ANALISA STABILITAS SUBSEA CROSSING GAS PIPELINE DENGAN SUPPORT PIPA BERUPA CONCRETE MATTRESS DAN SLEEPER

dokumen-dokumen yang mirip
JURNAL TEKNIK ITS Vol. 5, No. 2, (2016) ISSN: ( Print) G-249

DESAIN DAN ANALISIS FREE SPAN PIPELINE

BAB I PENDAHULUAN. kini, misalnya industri gas dan pengilangan minyak. Salah satu cara untuk

STUDI PARAMETER PENGARUH TEMPERATUR, KEDALAMAN TANAH, DAN TIPE TANAH TERHADAP TERJADINYA UPHEAVAL BUCKLING PADA BURRIED OFFSHORE PIPELINE

PIPELINE STRESS ANALYSIS PADA ONSHORE DESIGN JALUR PIPA BARU DARI CENTRAL PROCESSING AREA(CPA) JOB -PPEJ KE PALANG STATION DENGAN PENDEKATAN CAESAR

Ir. Imam Rochani, M,Sc. Prof. Ir. Soegiono

BAB IV ANALISA DAN PERHITUNGAN

NAJA HIMAWAN

DESAIN DAN ANALISIS TEGANGAN PIPELINE CROSSING

JURNAL TEKNIK POMITS Vol. 2, No. 1, (2013) ISSN: ( Print) 1

DESAIN BASIS DAN ANALISIS STABILITAS PIPA GAS BAWAH LAUT

Analisa Pemasangan Ekspansi Loop Akibat Terjadinya Upheaval Buckling pada Onshore Pipeline

ANALISIS ON-BOTTOM STABILITY PIPA BAWAH LAUT PADA KONDISI SLOPING SEABED

ANALISA STABILITAS PIPA BAWAH LAUT DENGAN METODE DNV RP F109 : STUDI KASUS PROYEK INSTALASI PIPELINE

Analisa Integritas Pipa Milik Joint Operation Body Saat Instalasi

Dosen Pembimbing: 1. Ir. Imam Rochani, M.Sc. 2. Ir. Handayanu, M.Sc., Ph.D.

BAB IV ANALISA DAN PEMBAHASAN. Ketebalan pipa dapat berbeda-beda sesuai keadaan suatu sistem perpipaan.

UJIAN P3 TUGAS AKHIR 20 JULI 2010

BAB IV DATA SISTEM PERPIPAAN HANGTUAH

ANDHIKA HARIS NUGROHO NRP

JURNAL TEKNIK ITS Vol. 6, No. 2, (2017) ISSN: ( Print) G-189

ANALISA BUCKLING PADA SAAT INSTALASI PIPA BAWAH LAUT: STUDI KASUS SALURAN PIPA BARU KARMILA - TITI MILIK CNOOC DI OFFSHORE SOUTH EAST SUMATERA

BAB. 1.1 Umum ANALISIS FREE SPAN PIPA BAWAH LAUT 1-1 BAB 1 PENDAHULUAN

1.1 LATAR BELAKANG BAB

BAB IV PENGUMPULAN DAN PENGOLAHAN DATA

ANALISIS MID-POINT TIE-IN PADA PIPA BAWAH LAUT

ANALISA KEANDALAN DENTED PIPE DI SISI NUBI FIELD TOTAL E&P INDONESIE. Abstrak

Optimasi konfigurasi sudut elbow dengan metode field cold bend untuk pipa darat pada kondisi operasi

Analisa Tegangan pada Pipa yang Memiliki Korosi Sumuran Berbentuk Limas dengan Variasi Kedalaman Korosi

ANALISA KONFIGURASI PIPA BAWAH LAUT PADA ANOA EKSPANSION TEE

Studi Pengaruh Panjang Bentangan Bebas terhadap Panjang Span Efektif, Defleksi dan Frekuensi Natural Free Span Pipa Bawah Laut

BAB III METODE PENELITIAN. Diagram alir studi perencanaan jalur perpipaan dari free water knock out. Mulai

