17 J. Tek. Ind. Pert. Vol. 19(1), 16-20

dokumen-dokumen yang mirip
THE QUALITY OF COMPOSITE BOARD MADE OF WASTE OIL PALM STEM (Elaeis guineensis Jacq) AND RECYCLE POLYETHYLENE (PE) ABSTRACT

Universitas Sumatera Utara

LIMBAH LINEAR. Oleh: NAN UNIVERSI Universitas Sumatera Utara

BAB IV HASIL DAN PEMBAHASAN

BAB I PENDAHULUAN. meningkat. Hampir setiap produk menggunakan plastik sebagai kemasan atau

PAPAN PARTIKEL DARI CAMPURAN LIMBAH ROTAN DAN PENYULINGAN KULIT KAYU GEMOR (Alseodaphne spp)

SIFAT FISIS MEKANIS PAPAN PARTIKEL DARI LIMBAH KAYU GERGAJIAN BERDASARKAN UKURAN PARTIKEL

BAB IV HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN

TINJAUAN PUSTAKA. Menurut Badan Standardisasi Nasional (2010) papan partikel merupakan

Pengaruh Kadar Selulosa Pelepah Sawit Terhadap Sifat dan Morfologi Wood Plastic Composite (WPC)

KUALITAS FIBER PLASTIC COMPOSITE DARI KERTAS KARDUS DENGAN MATRIKS POLIETILENA (PE)

SIFAT FISIS-MEKANIS PAPAN PARTIKEL DARI KOMBINASI LIMBAH SHAVING KULIT SAMAK DAN SERAT KELAPA SAWIT DENGAN PERLAKUAN TEKANAN BERBEDA

METODE PENELITIAN. Penelitian ini dilaksanakan pada bulan Mei - Oktober Pembuatan

Luthfi Hakim 1 dan Fauzi Febrianto 2. Abstract

PENGARUH RASIO SEMEN DAN PARTIKEL TERHADAP KUALITAS PAPAN SEMEN DARI LIMBAH PARTIKEL INDUSTRI PENSIL

BAB I PENDAHULUAN Latar Belakang. Indonesia merupakan negara penghasil ubi kayu terbesar ketiga didunia

SIFAT FISIK DAN MEKANIK PAPAN KOMPOSIT DARI BATANG SINGKONG DAN LIMBAH PLASTIK BERDASARKAN PELAPISAN DAN KOMPOSISI BAHAN BAKU

4 PENGARUH KADAR AIR PARTIKEL DAN KADAR PARAFIN TERHADAP KUALITAS PAPAN KOMPOSIT

III. METODOLOGI. 3.3 Pembuatan Contoh Uji

IV. HASIL DAN PEMBAHASAN

VARIASI KADAR PEREKAT PHENOL FORMALDEHIDA TERHADAP KUALITAS PAPAN PARTIKEL DARI CAMPURAN PARTIKEL KELAPA SAWIT DAN SERUTAN MERANTI

TINJAUAN PUSTAKA. perabot rumah tangga, rak, lemari, penyekat dinding, laci, lantai dasar, plafon, dan

METODOLOGI PENELITIAN

KUALITAS PAPAN KOMPOSIT DARI SABUT KELAPA DAN LIMBAH PLASTIK BERLAPIS BAMBU DENGAN VARIASI KERAPATAN DAN LAMA PERENDAMAN

SIFAT FISIS DAN MEKANIS PAPAN SEMEN DARI LIMBAH INDUSTRI PENSIL DENGAN BERBAGAI RASIO BAHAN BAKU DAN TARGET KERAPATAN

BAB III METODOLOGI 3.1 Waktu dan Tempat Penelitian 3.2 Alat dan Bahan Test Specification SNI

Fiber-Plastic Composite

BAB III METODOLOGI PENELITIAN

BAB I PENDAHULUAN 1.1 LATAR BELAKANG

BAB IV HASIL DAN PEMBAHASAN

LIMBAH PLASTIK POLIPROPILENA BERBAGAI VARIASI RASIO DAN PENAMBAHAN MALEIC ANHYDRID

KARAKTERISTIK FISIS DAN MEKANIS PAPAN PARTIKEL BAMBU BETUNG

6 PENGARUH SUHU DAN LAMA PENGEMPAAN TERHADAP KUALITAS PAPAN KOMPOSIT

KARAKTERISTIK PAPAN SEMEN DARI LIMBAH KERTAS KARDUS DENGAN PENAMBAHAN KATALIS KALSIUM KLORIDA

Medan (Penulis Korespondensi : 2 Staf Pengajar Studi Kehutanan, Fakultas Pertanian, Universitas Sumatera Utara

