Rancang Bangun Turbin Angin Vertikal Jenis Savonius Dengan Integrasi Obstacle Untuk Memperoleh Daya Maksimum

dokumen-dokumen yang mirip
PENERBITAN ARTIKEL ILMIAH MAHASISWA Universitas Muhammadiyah Ponorogo

RANCANG BANGUN TURBIN ANGIN VERTIKAL JENIS SAVONIUS DENGAN VARIASI PROFIL KURVA BLADE UNTUK MEMPEROLEH DAYA MAKSIMUM

Studi Eksperimental Vertical Axis Wind Turbine Tipe Savonius dengan Variasi Jumlah Fin pada Sudu

Studi Eksperimental Vertical Axis Wind Turbine Tipe Savonius dengan Variasi Jumlah Fin pada Sudu

Studi Eksperimen Pengaruh Sudut Plat Pengganggu Di Depan Returning Blade Turbin Angin Tipe Savonius Terhadap Performa Turbin

BAB II LANDASAN TEORI

BAB IV ANALISA DAN PEMBAHASAN

Studi Eksperimen Pengaruh Silinder Pengganggu Di Depan Returning Blade Turbin Angin Savonius Terhadap Performa Turbin

ANALISIS TURBIN ANGIN SUMBU VERTIKAL DENGAN 4, 6 DAN 8 SUDU. Muhammad Suprapto

Studi Eksperimental tentang Karakteristik Turbin Angin Sumbu Vertikal Jenis Darrieus-Savonius

Rancang Bangun Turbin Angin Vertikal Jenis Savonius dengan Variasi Jumlah Blade Terintegrasi Circular Shield untuk Memperoleh Daya Maksimum

PENGARUH PEMASANGAN SUDU PENGARAH DAN VARIASI JUMLAH SUDU ROTOR TERHADAP UNJUK KERJA TURBIN ANGIN SAVONIUS

BAB II LANDASAN TEORI

Penelitian Numerik Turbin Angin Darrieus dengan Variasi Jumlah Sudu dan Kecepatan Angin

RANCANG BANGUN TURBIN ANGIN VERTIKAL JENIS SAVONIUS DENGAN VARIASI JUMLAH STAGE DAN PHASE SHIFT ANGLE UNTUK MEMPEROLEH DAYA MAKSIMUM

Gambar 2.1. Grafik hubungan TSR (α) terhadap efisiensi turbin (%) konvensional

PENGARUH PEMASANGAN SUDU PENGARAH DAN VARIASI JUMLAH SUDU ROTOR TERHADAP PERFORMANCE TURBIN ANGIN SAVONIUS TIPE L

BAB IV HASIL DAN PEMBAHASAN

PRINSIP KERJA TENAGA ANGIN TURBIN SAVOUNIUS DI DEKAT PANTAI KOTA TEGAL

STUDI EKSPERIMENTAL SISTEM PEMBANGKIT LISTRIK PADA VERTICAL AXIS WIND TURBINE

Studi Numerik 2D dan Uji Eksperimen tentang Karakteristik Aliran dan Unjuk Kerja Helical Savonius Blade dengan Variasi Overlap Ratio 0,1 ; 0,3 dan 0,5

ANALISIS PENGARUH RASIO OVERLAP SUDU TERHAD AP UNJUK KERJA SAVONIUS HORIZONTAL AXIS WATER TURBINE

PERFORMANSI TURBIN ANGIN SAVONIUS DENGAN EMPAT SUDU UNTUK MENGGERAKKAN POMPA SKRIPSI

PERANCANGAN TURBIN STRAIGHT BLADE DARRIEUS DENGAN TIGA SUDU

BAB III PERANCANGAN SISTEM

SKRIPSI Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik EKAWIRA K NAPITUPULU NIM

Rancang Bangun Turbin Angin Vertikal Jenis Savonius dengan Variasi Profil Kurva Blade untuk Memperoleh Daya Maksimum

DEPARTEMEN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS SUMATERA UTARA MEDAN

STUDI PENGARUH JUMLAH SUDU TERHADAP UNJUK KERJA SAVONIUS WATER TURBINE PADA ALIRAN AIR DALAM PIPA ABSTRACT

Turbin angin poros vertikal tipe Savonius bertingkat dengan variasi posisi sudut

Bab IV Analisis dan Pengujian

Pengaruh Pemasangan Sudu Pengarah dan Variasi Jumlah Sudu Rotor terhadap Performance Turbin Angin Savonius

Desain Turbin Angin Sumbu Horizontal

Fakultas Teknologi Kelautan, Institut Teknologi Sepuluh Nopember (ITS) Jl. Arief Rahman Hakim, Surabaya

PENGARUH JUMLAH BLADE DAN VARIASI PANJANG CHORD TERHADAP PERFORMANSI TURBIN ANGIN SUMBU HORIZONTAL (TASH)

ANALISIS KINERJA KINCIR ANGIN SEDERHANA DENGAN DUA SUDU POROS HORIZONTAL

BAB IV PENGUJIAN DAN ANALISIS

DEPARTEMEN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS SUMATERA UTARA MEDAN 2013

START STUDI LITERATUR MENGIDENTIFIKASI PERMASALAHAN. PENGUMPULAN DATA : - Kecepatan Angin - Daya yang harus dipenuhi