BAB III ANALISA DAN PEMBAHASAN

4 BAB IV PERHITUNGAN DAN ANALISA

TUGAS AKHIR PIPELINE STRESS ANALYSIS TERHADAP TEGANGAN IJIN PADA PIPA GAS ONSHORE DARI TIE-IN SUBAN#13 KE SUBAN#2 DENGAN PENDEKATAN CAESAR II

Analisa Resiko Penggelaran Pipa Penyalur Bawah Laut Ø 6 inch

PENDAHULUAN PERUMUSAN MASALAH. Bagaimana pengaruh interaksi antar korosi terhadap tegangan pada pipa?

Optimasi Konfigurasi Sudut Stinger dan Kedalaman Laut dengan Local Buckling Check

Gambar 5. 1 Sistem Pipeline milik Vico Indonesia

ANALISIS TEGANGAN TERHADAP RISIKO TERJADINYA BUCKLING PADA PROSES PENGGELARAN PIPA BAWAH LAUT

PERENCANAAN EXPANSION SPOOL DAN ANCHOR BLOCK PERENCANAAN PIPA DAN EXPANSION SPOOL PADA PIPA PENYALUR SPM

Bab V Analisis Tegangan, Fleksibilitas, Global Buckling dan Elekstrostatik GRP Pipeline

Bab IV Analisis Perancangan Struktur GRP Pipeline Berdasarkan ISO 14692

PENDEKATAN NUMERIK KAJIAN RESIKO KEGAGALAN STRUKTUR SUBSEA PIPELINES PADA DAERAH FREE-SPAN

BAB IV PERHITUNGAN DAN ANALISIS

ABOVE WATER TIE IN DAN ANALISIS GLOBAL BUCKLING PADA PIPA BAWAH LAUT

Jurnal Tugas Akhir. Analisis Operabilitas Instalasi Pipa dengan Metode S-Lay pada Variasi Kedalaman Laut

ANALISIS RISER INTERFERENCE KONFIGURASI STEEL CATENARY RISER AKIBAT PENGARUH GELOMBANG ACAK

BAB V ANALISA HASIL. 1. Tegangan-tegangan utama maksimum pada pipa. Dari hasil perhitungan awal dapat diketahui data-data sebagai berikut :

Bab 3 Data Operasi Sistem Perpipaan pada Topside Platform

DESAIN DAN ANALISIS TEGANGAN PADA SISTEM OFFSHORE PIPELINE

DESAIN TEGANGAN PADA JALUR PEMIPAAN GAS DENGAN PENDEKATAN PERANGKAT LUNAK

Perancangan Riser dan Expansion Spool Pipa Bawah Laut: Studi Kasus Kilo Field Pertamina Hulu Energi Offshore North West Java

ANALISIS RISER INTERFERENCE KONFIGURASI STEEL CATENARY RISER PADA LAUT DALAM

Existing : 790 psig Future : 1720 psig. Gambar 1 : Layout sistem perpipaan yang akan dinaikkan tekanannya

Studi Optimasi Offshore Pipeline Replacement di Area Bekapai TOTAL E&P Indonesie, Balikpapan. (Ema Sapitri, Hasan Ikhwani, Daniel M.

Output Program GRL WEAP87 Untuk Lokasi BH 21

4. HASIL DAN PEMBAHASAN

Analisa Rancangan Pipe Support pada Sistem Perpipaan High Pressure Vent Berdasarkan Stress Analysis dengan Pendekatan Caesar II

BAB I PENDAHULUAN 1.1. Latar belakang

ANALISIS KEKUATAN PIPA BAWAH LAUT TERHADAP KEMUNGKINAN KECELAKAAN AKIBAT TARIKAN JANGKAR KAPAL

TUGAS AKHIR ANALISA TEGANGAN JALUR PIPA UAP PADA PROYEK PILOT PLANT

Analisa Pengaruh Water Hammer Terhadap Nilai Strees Pipa Pada Sistem Loading-Offloading PT.DABN

METODOLOGI DAN TEORI Metodologi yang digunakan dalam studi ini dijelaskan dalam bentuk bagan alir pada Gambar 2.