BAB III METODOLOGI PENELITIAN

KETAHANAN FIBER-PLASTIC

KUALITAS PAPAN KOMPOSIT SERAT KULIT BATANG SAGU DAN PLASTIK POLIPROPILENA (PP) BERLAPIS FINIR DAN BAMBU

BAB III METODE PENELITIAN

BAB IV HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN

Lampiran 1. Perhitungan bahan baku papan partikel variasi pelapis bilik bambu pada kombinasi pasahan batang kelapa sawit dan kayu mahoni

KUALITAS PAPAN SERAT BERKERAPATAN SEDANG DARI AKASIA DAN ISOSIANAT

KARAKTERISTIK PAPAN PARTIKEL DARI BULU DOMBA, SERBUK GERGAJI DAN SERUTAN KAYU DENGAN PEREKAT UREA FORMALDEHIDA

Pemanfaatan Limbah Kulit Buah Nangka sebagai Bahan Baku Alternatif dalam Pembuatan Papan Partikel untuk Mengurangi Penggunaan Kayu dari Hutan Alam

SIFAT FISIK MEKANIK PAPAN PARTIKEL TANPA PEREKAT DARI TANDAN KOSONG KELAPA SAWIT (Elaeis Guineensis acq)

Abstract. oil palm trunk waste, mahogany s, phenol formaldehyde, physical and mechanical properties, particle board.

PRISMA FISIKA, Vol. III, No. 3 (2015), Hal ISSN :

Kiki Sinaga, M. Dirhamsyah Dan Ahmad Yani Fakultas Kehutanan Universitas Tanjungpura. Jalan Imam Bonjol Pontianak

KUALITAS PAPAN KOMPOSIT BERLAPIS FINIR DARI SABUT KELAPA DAN PLASTIK POLIETILENA DAUR ULANG: VARIASI UKURAN PARTIKEL SABUT KELAPA

BAB III METODOLOGI PENELITIAN

BAB I PENDAHULUAN. 1.1 Latar Belakang. areal perkebunan kelapa sawit di Indonesia dari tahun seluas 8,91 juta

BAB II TINJAUAN PUSTAKA

KARAKTERISTIK PAPAN SEMEN DARI LIMBAH KERTAS KARDUS DENGAN PENAMBAHAN KATALIS NATRIUM SILIKAT

PENGARUH KOMPOSISI FACE-CORE TERHADAP SIFAT FISIK DAN MEKANIS ORIENTED STRAND BOARD DARI BAMBU DAN ECENG GONDOK

Pengaruh Rasio Massa Serat Batang Sawit Terhadap Sifat dan Morfologi Material Wood Plastic Composite dari Campuran Polypropylene dan Batang Sawit

PROSES PENGHILANGAN TINTA PADA KERTAS BEKAS

KARAKTERISTIK PAPAN PARTIKEL DARI BATANG PANDAN MENGKUANG (Pandanus atrocarpus Griff) BERDASARKAN UKURAN PARTIKEL DAN KONSENTRASI UREAFORMALDEHIDA

BAB III METODE PENELITIAN

BAB I PENDAHULUAN 1.1. Latar Belakang

Key words: benzoil peroxide, empty fruit bunches, maleic anhydride, oil palm trunk, particle size, recycle polypropylene

VARIASI SUHU DAN WAKTU PENGEMPAAN TERHADAP KUALITAS PAPAN PARTIKEL DARI LIMBAH BATANG KELAPA SAWIT DENGAN PEREKAT PHENOL FORMALDEHIDA

PENGARUH PERENDAMAN SERUTAN KAYU DURIAN (Durio zibethinus) DALAM LARUTAN ASAM ASETAT DAN ACETIC ANHYDRIDE TERHADAP KUALITAS PAPAN PARTIKEL

OPTIMASI KADAR HIDROGEN PEROKSIDA DAN FERO SULFAT

KUALITAS PAPAN PARTIKEL DARI KOMPOSISI PARTIKEL BATANG KELAPA SAWIT DAN MAHONI DENGAN BERBAGAI VARIASI KADAR PEREKAT PHENOL FORMALDEHIDA

BAB I PENDAHULUAN. ( Jamilah, 2009 ). Menurut Direktorat Bina Produksi Kehutanan (2006) bahwa

KETAHANAN PAPAN KOMPOSIT POLIMER DARI LIMBAH BATANG KELAPA SAWIT DAN PLASTIK POLIPROPILENA TERHADAP ORGANISME PENGGEREK KAYU DI LAUT HASIL PENELITIAN

KARAKTERISTIK KOMPOSIT TANPA PEREKAT (BINDERLESS COMPOSITE) DARI LIMBAH PENGOLAHAN KAYU

SIFAT MEKANIK PAPAN GYPSUM DARI SERBUK LIMBAH KAYU NON KOMERSIAL

PENGARUH PANJANG PARTIKEL TERHADAP KUALITAS ORIENTED PARTICLE BOARD DARI BAMBU TALI (Gigantochloa apus J.A & J.H. Schult.

