B A B II D A S A R T E O R I

dokumen-dokumen yang mirip
BAB IV KRITERIA DESAIN

BAB II TINJAUAN PUSTAKA

BAB VIII PERENCANAAN PONDASI SUMURAN

ANALISA STABILITAS DINDING PENAHAN TANAH (RETAINING WALL) AKIBAT BEBAN DINAMIS DENGAN SIMULASI NUMERIK ABSTRAK

DAFTAR ISI. i ii iii. ix xii xiv xvii xviii

Gambar 6.1 Gaya-gaya yang Bekerja pada Tembok Penahan Tanah Pintu Pengambilan

BAB III METODOLOGI PENELITIAN. kebutuhan untuk mengoptimalkan sumber daya yang ada baik sarana dan

BAB III LANDASAN TEORI. Boussinesq. Caranya dengan membuat garis penyebaran beban 2V : 1H (2 vertikal

BAB VI PERENCANAAN CHECK DAM

ANALISIS STABILITAS LERENG DENGAN PERKUATAN GEOTEKSTIL

BAB II LANDASAN TEORI. Dalam bab ini akan dibahas dasar-dasar teori yang melandasi setiap

TUGAS AKHIR. Diajukan sebagai syarat untuk meraih gelar Sarjana Teknik Strata 1 (S-1) Disusun oleh : TITIK ERNAWATI

DAFTAR ISI HALAMAN JUDUL...

BAB 4 HASIL DAN PEMBAHASAN. penambangan batu bara dengan luas tanah sebesar hektar. Penelitian ini

BAB 4 HASIL DAN PEMBAHASAN

TUGAS AKHIR SIMON ROYS TAMBUNAN

BAB II TI JAUA PUSTAKA

BAB IV HASIL DAN PEMBAHASAN

DESAIN DINDING DIAFRAGMA PADA BASEMENT APARTEMEN THE EAST TOWER ESSENCE ON DARMAWANGSA JAKARTA OLEH : NURFRIDA NASHIRA R.

Untuk tanah terkonsolidasi normal, hubungan untuk K o (Jaky, 1944) :

DAFTAR ISI DAFTAR TABEL DAFTAR GAMBAR DAFTAR LAMPIRAN DAFTAR NOTASI DAN SINGKATAN

PENGARUH BENTUK DASAR MODEL PONDASI DANGKAL TERHADAP KAPASITAS DUKUNGNYA PADA TANAH PASIR DENGAN DERAJAT KEPADATAN TERTENTU (STUDI LABORATORIUM)

TEKANAN TANAH LATERAL

BAB 9. B ANGUNAN PELENGKAP JALAN

BAB VI REVISI BAB VI

BAB II TINJAUAN PUSTAKA

DAFTAR ISI. Judul DAFTAR GAMBAR DAFTAR LAMPIRAN DAFTAR NOTASI DAN SINGKATAN BAB I PENDAHULUAN RUMUSAN MASALAH TUJUAN PENELITIAN 2

BAB 4 ANALISA DAN PENGOLAHAN DATA

STUDI STABILITAS SISTEM PONDASI BORED PILE PADA JEMBATAN KERETA API CIREBON KROYA

BAB II TINJAUAN PUSTAKA

ALTERNATIF PERENCANAAN PERKUATAN LERENG VILLA BUKIT STANGI

BAB VI PERHITUNGAN STRUKTUR BANGUNAN PANTAI

= tegangan horisontal akibat tanah dibelakang dinding = tegangan horisontal akibat tanah timbunan = tegangan horisontal akibat beban hidup = tegangan

ANALISIS STABILITAS DAN PERKUATAN LERENG PLTM SABILAMBO KABUPATEN KOLAKA SULAWESI TENGGARA ABSTRAK

6 BAB VI EVALUASI BENDUNG JUWERO

ek SIPIL MESIN ARSITEKTUR ELEKTRO

BAB 4 PEMBAHASAN. memiliki tampilan input seperti pada gambar 4.1 berikut.