2 BAB II TEORI. 2.1 Tinjauan Pustaka. Suatu sistem perpipaan dapat dikatakan aman apabila beban tegangan

BAB IV ANALISIS TEGANGAN PADA CABANG PIPA

Prasetyo Muhardadi

BAB IV PEMBAHASAN Analisis Tekanan Isi Pipa

DASAR TEORI PERENCANAAN PIPA DAN EXPANSION SPOOL PADA PIPA PENYALUR SPM

STUDI OPTIMASI OFFSHORE PIPELINE REPLACEMENT DI AREA BEKAPAI TOTAL E&P INDONESIE, BALIKPAPAN

BAB 4 ANALISA DAN PENGOLAHAN DATA

Bab 4 Pemodelan Sistem Perpipaan dan Analisis Tegangan

Analisa Pengaruh Water Hammer Terhadap Nilai Strees Pipa Pada Sistem Loading- Offloading PT.DABN

Desain Basis dan Analisis Stabilitas Pipa Gas Bawah Laut

PANDUAN PERHITUNGAN TEBAL PIPA

BAB I PENDAHULUAN Latar Belakang

Lembar Pengesahan. Analisis Free Span Pipa Bawah Laut

ANALISIS PONDASI JEMBATAN DENGAN PERMODELAN METODA ELEMEN HINGGA DAN BEDA HINGGA

ANALISA KONFIGURASI PIPA BAWAH LAUT PADA ANOA EKSPANSION TEE

BAB 2 DASAR TEORI DESAIN DASAR TEORI DESAIN

Tabel 4. Kondisi Kerja Pipa Pipe Line System Sumber. Dokumen PT. XXX Parameter Besaran Satuan Operating Temperature 150 Pressure 3300 Psi Fluid Densit

TUGAS AKHIR ANALISA TEGANGAN SISTEM PIPA GAS DARI VESSEL SUCTION SCRUBBER KE BOOSTER COMPRESSOR DENGAN MENGGUNAKAN PROGRAM CAESAR II

Analisa Pemasangan Loop Ekspansi Akibat Terjadinya Upheaval Buckling pada Onshore Pipeline

ANALISA KEANDALAN PADA PIPA JOINT OPERATING BODY PERTAMINA-PETROCHINA EAST JAVA ( JOB P-PEJ )BENGAWAN SOLO RIVER CROSSING

DAFTAR ISI. i ii iii iv vi v vii

STUDI STABILITAS SISTEM PONDASI BORED PILE PADA JEMBATAN KERETA API CIREBON KROYA

H 2 ANALISA INSTALASI PIPA POLYETHYLENE BAWAH LAUT DENGAN METODE S-LAY. Riki Satrio Nugroho (1), Yeyes Mulyadi (2), Murdjito (3)

Review Desain Condensate Piping System pada North Geragai Processing Plant Facilities 2 di Jambi Merang

Analisa Penyebab Terjadinya Upheaval buckling pada Pipeline 16" dan Corrective action

Analisis Pengaruh Scouring Pada Pipa Bawah Laut (Studi Kasus Pipa Gas Transmisi SSWJ Jalur Pipa Gas Labuhan Maringgai Muara Bekasi)

Pipeline Stress Analysis Pada Onshore Design Jalur Pipa Baru Dari Central Processing Area (CPA) Ke Palang Station JOB PPEJ Dengan Pendekatan Caesar II

Analisa Rancangan Pipe Support Sistem Perpipaan dari Pressure Vessel ke Air Condenser Berdasarkan Stress Analysis dengan Pendekatan CAESAR II

BAB V ANALISA HASIL. Dari hasil perhitungan awal dapat diketahui data-data sebagai berikut :

BAB IV ANALISA DAN PEMBAHASAN. melakukan perancangan sistem perpipaan dengan menggunakan program Caesar

BAB II LANDASAN TEORI

DEPARTEMEN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS SUMATERA UTARA MEDAN 2015

