MODUL III PENGUAT DENGAN UMPAN BALIK

dokumen-dokumen yang mirip
Laboratorium Dasar Teknik Elektro - Sekolah Teknik Elektro dan Informatika ITB

PRAKTIKUM ELEKTRONIKA II

MODUL I TAHAP OUTPUT PENGUAT DAYA

Praktikum Elektronika II

MODUL 06 RANGKAIAN FILTER PASIF

POLITEKNIK NEGERI JAKARTA

PRAKTIKUM ELEKTRONIKA II

Solusi Ujian 1 EL2005 Elektronika. Sabtu, 15 Maret 2014

PERCOBAAN 7 RANGKAIAN PENGUAT RESPONSE FREKUENSI RENDAH

BAB I PENDAHULUAN. 1.1 Tujuan Percobaan Mempelajari karakteristik statik penguat opersional (Op Amp )

PENGUAT EMITOR BERSAMA (COMMON EMITTER AMPLIFIER) ( Oleh : Sumarna, Lab-Elins Jurdik Fisika FMIPA UNY )

PERCOBAAN 4 RANGKAIAN PENGUAT KLAS A COMMON EMITTER

Modul VIII Filter Aktif

Filter Orde Satu & Filter Orde Dua

Tipe op-amp yang digunakan pada tugas akir ini adalah LT-1227 buatan dari Linear Technology dengan konfigurasi pin-nya sebagai berikut:

MODUL 5 RANGKAIAN AC

LAPORAN PRAKTIKUM ELEKTRONIKA MERANGKAI DAN MENGUJI OPERASIONAL AMPLIFIER UNIT : VI

Modul 04: Op-Amp. Penguat Inverting, Non-Inverting, dan Comparator dengan Histeresis. 1 Alat dan Komponen. 2 Teori Singkat

MODUL 08 Penguat Operasional (Operational Amplifier)

MODUL 05 FILTER PASIF PRAKTIKUM ELEKTRONIKA TA 2017/2018

Penguat Oprasional FE UDINUS

MODUL - 04 Op Amp ABSTRAK

MODUL 06 PENGUAT DAYA PRAKTIKUM ELEKTRONIKA TA 2017/2018

OPERASIONAL AMPLIFIER (OP-AMP) Oleh : Sri Supatmi

PERCOBAAN 6 RESONANSI

Tujuan Mempelajari penggunaan penguat operasional (OPAMP) Mempelajari rangkaian dasar dengan OPAMP

Laporan Praktikum Elektronika Fisika Dasar II PENGUAT UMPAN BALIK

PERCOBAAN 3 RANGKAIAN OP AMP

PERCOBAAN 6 RANGKAIAN PENGUAT KLAS B PUSH-PULL

MODUL 08 OPERATIONAL AMPLIFIER

MODUL 5 RANGKAIAN AC 2. STUDI PUSTAKA

Praktikum Rangkaian Elektronika MODUL PRAKTIKUM RANGKAIAN ELEKRONIKA

MODUL PRAKTIKUM RANGKAIAN ELEKRONIKA Bagian II

MODUL XI / 11. PUSAT PENGEMBANGAN BAHAN AJAR-UMB Iradath, ST., MBA ELEKTRONIKA ANALOG 1

Osiloskop (Gambar 1) merupakan alat ukur dimana bentuk gelombang sinyal listrik yang diukur akan tergambar pada layer tabung sinar katoda.

PENGUAT DAYA BAB I PENDAHULUAN. I. 1 Latar Belakang

Elektronika. Pertemuan 8

PENGENALAN OPERATIONAL AMPLIFIER (OP-AMP)

PRAKTIKUM II PENGKONDISI SINYAL 1

PRAKTIKUM TEKNIK TELEKOMUNIKASI 1 / RANGKAIAN LISTRIK / 2015 PERATURAN PRAKTIKUM. 1. Peserta dan asisten memakai kemeja pada saat praktikum

PENDAHULUAN. Modul Praktikum Rangkaian Linear Aktif. Lab. Elektronika Fakultas Teknik UNISKA

MODUL PRAKTIKUM RANGKAIAN LISTRIK LABORATORIUM SISTEM ELEKTRONIKA TELKOM UNIVERSITY

BALIKAN (FEEDBACK) V I. BALIKAN. GAMBAR 15.1 SKEMA RANGKAIAN DASAR BALIKAN

Penguat Operasional OP-AMP ASRI-FILE

JOBSHEET 9 BAND PASS FILTER

BAB III PERANCANGAN SISTEM

JOBSHEET PRAKTIKUM 8 HIGH PASS FILTER

Modul Elektronika 2017

RESPON FREKUENSI PENGUAT CE

BAB II DASAR TEORI. Gambar 2.1. Receiver [1]