OPTIMASI DAYA TURBIN ANGIN SAVONIUS DENGAN VARIASI CELAH DAN PERUBAHAN JUMLAH SUDU

PENGGUNAAN BENTUK SUDU SETENGAH SILINDER ELLIPTIK UNTUK MENINGKATKAN EFISIENSI TURBIN SAVONIUS

Jurnal Dinamis Vol.II,No.14, Januari 2014 ISSN

PENGARUH LEBAR BLADE TERHADAP KINERJA TURBIN ANGIN SUMBU HORIZONTAL

Studi Simulasi dan Eksperimental Pengaruh Pemasangan Plat Bersudut Pada Punggung Sudu Terhadap Unjuk Kerja Kincir Angin Savonius

BAB 2 DASAR TEORI 2.1 Energi Angin

RANCANG BANGUN ALAT PEMBANGKIT LISTRIK TENAGA ANGIN SUMBU VERTIKAL DI DESA KLIRONG KLATEN Oleh Bayu Amudra NIM:

ANALISIS EFISIENSI JUMLAH BLADE PADA PROTOTYPE TURBIN ANGIN VENTURI

Analisa Bentuk Profile dan Jumlah Blade Vertical Axis Wind Turbine terhadap Putaran Rotor untuk Menghasilkan Energi Listrik

ANALISA PEMANFAATAN POTENSI ANGIN PESISIR SEBAGAI PEMBANGKIT LISTRIK

STUDI EKSPERIMENTAL EFEK JUMLAH SUDU PADA TURBIN AIR BERSUMBU HORISONTAL TIPE DRAG TERHADAP PEMBANGKITAN TENAGA PADA ALIRAN AIR DALAM PIPA

BAB III PERANCANGAN ALAT

ANALISIS EKSPERIMENTAL PENGARUH RASIO OVERLAP SUDU TERHADAP UNJUK KERJA SAVONIUS HORIZONTAL AXIS WATER TURBINE SKRIPSI

Analisa Efisiensi Turbin Vortex Dengan Casing Berpenampang Lingkaran Pada Sudu Berdiameter 56 Cm Untuk 3 Variasi Jarak Sudu Dengan Saluran Keluar

BAB II DASAR TEORI 2.1. Tinjauan Pustaka

PENGARUH SUDUT KELENGKUNGAN SUDU SAVONIUS PADA HORIZONTAL AXIS WATER TURBINE TERHADAP POWER GENERATION

BAB III PELAKSANAAN PENELITIAN

PERANCANGAN TURBIN ANGIN TIPE SAVONIUS DUA TINGKAT DENGAN KAPASITAS 100 WATT UNTUK GEDUNG SYARIAH HOTEL SOLO SKRIPSI

Analisa Peletakan Multi Horisontal Turbin Secara Bertingkat

UJI EKSPERIMENTAL PENGARUH SUDU PENGARAH ALIRAN (GUIDE VANE) TERHADAP DAYA PADA TURBIN SAVONIUS SKRIPSI

BAB III METODOLOGI PENELITIAN

E =Fu... (1) F = ρav(v-u) BAB II TEORI DASAR. 2.1 Energi Angin. Menurut Kadir (1987) bahwa sebagaimana telah banyak diketahui, angin

Jalan Ahmad Yani No. 200 Pabelan Kartasura Sukoharjo

STUDI EKSPERIMENTAL TURBIN ANGIN SAVONIUS SUDU U DENGAN PENAMBAHAN SUDU NACA 0012

Turbin Angin Poros Vertikal Sebagai Alternatif Energi Lampu Penerangan Jalan Umum (PJU)

BAB I LANDASAN TEORI. 1.1 Fenomena angin

BAB III METODOLOGI PENGUKURAN

BAB 1 PENDAHULUAN 1.1.Latar Belakang

Studi dan Simulasi Getaran pada Turbin Vertikal Aksis Arus Sungai

LAPORAN TUGAS AKHIR RANCANG BANGUN PROTOTYPE TURBIN ANGIN VERTIKAL DARRIEUS TIPE H

KAJIAN EKSPERIMENTAL PENGARUH JUMLAH SUDU TERHADAP TORSI DAN PUTARAN TURBIN SAVONIUS TYPE U

PENGARUH SUDUT PUNTIR SUDU PADA SAVONIUS HORIZONTAL AXIS WATER TURBINE SEMICIRCULAR BLADE APLIKASI ALIRAN DALAM PIPA

Studi Aplikasi Flywheel Energy Storage Untuk Meningkatkan Dan Menjaga Kinerja Pembangkit Listrik Tenaga Mikrohidro (PLTMH)

KARAKTERISTIK MODEL TURBIN ANGIN UNTWISTED BLADE DENGAN MENGGUNAKAN TIPE AIRFOIL NREL S833 PADA KECEPATAN ANGIN RENDAH

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB II TEORI DASAR. sering disebut sebagai Sistem Konversi Energi Angin (SKEA).

Karakterisasi Turbin Angin Poros Horizontal Dengan Variasi Bingkai Sudu Flat Untuk Pembangkit Listrik Tenaga Angin

Prestasi Kincir Angin Savonius dengan Penambahan Buffle

SISTEM PERENCANAAN DAN PERANCANGAN TURBIN ANGIN SUMBU VERTIKAL SAVONIUS DENGAN BLADE TIPE L

PERANCANGAN DAN PEMBUATAN PROTOTIPE TURBIN ANGIN SUMBU VERTIKAL TIPE SAVONIUS TUGAS AKHIR

Maximum Power Point Tracking (MPPT) Pada Variable Speed Wind Turbine (VSWT) Dengan Permanent Magnet Synchronous Generator

Perancangan Konstruksi Turbin Angin di Atas Hybrid Energi Gelombang Laut

BAB III METODOLOGI PENELITIAN

PERANCANGAN TURBIN ANGIN TIPE SAVONIUS L SUMBU VERTIKAL. Hendra Darmawan Penulis, Program Studi Teknik Elektro, FT UMRAH,