BAB II TINJAUAN PUSTAKA. dengan tanah dan suatu bagian dari konstruksi yang berfungsi menahan gaya

MEKANIKA TANAH 2 KESTABILAN LERENG. UNIVERSITAS PEMBANGUNAN JAYA Jl. Boulevard Bintaro Sektor 7, Bintaro Jaya Tangerang Selatan 15224

JUDUL HALAMAN PENGESAHAN BERITA ACARA MOTTO DAN PERSEMBAHAN KATA PENGANTAR ABSTRAK DAFTAR ISI DAFTAR GAMBAR DAFTAR TABEL DAFTAR NOTASI DAFTAR LAMPIRAN

BAB III LANDASAN TEORI. batu yang berfungsi untuk tanggul penahan longsor. Langkah perencanaan yang

BAB I PENDAHULUAN LatarBelakang Tujuan Kajian Sistematika Penyusunan Laporan...3

TUGAS AKHIR. Diajukan sebagai syarat untuk meraih gelar Sarjana Teknik Strata 1 (S-1) Disusun Oleh : Maulana Abidin ( )

KAJIAN KEMAMPUAN DAYA DUKUNG PONDASI TIANG PANCANG PADA ABUTMENT JEMBATAN BERDASAR BEDAH BUKU BOWLES

Jawaban UAS Teknik Pondasi (Waktu 120 menit) Tanggal : 18 Juni 2012

PERENCANAAN JEMBATAN KALI TUNTANG DESA PILANGWETAN KABUPATEN GROBOGAN

BAB II TINJAUAN PUSTAKA. menahan gaya beban diatasnya. Pondasi dibuat menjadi satu kesatuan dasar

KORELASI KAPASITAS DUKUNG MODEL PONDASI TELAPAK BUJUR SANGKAR DENGAN LUAS PERKUATAN GEOTEKSTIL (STUDI LABORATORIUM) Muhammad. Riza.

MEKANIKA TANAH (CIV -205)

BAB 4 ANALISIS DAN PEMBAHASAN

BAB III LANDASAN TEORI

UNIVERSITAS BINA NUSANTARA

BAB II DASAR TEORI...

PENGARUH JENIS TANAH TIMBUNAN TERHADAP STABILITAS DINDING PENAHAN TANAH SEGMENTAL ABSTRAK

KAPASITAS DUKUNG TIANG

JURNAL TEKNIK ITS Vol. 6, No. 1, (2017) ISSN: ( Print D-44

KAJIAN STABILITAS LERENG PADA JALAN AKSES JEMBATAN TAYAN DAN PENANGGULANGANNYA

STABILITAS LERENG (SLOPE STABILITY)

BAB IV ANALISA PERHITUNGAN STABILITAS DINDING PENAHAN

Ir. Endang Kasiati, DEA

BAB IV IMPLEMENTASI DAN EVALUASI. disampaikan dalam sub bab ini. Perhitungan dan analisa Retaining Wall adalah

DAFTAR ISI LEMBAR PENGESAHAN ABSTRAK KATA PENGANTAR

VI. TEKANAN TANAH. Contoh. Dalam keadaan dinding penahan tanah menerima tekanan berupa tekanan Hidrostatis, misal air pada kolam

ANALISIS STABILITAS DINDING PENAHAN TANAH (STUDI KASUS: SEKITAR AREAL PT. TRAKINDO, DESA MAUMBI, KABUPATEN MINAHASA UTARA)

STUDI PERBANDINGAN PERANCANGAN DINDING TURAP DENGAN MENGGUNAKAN METODE MANUAL DAN PROGRAM OASYS GEO 18.1

BAB VII PERHITUNGAN STRUKTUR BANGUNAN PELINDUNG PANTAI

Mekanika Tanah 2 Konsep Tegangan Efektif

INFO TEKNIK Volume 5 No. 2, Desember 2004 ( ) Desain Dinding Penahan Tanah (Retaining Walls) di Tanah Rawa Pada Proyek Jalan

Alternatif Perbaikan Perkuatan Lereng Longsor Jalan Lintas Sumatra Ruas Jalan Lahat - Tebing tinggi Km