Pengkondisian Sinyal. Rudi Susanto

LAB PTE - 05 (PTEL626) JOBSHEET 5 (BAND STOP FILTER)

PERCOBAAN I KARAKTERISTIK DIODA DAN PENYEARAH

Modul 02: Elektronika Dasar

PENGUAT OPERASIONAL AMPLIFIER (OP-AMP) Laporan Praktikum

BAB II ANALOG SIGNAL CONDITIONING

( s p 1 )( s p 2 )... s p n ( )

Operational Amplifier Karakteristik Op-Amp (Bagian ke-satu) oleh : aswan hamonangan

PETUNJUK PELAKSANAAN PRAKTIKUM PRAKTIKUM TEKNIK TELEKOMUNIKASI 2 ET 2200

PERANCANGAN PENGUAT AUDIO KLAS B (PUSH-PULL)

MODUL 05 TRANSISTOR SEBAGAI PENGUAT

Tujuan Mempelajari pengertian impedansi Mempelajari hubungan antara impedansi, resistansi, dan reaktansi pada rangkaian seri RC dan RL Mempelajari hub

PENDAHULUAN. - Persiapan :

BAB I FILTER I. 1. Judul Percobaan. Rangkaian Band Pass Filter. 2. Tujuan Percobaan

BAB 4. Rangkaian Pengolah Sinyal Analog

TUJUAN Setelah menyelesaikan perkuliahan ini peserta mampu:

OPERATIONAL AMPLIFIERS (OP-AMP)

PERCOBAAN 10 RANGKAIAN DIFFERENSIATOR DAN INTEGRATOR OP-AMP

MODUL PRAKTIKUM RANGKAIAN ELEKTRONIKA DASAR

[LAPORAN PENGUAT DAYA KELAS A] BAB I PENDAHULUAN

MODUL 04 TRANSISTOR PRAKTIKUM ELEKTRONIKA TA 2017/2018

Lampiran A. Praktikum Current Feedback OP-AMP. Percobaan I Karakteristik Op-Amp CFA(R in,vo max. Slew rate)

KATA PENGANTAR. Surabaya, 13 Oktober Penulis

INSTRUMENTASI INDUSTRI (NEKA421) JOBSHEET 2 (PENGUAT INVERTING)

PERCOBAAN IV TRANSISTOR SEBAGAI SWITCH

Praktikum Rangkaian Elektronika MODUL PRAKTIKUM RANGKAIAN ELEKRONIKA

PRAKTIKUM TEKNIK BIOMEDIS

III. METODE PENELITIAN. Penelitian ini dilaksanakan dari bulan Maret - Mei 2015 dan tempat

TEKNIK MESIN STT-MANDALA BANDUNG DASAR ELEKTRONIKA (1)

Percobaan 4 (versi A) Karakteristik dan Penguat FET Revisi 24 Maret 2014

LABORATORIUM SISTEM TELEKOMUNIKASI SEMESTER III TH 2015/2016

Dalam sistem komunikasi saat ini bila ditinjau dari jenis sinyal pemodulasinya. Modulasi terdiri dari 2 jenis, yaitu:

PARAMETER GERBANG LOGIKA

PETUNJUK PELAKSANAAN PRAKTIKUM RANGKAIAN LISTRIK ET2100 PRAKTIKUM TEKNIK TELEKOMUNIKASI

JOBSHEET 2 PENGUAT INVERTING

SATUAN ACARA PERKULIAHAN MATA KULIAH : ELEKTRONIKA ANALOG* (Ujian Utama) KODE MK / SKS : KK / 3

LAPORAN PRAKTIKUM SISTEM TELEKOMUNIKASI ANALOG PERCOBAAN OSILATOR. Disusun Oleh : Kelompok 2 DWI EDDY SANTOSA NIM

PRAKTIKUM TEKNIK BIOMEDIS 1 EB2200

BAB IV PENGUJIAN ALAT DAN ANALISA HASIL PENGUJIAN

BAB II DASAR TEORI. Gambar 2.1.(a). Blok Diagram Kelas D dengan Dua Aras Keluaran. (b). Blok Diagram Kelas D dengan Tiga Aras Keluaran.

