BAB III PERANCANGAN SISTEM TRANSMISI RODA GIGI DAN PERHITUNGAN. penelitian lapangan, dimana tujuan dari penelitian ini adalah :

dokumen-dokumen yang mirip
TUGAS AKHIR TRANSMISI RANTAI PADA RODA GIGI MAJU-MUNDUR KENDARAAN MOBIL MINI UNTUK DAERAH PERUMAHAN

BAB III PERANCANGAN SISTEM REM DAN PERHITUNGAN. Tahap-tahap perancangan yang harus dilakukan adalah :

IV. ANALISIS TEKNIK. Pd n. Besarnya tegangan geser yang diijinkan (τ a ) dapat dihitung dengan persamaan :

BAB III PEMBAHASAN, PERHITUNGAN DAN ANALISA

BAB II LANDASAN TEORI

MESIN PERUNCING TUSUK SATE

BAB II TINJAUAN PUSTAKA

BAB II DASAR TEORI. 1. Roda Gigi Dengan Poros Sejajar.

BAB IV ANALISA DAN PEMBAHASAN

BAB IV ANALISA DAN PERHITUNGAN

BAB II TINJAUAN PUSTAKA DAN DASAR TEORI

BAB II TINJAUAN PUSTAKA. digunakan untuk mencacah akan menghasikan serpihan. Alat pencacah ini

Perhitungan Transmisi I Untuk transmisi II (2) sampai transmisi 5(V) dapat dilihat pada table 4.1. Diameter jarak bagi lingkaran sementara, d

Perhitungan Roda Gigi Transmisi

Sistem transmisinya lebih ringkas, putaran lebih tinggi dan daya yang besar. Sistem yang kompak sehingga konstruksinya sederhana.

BAB IV PROSES, HASIL, DAN PEMBAHASAN. panjang 750x lebar 750x tinggi 800 mm. mempermudah proses perbaikan mesin.

BAB III PERANCANGAN. = 280 mm = 50,8 mm. = 100 mm mm. = 400 gram gram

BAB IV PERHITUNGAN PERANCANGAN

BAB II LANDASAN TEORI. khususnya permesinan pengolahan makanan ringan seperti mesin pengiris ubi sangat

POROS dengan BEBAN PUNTIR

BAB II TINJAUAN PUSTAKA

BAB III TEORI PERHITUNGAN. Data data ini diambil dari eskalator Line ( lampiran ) Adapun data data eskalator tersebut adalah sebagai berikut :

PERANCANGAN MOTORCYCLE LIFT DENGAN SISTEM MEKANIK

BAB IV PERHITUNGAN DAN PERANCANGAN ALAT. Data motor yang digunakan pada mesin pelipat kertas adalah:

Bahan poros S45C, kekuatan tarik B Faktor keamanan Sf 1 diambil 6,0 dan Sf 2 diambil 2,0. Maka tegangan geser adalah:

Kopling luwes ( fleksibel ) memungkinkan adanya sedikit ketidaklurusan. sumbu poros yang terdiri atas: c. Kopling karet bintang

BAB III PERANCANGAN Perencanaan Kapasitas Penghancuran. Diameter Gerinda (D3) Diameter Puli Motor (D1) Tebal Permukaan (t)

1. Kopling Cakar : meneruskan momen dengan kontak positif (tidak slip). Ada dua bentuk kopling cakar : Kopling cakar persegi Kopling cakar spiral

Perancangan Belt Conveyor Pengangkut Bubuk Detergent Dengan Kapasitas 25 Ton/Jam BAB III PERHITUNGAN BAGIAN-BAGIAN UTAMA CONVEYOR

PERENCANAAN MESIN PENGADUK UDANG NAGET OTOMATIS

TUGAS AKHIR. Diajukan Guna Melengkapi Sebagian Syarat Dalam mencapai gelar Sarjana Strata Satu (S1) Disusun Oleh :

PERANCANGAN CAKE BREAKER SCREW CONVEYOR PADA PENGOLAHAN KELAPA SAWIT DENGAN KAPASITAS PABRIK 60 TON TBS PER JAM

BAB IV ANALISA DAN PERHITUNGAN BAGIAN BAGIAN CONVEYOR

KOPLING. Kopling ditinjau dari cara kerjanya dapat dibedakan atas dua jenis: 1. Kopling Tetap 2. Kopling Tak Tetap