PENGARUH BESARAN KEMPA TERHADAP SIFAT PAPAN PARTIKEL SERUTAN KAYU. (The Effect of Pressing Rate on Wood Shaving Particleboard Properties)

KARAKTERISTIK PAPAN SEMEN DARI TIGA JENIS BAMBU DENGAN PENAMBAHAN KATALIS MAGNESIUM KLORIDA (MgCl 2 )

PENGARUH KOMPOSISI PEREKAT UREA FORMALDEHIDA DAN BAHAN PENGISI STYROFOAM TERHADAP KUALITAS PAPAN PARTIKEL DARI LIMBAH BATANG KELAPA SAWIT SKRIPSI

(Penulis Korespondensi: 2 Dosen Program Studi Kehutanan, Fakultas Pertanian, Universitas Sumatera Utara

KUALITAS PAPAN KOMPOSIT DARI LIMBAH BATANG KELAPA SAWIT (Elaeis guineensis Jacq) DAN POLYETHYLENE (PE) DAUR ULANG. Skripsi

PENDAHULUAN. Indonesia menyebabkan industri kehutanan mengalami krisis bahan baku.

KUALITAS PAPAN KOMPOSIT YANG TERBUAT DARI LIMBAH KAYU SENGON DAN KARTON DAUR ULANG

Ira Lestari Simbolon 1, Tito Sucipto 2, Rudi Hartono 2 1 Alumni Program Studi Kehutanan, Fakultas Kehutanan, Universitas Sumatera Utara, Jl.

PEMBUATAN PAPAN PARTIKEL BERBAHAN DASAR SABUT KELAPA (Cocos nucifera L.) SKRIPSI

BAB IV HASIL DAN PEMBAHASAN. Gambar 8 Histogram kerapatan papan.

BAHAN DAN METODE. Penelitian di laksanakan bulan September - November Penelitian ini

PENGARUH PENAMBAHAN SERAT PINANG (Areca catechu L. Fiber) TERHADAP SIFAT MEKANIK DAN SIFAT FISIS BAHAN CAMPURAN SEMEN GIPSUM

Pengaruh Pelapisan Akrilik terhadap Kualitas Papan Partikel dari Limbah Batang Kelapa Sawit

KARAKTERISTIK PAPAN SEMEN DARI LIMBAH KARDUS DENGAN PENAMBAHAN KATALIS ALUMUNIUM SULFAT SKRIPSI

Karakteristik Fisis dan Mekanis Papan Semen Bambu Hitam (Gigantochloa Atroviolacea Widjaja) dengan Dua Ukuran Partikel

PENGARUH DIAMETER DAN PANJANG SERAT PELEPAH SAWIT TERHADAP SIFAT DAN MORFOLOGI WOOD PLASTIC COMPOSITE (WPC)

ANALISIS SIFAT FISIS DAN MEKANIK PAPAN KOMPOSIT GIPSUM SERAT IJUK DENGAN PENAMBAHAN BORAKS (Dinatrium Tetraborat Decahydrate)

Mahasiswa Pascasarjana Sekolah Pascasarjana IPB, Staf Pengajar Fakultas Kehutanan Universitas Tanjungpura, Pontianak. 2

BAB III METODOLOGI PENELITIAN

PAPAN KOMPOSIT DARI LIMBAH INDUSTRI DENGAN PEREKAT CAMPURAN PLASTIK POLYPROPYLENE

VARIASI BERAT LABUR PEREKAT PHENOL FORMALDEHIDA TERHADAP KUALITAS PAPAN LAMINA DARI BATANG KELAPA SAWIT DENGAN PEMADATAN

PAPAN PARTIKEL DARI LIMBAH SERUTAN ROTAN DAN CANGKANG SAWIT

Studi Awal Pembuatan Komposit Papan Serat Berbahan Dasar Ampas Sagu

BAB 1 PENDAHULUAN Latar Belakang

PAPAN PARTIKEL DARI SERAT KOTORAN GAJAH

KARAKTERISTIK PAPAN COM-PLY DARI CAMPURAN KAYU SAWIT DAN KORAN BEKAS. Oleh/By :

PAPAN PARTIKEL DARI AMPAS TEBU (Saccharum officinarum)

PEMANFAATAN SERAT SABUT KELAPA DAN PLASTIK DAUR ULANG UNTUK PAPAN KOMPOSIT BERLAPIS ANYAMAN BAMBU DINA SETYAWATI

SIFAT FISIS MEKANIS PAPAN GIPSUM DARI TANDAN KOSONG KELAPA SAWIT (Elaeis guineensis Jacq.) DENGAN PERLAKUAN PERENDAMAN DAN VARIASI KADAR GIPSUM