Modul 4. Asisten : Catra Novendia Utama ( ) : M. Mufti Muflihun ( )

Gambar 2.1 Perangkat UniTrain-I dan MCLS-modular yang digunakan dalam Digital Signal Processing (Lucas-Nulle, 2012)

MODUL 07 PENGUAT DAYA

MODUL 09 PENGUAT OPERATIONAL (OPERATIONAL AMPLIFIER) PRAKTIKUM ELEKTRONIKA TA 2017/2018

PETUNJUK PELAKSANAAN PRAKTIKUM ELEKTRONIKA KOMUNIKASI PRAKTIKUM TEKNIK TELEKOMUNIKASI 2 ET 2200 PROGRAM STUDI TEKNIK TELEKOMUNIKASI

BAB IV PENGUKURAN DAN ANALISA. Pengukuran dan analisa dilakukan bertujuan untuk mendapatkan

POLITEKNIK NEGERI JAKARTA

SATUAN ACARA PERKULIAHAN MATA KULIAH / KODE : ELEKTRONIKA ANALOG / IT SEMESTER / SKS : VI / 2

BAB VF, Penguat Daya BAB VF PENGUAT DAYA

SATUAN ACARA PERKULIAHAN UNIVERSITAS GUNADARMA

Transkripsi:

MODUL III PENGUAT DENGAN UMPAN BALIK Rosana Dewi Amelinda (13213060) Asisten : Fikri Abdul A. (13212127) Tanggal Percobaan: 28/10/2015 EL3109-Praktikum Elektronika II Laboratorium Dasar Teknik Elektro - Sekolah Teknik Elektro dan Informatika ITB Abstrak Abstrak Pada praktikum Modul III ini dilakukan beberapa percobaan antara lain pengamatan respons umum rangkaian opamp dengan umpan balik. Diamati perubahan penguatan, frekuensi pole, serta resistansi inputnya. Kemudian dilakukan percobaan linieritas rangkaian opamp dnegan umpan balik. Pada percobaan ini diamati sinyal input dan output pada rangkaian loop terbuka (tanpa feedback) dan loop tertutup (dengan feedback). Terakhir yaitu dilakukan pengamatan penguatan transistor dengan umpan balik. Pada percobaan ini digunakan dua jenis konfigurasi umpan balik yang setiap konfigurasi memiliki topologi feedback yang berbeda. Diamati pula perubahan penguatan, frekuensi pole, dan resistansi input pada masing-masing rangkaian kemudian dianalisis pengaruhnya terhadap topologi umpan balik yang digunakan/ Secara umum dapat dikatakan bahwa data yang diperoleh telah sesuai dengan teori. Adanya sedikit perbedaan masih dalam batas toleransi. Kata kunci: Umpan balik, Shunt, Series, Linieritas. 1. PENDAHULUAN Dalam system kendali, umpan balik sebagian dari output dikembalikan ke input. Sinyal yang kembali ini bergabung dengan input asal, yang menghasilkan perubahan yang besar dalam penampilan dari system. Umpan balik negative berarti sinyal yang kembali memiliki fasa yang berlawanan dengan sinyal input. Keuntungan dari umpan balik negative adalah menstabilkan penguatan, memperbaliki impedansi input dan output, mengurangi efek distorsi nonlinier, dan menambah lebar bandwidth. Suatu penguat umpan balik mempunya dua bagian yaitu sebuah penguat dan sebuah rangkaian umpan balik. Tergantung pada hubungan output, tegangan output atau arus yang menggerakkan rangakaian umpan balik. Rangkaian umpan balik mengembalikan sinyal ke input yang memodifikasi semua gerak dari system. Tujuan utama umpan balik adalah memungkinkan input secara persis mengendalikan output. Terdapat empat hubungan umpan balik dasar yaitu rangkaian umpan balik seri-paralel (SP), umpan balik paralel-paralel (PP), umpan balik seri-seri (SS), dan umpan balik parallel-seri (PS). Dari keempat jenis hubungan tersebut, masing-masing memiliki sifat-sifat khusus yang secara ideal cocok untuk aplikasi tertentu. Namun yang paling banya digunakan adalah umpan balik SP dan PP. Umpan balik Hubungan output Sinyal input Hubungan parallel Sinyal output Rasio yang distabilkan SP PP SS PS Seri Paralel Seri Paralel V in I in V in I in Paralel Paralel Seri Seri V out V out I out I out V out/v in V out/i in I out/v in I out/i in Tujuan praktikum modul 2 ini diantaranya : Mengamati dan mengenali prinsip umpan balik pada rangkaian. Mengamati, mengukur, dan menganalisa efek umpan balik pada frekuensi pole rangkaian orde satu filter frekuensi rendah dan filter frekuensi tinggi. Mengamati dan menganalisa efek umpan balik pada rangkaian dengan distorsi saturasi. Mengamati dan mengenali cara memberi penguat umpan balik pada penguat satu transistor. Mengamati, mengukur, dan menganalisa efek umpan balik pada karakteristik penguat: resistansi input dan penguatan. 2. STUDI PUSTAKA Sistem dengan Umpan Balik Sistem dengan loop terbuka sangat rentan terhadap gangguan dari luar. Berapa pun besarnya ketelitian sistem tersebut akan menghasilkan keluaran yang buruk saat gangguan misalnya derau masuk pada sistem, misalnya bercampur dengan input. Untuk memperoleh sistem yang lebih baik digunakan umpan balik. Pada seperti ini output dikembalikan ke input untuk melihat perbedaan ouput dengan Laporan Praktikum - Laboratorium Dasar Teknik Elektro STEI ITB 1