BAB 6 PERENCANAAN STRUKTUR BAWAH GEDUNG PARKIR

PERHITUNGAN UMUR LELAH FREESPAN MENGGUNAKAN DNV RP F-105 TENTANG FREESPANNING PIPELINES TAHUN 2002

PEMILIHAN JENIS DAN SPESIFIKASI PONDASI (STUDI KASUS: FLYOVER PETERONGAN, JOMBANG, JAWA TIMUR) Abstrak

Optimasi Konfigurasi Sudut Stinger dan Kedalaman Laut Dengan Local Buckling Check

Transkripsi:

ANALISA STABILITAS SUBSEA CROSSING GAS PIPELINE DENGAN SUPPORT PIPA BERUPA CONCRETE MATTRESS DAN SLEEPER (Studi Kasus Crossing Pipa South Sumatera West Java (SSWJ) milik PT.Perusahaan Gas Negara (Persero) Tbk. dan PT. British Petroleum) Abstrak Ratih Putri Arifianti (1), Imam Rochani (), Kriyo Sambodho (3) (1) Mahasiswa Teknik Kelautan, (,3) Staf Pengajar Teknik Kelautan Kondisi crossing antar pipa saat ini merupakan hal yang sulit dihindari oleh pihak industri. Kondisi ini pun akan menimbulkan resiko cukup besar bagi kedua pipa yang mengalami kondisi crossing. Seringkali ditemui perusahaan memiliki aturan tersendiri dalam penentuan clearance pipa miliknya dengan pipa lain. Dalam kasus crossing yang terjadi dalam proyek SSWJ Gas Offshore Pipeline Phase II milik PT. Perusahaan Gas Negara (Persero) Tbk dengan pipa milik PT. British Petroleum. Clearance yang diterapkan dalam proyek tersebut adalah minimal 1.5 meter. Salah satu hal yang harus diperhitungkan adalah kondisi tanah di lokasi instalasi yang mengalami kondisi crossing. Dengan melihat kondisi yang ada, akan terjadi defleksi pada pipa PT PGN(Persero) Tbk. Defleksi dapat terjadi karena adanya beban lingkungan, fluida alir dan berat concrete pipa. Selain itu tanah pada crossing point berupa tanah lempung (clay) dan terdapat struktur concrete mattress dan sleeper sebagai support pipa maka memungkinkan terjadinya penurunan tanah (settlement) di crossing point. Tugas akhir ini bertujuan untuk mengetahui berapa defleksi yang terjadi pada pipa PT.PGN(Persero) Tbk dan penurunan tanah yang terjadi di bawah support pipa. Kata-kata kunci : Crossing pipa, SSWJ Phase II, Deflection, Settlement 1. PENDAHULUAN Kondisi crossing antar pipa saat ini merupakan hal yang sulit dihindari oleh pihak industri. Pertumbuhan industri yang pesat mengakibatkan jaringan pipa yang menjadi jalur distribusi dan sarana transportasi fluida. Kondisi ini pun akan menimbulkan resiko cukup besar bagi kedua pipa yang mengalami kondisi crossing. Dengan latar belakang keamanan, pipeline diusahakan tidak berada terlalu dekat dengan lokasi struktur lain dan/atau sistem pipeline lain (Det Norske Veritas 000; DNV OS-F101, Submarine Pipeline Systems). Namun dengan alasan efektifitas biaya masih dapat dimungkinkan adanya crossing diantara pipeline, dan DnV memberikan aturan jarak vertikal antar pipeline sejauh 0,3 meter. Jarak minimum tersebut harus memperhatikan efek-efek hidrodinamis seperti; sneaking, vortex, offset posisi, pengaruh defleksi, buckling, dan hal lain yang beresiko tinggi (DnV OS F101). Sehingga sangat besar kemungkinan di kemudian hari dengan semakin berkembangnya industri migas, maka kemungkinan terjadinya crossing pada pipa bawah laut juga semakin besar.