Perencanaan Roda Gigi

PERANCANGAN DAN ANALISIS KOMPONEN PROTOTIPE ALAT PEMISAH SAMPAH LOGAM DAN NON LOGAM OTOMATIS

BAB III PERANCANGAN DAN PERHITUNGAN

BAB IV PERHITUNGAN DAN PEMBAHASAN

BAB IV PERENCANAAN PERANCANGAN

BAB IV ANALISA & PERHITUNGAN ALAT

MESIN PEMINDAH BAHAN PERANCANGAN HOISTING CRANE DENGAN KAPASITAS ANGKAT 5 TON PADA PABRIK PENGECORAN LOGAM

BAB IV PERHITUNGAN DIMENSI UTAMA ESKALATOR. Dari gambar 3.1 terlihat bahwa daerah kerja atau working point dalam arah

BAB III PERENCANAAN DAN GAMBAR

Kopling tetap adalah suatu elemen mesin yang berfungsi sebagai penerus putaran dan daya dari poros penggerak ke poros yang digerakkan secara pasti

BAB II TINJAUAN PUSTAKA

BAB IV PERHITUNGAN DAN HASIL PEMBAHASAN

BAB IV DESIGN DAN ANALISA

BAB II DASAR TEORI. c) Untuk mencari torsi dapat dirumuskan sebagai berikut:

METODOLOGI PERANCANGAN. Dari data yang di peroleh di lapangan ( pada brosur ),motor TOYOTA. 1. Daya maksimum (N) : 109 dk

SKRIPSI PERANCANGAN BELT CONVEYOR PENGANGKUT BUBUK DETERGENT DENGAN KAPASITAS 25 TON/JAM

TRANSMISI RANTAI ROL

PERANCANGAN MESIN PENGUPAS KULIT KENTANG KAPASITAS 3 KG/PROSES

TRANSMISI RANTAI ROL 12/15/2011

BAB II TINJAUAN PUSTAKA. Sebagai motor penggerak utama Forklift ini digunakan mesin diesel 115

PERANCANGAN MESIN BOR RADIAL VERTIKAL

BAB II TEORI DASAR. BAB II. Teori Dasar

BAB 4 HASIL DAN PEMBAHASAN

PERANCANGAN MESIN PRESS BAGLOG JAMUR KAPASITAS 30 BAGLOG PER JAM. Oleh ARIEF HIDAYAT

PERENCANAAN MESIN PERAJANG SINGKONG DENGAN KAPASITAS 150 Kg/JAM SKRIPSI

BAB IV HASIL DAN PEMBAHASAN. girder silang ( end carriage ) yang menjadi tempat pemasangan roda penjalan.

PERENCANAAN MESIN PENGEPRES PLAT PISAU ACAR KAPASITAS 600 LEMBAR/ JAM

PENDEKATAN RANCANGAN Kriteria Perancangan Rancangan Fungsional Fungsi Penyaluran Daya

BAB II LANDASAN TEORI. proses tekan geser. Butir beras terjepit dan tertekan cekung lesung antum sehingga

BAB II TINJAUAN PUSTAKA. perancangan yaitu tahap identifikasi kebutuhan, perumusan masalah, sintetis, analisis,

BAB IV PERHITUNGAN RANCANGAN

BAB IV HASIL DAN PEMBAHASAN

MESIN PEMINDAH BAHAN

BAB VI POROS DAN PASAK

BAB II TINJAUAN PUSTAKA

PERANCANGAN MESIN PENGADUK BAHAN DASAR ROTI KAPASITAS 43 KG

SKRIPSI. Skripsi Yang Diajukan Untuk Melengkapi Syarat Untuk Memperoleh Gelar Sarjana Teknik STEVANUS SITUMORANG NIM

BAB III METODOLOGI PENELITIAN

BAB II DASAR TEORI. 2.1 Konsep Perencanaan Sistem Transmisi Motor

RANCANG BANGUN MESIN PENGHANCUR BONGGOL JAGUNG UNTUK CAMPURAN PAKAN TERNAK SAPI KAPASITAS PRODUKSI 30 kg/jam

BAB II DASAR TEORI Sistem Transmisi

Bab 3 METODOLOGI PERANCANGAN

PERENCANAAN MESIN PENGIRIS PISANG DENGAN PISAU (SLICER) VERTIKAL KAPASITAS 120 KG/JAM

PERENCANAAN MESIN PENGUPAS KULIT KEDELAI DENGAN KAPASITAS 100 KG/JAM

BAB II TINJAUAN PUSTAKA. PS, dengan putaran mesin 1500 rpm dan putaran dari mesin inilah yang

hingga akhirnya didapat putaran yang diingikan yaitu 20 rpm.