Transkripsi:

KUALITAS PAPAN KOMPOSIT DARI LIMBAH BATANG KELAPA SAWIT (Elaeis guineensis Jacq) DAN POLYETHYLENE (PE) DAUR ULANG THE QUALITY OF COMPOSITE BOARD MADE OF WASTE OIL PALM STEM (Elaeis guineensis Jacq) AND RECYCLE POLYETHYLENE (PE) Maryam Jamilah Lubis 1, Iwan Risnasari 2, Arif Nuryawan 2, dan Fauzi Febrianto 3 1 Alumnus Departemen Kehutanan, Fakultas Pertanian - Universitas Sumatera Utara 2 Staf Pengajar Departemen Kehutanan Fakultas Pertanian Universitas Sumatera Utara 3 Guru Besar Departemen Hasil Hutan Fakultas Kehutanan Institut Pertanian Bogor, Bogor E-mail : mila_zahra@yahoo.com ABSTRACT The main objective of this research was to find out the substitution of solid wood and it may solve environmental problem. These researches concerned on using waste of oil palm stem particle form and recycle plastic polyetyhlene (PE) as raw materials for composite board. In this research, % Maleic Anhydride (MAH) was added to increase compatibility and.7% Dicumyl Peroxide (DCP) was added to initiate the reaction of maleolation. The methods of this research followed JIS A 98 (23) with ratio of plastic to particle were :, 6:4 and 7:3, respectively, pressed at 3 kgf/cm 2 in 16 C for 1 minutes. Evaluation on physical and mechanical properties based on JIS A 98 (23), and the result of physical properties as follow : 1) Density met the standard at.77 -.99 g/cm, 2) The value of moisture content were below on target and the standard because of the hidrofobicity of PE, the range were.79-3.6%, 3) Thickness swelling of the board for 24 hours fulfill the standard the value were.44-2.77%. Unfortunatelly the water absorption were 2.82-16.19%. Mechanical properties consist of modulus elasticity (MOE), modulus rupture (MOR) and screw holding strength didn t meet the criteria of JIS A 98 (23), except MOR with plastic: particle 6:4 with particle made of inner stem. Keywords: Composite board, oil palm stem, polyethylene (PE) PENDAHULUAN Kebutuhan manusia terhadap kayu untuk konstruksi, bangunan atau furniture terus melaju pesat seiring dengan meningkatnya pertambahan jumlah penduduk, sementara ketersediaan kayu sebagai bahan baku terus menurun. Mengingat ketersediaan kayu bulat yang mulai menipis, maka upaya yang sudah dikembangkan adalah pembuatan papan komposit, salah satunya dengan menggunakan batang kelapa sawit yang potensinya sangat banyak. Menurut Setyawati dan Massijaya (2) keunggulan produk komposit ini antara lain biaya produksi lebih murah, bahan baku melimpah, fleksibel dalam proses pembuatan dan memiliki sifat-sifat yang lebih baik seperti kerapatan yang dapat dibuat tinggi, kadar air yang rendah dan stabilitas dimensi yang baik. Potensi perkebunan kelapa sawit di Indonesia pada tahun 199-2 luas arealnya bertambah dari 2,7 juta ha sampai 4, juta ha. Apabila setiap 1% dari tanaman sawit ini harus diremajakan, maka dihasilkan limbah batang kelapa sawit 11,7 juta pohon/tahun setara dengan,8 juta ton kayu pertahun. Namun demikian limbah tersebut hanya dibuang dan belum termanfaatkan secara optimal. (Prayitno dan Darnoko, 1994). Demikian juga dengan plastik, menurut Martaningtyas (26), tingginya kebutuhan plastik masyarakat Indonesia di tahun 22 sekitar 1,9 juta ton kemudian meningkat menjadi 2,1 juta ton di tahun 23, sementara kebutuhan plastik pada tahun 24 diperkirakan mencapai 2,3 juta ton sehingga tingginya limbah plastik pada tiap tahunnya terus meningkat dan akan menimbulkan masalah dalam penanganan lingkungan dan sulit terdegradasi. Dengan latar belakang tersebut maka perlu dilakukan penelitian dengan menggabungkan partikel batang kelapa sawit dengan material plastik berupa plastik polyethylene (PE) daur ulang. Pada penggabungan bahan tersebut dibutuhkan suatu bahan aditif, yang berfungsi untuk meningkatkan sifat fisik dan mekanis papan komposit (Iswanto, 2). Bahan aditif yang digunakan pada penelitian ini adalah Maleic Anhydride (MAH) dan Dicumyl Peroxide (DCP). Tujuan dari penelitian ini adalah mengevaluasi kualitas papan komposit dari limbah batang kelapa sawit dan polyethylene (PE) daur ulang. METODE PENELITIAN Bahan-bahan yang digunakan dalam penelitian ini adalah partikel batang sawit (Elaeis guineensis Jacq) dengan ukuran 4-6 mesh yang berasal dari areal perkebunan rakyat dengan umur 28 tahun, plastik polyethylene (PE) yang telah didaur ulang dalam bentuk potongan-potongan kecil (pellet) dengan ukuran 3 mm x 2 mm x 2 mm, Maleic Anhydride (MAH) sebanyak % dan Dicumyl Peroxide (DCP) sebanyak,7% dari berat PE. Persiapan Bahan Baku Batang kelapa sawit yang telah dibersihkan dari kotoran kemudian dilakukan pembuangan kulit, lalu dipotong dan langsung dipisahkan antara bagian dalam dan bagian luar. Potongan batang kemudian diserut sehingga diperoleh partikel-partikel batang 17 J. Tek. Ind. Pert. Vol. 19(1), 16-2 16