. DASAR TEORI.1 Stabilitas Pipa Stabilitas pipa bawah laut terkait dengan gaya-gaya hidrodinamis karena keberadaannya dalam fluida yang bergerak. Gaya hidrodinamis yang mengenai pipa antara lain gaya drag (drag force), gaya inertia (inertia force) dan gaya angkat (lift force). Gaya-gaya hidrodinamis yang bekerja pada pipa bawah laut adalah gaya drag, gaya inertia dan gaya lift. Mouselli (1981) merumuskan perhitungan gaya drag, gaya inertia dan gaya lift perhitungan panjang sebagai berikut: Gaya Drag (F D ) F D = 1 ρc DDU e...1 Gaya Inertia (F I ) Gambar.1 Gaya Hidrodinamis pada Pipa (Mouselli, 1981). Stress Analysis Pipa Gas..1 Hoop Stress Untuk pipeline dan riser, hoop stress menunjukkan adanya perbedaan antara internal dan eksternal pressure yang ditunjukkan dengan persamaan berikut, S h F 1 ST...4 S h = P i P e D t...5 dengan : F I = ρc πd M 4 du/dt... D : nominal outside Pers. diameter of pipe Gaya Lift (F L ) F 1 : hoop stress design factor (0.7 ) F L = 1 ρc LDU e...3 P e : external pressure, Pers. 3 S : specified minimum yield strength, dengan : S h : hoop stress, ρ : densitas fluida, kg/m 3 T T : temperature derating factor D : diameter luar pipa t : nominal wall thickness, in U e : kecepatan efektif partikel, du/dt :percepatan horizontal partikel,.. Longitudinal Stress C D : coeff drag C M : coeff inersia/coeff mass Untuk pipa dan riser longitudinal C L : coeff lift stress diperoleh dari persamaan berikut, S L F S...6 dengan : A : cross sectional area of pipe material,in F a : axial force, lbs

F : longitudinal stress design factor (0.80 for pipeline) M i : in-plane bending moment, in-lb M o : out-plane bending moment, in-lb S : specified minimum yield strength, psi S L : maximum longitudinal stress, psi S b : i i M i + i o M 1/ o /z i i : in-plane stress intensification factor i o : out-plane stress intensification factor z : section modulus of pipe, in 3 Terzhagi (1943) yang pertama kali menunjukkan teori yang comprehensive untuk mengevaluasi ultimate bearing capacity dari shallow foundation...3 Combine Stress Untuk pipeline dan riser perhitungan combine stress dapat ditunjukkan dengan persamaan berikut, S L S H + 1/ Gambar.3 Terzhaghi s Bearing-Capacity St F 3 S...7 Theory Pers. 8 dengan, A : cross-sectional area of pipe F a : axial force, lbs F 3 : combined stress design factor (0.90) M i : in-plane bending moment, in-lb M o : out-plane bending, in-lb : torsional moment, in-lb M t.3 Penurunan Tanah Penambahan beban di atas permukaan tanah dapat menyebabkan lapisan tanah di bawahnya mengalami pemampatan. Ketika nilai beban (load) per unit area pada pondasi bertambah secara kontinyu maka nilai settlement juga akan bertambah. Gambar. Pembebanan Pada Tanah P Gambar.4 Keseimbangan Beban yang Mengenai Tanah Gambar.4 menunjukkan penetrasi pondasi dimana terdapat keseimbangan antara beban yang menekan tanah di bagian bawah akan dilawan oleh gaya ke atas. Dengan mengasumsian bahwa ƩF y = 0, maka dapat dituliskan persamaan berikut, B q d q u B = P p + bd c sin φ..8 dengan: qu : beban merata pada tanah B : lebar pondasi Namun bd = B cos φ, maka persamaannya dapat ditulis sebagai berikut, q u B = P p + Bc tan φ P