BAB II LANDASAN TEORI

LAPORAN TUGAS AKHIR PERANCANGAN MESIN ROUGH MAKER DIAMETER INTERNAL PIPA POLYPROPYLENE Ø 600

Rancang Bangun Sistem Chassis Kendaraan Pengais Garam

BAB III PERENCANAAN DAN PERHITUNGAN

RANCANG BANGUN MESIN PEMISAH KULIT ARI JAGUNG. ANDRI YONO ;

PERANCANGAN OVERHEAD TRAVELLING CRANE YANG DIPAKAI DI WORKSHOP PEMBUATAN PABRIK KELAPA SAWIT DENGAN KAPASITAS ANGKAT 10 TON

BAB II LADASAN TEORI

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA

BAB II PENDEKATAN PEMECAHAN MASALAH. Mesin pencacah daging merupakan sebuah alat yang berfungsi. menjadi bahan utama pembuatan abon.

BAB II TINJAUAN PUSTAKA

BAB III ANALISA PERHITUNGAN. 3.1 Putaran yang dibutuhkan dan waktu yang diperlukan

Lampiran 1. Analisis Kebutuhan Daya Diketahui: Massa silinder pencacah (m)

JURNAL PERENCANAAN DAN PERHITUNGAN MESIN PEMIPIL JAGUNG DENGAN KAPASITAS 300 KG/JAM

PERENCANAAN OVERHEAD TRAVELLING CRANE YANG DIPAKAI PADA PABRIK PELEBURAN BAJA DENGAN KAPASITAS ANGKAT CAIRAN 10 TON

TRANSMISI LIFT KAPASITAS 10 ORANG KECEPATAN 1 METER/DETIK MAKALAH SEMINAR PERANCANGAN MESIN

RANCANG BANGUN MESIN PENGUPAS SABUT KELAPA KAPASITAS 60 BUAH/JAM LAPORAN TUGAS AKHIR

MESIN PEMINDAH BAHAN

BAB III ANALISA PERHITUNGAN

PERENCANAAN MESIN PENIRIS MINYAK PADA ABON IKAN TUNA DENGAN KAPASITAS 30 KG/JAM ARTIKEL SKRIPSI

Transkripsi:

BAB III PERANCANGAN SISTEM TRANSMISI RODA GIGI DAN PERHITUNGAN 3. Metode Penelitian Metode penelitian yang dipakai dalam perancangan ini adalah metode penelitian lapangan, dimana tujuan dari penelitian ini adalah :. Menemukan fakta yang ada pada produk yang sudah ada. Menguji kebenaran atas fakta atau prinsip produk yang sudah ada (verifikatip) 3. Mengembangkan fakta /prinsip/produk yang sudah ada (development) 3. Fakta Yang Diperoleh Fakta yang sudah ada pada kendaraan mobil mini adalah sebagai berikut :. Berat kendaraan W 60 kg. Mesin yang digunakan Suzuki Smash 4 tak 0 cc 3. Daya maksimum mesin P 8,3 ps/8000 rpm 4. Diameter as roda/shaft belakang d 5 mm Universitas Mercu Buana 33

5. Diameter as roda/shaft depan d mm 6. Ukuran ban depan dan belakang 350-8-4PR 3.3 Metode Perancangan Metode yang dipakai dalam perancangan ini adalah metode sistematis. Tahap-tahap perancangan yang harus dilakukan adalah :. Penjabaran tugas (clarification of the task) Tahap ini meliputi pengumpulan informasi tentang syarat-syarat yang diharapkan dipenuhi oleh solusi akhir. Dari informasi yang di peroleh kemudian disusun dalam daftar syarat-syarat daftar spesifikasi.. Perancangan konsep (conceptual design) Perancangan konsep meliputi pembuatan struktur-struktur fungsi, mencari prinsip-prinsip pemecahan masalah dan mengkobinasikannya menjadi beberapa konsep (consept varian). Solusi terbaik dipilih berdasarkan hasil analisis konsep varian tersebut. 3. Perancangan wujud (embodiment design) Perancangan wujud meliputi pengembangan perancangan dengan menggunakan krileria teknik dan ekonomi. Hasil dari tahap ini berupa lay out yailu penggambaran dengan jelas rangkaian dan bentuk elemen suatu produk, pemilihan bahan dan proses produksi. 4. Perancangan terperinci ( detail design) Bentuk dimensi dan sifat permukaan semua komponen ditetapkan dalam tahap ini. Kemungkinan produk tersebut dapat dibuat secara ekonomis dan teknis Universitas Mercu Buana 34