rujukan yang diharapkan. Sistem dengan umpan balik ini tampak pada Gambar 1 berikut. Gambar 1 Diagram blok umum system dengan Umpan Balik Table 1 Efek Umpan Balik pada Penguat dan resistansi input dan output Pada grafik tersebut G(s) adalah fungsi transfer maju dari sistem, H(s) fungsi transfer umpan balik, X(s) sinyal input rujukan untuk sistem, Y(s) sinyal keluaran yang diperoleh, dan (s) perbedaan sinyal keluaran dengan rujukan atau galat (error). Secara keseluruhan sistem dengan umpan balik tersebut akan memberikan fungsi transfer G f(s) seperti pada persamaan berikut: Untuk sistem seperti dia atas, baik G(s) maupun H(s) dapat merupakan fungsi yang kompleks atau juga fungsi sederhana. Sistem dengan fungsi kompleks menjadi bagian dari studi bidang kendali. Dalam bidang elektronika sistem dengan umpan balik banyak digunakan dalam penguat dan filter. Sistem seperti ini menggunakan fungsi G(s) dan H(s) yang cenderung lebih sederhana. Respons Umum Penguat dengan Umpan Balik Untuk penguat dengan umpan balik, G(s) merupakan fungsi penguatan A. Fungsi transfer umpan baliknya H(s) merupakan fungsi skalar. Sinyal yang diperkuat dalam elektronika dapat berupa tegangan atau arus. Representasi sinyal tersebut dapat dinyatakan dengan Rangkaian Thevenin atau Norton. Untuk penguat dengan umpan balik maka ada empat kemungkinan jenis penguat, yaitu: penguat tegangan, penguat arus, penguat transkonduktasi, dan penguat transresistansi. Tabel 1 menunjukkan efek umpan balik pada penguatan resistansi input dan output seluruh konfigurasi tersebut. Untuk dapat menggunakan persamaan di atas rangkaian perlu terlebih dahulu dikenali konfigurasinya. Hubungan series menambah atau tegangan pada input dan mencuplik arus pada output. Hubungan shunt menambah atau mengurangi arus pada input dan mencuplik tegangan pada output. Respons Frekuensi Penguat dengan Umpan Balik Secara alamiah setiap penguat mempunyai penguatan dengan pada frekuensi terbatas. Perilaku ini seringkali dimodelkan dengan orde satu, misalnya untuk respons filter frekuensi Laporan Praktikum - Laboratorium Dasar Teknik Elektro STEI ITB 2