sawit, kemudian direndam dalam air pada suhu kamar selama 3 x 24 jam untuk menghilangkan kandungan patinya. Penurunan kandungan pati yang diperoleh berkisar 2% dari 4% kandungan pati yang terdapat pada batang sawit. Setelah itu partikel yang dihasilkan dikeringudarakan hingga kadar air mencapai sekitar - 1% dan diayak dengan ukuran 4-6 mesh. Pembuatan Papan Komposit Komposisi plastik dan partikel batang kelapa sawit ditimbang (Tabel 1) kemudian dicampur merata agar pada saat pengadonan antara partikel dengan plastik tercampur secara homogen. Kemudian extruder dipanaskan pada suhu 16 C dan bahan baku campuran partikel batang sawit, DCP dan MAH dimasukkan ke dalam extruder dan diputar sehingga menghasilkan pellet. Pellet yang telah dihasilkan dimasukkan ke dalam alat pencetak lembaran berukuran 2 cm x 2 cm x, cm yang telah dilapisi dengan aluminium foil lalu disusun secara padat pada alat pencetak dan dilakukan pengempaan panas dengan suhu 16 C dengan tekanan sebesar 3 kg/cm 2 selama 1 menit. Selanjutnya cetakan tersebut dikeluarkan dari alat kempa dan dibiarkan selama 1 menit agar terjadi pengerasan, kemudian papan dikondisikan selama 1 minggu dalam ruangan pada suhu kamar. Analisis Data Penelitian ini menggunakan percobaan faktorial dengan rancangan acak lengkap (RAL) dimana setiap kombinasi perlakuan diulang sebanyak 3 kali. Perlakuan terdiri atas 3 faktor, yaitu faktor letak batang (luar dan dalam), aditif (dengan dan tanpa aditif) dan komposisi plastik berbanding partikel (:, 6:4, 7:3). Kualitas fisik dan mekanis papan komposit diuji sesuai dengan prosedur standar JIS A 98 (23) dan hasil pengujian dibandingkan dengan standar tersebut. HASIL DAN PEMBAHASAN Pengujian Sifat Fisik Sifat fisik papan komposit adalah sifat yang tidak berhubungan dengan pengaruh gaya dari luar dan yang termasuk sifat fisik papan komposit adalah Pal. Maryam Jamilah Lubis, Iwan Risnasari, Arif Nuryawan, dan Fauzi Febrianto. Kerapatan Hasil pengamatan terhadap kerapatan papan komposit yang berasal dari batang bagian dalam tanpa menggunakan bahan aditif berkisar antara,77 -,88 g/cm 3 dan dari bagian luar batang berkisar,81 -,83 g/cm 3, sedangkan nilai rata-rata kerapatan bagian dalam dengan penambahan bahan aditif berkisar,83 -,99 g/cm 3 dan bagian luar berkisar,91 -,94 g/cm 3 (Gambar 1). bahwa faktor letak batang, komposisi plastik dengan partikel sawit, penambahan aditif dan interaksi antara ketiganya tidak memberikan pengaruh yang nyata terhadap kerapatan papan partikel. JIS A 98 (23) mensyaratkan nilai kerapatan papan partikel berkisar antara,4 -,9 g/cm 3, sehingga nilai kerapatan semua papan partikel hasil penelitian memenuhi standar JIS A 98 (23). Menurut Haygreen dan Bowyer (1996) semakin tinggi kerapatan papan partikel maka akan semakin tinggi sifat keteguhannya. Hasil yang diperoleh menunjukkan bahwa dengan adanya penambahan bahan aditif berupa MAH dan DCP maka dapat meningkatkan kerapatan papan partikel. Menurut Febrianto (1999) dalam Iswanto (2) penambahan aditif pada papan komposit berfungsi sebagai compatibilizer yaitu bahan untuk meningkatkan kekompakan. Kadar Air (KA) Hasil pengujian kadar air tanpa menggunakan bahan aditif pada bagian dalam berkisar antara 1,96-3,6% dan pada bagian luar batang kelapa sawit berkisar antara 1,41-2,4%, sedangkan nilai rata-rata kadar air dengan penambahan bahan aditif pada bagian dalam berkisar antara,96-1,37% dan pada bagian luar berkisar antara,79-1,6% (Gambar 2). bahwa perlakuan pada papan komposit dengan berbagai komposisi, pengaruh letak batang, penambahan bahan aditif dan interaksi antara ketiganya tidak memberikan pengaruh yang nyata terhadap kadar air papan komposit. Nilai kadar air hasil pengujian ini jauh dibawah nilai kadar air yang disyaratkan oleh JIS A 98 (23) yaitu sebesar - 13%. Tabel 1. Komposisi papan yang memerlukan bahan baku gabungan (berdasar pada berat/beban) Perlakuan Kode Letak Batang Aditif Kadar Partikel (%) Kadar Plastik A Dalam B 4 6 C 3 7 A Dalam Penambahan B Aditif 4 6 C 3 7 D Luar E 4 6 F 3 7 D Luar Penambahan E Aditif 4 6 F 3 7 J. Tek. Ind. Pert. Vol. 19(1), 16-2 18 17