diperiksa kembali, kemudian semua gambar dan dokumen produksi diselesaikan. 3.4 Perancangan wujud sistem transmisi roda gigi 3.4. Susunan kontruksi transmisi roda gigi transmisi roda gigi pada kendaraan mobil mini dengan mesin motor smash 4 tak 0 cc dan kontruksi roda gigi mundur, seperti gambar dibawah ini : Gamabar 3. Susunan transmisi roda gigi 3.4. Perancangan Dudukan Untuk Roda Gigi Rangka yang digunakan dalam perancangan sistem roda gigi adalah batang profil segi empat yang berfungsi sebagai dudukan roda gigi. Gambar 3. Mobil mini sebelum dibuat dudukan roda gigi maju-mundur Universitas Mercu Buana 35

3.4.3 Perencanaan Roda Gigi Maju Mundur Pada sistem transmisi roda gigi kendaraan mobil mini seperti sistem transmisi pada kendaran motor empat tak pada umumnya, tetapi kendaraan ini juga dilengkapi dengan roda gigi maju-mundur yang menghubungkan rantai pada mesin ketransmisi roda gigi maju-mundur sebagai penerus daya. Mobil mini ini memakai empat rantai sebagai penerus daya dengan panjang rantai yang sudah di tentukan. Dimana rantai ini mempunyai kerja masing-masing sebagai berikut: Rantai I : Penerus daya pada mesin dihubungkan ke poros roda gigi maju- mundur Rantai II : Maju Rantai III : Mundur Rantai IV : Penerus ke poros roda As belakang Gambar 3.3 Empat rantai pada mobil mini Gambar 3.4 Rantai mobil mini Universitas Mercu Buana 36

Spesifikasi pada roda gigi maju-mundur Panjang roda As Diameter roda As Rantai P : 50 mm D : 0 mm P : 300 mm Jumlah gigi Z : Gambar 3.5 Gear ratio pada mobil mini 3.4.4 Perancangan Pemindah Gigi Perseneling Sistem pemindah gigi atau perseneling pada mobil ini dirancang memakai besi dan plat penyambung dengan ukuran yang sudah ditentukan, sehingga seperti pemindah gigi perseneling pada mobil umumnya. Kendaraan ini memakai kopling (clutch) otomatis seperti sistem mekanisme pemindah gigi mesin motor 4 tak. Universitas Mercu Buana 37

Gambar 3.6 Perseneling pada mobil mini Cara Kerja Gigi Maju-Mundur Saat mobil di hidupkan rantai sebagai penerus daya yang berputar rantai I, II, III, dan rantai IV dalam keadaan diam.bila rantai semuanya berputar Pemindah gigi perseneling harus dimasukan ke gigi partama, dan rantai berputar semua, tetapi kendaraan belum dapat bergerak atau jalan. Karena mobil masih keadaan netral walaupun sudah masuk gigi pertama, sehingga kita harus memindahkan perseneling maju-mundur yang terpisah pada perseneling satu kedepan atau maju dan gear rationya maju ke kanan lalu mengunci dan mobil bisa berjalan. Jika mobil ingin bergerak mundur sebaliknya perseneling majumundur ditarik kebelakang dan gear ratio masuk kesebalah kiri mengunci dan mobil dapat berjalan mundur. Universitas Mercu Buana 38