PERENCANAAN JEMBATAN RANGKA BAJA SUNGAI AMPEL KABUPATEN PEKALONGAN

BAB IV HASIL DAN PEMBAHASAN

PENGGUNAAN BORED PILE SEBAGAI DINDING PENAHAN TANAH

BAB IV HASIL DAN PEMBAHASAN

BAB 3 ANALISIS PERHITUNGAN

Nila Sutra ( )

BAB IV PONDASI TELAPAK GABUNGAN

PENGARUH MODULUS GESER TANAH TERHADAP KESTABILAN PONDASI MESIN JENIS BLOK STUDI KASUS: MESIN ID FAN PLTU 2 AMURANG SULUT

LANGKAH KERJA PERHITUNGAN PONDASI DANGKAL. Tanah dianggap homogen dengan mengambil karakteristik tanah pada lapisan γb N γ. =c ' N c.

BAB IV PERENCANAAN PONDASI. Berdasarkan hasil data pengujian di lapangan dan di laboratorium, maka

BAB III METODE PENELITIAN. Penelitian ini mengambil lokasi pada Proyek Detail Desain Bendung D.I.

ANALISIS STABILITAS TALUD BRONJONG UIN SUNAN KALIJAGA YOGYAKARTA

BAB III PROSEDUR ANALISIS

ANALISA GRAVITY WALL DAN CANTILIVER WALL DITINJAU DARI SEGI EKONOMIS TERHADAP TINGGI YANG VARIATIF

ANALISIS TIMBUNAN PELEBARAN JALAN SIMPANG SERAPAT KM-17 LINGKAR UTARA ABSTRAK

II. METODOLOGI Metode yang digunakan dalam Tugas Akhir ini ialah sebagai berikut :

BAB IV PERENCANAAN LERENG GALIAN

BAB IV PERHITUNGAN DAN ANALISIS

Mekanika Tanah I Norma Puspita, ST. MT.

DESAIN PONDASI TIANG DENGAN NAVFAC DAN EUROCODE 7 ABSTRAK

MENGHITUNG DINDING PENAHAN TANAH PASANGAN BATU KALI

BAB III LANDASAN TEORI

ANALISIS KESTABILAN LERENG GALIAN DALAM SEGMEN C PADA PROYEK JALAN SOROWAKO BAHODOPI SULAWESI Andri Hermawan NRP:

Tugas Rekayasa Pondasi Jurusan Teknik Sipil. Universitas Sebelas Maret Surakarta PONDASI DANGKAL

Laporan Tugas Akhir Analisis Pondasi Jembatan dengan Permodelan Metoda Elemen Hingga dan Beda Hingga BAB III METODOLOGI

Perencanaan Perbaikan Lereng Longsor Pada Jalan Lintas Gunung Gumitir Ruas Jalan Banyuwangi - Jember

ANALISIS DINDING PENAHAN TANAH TIPE GRAVITASI PADA LERENG DI DESA SUMBERSARI, TIRTOMOYO, WONOGIRI

EFEKTIFITAS PENGGUNAAN STONE COLUMN UNTUK MENGURANGI BESAR PEMAMPATAN PADA TANAH DENGAN DAYA DUKUNG RENDAH

BAB III LANDASAN TEORI

Kata kunci: stabilitas lereng, angka keamanan, dinding penahan tanah, longsor

BAB 2 TINJAUAN PUSTAKA DAN LANDASAN TEORI

Transkripsi:

6 B A B II D A S A R T E O R I 2.1. BEBAN PADA STRUKTUR PELABUHAN Beban pada struktur bangunan di pelabuhan sangat berhubungan erat dengan tingkat keamanan yang diinginkan. Faktor keamanan harus diperhitungkan dalam semua segi pekerjaan dimulai dari penyusunan desain, spesifikasi bahan, pelaksanaan keamanan operasional dan keamanan pekerja. Pada penentuan beban yang bekerja pada struktur harus mengacu pada aspek keamanan yang tergolong dalam keamanan desain. Beban yang bekerja pada struktur bangunan di pelabuhan dikelompokkan menjadi beban vertikal dan horisontal. Bedasarkan lokasi struktur beban dibagi dalam 2 kelompok yaitu beban di darat dan beban dari arah laut. 2.1.1. Beban di darat Merupakan pembebanan di sekitar lapangan penumpukan ataupun gudang dan daerah di wilayah apron dermaga, terdiri dari (Gambar 2.1) : 1. Beban vertikal Beban mati roda kendaraan di atasnya misalnya crane (P-P ), forklift (F-F ). Beban merata (qo), ditentukan bedasarkan beban muatan yang akan ditimbun per unit luasan atau per m 2, secara normal ditentukan sebesar 1 sampai 5 ton/m 2. Beban sendiri struktur (W) misal berat paving blok atau berat pondasinya, berat bangunan di atasnya, dll. 2. Beban horisontal Tekanan tanah aktif (E1-E2) di samping pondasi. Tekanan air (E3-E4), khususnya pengaruh dari pasang surut.

7 2.1.2. Beban dari arah laut Merupakan akibat dari kapal yang bekerja pada struktur. Komponen horisontal dari boulder (H) untuk pengikat kapal yang sedang merapat. Beban tumbukan kapal dengan fender (H ). Besarnya gaya tarik boulder sesuai dengan berat kapal (GRT), sesuai dengan Tabel 2.1. Tabel 2.1. Gaya tarik pada boulder Gross Tonnage Gaya Tarik pada Boulder (ton) 200 500 10 501 1000 15 1001 2000 25 2001 3000 25 3001 5000 35 5001 10000 50 10001 15000 50 15001 20000 50 20001 100000 70 Sumber : Diktat Bahan Kuliah Pelabuhan S1

8 H' + 0.00 LWS Seabed h1 P 16 m P' H h2 qo (t/m²) h3 W E1 h4 E2 h5 O B Gambar 2.1. Tipe-tipe beban yang bekerja pada pondasi Caisson F F' E3 E4 Muka Tanah h6 h7

9 2.2. PENENTUAN TITIK PUTAR MOMEN DI DASAR PONDASI Sebelum melakukan perhitungan momen yang terjadi di dasar pondasi Caisson baik momen penahan atau momen guling maka terlebih dahulu harus menentukan titik putarnya. Penentuan titik putar ini dipengaruhi oleh nilai SPT tanah yang berada di bawah pondasi. Apabila nilai SPT 50 maka titik putar berada di ujung dasar pondasi (Gambar 2.2), apabila nilai SPT = 0 maka titik putar berada di tengah2 dasar pondasi (Gambar 2.3) dan apabila nilai SPT berada diantara 0 dan 50 atau 0 < x < 50 maka digunakan perbandingan. NILAI SPT = 0 ( tengah2 pondasi ) Ganbar 2.2. Letak titik putar momen di tengah-tengah pondasi NILAI SPT > 50 ( ujung pondasi ) Ganbar 2.3. Letak titik putar momen di ujung pondasi

10 2.3. ANALISA DATA TANAH Parameter yang akan dilakukan analisa dari hasil tes penyelidikan tanah adalah N (jumlah pukulan), φ dan γ`sat. Sebagai langkah pertama menganalisa data tanah adalah melakukan pembagian layer tanah bedasarkan jenis tanahnya dan besarnya harga N setelah itu pada setiap layer tersebut dilakukan perhitungan untuk merata-rata harga N. Setelah didapat harga N, dilakukan perhitungan φ dengan menggunakan rumus OSAKI yaitu : φ = (20.N) 0.5 + 15 digunakan rumus ini karena menghasilkan nilai paling kecil sehingga didapatkan nilai terkritis bila dibandingkan dengan rumus DUNHAMM : ( 12N) 0.5 + 25. Setelah itu dilakukan perhitungan untuk merata-rata harga γd yang didapat dari hasil tes penyelidikan tanah untuk mendapatkan harga γsat. Harga γsat tersebut didapatkan dengan melihat Tabel 2.2. Tabel 2.2. Korelasi parameter-parameter tanah (Biarez-Favre-Simon) Argiles Nature des sols sables,graviers, a granulo molles moyennes etroite etendue γ d e * n w sat γ sat * g/cm 3 lb.cb.ft % g/cm 3 0,5 31,25 4,4 0,8 163 1,31 0,6 37,50 3,5 0,78 129,6 1,38 0,7 43,75 2,86 0,74 105,8 1,44 0,8 50,00 2,38 0,7 88,0 1,5 0,9 56,25 2 0,67 74,1 1,57 1,0 62,50 1,7 0,63 63 1,63 1,1 68,75 1,45 0,59 53,9 1,69 1,2 75,00 1,25 0,56 46,3 1,76 1,3 81,25 1,08 0,52 39,9 1,82 1,4 87,50 0,93 0,48 34,4 1,88 1,5 93,75 0,8 0,44 29,6 1,94 1,6 100 0,69 0,41 25,5 2,01 1,7 106,25 0,59 0,37 21,8 2,07 1,8 112,50 0,5 0,33 18,5 2,13