rendah (LPF) satu pole maka fungsi transfer penguat dapat ditulis seperti pada persaan berikut : Dalam kasus seperti ini persamaan fungsi transfer untuk penguat dengan umpan balik skalar akan memberikan penguatan keseluruhan A f(s) seperti pada persamaan berikut. Dari persamaan di atas dapat dilihat bahwa pada penguat LPF orde satu dengan umpan balik, penguatan akan terskala turun sebesar (1+A m ) dan sebaliknya frekuensi pole atau frekuensi sudut (corner frequency) akan terskala naik sebesar (1+A m ). Frekuensi pole menjauh menuju tak hingga dengan peningkatan penguatan loop terbuka. Perkalian penguatan keseluruhan dan frekuensi pole akan tetap. Besaran terakhir ini disebut Gain Bandwidth Product (GBW Product) sebuah amplifier. Besaran ini merupakan figure of merit dari sebuah penguat. Untuk penguat dengan kopling kapasitif, penguat juga mempunyai respons HPF pada frekuensi rendahnya. Fungsi transfer penguat dapat ditulis seperti pada persamaan berikut: dengan umpan balik, seperti pada bandwidth dan resistansi input dan output. Pengambilan sampel dari output dapat dilakukan dengan menggunakan resistor, baik secara seri untuk memberikan umpan balik tegangan, maupun dengan paralel untuk memberikan umpan balik arus. Penggunaan resistor ini diharapkan tidak mengubah titik kerja rangkaian. Untuk analisanya, rangkaian penguat dan rangkaian umpan balik dimodelkan dahulu sebagai jaringan 2 port. Selanjutnya besaran yang menyatakan perilaku rangkaian dapat diprediksi sesuai Tabel 1 di atas. 3. METODOLOGI Pada percobaan 2 ini, alat dan bahan yang digunakan yaitu : 1. Kit praktikum Rangakaian Umpan Balik 2. Generator Sinyal GW Instek SFG-2110 3. Osiloskop GW Instek GDS-806S 4. Multimeter Digital Sanwa (1 buah) 5. Catu daya Ter-regulasi (2 buah) 6. Kabel dan asesori pengukuran ( 4 buah kabel BNC dan 12 kabel banana) Memulai percobaan Sebelum memulai percobaan, isi dan tanda tangani lembar penggunaan meja yang tertempel pada masing-masing meja praktikum Respons Umum Rangkaian Opamp dengan Umpan Balik Gambar 2 Rangkaian LPF orde 1 dengan Umpan Balik Dalam kasus HPF orde 1 ini, penguatan akan terskala turun sebesar (1+A m ) dan frekuensi pole juga akan terskala turun sebesar (1+A m ). Frekuensi pole mendekati nol (letak zero) dengan peningkatan penguatan loop terbuka. Umpan Balik untuk Linieritas Umpan balik dapat digunakan untuk menekan nonlinieritas penguat. Salah satu contoh umpan balik untuk menekan cross over distortion yang muncul pada penguat push-pull kelas B seperti yang dilalukan pada percobaan penguat daya. Umpan balik juga dapat digunakan untuk menekan nonlinieritas saturasi pada penguat. Umpan Balik pada Penguat Transistor Penguat transistor dapat diberikan umpan balik untuk memperoleh keuntungan perilaku rangkaian Gambar 3 Rangakaian HPF orde 1 dengan opamp Laporan Praktikum - Laboratorium Dasar Teknik Elektro STEI ITB 3