Gambar 3.7 Transmisi Roda Gigi Maju-Mundur 3.4.5 Perencanaan Poros Gaya-gaya tangensial pada pasangan roda gigi dalam kotak transmisi terdiri dari gaya tangensial, gaya aksial dan gaya radial. Ketiga gaya tersebut akan menimbulkan momen yang akan mempengaruhi kekuatan poros, baik poros input, output maupun poros perantara. Tetapi gaya radial yang timbul besarnya jauh lebih kecil dari gaya tangensial. Oleh karena itu, dalam perhitungan hanya gaya tangensial dan gaya aksial yang digunakan dalam perancangan ini. Gaya-gaya tersebut dengan jarak tertentu memberikan momen yang mempengaruhi kekuatan poros. Hal inilah yang akan dihitung dalam sub bab perencanaan poros. 3.4.6 Perencanaan Bantalan Poros ditumpu oleh bantalan rol kerucut ( teper roler ). Dengan adanya bantalan, maka putaran dan gerakan bolak-balik dapat berputar secara halus. Oleh Universitas Mercu Buana 39

karena itu bantalan tersebut harus cukup kokoh agar poros dan komponen mesin lainnya dapat bekerja sebagaimana semestinya 3.5 Perhitungan Roda Gigi berikut : Data data yang diperlukan dalam perhitungan roda gigi adalah sebagai - Daya pada motor penggerak P 0, 865 kw - Putaran pada poros penggerak n 0 rpm - Modul roda gigi m - Sudut tekan pahat α 0 0 0 - Faktor koreksi fc, 5 Tabel. - Jarak sumbu poros a 0 - Perbandingan roda gigi i 6 Bahan pinion - Kekuatan tarik S 35 C σ 5 N/mm Tabel.4 B - Tegangan lentur S 35 C σ 6 N / mm a - Kekerasan permukaan sisi gigi HB 00 Bahan batang gigi - Kekuatan tarik S 45 C σ 58 N/mm Tabel.4 B - Tegangan lentur S 45 C σ 30 N / mm a Universitas Mercu Buana 40

- Kekerasan permukaan sisi gigi HB 0 Faktor tegangan kontak pada bahan roda gigi - Gigi menurut kekerasan KH 0, 053 N/mm Tabel.5 3.5.. Daya rencana yang ditransmisikan P r, dari persamaan (. ) P r fc P,5 0,865 0,7 kw 3.5.. Menentukan diameter sementara lingkaran jarak bagi d ', d' dari persamaan (, 3 ) d ' ( a i ) 0 ( 6 ) 36 mm 3.5.3. Menentukan jumlah gigi ( Z, Z ), dan perbandingan gigi ( i )dari persamaan (. 4 ) Z d' m 36 8 Z Panjang rack / pitch Universitas Mercu Buana 4

π d Pitch Z ' dari persamaan (. 5 ) Z 3,4 36 6, 8 8 790 6,8 5 Perbandingan gigi ( i ), dari persamaan (. 6 ) i Z Z 5 8 6 3.5.4. Diameter lingkaran jarak bagi ( roda gigi standar ), d 0, d 0 dari persamaan (. 7 ) d 0 m Z 8 36 mm 3.5.5. Menentukan kelonggaran puncak Ck, dari persamaan (.8 ) Ck 0, 5 0,5 m 0,5 mm Universitas Mercu Buana 4

3.5.6. Menentukan faktor bentuk gigi, Y, Y ( Tabel. 3 ) Z 8 Z batang gigi Y 0,308 Y 0, 484 3.5.7. Kecepatan keliling v ( m / s ) dan gaya tangensial Ft dari persamaan (.9) π d 0 n v 60 000 3,4 36 0 60000 0,037 m / s Gaya tangensial Ft, dari persamaan (.0 ) Ft 0 v P 0 0,865 0,037 54 N 3.5.8. Menentukan faktor dinamis Fv, dari persamaan (. ) Fv 3 3 + v 3 3 + 0,037 0,98 Universitas Mercu Buana 43

3.5.9. Beban lentur yang diijinkan persatuan lebar F ' B, F' B dari persamaan (. ) F' σ m Y B a Fv 6 0,308 0,98 5,6 N / mm F' σ m Y B a Fv 30 0,484 0,98 8,4 N / mm 3.5.0. Beban permukaan yang diijinkan persatuan lebar F' H dari persamaan (, 3 ) F' H Fv KH d 0 Z Z + Z 5 0,98 0,053 36 8 + 5,86984,74 3 N / mm 3.5.. Menentukan lebar sisi b, dari persamaan (,4 ) b Ft F' H 54 3 5,7 mm Universitas Mercu Buana 44