Kerapatan ( g/cm 3 ) 1,2 1,,8,6,4,2,,78,93,87,99,77,83,81,94,81,91,82,94 JIS A 98 23 (.4 g/cm3 -.9g/cm3) Keterangan : A = Bagian dalam dengan perbandingan plastik : partikel : B = Bagian dalam dengan perbandingan plastik : partikel 6 : 4 C = Bagian dalam dengan perbandingan plastik : partikel 7 : 3 D = Bagian luar dengan perbandingan plastik : partikel : E = Bagian luar dengan perbandingan plastik : partikel 6 : 4 F = Bagian luar dengan perbandingan plastik : partikel 7 : 3 Kadar Air (%) Gambar 1. Histogram kerapatan papan komposit 4 3 2 1 3,6 1,37 2,1 1,18 1,96,96 2,4,79 1,71 1,22 1,41 1,6 Gambar 2. Histogram kadar air papan komposit Hal ini dapat dipahami karena adanya penambahan plastik yang bersifat hidrofobik (menahan air) pada papan komposit ini sehingga permukaan lembaran papan komposit tertutupi oleh plastik yang menghambat masuknya air ke dalam rongga-rongga sel papan komposit. Menurut Han (199) reaksi esterifikasi antara OH group dari partikel sawit dengan MAH menyebabkan ikatan kuat antara partikel sawit dengan matriksnya sehingga air atau uap air tidak mudah masuk kedalam papan komposit. Nilai kadar air kayu sangat mempengaruhi dalam kekuatan dan ketahanan papan terserang jamur, rayap dan lainnya. Daya Serap Air (DSA) Nilai daya serap air dengan perendaman 24 jam pada bagian dalam batang kelapa sawit tanpa menggunakan bahan aditif yaitu 8,18-16,19% dan bagian luar 7,31-8,1% sedangkan dengan menggunakan aditif pada bagian dalam berkisar,22-9,3% dan untuk bagian luar batang kelapa sawit diperoleh daya serap air dengan nilai 2,82 -,78% (Gambar 3). Daya Serap Air (%) 2 1 1 16,19 9,3 8,18,22 12,,44 7,94,78 7,31,34 8,1 Gambar 3. Histogram daya serap air 24 jam bahwa komposisi terhadap bagian luar dan bagian dalam batang kelapa sawit dan penambahan bahan aditif serta interaksi ketiganya tidak berpengaruh nyata terhadap daya serap air. Pada standar JIS A 98 (23) daya serap air tidak dipersyaratkan. Penggunaan bahan aditif pada daya serap air mengakibatkan terjadinya penurunan daya serap air. Hal ini sesuai dengan Han (199) bahwa dengan adanya kehadiran DCP maka akan membentuk reaksi dengan gugus OH. Adanya dua reaksi ini menyebabkan ikatan yang kuat antara partikel kelapa sawit dengan plastik PE sehingga air atau uap air tidak mudah masuk kedalam papan partikel. Pengembangan Tebal (PT) Hasil pengamatan terhadap pengembangan tebal selama 24 jam pada bagian dalam batang tanpa menggunakan bahan aditif berkisar 2,7-2,77% dan untuk bagian luar berkisar 1,64-2,61%, sedangkan dengan penambahan bahan aditif pada bagian dalam batang diperoleh,44-1,43% dan untuk bagian luar batang berkisar,3-1,2% (Gambar 4). Pengembangan Tebal (%) 4 3 2 1 2,77 1,43 2,24,64 2,7,44 2,61 1,2 1,77,3 1,64 2,82,619 Gambar 4. Histogram pengembangan tebal 24 jam bahwa pemberian komposisi pada bagian dalam dan bagian luar batang kelapa sawit, dengan penambahan aditif serta interaksi ketiga jenis tersebut tidak memberikan pengaruh nyata terhadap pengembangan tebal. Bila dibandingkan dengan standar JIS A 98 (23) yang mensyaratkan nilai pengembangan tebal papan partikel maksimum 12% maka nilai pengembangan tebal papan partikel dalam penelitian ini sudah memenuhi standar tersebut. Iswanto (2) menjelaskan sifat pengembangan tebal papan partikel merupakan salah satu 19 J. Tek. Ind. Pert. Vol. 19(1), 16-2 18