Disusun rangkaian pada pada kit untuk memperoleh rangkaian LPF orde 1 seperti tampak pada Gambar 2. Dihubungkan generator sinyal sinusoidal untuk memberikan input pada rangkaian dan osiloskop untuk mengamati sinyal input dan outputnya. Disusun rangkaian pada pada kit untuk memperoleh rangkaian nonlinier seperti tampak pada Gambar 4. Dihubungkan generator sinyal sinusoidal untuk memberikan input pada rangkaian dan osiloskop untuk mengamati sinyal input dan outputnya Dengan memanfaatkan selektor S 1 untuk memilih R A, R B, atau R C guna menentukan nilai skala umpan balik output ke inputnya, a. Diamati perilaku rangkaian untuk penguatan pada frekuensi passband (rendah, sekitar 1kHz atau kurang). Pilih amplituda output sekitar b. Dinaikkan frekuensi sehingga mencapaicapai frekuensi sudut (cut-off 3dB. c. Dilakukan untuk rangkaian loop terbuka dan loop tertutup. Dicatat nilai-nilai tersebut. Dengan menggunakan resistor tambahan pada input rangkaian, diamati dan diukur resistansi input rangkaian untuk rangkaian loop terbuka dan rangkaian umpan balik untuk semua nilai skala umpan balik yang tersedia. Dicatat nilai-nilai tersebut dalam tabel yang sama dengan data sebelumnya. Digunakan soiloskop dalam mode dual trace. Dalam keadaan loop terbuka, diberikan amplituda sinyal input yang cukup besar sehingga pada sinyal output tampak saturasi pada puncak dan lembah sinyalnya. Diamati juga kurva alih tegangan (VTC) dalam xy. Dicatat kedua hasilnya. Dengan memanfaatkan selektor S 1 untuk memilih R A 15k, R B 22k, atau R C 110k guna menentukan nilai skala umpan balik output ke inputnya, dalam mode xy diamati VTC untuk rangkaian dengan umpan balik. Diamati juga sinyal keluarannya dalam mode dual trace. Dicatat hasil keduanya. Penguat Transistor dengan Umpan Balik Digunakan rangkaian pada kit praktikum untuk menyusun rangkaian seperti tampak pada Gambar 5. Diberikan sinyal input sinusoidal dari generator sinyal dan amati sinyal input dan output dengan osiloskop. Disusun rangkaian pada pada kit untuk memperoleh rangkaian HPF orde 1 seperti tampak pada Gambar 3. Hubungkan generator sinyal sinusoidal untuk memberikan input pada rangkaian dan osiloskop untuk mengamati sinyal input dan outputnya. Dilakukan pengamatan perilaku rangkaian untuk penguatan pada frekuensi passband (tinggi, sekitar 12-15 khz) dan turunkan frekuensi sehingga mencapai frekuensi sudut (cut-off 3dB) untuk rangkaian loop terbuka dan loop tertutup dan rangkaian dengan umpan balik. Dicatat nilai-nilai tersebut. Dibandingkan hasilnya dengan hasil pada langkah kedua di atas. Pasangan Diferensial dengan Bias Resistor Gambar 4 Rangkaian Penguat LPF orde 1 Nonlinier Dilakukan pengamatan dan pengukuran untuk penguatan, frekuensi cut-off, dan resistansi input rangkaian tersebut. Diputuskan hubungan kapasitor bypass C B dari resistor emitor R E sehingga diperoleh rangkaian seperti pada Gambar 6. Dilakukan ulang pengamatan dan pengukuran untuk penguatan, frekuensi cut-off, dan resistansi input rangkaian tersebut. Dihubungkan kembali kapasitor bypass C B dari resistor emitor R E dan hubungkan juga resistor R F dan kapasitor C F sehingga diperoleh rangkaian seperti pada Gambar 7. Dilakukan ulang pengamatan dan pengukuran untuk penguatan, frekuensi cut-off, dan resistansi input rangkaian tersebut. Laporan Praktikum - Laboratorium Dasar Teknik Elektro STEI ITB 4

Gambar 5 Penguat Satu transistor Tanpa Umpan Balik Gambar 6 Penguat Satu Transistor dengan Umpan Balik 1 tegangan output yang setengah dari tegangan input. Maka didapat Rin = Rvar. Pengukuran ini menggunakan prinsip transfer daya maksmimum dan pembagi tegangan. RESPONS UMUM RANGKAIAN OPAMP DENGAN UMPAN BALIK LOW-PASS FILTER Table 2 Parameter penguat loop terbuka LPF Frekuensi cutoff 20 27.5 k 4.4 k Table 3 Parameter penguat loop tertutup LPF Gambar 7 Penguat Satu Transistor dengan Umpan Balik 2 Resistansi yg digunakan Gain (V/V) Frekuensi cut-off R A 14 23.5 k 2.4 k R B 17.6 25.7 k 3.3 k R C 19 27.1 k 3.7 k 4. HASIL DAN ANALISIS Pengukuran penguatan dilakukan dengan menggunakan osiloskop. Channel 1 osiloskop dihubungkan ke input rangkaian dan Channel 2 dihubungkan ke output rangkaian. Penguatan dihitung dengan rumus : Penguatan = Vo peak to peak Vi peak to peak Hasil penguatan yang diperoleh tersebut berlaku untuk frekuensi midband (didapat penguatan maksimum). Untuk pengukuran frekuensi pole (frekuensi 3 db) dilakukan dengan mencari nilai frekuensi yang 1 menyebabkan penguatan menjadi kali dari penguatan maksimum. Pada LPF frekuensi pole yang diperoleh haruslah lebih besar dari frekuensi pada penguatan maksimum. Sedangkan pada HPF frekuensi pole yang diperoleh seharusnya lebih kecil dari penguatan maksimumnya. Pengukuran Resistansi input rangkaian dilakukan dengna menghubungkan seri Vsignal dan Rvar lalu dihubungkana ke node input rangkaian. Nilai Rvar diatur sedemikian rupa sehingga menghasilkan 2 Nilai penguatan loop terbuka (open loop) yang didapatkan sama dengan hasil perhitungan (pada Lampiran) yaitu 20 V/V. Sedangkan untuk nilai frekuensi polenya sedikit berbeda dengan hasil perhitungan. Hal ini kemungkinan disebabkan karena resistor yang dipakai memiliki toleransi 5% dan adanya factor toleransi pada kapasitor yang cukup besar. Pada perhitungan yang telah dilakukan, diperoleh nilai amount of feedback. Nilai ini akan mempengaruhi penguatan dan frekuensi pole dari rangkaian. Berdasarkan teori, nilai penguatan akan turun sebesar 1+Aβ. Hal ini terbukti pada nilai penguatan loop tertutup yang diperoleh dari percobaan. Untuk frekuensi pole, pada LPF loop tertutup seharusnya diperoleh nilai yang lebih kecil daripada frekuensi pole pada open loop, yaitu menurun sebesar 1+Aβ. Namum praktikan memperoleh nilai yang sebaliknya (frekuensi loop tertutup lebih besar dari open loop). Hal ini kemungkinan disebabkan karena kekurang telitian pada penentuan frekuensi 3 db dan adanya factor toleransi kapasitor. Dapat disimpulkan rangkaian LPF dengan feedback merupakan topologi Shunt-Shunt yang menurunkan penguatan, menaikan frekuesni pole yang dapat memperlebar bandwidth LPF. Laporan Praktikum - Laboratorium Dasar Teknik Elektro STEI ITB 5