3.6 Perhitungan Poros Data data yang diperlukan dalam perhitungan poros adalah sebagai berikut : Bahan poros S45C Daya yang ditransmisikan 0 kw Putaran poros n 450 Faktor koreksi fc,0 Kekuatan tarik B 58 (N/mm²). Tabel.4 Faktor keamanan Sf 6 ( ref.sularso, hal 8) Sf,3-3,0. (ref.sularso,hal 8) Faktor lenturan Cb,0 Faktor koreksi untuk momen puntir Kt,5 3.6. Menentukan daya rencana Pd (kw), dari persamaan (.5) P d f c P (kw) P d,0 X 0 0 kw Jika momen puntir (disebut juga momen rencana) T (kg.mm) maka : 5 Pd T 9,74 0 Dari persamaan (.7) n T 9,74 0 5 0 450 T 677 N.mm Universitas Mercu Buana 45

3.6. Menentukan tegangan geser (N/mm²), dari persamaan (.8) T 3 ( πd s /6) 5, 677 8³ 5, T 3 d s,56 N/mm² 3.6.3 Menentukan tegangan geser yang diizinkan a (N/mm²), dari persamaan (.9) a a σ B Sf Sf 58 6,0,0 4,83 N/mm² 3.6.4 Menentukan diameter poros d s (mm), dari persamaan (.0) d s 5, τ a K t C b T / 3 5, 4,83,5,0 6677 / 3 7,7 mm 3.7 Perhitungan Poros Roda Jenis poros yang dipakai adalah jenis poros transmisi, karena poros menerima beban punter dan lentur. Besarnya beban.( P ) yang menimbulkan momen Universitas Mercu Buana 46

lentur pada poros roda belakang adalah ekivaien dengan '/ dari jumlah gaya yang bekerja pada roda belakang, gaya yang bekerja pada roda belakang ( Pb ) adalah '/ jumlah berat kendaraan dengan muatan penumpang maksimum dikurangi dengan berat roda, torsi yang bekerja pada poros roda belakang ( Tb ) adalah 3000 N.cm : Pb / (00 + 00) kg 50 N P '/ (50) kg 75 N Jarak antara roda dan bantalan poros, L / L 3 5 cm Momen lentur yang terjadi pada poros roda belakang ( Mb ) 375 N.cm Z momen tahanan lentur ( / 3 ) d 3 Bahan poros adalah SC 45 JIS G 50, dengan B 45 N/mm (Sularso, Dasar Perencanaan dan Pemiiihan Elemen Mesin) Total momen yang terjadi pada poros roda belakang ( M total ) ( Tb + Mb ) ½ 3.8 Perhitungan Bantalan Dari perhitungan banatalan data-data diterima oleh poros utama sebagai berikut : Reaksi tumpuan /Gaya radial, RA FT 5904,747 N Gaya aksial, Fa 3086,749 N Pengecekan terhadap nilai e : (Ir Sularso. Dasar perencanaan dan pemilihan Elemen mesin, Hal 44) Fa /(FT. V) 3096,749 / 5904,747 0,54 > e 0,54 > e (0,35) maka diambil : X 0,4 dan Y 0,5 Universitas Mercu Buana 47

Umur bantalan, Lh 5000 jam Putaran mesin pada torsi maksimum, n 3000 rpm Faktor umur pemakaian (Ir Sularso. Dasar perencanaan dan pemilihan Elemen mesin, Hal 36) fn [Lh / 500] 3/0 [5000 / 500] 3/0,99 Faktor Kecepatan, fn (Ir Sularso. Dasar perencanaan dan pemilihan Elemen mesin, Hal 36) fn [33,3 / n] 3/0 [33,3 / 3000] 3/0 0,59 Beban ekuivalen dinamis pada bantalan, P : (Ir Sularso. Dasar perencanaan dan pemilihan Elemen mesin, Hal 44) P X. FT + Y. Fa 0,4. 5904,747 + 0,5. 3096,749 390, 74 N Beban nominal dinamis spesifik bantalan, C : (Ir Sularso. Dasar perencanaan dan pemilihan Elemen mesin, Hal 36) C fh. P / fn,99. 390,74 / 0,5 30044,9 N Tipe Bantalan rol kerucut dengan nomor bantalan 3304 : (Ir Sularso. Dasar perencanaan dan pemilihan Elemen mesin, Hal 44) d 0 mm, C 300 Kg, D 5 mm P 8, mm, b 8 mm, r mm T,5 mm, r 0,8 mm, B m Universitas Mercu Buana 48