Maryam Jamilah Lubis, Iwan Risnasari, Arif Nuryawan, dan Fauzi Febrianto. sifat fisis yang akan menentukan suatu papan komposit dapat digunakan untuk keperluan interior atau eksterior. Apabila pengembangan tebal suatu papan komposit tinggi berarti stabilitas dimensi produk tersebut rendah, sehingga produk tersebut tidak dapat digunakan untuk keperluan eksterior dan sifat mekanisnya akan menurun dalam jangka waktu yang tidak lama. Pengujian Sifat Mekanis Sifat mekanis papan partikel adalah sifat yang berhubungan dengan ukuran kemampuan papan untuk menahan gaya luar yang bekerja padanya, yang termasuk ke dalam sifat mekanis papan partikel adalah keteguhan patah, keteguhan lentur dan kuat pegang sekrup. Pengujian sifat mekanis papan komposit pada penelitian ini hanya dilakukan pada sampel tanpa menggunakan bahan aditif sedangkan sampel menggunakan aditif tidak dapat dilakukan pengujian. Hal ini diduga disebabkan oleh plastik PE yang digunakan pada penelitian ini telah mengalami daur ulang berulang kali sehingga pada saat plastik tersebut digunakan kembali maka kemungkinan besar sifat termoplastiknya telah berkurang atau bahkan hilang. Dengan demikian ikatan-ikatan kimia yang terdapat dalam plastik daur ulang tersebut telah rusak dan tidak mampu untuk berikatan atau bereaksi dengan bahan aditif yang digunakan sehingga tidak terjadi kompatibilitas pada papan yang dihasilkan (Febrianto, 28). Keteguhan Lentur (Modulus of Elasticity, MOE) Dalam pengujian sifat mekanis papan komposit diperoleh keteguhan lentur bagian dalam batang papan komposit berkisar,46 x 1 4 -,49 x 1 4 kgf/cm 2 sedangkan untuk bagian luar batang kelapa sawit diperoleh,32 x 1 4 -, x 1 4 kgf/cm 2 (Gambar ). Hasil analisis sidik ragam menunjukkan bahwa pemberian komposisi pada bagian dalam dan bagian luar batang kelapa sawit tidak memberikan pengaruh nyata terhadap nilai keteguhan lentur papan komposit. MOE (1 4 kgf/cm 2 ) 1,,8,6,4,2,,46,49,46,4,,32 Gambar. Histogram keteguhan lentur (MOE) Jika dibandingkan dengan standar JIS A 98 (23) yang mensyaratkan nilai MOE papan partikel sebesar minimal 2, x 1 4 kgf/cm 2 maka nilai MOE yang diperoleh masih jauh dari standar yang ditetapkan. Hal ini diduga karena kurang sempurnanya pencampuran plastik dengan partikel pada saat pengempaan dalam pembuatan papan komposit sehingga sifat keteguhan lentur hanya terdapat pada beberapa bagian papan komposit. Maloney (1993) menyatakan bahwa nilai MOE dipengaruhi oleh kandungan dan jenis bahan perekat yang digunakan, daya ikat perekat dan panjang serat. Keteguhan Patah (Modulus of Rupture, MOR) Hasil pengamatan terhadap keteguhan patah (MOR), nilai pada bagian dalam batang yang dihasilkan berkisar,6 x 1 2 -,84 x 1 2 kgf/cm 2 sedangkan untuk bagian luar berkisar antara,61 x 1 2 -,76 x 1 2 kgf/cm 2 (Gambar 6). Berdasarkan analisis sidik ragam, pemberian komposisi yang berbeda pada bagian dalam dan luar batang kelapa sawit tidak memberikan pengaruh yang nyata terhada p nilai MOR papan komposit. MOR (1 2 kgf/cm 2 ),9,8,7,6,,4,3,2,1,6,84,73,61,76,64 JIS A 98 23 (Min,8x1 2 kgf/cm 2 ) Gambar 6. Histogram keteguhan patah (MOR) Jika dibandingkan dengan standar JIS A 98 (23) yang mensyaratkan nilai MOR papan partikel sebesar min,8 x 1 2 kgf/cm 2, maka nilai MOR papan komposit hasil penelitian ini hanya papan komposit bagian B saja yang sesuai dengan standar yang ditetapkan sedangkan tipe papan komposit yang lainnya masih dibawah standar JIS A 98 (23). Kuat Pegang Sekrup (KPS) Hasil pengujian kuat pegang sekrup pada bagian dalam batang kelapa sawit berkisar 8,94-16,7 kgf dan untuk bagian luar dengan nilai ratarata 1,47-21,7 kgf (Gambar 7). Hasil sidik ragam menunjukkan bahwa pemberian komposisi yang berbeda pada bagian dalam dan bagian luar batang kelapa sawit tidak berpengaruh nyata terhadap kuat pegang sekrup. Sesuai dengan standar standar JIS A 98 (23) yang mensyaratkan nilai kuat pegang sekrup minimal 3 kgf, maka nilai yang diperoleh pada penelitian ini tidak memenuhi standar yang telah ditetapkan. Hal ini diduga karena distribusi partikel tidak merata dalam pembuatan papan yang mengakibatkan papan masih terdapat rongga sehingga kuat pegang sekrupnya relatif menurun. J. Tek. Ind. Pert. Vol. 19(1), 16-2 2 19