HIGH-PASS FILTER Table 4 Parameter penguat loop terbuka HPF Frekuensi cutoff Loop tertutup R A 20 1.9 k 2.3 k Table 5 Parameter penguat loop tertutup HPF Resistansi yg digunakan Gain (V/V) Frekuensi cut-off Loop tertutup R B R A 15.2 1.4 k 2.3 k R B 17.6 1.6 k 2.3 k Loop tertutup R C R C 19.2 1.8 k 2.3 k Nilai penguatan open loop yang diperoleh dari hasil percobaan sesuai dengan hasil perhitungan yaitu 20 V/V. Begitu juga dengan nilai frekuensi pole yang diperoleh (1.9 khz) yaitu tidak jauh berbeda dengan hasil perhitungan (2.192 khz). Adanya sedikit perbedaan ini kemungkinan karena factor toleransi yang dimiliki resistor dan kapasitor yaitu sekitar 5%. Hasil perhitungan amount of feedback akan mempengaruhi penguatan dan frekuensi pole dari rangkaian. Untuk nilai penguatan akan mengalami penurunan sebesar 1+Aβ. Hal ini terbukti dengan nilai penguatan hasil percobaan yang diperoleh. Begitu juga untuk frekuensi pole dari filter high pass yaitu akan turun sebesar 1+Aβ dan hal ini pun terbukti dari hasil percobaan (penambahan feedback pada rangkaian memperlebar bandwidth). Dapat disimpulkan bahwa penambahan feedback pada rangkaian HPF merupakan topologi Shunt- Shunt yang menurunkan penguatan dan frekuensi pole (sebesar 1+Aβ) serta memperlebar bandwidth HPF. LINIERITAS RANGKAIAN OPAMP DENGAN UMPAN BALIK Linieritas adalah kemampuan suatu penguat untuk memberikan nilai penguatan yang sama pada setiap nilai sinyal input. Perbandingan linieritas dapat dilihat pada kurva VTC yang diperoleh. Untuk penguatan tanpa umpan balik, kurva VTC yang dihasilkan memiliki linieritas yang kurang baik. Sedangkan pada penguatan dengan feedback terlihat bahwa kurva VTC yang dihasilkan menjadi lebih baik (lebih linier). Apabila pada open loop didapatkan output yang telah mengalami saturasi, maka pada saat digunakan feedback akan didapatkan output yang belum mengalami saturasi (pengguanaan feedback menurunkan penguatan). Linieritas ini dapat meningkat karena proses feedback yang akan mengoreksi output melalui mixing sinyal pada input dengan cuplikan dari output sehingga output yang dihasilkan menjadi lebih presisi dan meningkatkan liniertitas walaupun dengan trade off yaitu menurunkan penguatan. Sehingga dapat disimpulkan bahwa rangkaian feedback dapat memperbaiki linieritas Vo/Vi. Dual Trace Loop terbuka VTC PENGUAT TRANSISTOR DENGAN UMPAN BALIK Table 6 Penguat satu transistor tanpa feedback Frekuensi cutoff -75 145 2 k Laporan Praktikum - Laboratorium Dasar Teknik Elektro STEI ITB 6