Dengan menambahkan pengaruh dengan, shape factor pondasi, maka Terzhagi secara umum membagi 3 persamaan untuk W s : submerged weight of pipe menentukan Ultimate Bearing Capacity untuk masing-masing bentuk pondasi yaitu antara lain, B D c : width of bearing area [d(d c -d)] ½ : outside diameter of coated pipe a. Long footings 3. METODOLOGI q u = cn c + qn q + 1 γbn γ. 9 1. Pengumpulan Data Pers. 1 Data-data yang digunakan dalam b. Square footings penelitian tugas akhir ini adalah data q u = 1.3cN c + qn q + 0.4γBN γ..10 Pers. 13 c. Circular footings q u = 1.3cN c + qn q + 0.3γBN γ 11 dengan, c γ q N c, N q, N γ dengan, N c = cot φ N q = cos 45+φ/ a cos 45+φ/ N y = 1 tan φ K py cos φ dengan, a = e 3π 4 φ/ tan φ.15 K py = 3tan 45 + φ+33..16 (S. Husain,Professor, Youngstown State University) Sedangkan untuk menghitung undrained shear strength dapat digunakan persamaan sebagai berikut, s u = C + δ N tan φ..17 dengan, : undrained shear strength S u δ N pipa yang meliputi desain pipa dan data operasional pipa, data tanah yang meliputi parameter tanah dan koefisiennya serta data lingkungan di : cohesion of soil lokasi crossing. Data diperoleh dari PT. : unit weight of soil PGN (Persero) Tbk. : γ D f : bearing capacity factor. Menghitung Kestabilan Pipa a 1 1 Analisa ini dilakukan untuk mengetahui kestabilan Pers. 15 pipa di site instalasi berdasarkan berat pipa secara 13 keseluruhan meliputi berat pipa, berat 1..14 concrete, berat coating dan berat Pers. 17 : normal stress φ : internal angle of friction = 0 untuk jenis tanah clay Pipa akan terbenam ke dalam tanah apabila bearing stress besarnya sama dengan bearing capacity of soil. Maksimum bearing stress dapat dihitung dengan persamaan berikut, q u = W s 18 B contents di dalamnya, beban lingkungan serta dilakukan perhitungan per meter. DNV OS-F101, Submarine Pipeline Systems dan DNV RP-E305, On Bottom Stability Design of Submarine Pipelines. 3. Pemodelan Pipa Sistem pipeline milik PT. PGN (Persero) Tbk yang mengalami crossing dengan pipa gas lain milik PT. Bristish Petroleum di Kilometer Point 138, dapat di modelkan dengan software Caesar 5.1 4. Pembebanan Dalam input pembebanan dimasukkan data dimensi pipa, temperatur, pressure, material pipa, data fluida serta data lingkungan. 5. Perhitungan Total Settlement Beban support pipa akan menyebabkan terjadinya penurunan tanah di bawahnya. Sesuai dengan data tanah yang telah diberikan, tanah Pers. berjenis 19 lempung

(clay) yang akan mengakibatkan terjadinya pemampatan pada tanah sehingga tanah akan mengalami penurunan. Penurunan tanah yang diperhitungkan antara lain penurunan segera (immediate settlement) dan penurunan konsolidasi (consolidation settlement) 4.3. Pemodelan Pipa PT. PGN (Persero) Tbk pada Kondisi Hydrotest Berikut ini merupakan stress yang terjadi pada kondisi hydrotest dimana dapat dilihat bahwa stress terpusat pada bagian tengah 4. ANALISA HASIL 4.1 Kestabilan Pipa Kondisi uplift akan terjadi jika nilai buoyancy lebih besar daripada complete weight pipa. Atau nilai submerged weight pipa minimal yang dibutuhkan di lokasi tersebut jauh lebih kecil dibandingkan dengan submerged weight pipa yang di instalasi. Dari hasil perhitungan dengan menggunakan codes antara lain DNV OS-F101, Submarine Pipeline Systems dan DNV RP-E305, On Bottom Stability Design of Submarine Pipelines dapat diketahui bahwa kedua pipa aman dari kondisi uplift 4. Defleksi Pipa 4..1 Pemodelan Pipa PT. PGN (Persero) Tbk pada Kondisi Instalasi Berikut ini merupakan stress yang terjadi pada kondisi Installasi dimana dapat dilihat bahwa stress terpusat pada bagian tengah Gambar 4. Kondisi Hydrotest 4..3 Pemodelan Pipa PT. PGN (Persero) Tbk pada Kondisi Operasi Berikut ini merupakan stress yang terjadi pada kondisi operasii dimana dapat dilihat bahwa stress terpusat pada bagian tengah Gambar 4.1 Kondisi Installasi Gambar 4.3 Kondisi Hydrotest