11 1,9 118,75 0,42 0,3 15,6 2,2 2,0 125 0,35 0,26 13,0 2,26 2,1 131,25 0,29 0,22 10,6 2,32 2,2 137,50 0,23 0,19 8,4 2,39 2,3 143,75 0,17 0,15 6,4 2,45 2,4 150 0,13 0,11 4,63 2,51 2,5 156,25 0,08 0,074 2,96 2,57 2,6 162,50 0,038 0,037 1,42 2,64 2,7 168,75 0 0 0 2,70 2.4. PERHITUNGAN TEKANAN TANAH AKTIF 2.4.1. Prinsip dasar Pada perhitungan kestabilan suatu struktur pondasi ataupun dinding penahan tanah (retaining wall) faktor tekanan tanah aktif maupun pasif sangat mutlak diperhatikan karena tekanan yang diakibatkan oleh tanah serta beban yang bekerja di atasnya (beban surcharge) memiliki nilai yang cukup besar. Secara prinsip besarnya tekanan tanah menurut catatan diktat kuliah teknik pondasi lanjut adalah (Gambar 2.4) : σ H = Ko. σ V dimana : σ H = tegangan tanah efektif horisontal σ V = tegangan tanah efektif vertikal ( dalam hal ini σ V = { γ.( H H' )} + { '.H'} γ ) Ko = Koefisien tekanan tanah netral atau dalam kondisi istirahat, Ko max = 1 γ = γ sat - γ w

12 MUKA TANAH M A T γ' σ' V γ H' H σ' H Ganbar 2.4. Prinsip dasar perhitungan tekanan tanah 2.4.2. Perhitungan koefisien tekanan tanah Koefisien tanah aktif : Ka γ = tg 2 φ 4 2 Koefisien tanah pasif : Kp γ = tg 2 φ + 4 2 π π 0 45 4 = π π 0 45 4 = Berlaku untuk : λ = 0 β = 0 δ = 0 Koefisien transmisi akibat surcharge vertikal : 1. Ka q = 2. Ka q = Kaγ cos cos ( β λ) ( sinφ.cosωδ ) δ 1+ sinφ dimana : ε dalam radians 1 2 ε = ( ωδ δ ) λ ωδ 2. tgφ. ε.( e ) sinδ π sin ωδ =, 0 < ωδ < sinφ 2

13 2 δ = + φ, untuk tanah aktif 3 2 δ = φ, untuk tanah pasif 3 Koefisien tekanan tanah akibat kohesi : 1 Ka c = cot gφ Kaq cos δ penjelasan mengenai notasi selengkapnya dapat dilihat pada Gambar 2.5. q β λ P1 δ Pasif Ganbar 2.5. Penjelasan notasi Aktif Bedasarkan dari teori Boussinesq, untuk mencari harga Ka γ dan Kp γ dapat menggunakan tabel koefisien tekanan tanah aktif dan pasif. Untuk lebih jelasnya dapat dilihat pada Tabel 2.3. Tabel 2.3. Koefisien tekanan tanah aktif dan pasif untuk β = γ = 0 (Caquot & Kerisel, 1966) Nilai φ 5 0 10 0 15 0 20 0 25 0 30 0 35 0 40 0 45 0 50 0 δ = 1 φ 0,81 0,65 0,53 0,44 0,37 0,31 0,26 0,22 0,185 0,155 0,99 0,98 0,97 0,95 0,93 0,90 0,86 0,80 0,73 0,64