PERANCANGAN DAN PEMBUATAN KINCIR ANGIN TIPE HORIZONTAL AXIS WIND TURBINE (HAWT) UNTUK DAERAH PANTAI SELATAN JAWA

BAB IV PENGUJIAN DAN ANALISA

PENGARUH VARIASI JUMLAH BLADE TERHADAP AERODINAMIK PERFORMAN PADA RANCANGAN KINCIR ANGIN 300 Watt

PENGARUH JUMLAH SUDU TERHADAP UNJUK KERJA SAVONIUS WATER TURBINE PADA ALIRAN AIR DALAM PIPA

PEMBUATAN KODE DESAIN DAN ANALISIS TURBIN ANGIN SUMBU VERTIKAL DARRIEUS TIPE-H

RANCANG BANGUN TURBIN ANGIN SUMBU VERTIKAL TIPE SAVONIUS UNTUK SISTEM PENERANGAN PERAHU NELAYAN

BAB I PENDAHULUAN. 1.1 Latar Belakang

PERANCANGAN DAN PEMBUATAN TURBIN ANGIN SUMBU HORIZONTAL TIGA SUDU BERDIAMETER 3,5 METER. Adi Andriyanto

STUDI EKSPERIMEN PENGARUH SUDUT PITCH TERHADAP PERFORMA TURBIN ANGIN DARRIEUS-H SUMBU VERTIKAL NACA 0012

BAB 4 PENGUJIAN, DATA DAN ANALISIS

BAB III METODE PERANCANGAN PEMBANGKIT LISTRIK TENAGA ANGIN. yang penulis rancang ditunjukkan pada gambar 3.1. Gambar 3.

BAB II TINJAUAN PUSTAKA

PLAGIAT MERUPAKAN TINDAKAN TIDAK TERPUJI

RANCANG BANGUN ALAT PRAKTIKUM TURBIN AIR DENGAN PENGUJIAN BENTUK SUDU TERHADAP TORSI DAN DAYA TURBIN YANG DIHASILKAN

SKRIPSI. Diajukan sebagai salah satu syarat untuk memperoleh gelar Sarjana Teknik. Oleh : KHOLIFATUL BARIYYAH NIM. I

Rancang Bangun Turbin Air Sungai Poros Vertikal Tipe Savonius Dengan Menggunakan Pemandu Arah Aliran

BAB IV ANALISA DATA DAN PERHITUNGAN

Transkripsi:

JURAL TEKIK POMITS Vol. 1, 1, (2013) 1-7 1 Rancang Bangun Turbin Angin Vertikal Jenis Savonius Dengan Integrasi Obstacle Untuk Memperoleh Daya Maksimum Andi Royhan Alby, Dr. Gunawan ugroho, ST. MT. dan Dr. Ir. Ali Musyafa M.Sc Jurusan Teknik Fisika, Fakultas Teknologi Industri, Institut Teknologi Sepuluh opember (ITS) Jl. Arief Rahman Hakim, Surabaya 60111 E-mail: gunawan@ep.its.ac.id dan musyafa@ep.its.ac.id Abstrak - Turbin jenis Savonius merupakan salah satu jenis turbin sumbu vertical yang sangat populer. Terdapat banyak faktor yang dapat mempengaruhi performansi turbin angin Savonius. amun dalam penelitian kali ini, variabel yang akan diteliti yaitu pengaruh pengintegrasian obstacle terhadap daya maksimum yang dihasilkan turbin angin. Diharapkan dengan perbedaan integrasi obstacle yang diberikan akan meminimalkan torsi negatif yang dihasilkan dari returning blade yang berdampak pada daya yang akan dihasilkan. Pada penelitian ini dilakukan pengintegrasian obstacle dengan memberikan plat didepan returning blade dengan sudut 80,100 dan berbentuk setengah lingkaran. Berdasarkan hasil pengukuran untuk pengintegrasian obstacle dengan β=80, β=100 dan berbentuk setengah lingkaran. didapatkan hasil jika integrasi obstacle setengah lingkaran mendapatkan daya yang paling tinggi dengan nilai 0.00414 W dengan RPM dengan pembebanan 352 dan tanpa pembebanan 354. Hasil ini jauh lebih baik dibandingkan dengan daya dan RPM yang dihasilkan oleh turbin angin tanpa pemakaian obstacle yang hanya menghasilkan daya 0,0019524 W dan RPM tanpa pembebanan 175.5 dan dengan pembebanan 162.9. hal ini menunjukan jika penggunaan obstacle berpengaruh terhadap daya yang dihasilkan oleh turbin angin jenis Savonius. Kata Kunci : turbin angin, integrasi obstacle, daya maksimum, momen inersia, gaya drag. I. PEDAHULUA ada dasarnya angin terjadi karena ada perbedaan suhu Pantara udara panas dan udara dingin. Di tiap daerah keadaan suhu dan kecepatan angin berbeda. Energi angin di Indonesia dianggap potensial sebagai alternatif penghasil listrik (putranto, 2011). Angin selama ini dipandang sebagai proses alam biasa yang kurang memiliki nilai ekonomis bagi kegiatan produktif masyarakat. Padahal, di berbagai negara, pemanfaatan energi angin sebagai sumber energi alternatif nonkonvensional sudah semakin mendapatkan perhatian. Hal ini tentu saja didorong oleh kesadaran terhadap timbulnya krisis energi dengan kenyataan bahwa kebutuhan energi terus meningkat sedemikian besarnya. Di samping itu, angin merupakan sumber energi yang tidak ada habisnya sehingga pemanfaatan sistem konversi energi angin akan berdampak positif terhadap lingkungan. S.J. Savonius awalnya mengembangkan sumbu rotor Savonius vertikal pada akhir tahun 1920. Konsep rotor Savonius konvensional didasarkan pada pemotongan silinder menjadi dua bagian sepanjang bidang pusat dan kemudian memindahkan dua silinder setengah samping sepanjang bidang pemotongan, sehingga penampang menyerupai huruf S (G. Janiga, 2011). Angin yang masuk pada rotor Savonius dengan kecepatan tertentu menciptakan torsi positif di bagian dalam silinder membentuk rotor dan torsi negatif di bagian luarnya. Oleh karena torsi di bagian dalamnya mendapatkan gaya yang lebih tinggi dari torsi di bagian luar maka tubin angin Savonius akan menghasilkan gerakan. pada tugas akhir ini, dirancang turbin Savonius terintegrasi dengan halangan/obstacle dengan harapan dapat mereduksi besarnya torsi negatif untuk memaksimalkan daya mekanis dari turbin jenis Savonius. Terdapat banyak faktor yang dapat mempengaruhi performansi turbin angin Savonius. amun dalam penelitian kali ini, variabel yang akan diteliti yaitu pengaruh pengintegrasian obstacle terhadap daya maksimum yang dihasilkan turbin angin untuk angin berkecepatan rendah. Diharapkan dengan perbedaan integrasi obstacle yang diberikan akan meminimalkan torsi negatif yang dihasilkan dari returning blade yang berdampak pada daya yang akan dihasilkan. Tujuan utama dari penelitian ini adalah menganalisis pengaruh integrasi obstacle terhadap daya yang dihasilkan. Adapun batasan ruang lingkup dari penelitian ini antara lain: desain obstacle yang digunakan berjenis plat dengan nilai β 80, 100 dan setengah lingkaran, dimana fabrikasi obstacle menggunakan fiber plastis. material untuk fabrikasi sudu menggunakan PVC. sudu yang dipakai sama yaitu dengan menggunakan dua sudu dengan spesisifikasi panjang, lebar dan tinggi sudu yang digunakan adalah sama,aliran fluida diasumsikan steady, incompressible dan uniform pada sisi inlet. II. METODOLOGI PEELITIA A. Konsep Perancangan Turbin Savonius dengan Integrasi Obstacle Penelitian ini dilakukan untuk menganalisa pengaruh perubahan 3 jenis desain obstacle yaitu desain dengan plat yang bernilai β bernilai 80 dan β bernilai 100. desain obstacle yang digunakan berjenis plat dengan nilai β 80, 100 dan setengah lingkaran, dimana fabrikasi obstacle menggunakan fiber plastis. material untuk fabrikasi sudu menggunakan PVC.