Kuat Pegang Sekrup (kgf) 3 2 2 1 1 16,7 8,94 12,1 1,47 2,34 21,7 JIS A 98 23 (Min 3 kgf) UCAPAN TERIMA KASIH Ucapan terima kasih kepada Direktorat Jenderal Pendidikan Tinggi Indonesia (DIKTI) yang telah membiayai penelitian ini melalui proyek Hibah Pekerti antara Universitas Sumatera Utara dengan Institut Pertanian Bogor. Gambar 7. Histogram kuat pegang sekrup KESIMPULAN DAN SARAN Kesimpulan 1. Penambahan aditif pada papan komposit mengakibatkan sifat fisik kualitas papan yang dihasilkan semakin baik dengan kerapatan yang tinggi, kadar air dan perubahan dimensi yang rendah. 2. Papan komposit yang berasal dari batang bagian luar dengan penambahan aditif dan komposisi 7 : 3 menghasilkan kualitas yang lebih baik daripada bagian dalam batang dengan variasi komposisi lainnya. 3. Papan komposit yang memenuhi standar JIS A 98 (23) hanya pada pengujian sifat fisik sedangkan pada pengujian mekanis belum memenuhi standar. 4. Rendahnya nilai kadar air pada papan komposit yang dihasilkan disebabkan oleh plastik yang DAFTAR PUSTAKA Haygreen J. G. dan J. L. Bowyer. 1996. Hasil hutan dan ilmu kayu. Terjemahan. Gadjah Mada University, Yogyakarta. Iswanto A.H, 2. Upaya pemanfaatan serbuk gergaji kayu sengon dan limbah plastik polyprophylena sebagai langkah alternatif untuk mengatasi kekurangan kayu sebagai bahan bangunan. Jurnal Komunikasi Penelitian 17(3): 24-27. Japanese Standard Association. 23. Japanese Industrial Standard for particle board JIS A 98. Japanese Standard Association, Jepang. Maloney T.M. 1993. Modern particle board and dry process fiberboard manufacturing. Miller Freeman Publication, USA. Martaningtyas D. 26. Potensi plastik biodegradable. [on line]. http://www.pikiranrakyat.com/cetak/94/2/cakrawala/lainnya 6.htm.[23 Jan 28]. Prayitno T.A dan Darnoko. 1994. Karakteristik papan partikel dari pohon kelapa sawit. Berita Pusat Penelitian Kelapa Sawit (PPKS), Medan. bersifat hidrofobik. Setyawati D. dan Y.M. Massijaya. 2. Pengembangan papan komposit berkualitas tinggi dari sabut kelapa dan polipropilena daur ulang (I): Suhu dan waktu kempa panas. Jurnal Teknologi Hasil Hutan 18(2): 91-11. Saran Agar dilakukan penelitian lanjutan mengenai papan komposit ini dengan membandingkan plastik PE original, PE yang telah didaur ulang sekali dan seterusnya sehingga dapat dipelajari bahwa dengan plastik yang telah didaur ulang berulang kali maka komponen kimia yang terdapat pada plastik tersebut telah mengalami kerusakan sehingga tidak mampu lagi untuk berikatan dengan bahan pengisi (filler) yang digunakan, dan untuk lebih lanjut perlu dilakukan uji Scanning Electron Microscopy (SEM). 21 2 J. Tek. Ind. Pert. Vol. 19(1), 16-2