14 Nilai φ 5 0 10 0 15 0 20 0 25 0 30 0 35 0 40 0 45 0 50 0 δ = φ δ = φ δ = φ δ = φ δ = φ δ = φ 2 3 1 3 0 1 3 2 3 1 0,81 0,66 0,54 0,44 0,36 0,3 0,25 0,2 0,16 0,13 1,08 1,16 1,24 1,33 1,44 1,56 1,68 1,8 1,7 1,6 0,82 0,67 0,56 0,45 0,37 0,3 0,25 0,2 0,16 0,13 1,15 1,3 1,49 1,7 1,93 2,20 2,5 2,8 3,2 3,6 0,84 0,7 0,59 0,49 0,41 0,33 0,27 0,22 0,17 0,13 1,19 1,42 1,70 2,04 2,46 3,0 3,7 4,6 5,8 7,5 0,88 0,75 0,64 0,52 0,46 0,39 0,32 0,26 0,2 0,16 1,22 1,52 1,89 2,38 3,03 4,02 5,55 8,1 12 19 0,94 0,81 0,72 0,64 0,56 0,48 0,4 0,34 0,27 0,22 1,24 1,59 2,06 2,72 3,61 5,25 8,0 12,8 21 41 1,04 1,06 1,05 1,04 1,02 0,98 0,94 0,88 0,82 0,72 1,26 1,66 2,2 3,04 4,26 6,56 10,7 18,2 35 75 Keterangan : Harga Ka γ pada baris pertama Harga Kp γ pada baris kedua Harga β dan γ adalah 0 2.5. PERHITUNGAN STABILITAS EKSTERNAL Perhitungan stabilitas eksternal pondasi Caisson meliputi kontrol terhadap guling (Overturning), geser (Horizontal Displacement), kelongsoran (Sliding), penurunan (Settlement) dan daya dukung (Bearing Capacity). Output dari perhitungan stabilitas eksternal tersebut berupa Safety Factor (SF). Safety factor (SF) adalah angka keamanan terhadap suatu kontrol stabilitas, dalam hal ini adalah kontrol stabilitas pondasi Caisson terhadap guling, geser, kelongsoran, penurunan dan daya dukung. Pada umunya besarnya angka keamanan adalah > 1,5.

15 Apabila hasil perhitungan didapat SF < 1,5 maka struktur tersebut dapat dikatakan tidak aman, sehingga harus dilakukan suatu perencanaan ulang. Secara prinsip perhitungan stabilitas eksternal adalah sebagai berikut : P (ton) 16 m P' (ton) H (ton) K h2 L q0 (t/m2) Muka Tanah + 0.00 LWS h1 h3 W E1 E3 h4 E2 E4 h6 Seabed N O B G M h5 h7 ql Ganbar 2.6. Gaya-gaya yang bekerja pada pondasi caisson 2.5.1. Perhitungan guling Secara prinsip perhitungan terhadap guling adalah sebagai berikut (Gambar 2.6): SF = ΣMomenPenahan ΣMomenGuling 1,5 SF = H h1 + E 1 W. h3 + P. h2 h4 + E h5 + E h6 + E 2 3 4 h7 1,5 dimana : W = berat sendiri pondasi caisson (ton) H = beban akibat boulder (ton) P = beban akibat kaki crane (ton) qo = beban surcharge (t/m 2 ) O = titik putar momen E = gaya akibat tekanan tanah aktif (ton)