JURAL TEKIK POMITS Vol. 1, 1, (2013) 1-7 2 sudu yang dipakai sama yaitu dengan menggunakan dua sudu dengan spesisifikasi panjang, lebar dan tinggi sudu yang digunakan adalah sama. aliran fluida diasumsikan steady, incompressible dan uniform pada sisi inlet. Desain dengan β bernilai 80 bertujuan untuk mengarahkan angin masuk langung pada sudu positif (advacing blade) ini ditujukan agar angin yang pada awalnya akan menumpuk sudu negatif (reverse blade). Sedangkan untuk integrasi obstacle yang bernilai β=100 ini tujukan agar angin tidak menumbuk sudu negatif (reverse blade) sama sekali. Sedangkan desain setengah lingkaran ini dibentuk hampir menyerupai bentuk blade konvensional dengan tujuan meminimalisir drag coeficient. (a) (b) (c) (d) gambar 1. (a) desain turbin konvensional, (b) desain integrasi obstacle β= 100, (c) desain integrasi β=80 dan (d) desain obstacle dengan bentuk setengah lingkaran terhadap kecepatan angin dan grafik hubungan daya (P) terhadap kecepatan rotasional (RPM). B. Spesifikasi Geometri Rotor Turbin Angin Pada penelitian ini dilakukan pembuatan turbin angin Savonius dengan kriteria dan spesifikasi sebagai berikut: Bahan untuk pembuatan end plate dan blade turbin angin Savonius menggunakan PVC Tinggi blade turbin angin adalah 36 cm Lebar blade turbin angin adalah 10 cm Tinggi dan Lebar obstacle adalah 36 cm dan 15 cm Lebar endplate turbin angin adalah 20,24 cm Overlap ratio yang digunakan adalah 20% (2 cm) Aspect ratio yang digunakan adalah 4.0 (36 cm : 9 cm) End plate parameter yang digunakan adalah 1.1 (20,24 cm : 18,4 cm) Shaft menggunakan batang aluminium dengan diameter 0,8 cm C. Fabrikasi Turbin Savonius dengan Integrasi Obstacle Terdapat beberapa tahapan dalam pembuatan turbin angin Savonius, Diantaranya pembuatan end plate, pembuatan sudu, pemasangan sudu pada end plate, pemasangan shaft,pembuatan obstacle dan pemasangan obstacle. End plate dibuat dengan cara membuat pola lingkaran menggunakan PVC berbentuk lembaran. PVC lembaran kemudian dibubut untuk dihaluskan dan untuk mengatur ketebalan. setelah itu dibentuk pola untuk tempat pemasangan sudu pada end plate. Gambar 3. Endplate Sudu dibuat dengan cara memotong pipa PVC menjadi 2 bagian sesuai dengan lebar dan tinggi geometri yang diperlukan. ukuran pemotongan ini diharuskan sama karena akan sangat mempengaruhi kinerja dari turbin angin. Selanjutnya sudu dipasang pada end plate dengan cara menempelkan sudu pada pola lingkaran yang sudah dibentuk pada end plate kemudian di lem. Setelah lem mengering kemudian dilakukan pengelasan pada bagian ujung sudu, ini ditujukan untuk memperkuat sudu yang sudah terpasang. Pemasangan sudu pada end plate membutuhkan presisi yang cukup tinggi. sebab, jika posisi sudu tidak seimbang membuat turbin kemungkinan besar akan miring yang membuat turbin menjadi tidak stabil. Gambar 2.Diagram Alir Penelitian Berdasarkan data penelitian tersebut melakukan analisis data dan perhitungan daya keluaran generator dan merepresentasikannya dalam bentuk grafik hubungan daya (P)

