Wirjosoedirdjo, Ph.D. Erlangga, Jakarta. Dewi, S. 2015.Pengaruh Ketebalan Balas Terhadap Permodelan Numerik Struktur Jalan Rel: Studi Kasus KM. 117+600 dan KM. 117+800 Stasiun Ketapang, Lampung Utara. Tugas Akhir, Universitas Muhammadiyah Yogyakarta. Hardiyatmo, H.C., 1994. Mekanika Tanah II. Gramedia Pustaka Utama, Jakarta. Peraturan Menteri Perhubungan. 2012. Persyaratan Teknis Jalur Kereta Api. PM No. 60 Tahun 2012. Razaq, A., 2011. Penurunan Struktur Rel Kereta Api Di Atas Tanah Lunak Dengan Perkuatan Geosintetik. Tugas Akhir, Universitas Sebelas Maret: Surakarta. Rose, J.G., 2004. Comparisons of Railroad Track and Substructure Computer Model Predictive Stress Values and In-Situ Stress Measurements. Jurnal Internasional, Universitas Kentucky: USA. Rosyidi, S.A.P., 2015. Rekayasa Jalan Kereta Api Tinjauan Khusus Jalan Rel.Lembaga Penelitian, Publikasi dan Pengabdian Masyarakat, Universitas Muhammadiyah Yogyakarta. Moorman, C., 2016. Numerical Investigations on Track-Subtructure System Considering the Effect of Different Train Speeds. Jurnal Internasional, Universitas Stuttgart: Jerman. Muntohar, A.S., 2009.Mekanika Tanah. Lembaga Pengembangan Pendidikan, Penelitian dan Masyarakat, Universitas Muhammadiyah Yogyakarta. Natasya, B., 2011. Studi Pemakaian Tiang Rakit Pada Sebuah Proyek Apartemen di Jakarta Dengan Menggunakan Metode Konvensional Poulos Dan Plaxis Dua Dimensi. Skripsi, Universitas Indonesia. Nugraha, R.A., 2015.Tugas Akhir Pemodelan Numerik Sistem Fondasi Jalan Raya Dengan Teknik Kolom SiCC. Tugas Akhir, Universitas Muhammadiyah Yogyakarta. 11