16 Untuk perhitungan terkritis, beban-beban yang justru memperbesar momen penahan tidak diperhitungkan karena apabila momen penahan semakin besar maka harga safety factor akan semakin besar pula dan struktur akan relatif lebih aman. 2.5.2. Perhitungan geser Seacara prinsip perhitungan terhadap geser adalah sebagai berikut (Gambar 2.6): SF = E + E 1 SF = E 1 2 G + E 3 + E 4 1,5 + H a. B + W tanψ 1,5 + E + E + E + H 2 3 4 dimana : W = berat sendiri pondasi caisson (ton) a = karakteristik adhesi antara tanah dengan abutmen nilai a dianggap = 0 (Terzaghi & Peck) B = lebar pondasi (m) ψ = faktor lekatan/hambatan antara tanah dengan pondasi (... o ) H = beban akibat boulder (ton) E = gaya akibat tekanan tanah aktif (ton) Beberapa peneliti (Terzhagi & Peck) mengabaikan unsur adhesi (a=0), tetapi tetap menggunakan unsur ψ sebagai berikut : Tanah pondasi dengan butiran besar, tanpa lempung, tanpa lanau... ψ = 30 0 Tanah pondasi berbutir kasar, dengan lanau atau lempung... ψ = 25 0 Kasus yang lain... ψ = 20 0 2.5.3. Perhitungan daya dukung Secara prinsip perhitungan daya dukung adalah sebagai berikut (Gambar 2.6): ql SF = 3 Σ σ

17 SF = B B B 1 0,2 γ '.. Nγ + 1 + 0,2 C'. N L 2 L / A ( P + W + qo) c + γ '. D. N q 3 dimana : W = berat sendiri pondasi caisson (ton) P = beban akibat kaki crane (ton) qo = beban surcharge (t/m 2 ) B = lebar dasar pondasi (m) L = panjang pondasi (m) Nγ, Nc dan Nq = koefisien daya dukung, besarnya tergantung dari besarnya harga φ tanah yang berada di dasar pondasi A = luas pondasi (m 2 ) γ = γ sat - γ water (t/m 3 ) D = kedalaman pondasi (m) Tabel 2.4. Harga-harga Nc, Nγ, Nq (Caquot & Kerisel) φ Nc Nγ Nq 0 5,14 0 1,00 5 6,5 0,10 1,60 10 8,4 0,50 2,50 15 11,00 1,40 4,00 20 14,80 3,50 6,40 25 20,70 8,10 10,70 30 30,00 18,10 18,40 35 46,00 41,10 33,30 40 75,30 100,00 64,20 45 134,00 254,00 135,00

18 2.5.4. Perhitungan kelongsoran 2.5.4.1. Metode bishop Metode irisan yang disederhanakan diberikan oleh BISHOP (1955).Metode ini menganggap bahwa gaya-gaya yang bekerja pada sisi-sisi irisan mempunyai resultan nol pada arah vertikal. Secara prinsip metode BISHOP adalah sebagai berikut : F = dimana : i= m Σ i= 1 [ c'. bi + ( wi ui. bi) tgφ' ] i Σ = m i= 1 cosαi wi.sinαi 1 ( 1+ tgαi. tgφ' / F ) 2 F = faktor aman c = kohesi tanah efektif φ = sudut geser dalam tanah bi = lebar irisan ke-i Wi = berat tanah irisan ke-i αi = sudut yang didefinisikan pada Gambar 2.7 ui = tekanan air pori pada irisan ke-i O x R α i R bi i i+1 h Wi Gambar 2.7. Metode BISHOP

19 O R αi i i + 1 i - 1 bi Ti Wi ai Ni Gambar 2.8. Gaya-gaya yang bekerja pada pias-i Metode Bishop lebih disukai karena lintasan longsor kritis yang dihasilkan dari hasil perhitungan mendekati dengan hasil pengamatan di lapangan selain itu metode ini lebih detail dan lebih teliti. 2.5.4.2. Perhitungan program STABLE Pada tugas akhir ini digunakan program STABLE untuk perhitungan stabilitas kelongsoran (sliding) pondasi Caisson. Pada prinsipnya software ini menggunakan metode BISHOP sebagai dasar perhitunganya. Adapun output dari software STABLE ini adalah berupa safety factor dengan 10 lintasan terkritis (the ten most