JURAL TEKIK POMITS Vol. 1, 1, (2013) 1-7 3 Gambar 4 sudu dan shaft pada end plate Untuk pemasangan shaft dilakukan dengan cara memasang tabung aluminium pada ujung atas dan bawah turbin angin. sebelum pemasangan shaft sebelumnya di ukur berat turbin. ini untuk mengetahui apakah beban turbin atas dan bawah sama, jika tidak maka harus ada penambahan beban agar turbin berjalan seimbang. stroboskop tachometer. Pengukuran Daya, Pengukuran daya yang dihasilkan generator ini didapat dari multimeter. pada percobaan ini pengukuran dilakukan berdasarkan tahanan resistor sebesar 1 kω yang dihubungkan dengan keluaran generator. Berdasarkan data hasil pengukuran tegangan dilakukan perhitungan untuk menentukan arus dan daya keluaran dari turbin angin. D. Perhitungan VAWT Savonius Tip speed ratio (rasio kecepatan ujung) adalah rasio kecepatan ujung rotor terhadap kecepatan angin bebas. Untuk kecepatan angin nominal yang tertentu, tip speed ratio akan berpengaruh pada kecepatan putar rotor. Turbin angin tipe lift akan memiliki tip speed ratio yang relatif lebih besar dibandingkan dengan turbin angin tipe drag. Tipe speed ratio dihitung dengan persamaan (Hau,2005): λ = dimana: λ : tipe speed ratio D : diameter rotor (m) n : putaran rotor (RPM) v : kecepatan angin Gambar 5 gambar setelah pemasangan obstacle Setelah turbin angin selesai di fabrikasi dilanjutkan dengan memfabrikasi obstacle. yaitu dengan membuat rangka menggunakan alumunium batang dipotong mengikuti bentuk dari obstacle dengan panjang dan lebar sudu. pemasangan dilakukan pada rangka turbin angin. Pemasangan obstacle pada rangka menggunakan klem untuk menjaga stabilitas pada saat pengujian. Pengujian turbin angin dilakukan pada rangka yang telah dilengkapi generator. Pengujian turbin angin meliputi pengukuran kecepatan angin, pengukuran kecepatan rotasional turbin angin (Rotasi per menit) dan pengukuran daya keluaran yang dihasilkan dari turbin angin. Cp (Coefficient of Power) didapatkan dari persamaan berikut ini (Sargolzaei,2007) : Cp = Daya mekanis dari pengujian turbin angin savonius ditentukan dari hasil perhitungan dari momen inersia dari turbin angin seperti yang ditunjukkan pada persamaan dibawah ini: P m = dimana: I : momen inersia (kg/m^2) ω : kecepatan sudut (rad/s) Kecepatan sudut (ω) didapatkan dari persamaan berikut ini (Sargolzaei,2007): Gambar 6 pengujian alat Berikut penjelasan masing-masing dari pengukuran turbin diantaranya : Pengukuran kecepatan angin, pengukuran kecepatan angin menggunakan anemometer. anemometer digunakan untuk mengetahui distribusi kecepatan angin pada setiap bagian turbin angin. sehingga dapat merepesentasikan kecepatan angin referensinya. Pada pengujian kali ini angin yang digunakan adalah kecepatan 3.8 m/s, 4 m/s, 4.2 m/s, 4,4 m/s dan 4,6 m/s. Pengukuran Kecepatan Putar per Menit, pengukuran kecepatan putar per menit (rotasi per menit) ini dilakukan pada masing-masing pengujian integrasi obstacle. Alat yang dipakai pada pengujian ini yaitu menggunakan ω = dimana adalah n : kecepatan putar shaft (RPM) Pw didapatkan dari persamaan berikut ini (Sargolzaei,2007): P w = dimana: A : luas penampang [tinggi rotor (H) x diameter (D)] (m2) v : kecepatan angin ρ : densitas udara (ρ rata-rata : 1,2 kg/m3)