Dual Trace XY Table 7 Penguat satu transistor dengan feedback 1 Frekuensi cutoff -82.5 148 2.2 k Dual Trace XY Table 8 Penguat satu transistor dengan feedback 2 Fzrekuensi cut-off -81.6 280 580 Dual Trace XY Berdasarkan data pada table diatas didapatkan nilai penguatan yang negative (sinyal input dan output berbeda fasa 180 0 ), hal ini dikarenakan rangkaian yang digunakan adalah Common Emitter dan Common Emitter dengan Re (resistansi di emitter). Untuk nilai penguatan pada umpan balik 1 maupun 2 diperoleh nilai yang kurang sesuai dengan referensi (penguatan membersar) dimana seharusnya nilai penguatan yang diperoleh semakin kecil karena konfigurasi penguat yang digunakan adalah penguat common emitter. Pada rangkaian umpan balik 1 merupakan topologi feedback Series-Series (input di mixing tegangan dan output disampling arus). Diperoleh penguatan yang Untuk nilai resistansi inputnya terjadi peningkatan sesuai dengan teori. Hal ini disebabkan karena adanya mixing tegangan pada input yang menghasilkan nilai resistansi input sebesar mungkin. Oleh karena itu, rangkaian feedback 1 ini sesuai dengan topologinya (yaitu Series-Series) yang berperan untuk memperbaiki nilai resistansi input pada rangakaian (diperbesar). Selain itu dengan adanya kapasitor bypass, nilai frekuensi cut-off nya menjadi semakin besar. Kemudian ditambah dengan penggunaan C F pada rangkaian sehingga akan lebih memperbesar frekuensi cut-off (karena kapasitor mempengaruhi offset DC yang akan meningkatkan frekuensi cutoff). Pada rangkaian umpan balik 2 merupakan topologi feedback Shunt-Shunt (input di mixing arus dan output disampling tegangan) Berdasarkan data, dapat dilihat bahwa terjadi pengurangan resistansi inpur sekitar 1+Aβ sesuai dengan topologi mixingnya yaitu pada input dilakukan mixing arus yang idealnya resistansi input haruslah sekecil mungkin. Oleh karena itu, dengan adanya feedback 2 ini maka resistansi input nilainya menjadi lebih kecil daripada tanpa feedback. Selain itu dengan penggunaan feedback ini diperoleh nilai bandwidth yang lebih lebar (frekuensi cut-off meningkat). 5. KESIMPULAN Berdasarkan percobaan yang dilakukan pada praktikum modul II ini maka diperoleh kesimpulan sebagai berikut : Umpan balik pada rangkaian mempengaruhi penguatan, resistansi input, dan frekuensi pole-nya Rangkaian umpan balik akan menurunkan penguatan sebasar 1+Aβ Frekuensi pole untuk HPF akan turun dan untuk LPF akan naik masing-masing sebesar 1+Aβ. Rangkaian umpan balik ini dapat memperlebar bandwidth penguatan. Rangkaian umpan balik akan memperbaiki linieritas dengan cara menekan cross-over yang terjadi akibat saturasi. Batas saturasi tegangan output lebih besar karena nilai penguatannya turun sebesar 1+Aβ. Laporan Praktikum - Laboratorium Dasar Teknik Elektro STEI ITB 7

Resistansi input akan naik dan turun sebesar 1+Aβ bergantung pada topologi rangkaian. Untuk rangkaian Shunt-Shunt, resistansi input menurun sedangkan pada rangakian Series-Series, resistansi inputnya naik. (jika dilakukan mixing tegangan -> Series maka Rin meningkat, jika dilakukan mixing arus -> Shunt maka resistansi input akan turun). DAFTAR PUSTAKA [1]. Mervin T Hutabarat, Praktikum Elektronika II Laboratorium Dasar Teknik Elektro ITB,Bandung, 2015. [2]. Adel S. Sedra and Kennet C. Smith, Microelectronic Circuits, Oxford University Press, USA, 2004. [3]. http://willyriyadi.blogspot.co.id/2009/12/ump an-balik-feedback.html, 29 Oktober 2015 Laporan Praktikum - Laboratorium Dasar Teknik Elektro STEI ITB 8

Lampiran Laporan Praktikum - Laboratorium Dasar Teknik Elektro STEI ITB 9