20 critical surfaces). Software ini termasuk software under dos yaitu software yang penggunaannya dibawah operasi program dos. Untuk menjalankan software ini, langkah-langkah yang dilakukan adalah sebagai berikut : 1. Memasukkan input data tanah dengan memilih prepare slope data pada main menu. Di dalam main menu ini terdapat beberapa menu di antaranya adalah prepare slope data, load data from disk, clear existing data, dos file operations dan stability analysis. Gambar 2.9. 2. Memasukkan koordinat surface (x,y) dan sub surface (x,y) dengan memilih menu profile. Gambar 2.10. 3. Memasukkan data tanah berupa γ, c, dan φ pada menu soil. Gambar 2.11. 4. Memasukkan koordinat muka air tanah pada menu water. Di dalam menu ini juga dibutuhkan parameter γ water. Gambar 2.12. 5. Selanjutnya memasukkan besarnya beban-beban yang bekerja diantaranya beban akibat gempa (earthquake load) dan beban surcharge. Gambar 2.13. 6. Langkah selanjutnya adalah kembali ke main menu dengan menekan tombol escape (esc), lalu masuk pada menu stabiltiy analysis. Gambar 2.14. 7. Ketik nama input dan output file yang dikehendaki (Gambar 2.15.), setelah itu akan muncul gambar sketsa hasil analisa, input data, output data keseluruhan dan output data untuk 10 lintasan terkritis saja. Gambar hasil sketsa ini nantinya akan tersimpan berupa file yang berextension gp1 (*.gp1), gp2 (*.gp2) dan gp3 (*.gp3). Untuk input data dan output data masing-masing akan tersimpan berupa file yang berextension ipt (*.ipt) dan opt (*.opt).

21 Gambar 2.9. Langkah 1 Gambar 2.10. Langkah 2

22 Gambar 2.11. Langkah 3 Gambar 2.12. Langkah 4

23 Gambar 2.13. Langkah 5 Gambar 2.14. Langkah 6

24 Gambar 2.15. Langkah 7 2.5.5. Perhitungan penurunan Pada prinsipnya penurunan (settlement) terbagi atas 2 macam jenis yaitu : 1. Penurunnan Segera (Si), yaitu penurunan yang terjadi dalam waktu segera setelah adanya beban yang bekerja di atas suatu lapisan tanah. 2. Konsolidasi (Sc), yaitu penurunan suatu lapisan tanah akibat adanya beban yang bekerja di atasnya dan proses penurunannya terjadi dalam kurun waktu yang lama misalnya beberapa bulan atau tahun. Besarnya penurunan total (St) adalah : St = Si + Sc St = 2. a. q. o PH Cc * H σ + log 1 + E 1+ e o σ o' dimana : a = ½ x lebar dasar Caisson q o = Stress atau surcharge (t/m 2 ) yang bekerja dipermukaan tanah dibawah dasar Caisson.

25 P H = Koefisien karakteristik tanah, tergantung dari β = H/a dan µ (koefisien Poisson), yang diperoleh dengan cara grafis. H = Ketebalan lapisan pasir rata-rata dibawah Caisson (N-SPT < 30) E = Elastic modulus (Braja M Das. 1985) Cc = Compresion index e o σ σ o = Angka pori awal = Tegangan yang bekerja di atas permukaan tanah = Tegangan efektif overbourden qo = t / m2 a H B 2a = b substratum Gambar 2.16. Teori dasar immediate settlement (Biarez dan Giroud) Tabel 2.5. Harga E dan υ (DAS B.M) Jenis Tanah Young Modulus (E) Koef POISSON (υ) Pasir Lepas 0,2-0,4 10350-27600 KN /m 2 Pasir agak padat 0,25-0,4 Pasir padat 0,3-0,45 34500 69000 KN /m 2 Pasir berlanau 0,2-0,4 Lempung lembek 0,15-0,25 1380 3450 KN /m 2 Lempung agak kaku 0,2-0,5 Lempung keras 5865 13800 KN /m 2 -

Gambar 2.17. Metode perhitungan immediate settlement cara grafis dari Giroud 26