Dari ketiga gambar yang diperoleh dari hasil pemodelan dapat dilihat bahwa stress terbesar berada pada Node di bagian tengah yang merupakan posisi dimana pada bagian bawahnya tedapat pipa gas lain. 4.3 Soil Settlement 4.3.1 Soil Settlement di Kondisi Installasi Installation Condition 0-1 - -3 Depth (m) -4-5 -6-7 -8 Settlement (mm) 0 0 40 60 80 100 10 140 160 Gambar 4.4 Settlement di Kondisi Installasi 4.3. Soil Settlement di Kondisi Operasi Operation Condition Settlement (mm) 0-1 - -3 Depth (m) -4-5 -6-7 -8 0 0 40 60 80 100 10 140 160 Gambar 4.6 Settlement di Kondisi Operasi 4.4 Settlement Tanah Total 100.000 4.3. Soil Settlement di Kondisi Hydrotest 1000.000 800.000 95.060 Hydrostatic Condition Settlement (mm) 0-1 - -3 Depth (m) -4-5 -6-7 -8 0 0 40 60 80 100 10 140 160 Gambar 4.5 Settlement di Kondisi Hydrotest (m m) 600.000 400.000 00.000 0.000 86.090 339.590 Installation Hydrotest Settlement Gambar 4.7 Settlement Total Operational Penurunan tanah (settlement) akibat proses hydrotest ini sebesar 53.499 mm. Dan untuk kondisi operasional diperkirakan terjadi penurunan tanah (settlement) sebesar 61.47 mm. Penurunan tanah (settlement) ini yang paling besar terjadi karena adanya content pipa yang berupa gas dan lifetime production selama 0 tahun. Karena struktur

ini diinstalasi pada tahun 006, maka pada tahun 01 yaitu akhir masa produksi total penurunan tanah (settlement) yang terjadi adalah sebesar 95.057 mm. 5. KESIMPULAN DAN SARAN 5.1 Kesimpulan Melalui proses analisis dan pembahasan yang telah dilakukan, maka dapat ditarik beberapa kesimpulan sebagai berikut, 1. Dari hasil analisa dengan codes dapat diketahui bahwa pada kedua pipa tidak akan terjadi uplift.. Defleksi yang terjadi pada pipa akibat combined stress pada pipa di 3 kondisi masing-masing pipa terjadi kearah +Y (atas). Nilai defleksi tersebut yaitu sebesar 3.07 inch di kondisi instalasi, 1.7 inch di kondisi hydrotest dan 1.73 inch di kondisi operasi. 3. Penurunan tanah total (settlement) yang terjadi di lokasi instalasi diakibatkan oleh 3 kondisi. Pada kondisi instalasi terjadi penurunan tanah sebesar 86.090 mm, pada kondisi hydrotest terjadi penurunan tanah sebesar 53.499 mm dan pada kondisi operasi terjadi penurunan tanah sebesar 61.47 mm. Sehingga dapat di simpulkan bahwa terjadi penurunan tanah (settlement) total sebesar 95.057 mm di akhir masa produksi di tahun 01. 5. Saran 1. Bentangan pipa (span) yang terjadi diantara support pipa memiliki panjang 1 meter. Dengan adanya pengaruh gaya hydrodinamis maka pengaruh vortex shedding terhadap pipa perlu di analisa.. Dalam pemodelan pipa PT. PGN (Persero) Tbk perlu dilakukan dengan metode analisa dinamis dengan catatan diperlukan data tambahan yang dibutuhkan dalam analisa tersebut