JURAL TEKIK POMITS Vol. 1, 1, (2013) 1-7 4 III. HASIL DA PEMBAHASA Berdasarkan pengujian yang telah dilakukan didapatkan data dan perhitungan sebagai berikut : Tabel 1 Data Pengujian integrasi obstacle β =80 tanpa generator (tanpa pembebanan) V angin n (RPM) 1. 3.8 203.4 2. 4 252.4 3. 4.2 291 4. 4,4 334 5. 4,6 354 Tabel 2 Data Pengujian integrasi obstacle β =80 dengan generator (dengan pembebanan) n (RPM) V (µv) I (µa) P (W) 3,8 178 416 5.41 0.00225056 4 236.3 453 5.84 0.00264552 4,2 279.2 501 6.13 0.00307113 4,4 328 546 6.46 0.00357084 4,6 346 574 6.89 0.00395486 Berdasarkan data pengujian turbin angin Savonius untuk pengintegrasian obstacle 80 dengan beban dan tanpa beban didapatkan grafik perbandingan hubungan kecepatan putar turbin dan kecepatan angin baik pada pengujian dengan dan tanpa beban sebagai berikut. Tabel 3 Data Pengujian integrasi obstacle β =100 tanpa generator (tanpa pembebanan) V angin n (RPM) 3.8 129 4 140.1 4.2 162 4,4 180 4,6 190 Tabel 4 Data Pengujian integrasi obstacle β =100 dengan generator (dengan pembebanan) n (RPM) V (µv) I (µa) P (W) 3.8 104.2 260 4.33 0.0011258 4 133 325 4.41 0.00143325 4.2 152 334 5.01 0.00167334 4,4 162.1 366 5.31 0.00194346 4,6 172 372 5.42 0.00201624 Berdasarkan data pengujian turbin angin Savonius untuk pengintegrasian obstacle β=100 dengan beban dan tanpa beban didapatkan grafik perbandingan hubungan kecepatan putar turbin dan kecepatan angin baik pada pengujian dengan dan tanpa beban sebagai berikut. Tabel 5. Data Pengujian integrasi obstacle setengah lingkaran tanpa generator (tanpa pembebanan V angin n (RPM) 1. 3.8 248 2. 4 287 3. 4.2 326 4. 4,4 342 5. 4,6 354 Tabel 6. Data Pengujian integrasi obstacle setengah lingkaran dengan generator (dengan pembebanan) n (RPM) V (µv) I (µa) P (µw) 1. 3,8 185 421 5.52 0.00232392 2. 4 264.2 462 5.92 0.00273504 3. 4,2 305 518 6.28 0.00325304 4. 4,4 338 562 6.67 0.00374854 5. 4,6 352 582 7.12 0.00414384 Berdasarkan data pengujian turbin angin Savonius untuk pengintegrasian obstacle setengah lingkaran dengan beban dan tanpa beban didapatkan grafik perbandingan hubungan kecepatan putar turbin (RPM) dan kecepatan angin didapatkan hasil sebagai berikut. Tabel 7 Data Pengujian turbin angin tanpa obstacle tanpa pembebanan V angin n (RPM) 1. 3.8 125 2. 4 138 3. 4.2 157.8 4. 4,4 168.1 5. 4,6 175.5 Tabel 8. Data Pengujian tanpa obstacle dengan generator (pembebanan) n (RPM) V (µv) I (µa) P (W) 1. 3,8 101,9 252 3,41 0,0008593 2. 4 128,7 310 4,25 0,0013175 3. 4,2 147,8 331 4,60 0,0015226 4. 4,4 158,6 350 5,25 0,0018375 5. 4,6 162,9 367 5,32 0,0019524

JURAL TEKIK POMITS Vol. 1, 1, (2013) 1-7 5 Setelah mengetahui hubungan antara kecepatan angin dan kecepatan putar turbin yang dihasilkan turbin dengan menggunakan generator (pembebanan) dan tanpa menggunakan generator maka dapat dapat kita presentasikan dalam bentuk grafik hubungan antara kecepatan angin dan kecepatan putar turbin yang dihasilkan. setelah itu dapat kita presentasikan dalam bentuk grafik hubungan antara kecepatan putar turbin dan daya yang dihasilkan oleh turbin angin dengan 3 variasi pengintegrasian dan tanpa penggunaan obstacle maka didapatkan hasil sebagai berikut : Gambar 7. Grafik Hubungan RPM dan Kecepatan Angin pada Pengujian tanpa Generator Tabel 9. Data hasil perhitungan untuk turbin angin dengan integrasi obstacle β = 80 o. (RPM ) 1. 3,8 203.4 0.56024 0.35698 35.698 2. 4 252.4 0.66044 0.47130 47.130 3. 4,2 291 0.72519 0.54117 54.117 4. 4,4 334 0.79452 0.62006 62.006 5. 4,6 354 0.80547 0.60958 60.958 Tabel 10. Data hasil perhitungan untuk turbin angin dengan integrasi obstacle β = 100 (RPM ) 1. 3,8 129 0.3553 0.14352 14.352 2. 4 140.1 0.3663 0.14521 14.521 3. 4,2 162 0.4037 0.16772 16.772 4. 4,4 180 0.4282 0.18009 18.009 5. 4,6 190 0.4323 0.175605 17.5605 Tabel 11. Data hasil perhitungan untuk turbin angin dengan integrasi obstacle setengah lingkaran Gambar 8. Grafik Hubungan RPM dan Kecepatan Angin pada Pengujian dengan Generator Setelah melihat data hasil pengujian dan hubungan antara kecepatan putar turbin, kecepatan angin dan daya yang dihasilkan selanjutnya dapat dihititung dalam bentuk tabel untuk nilai Cp, tip speed ratio dan efisiensi dari turbin. setelah itu dapat dipresentasikan grafik hubungan antara daya dengan kecepatan angin, grafik hubungan antara kecepatan putar turbin dan kecepatan angin, grafik hubungan antara tip speed ratio dan kecepatan angin, grafik hubungan antara Cp dan kecepatan angin dan grafik hubungan antara Cp dan TSR, untuk mengetahui dampak dari perubahan kecepatan angin terhadap kecepatan putar turbin, daya, tip speed ratio dan Cp serta mengetahui dampak dari perubahan tip speed ratio terhadap Cp. berikut ini adalah data pengujian dengan menggunakan turbin angin Savonius dengan integrasi obstacle dengan β=80, β=100 dan dengan menggunakan setengah lingkaran. berikut adalah tabel data hasil perhitungan untuk turbin angin Savonius dengan integrasi obstacle dengan β=80, β=100 dan dengan menggunakan setengah lingkaran : (RPM) 1. 3,8 248 0.683087 0.530708 53.0708 2. 4 287 0.750983 0.609378 60.9378 3. 4,2 326 0.812412 0.679188 67.9188 4. 4,4 342 0.812354 0.650126 65.0125 5. 4,6 354 0.805478 0.609587 60.9587 Tabel 12 Data hasil perhitungan untuk turbin angin tanpa integrasi obstacle. o. (RPM ) 1. 3,8 125 0,3443 0,13483 13,48 2. 4 138 0,3611 0,14089 14,09 3. 4,2 157,8 0,3932 0,15914 15,91 4. 4,4 168,1 0,3999 0,15707 15,70 5. 4,6 175,5 0,3993 0,14982 14,98

JURAL TEKIK POMITS Vol. 1, 1, (2013) 1-7 6 kesimpulan jika pengintegrasian obstacle mempengaruhi terhadap RPM yang dihasilkan. Jika kita lihat Gambar 9 grafik hubungan antara RPM dan Kecepatan angin tanpa adanya pembebanan (generator) jika dilihat dari gambar 9 pengaruh antara kecepatan angin dan kecepatan putar turbin tanpa adanya pembebanan yang dihasilkan maka analisa yang dapat diambil variasi obstacle berpengaruh terhadap kecepatan putar turbin yang didapat. ilai RPM tertinggi dan nilai yang didapat relatif sama ini didapat dari jenis obstacle dengan konfigurasi β =80 dan jenis obstacle setengah lingkaran. sedangkan untuk konfigurasi obstacle β =100 didapatkan kecepatan yang hampir sama dengan tanpa penggunaan obstacle. Dimana kecepatan turbin yang dihasilkan untuk jenis konfigurasi β =80 dan jenis obstacle setengah lingkaran didapatkan hasil 203.4 RPM dan 248 RPM sedangkan untuk β=100 dan tanpa menggunakan obstacle didapatkan hasil yang cukup rendah yaitu 125 RPM dan 129 RPM. Gambar 11 Grafik hubungan antara TSR dan Kecepatan angin Gambar 11 menunjukan hubungan antara kecepatan dan tip speed ratio (TSR) dapat dilihat hasil grafik hubungan antara TSR dan kecepatan angin menunjukan jika kecepatan angin berpengaruh terhadap TSR (Tip Speed Ratio). dimana hasil menunjukan ketika kecepatan angin meningkat diikuti oleh TSR yang didapatkan. tapi pada saat kecepatan angin cukup tinggi nilai yang didapat TSR tetap pada nilai yang hampir sama. ini diduga akibat besar rasio kecepatan ujung dari turbin angin tidak dapat melebihi besarnya kecepatan angin yang dapat diterima. Hal ini terjadi pada turbin yang dipasang obstacle dengan bentuk setengah lingkaran dimana nilai TSR pada kecepatan angin 4.4 m/s lebih baik dibandingkan kecepatan yang lebih cepat yaitu pada kecepatan 4.6 m/s dimana hasil TSR yang didapatkan untuk angin dengan kecepatan 4.4 m/s didapatkan nilai TSR yaitu 0.8135454 sedangkan untuk kecepatan angin 4.6 didapatkan nilai TSR yaitu 0.805478. hal yang sama pun terjadi pada turbin tanpa menggunakan integrasi obstacle dengan penurunan yang sangat kecil yaitu sekitar 0.0005 sedangkan untuk integrasi dengan nilai β=80 dan β=100 nilai yang didapatkan setelah mendapatkan kecepatan 4.4 m/s dan 4.6 m/s didapatkan hasil yang relatif sama hanya saja nilai penurunannya yang sangat kecil. Gambar 10 Grafik hubungan antara RPM dan Kecepatan angin dengan pembebanan (generator) Pada gambar 10 grafik pengaruh kecepatan terhadap RPM dengan menggunakan generator (pembebanan) mendapat hasil dengan variasi yang sama, tapi nilai relatif menurun. ini disebabkan karena turbin mendapatkan pembebanan yang didapat dari generator. Kecepatan yang didapat pada kecepatan angin terendah yaitu 3.8 m/s untuk obstacle dengan integrasi β=80 dan obstacle dengan menggunakan setengah lingkaran didapatkan hasil yang lebih tinggi yaitu 178 RPM dan 285 RPM dibanding hasil yang didapat dari obstacle dengan integrasi β= 100 dan tanpa pemakaian obstacle yang hanya bernilai 101.9 RPM dan 104.2 RPM. ini membuktikan jika desain obstacle setengah lingkaran dan dengan integrasi β=80 mendapatkan nilai yang lebih tinggi dibandingkan dengan integrasi β= 100 dan tanpa pemakaian obstacle. ini sesuai dengan analisa awal yang mana pemamfaatan angin yang menumbuk torsi negatif dapat dimamfaatkan untuk menambah kecepatan turbin. sehingga dapat ditarik Gambar 12 Grafik hubungan antara Kecepatan angin dan Cp Pada gambar hubungan antara Cp (koefisien daya) dimana hasil paling tinggi didapatkan pada integrasi setengah lingkaran. dimana Cp yang didapatkan pada kecepatan 4.2 m/s yang mana didapatkan hasil cp bernilai 0.679188 sedangkan untuk kecepatan angin yang lebih cepat didapakan nilai Cp yang sedikit lebih rendah yaitu bernilai 0.650125 dan 0.60958 sedangkan untuk nilai integrasi lainnya yaitu untuk integrasi

JURAL TEKIK POMITS Vol. 1, 1, (2013) 1-7 7 dengan nilai β=80 didapatkan nilai tertinggi pada kecepatan 4.4 m/s yaitu 0.62007 sedangkan untuk β=100 koefisien power tertinggi yang dihasilkan pada kecepatan angin 4.4 m/s yaitu didapat 0.18009. sedangkan untuk koefisien power yang didapatkan tanpa menggunakan integrasi obstacle didapatkan hasil yang lebih rendah dari semua integrasi yaitu 0.157. ini membuktikan jika savonius memiliki batas untuk mengekstraksi energi dimana ketika kecepatan ditambah semakin cepat tidak memberikan dampak yang signifikan terhadap Cp yang dihasilkan, sehingga setelah mendapatkan kecepatan yang maksimum nilai Cp masuk pada fase stall dengan perubahan nilai yang tidak terlalu tinggi. V. SARA Saran yang dapat diberikan setelah dilakukannya penelitian ini adalah : Untuk penelitian selanjutnya pembuatan turbin angin dibuat sedetail mungkin dan desain obstacle dibuat lebih tipis dan instrumentasi pendukung lainnya dipastikan terkalibrasi untuk menghindari kesalahan dalam pengukuran. Setelah itu diharapkan obstacle dapat didesain untuk digunakan langsung pada arah angin yang tak searah. UCAPA TERIMA KASIH Terima kasih kepada Tuhan Yang Maha Esa. Juga untuk seluruh dosen dan staf Teknik Fisika yang telah memberikan dorongan. dan juga untuk seluruh keluarga besar mahasiswa Teknik Fisika dan D3 Instrumentasi yang telah membantu dalam pengerjaan Tugas Akhir ini. Gambar 13 Grafik Hubungan Daya dan Kecepatan Angin Setelah dari data keseluruhan yang didapatkan baik itu berupa RPM hingga hasil akhirnya berupa daya didapatkan hasil yang terbaik yaitu dengan integrasi dengan menggunakan obstacle berbentuk setengah lingkaran. dimana daya yang dihasilkan mencapai 0.00414 W dengan kecepatan putar turbin dengan pembebanan 352 dan tanpa pembebanan 354. Hasil ini jauh lebih baik dibandingkan dengan daya dan kecepatan putar turbin yang dihasilkan oleh turbin angin tanpa pemakaian obstacle yang hanya menghasilkan daya 0,0019524 W dan kecepatan putar tanpa pembebanan 175.5 dan dengan pembebanan 162.9. sehingga dapat disimpulkan jika pemakaian obstacle mempengaruhi dari daya yang dihasilkan oleh turbin angin. DAFTAR PUSTAKA [1] Adityo Putranto, Andika Prasetyo, dan Arief Zatmiko U. 2011. Rancang Bangun Turbin Angin Vertikal Untuk Penerangan Rumah Tangga. Semarang. [2] Aron Zingman. 2007. Optimization of a Savonius Rotor Vertical-Axis Wind Turbine for Use in Water Pumping Systems in Rural Honduras. Honduras. [3] E. Pap, D. Thévenin M.H. Mohamed, G. Janiga, 2010 Optimization of Savonius turbines using an obstacle shielding the returning blade [4] K. Pope I. Dincer G.F. aterer 2010 Energy and exergy efficiency comparison of horizontal and vertical axis wind turbines. kanada [5] M.H. Mohamed G. Janiga E. Pap. D. Thévenin. 2011 Optimal blade shape of a modified Savonius turbine using an obstacle shielding the returning blade. Jerman [6] Mahmoud,.H., El-Haroun, A.A., Wahba, E. dan asef, M.H., 2012. An Experimental Study on Improvement of Savonius Rotor Performance. Alexandria Engineering Journal 51:19 25 [7] Moch. Arif Afifudin. 2010. Studi eksperimental performansi vertical axis wind turbine (VAWT) dengan variasi desain turbin. ITS Surabaya. [8] Hau. Eric. 2005:81 Wind Turbines Fundamental [9] Daryanto, Y., 2007, Kajian Potensi Angin Untuk Pembangkit Listrik Tenaga Bayu, Balai PPTAGG-UPT-LAGG, Yogyakarta. IV. KESIMPULA Berdasarkan penelitian yang telah dilakukan dapat disimpulkan jika : Bahwa pemakaian obstacle dapat mempengaruhi daya yang dihasilkan oleh turbin angin. Dimana pemakaian obstacle pada kecepatan paling rendah yaitu 3.8 m/s dapat mengekstraksi daya hingga 0.00232392 W. sedang tanpa menggunakan obstacle hanya mendapatkan daya 0.00085932 W Berdasarkan hasil pengukuran untuk pengintegrasian obstacle dengan β=80, β=100 dan berbentuk setengah lingkaran. didapatkan hasil jika integrasi obstacle setengah lingkaran mendapatkan daya yang paling tinggi dengan nilai 0.00414 W dengan RPM dengan pembebanan 352 dan tanpa pembebanan 354. Hasil ini jauh lebih baik dibandingkan dengan daya dan RPM yang dihasilkan oleh turbin angin tanpa pemakaian obstacle yang hanya menghasilkan daya 0,0019524 W dan RPM tanpa pembebanan 175.5 dan dengan pembebanan 162.9.