Bab 3 MODEL MATEMATIKA INJEKSI SURFACTANT POLYMER 1-D

dokumen-dokumen yang mirip
Bab 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. Universitas Sumatera Utara

Bab IV Model dan Optimalisasi Produksi Dengan Injeksi Surfaktan dan Polimer

Bab II Tinjauan Pustaka

KAJIAN LABORATORIUM MENGENAI PENGARUH SALINITAS, PERMEABILITAS DAN KONSENTRASI SURFAKTAN TERHADAP PEROLEHAN MINYAK PADA PROSES INJEKSI SURFAKTAN

METODE BEDA HINGGA DALAM PENENTUAN DISTRIBUSI TEKANAN, ENTALPI DAN TEMPERATUR RESERVOIR PANAS BUMI FASA TUNGGAL

Bab 2. Landasan Teori. 2.1 Persamaan Air Dangkal Linier (Linier Shallow Water Equation)

BAB II KONSEP DASAR PERMODELAN RESERVOIR PANAS BUMI. Sistem hidrotermal magma terdiri dari dua bagian utama yaitu ruang magma dan

STUDI LABORATORIUM PENGARUH KONSENTRASI SURFAKTAN POLIMER TERHADAP RECOVERY FACTOR DENGAN BERBAGAI SALINITAS

KARAKTERISASI SURFAKTAN POLIMER PADA SALINITAS PPM DAN SUHU 85 C

LAPORAN PRAKTIKUM KIMIA FISIK PERCOBAAN H-3 SOL LIOFIL

BAB I PENDAHULUAN. Dalam beberapa tahun terakhir, metode pengurasan minyak tahap lanjut

BAB 4 ANALISIS DAN BAHASAN

DAFTAR ISI... HALAMAN JUDUL... HALAMAN PENGESAHAN... KATA PENGANTAR... HALAMAN PERNYATAAN KEASLIAN KARYA ILMIAH... HALAMAN PERSEMBAHAN... RINGKASAN...

Tinjauan Pustaka. Enhanced oil recovery adalah perolehan minyak dengan cara menginjeksikan bahanbahan yang berasal dari luar reservoir (Lake, 1989).

1.1 Latar Belakang dan Rumusan Masalah. menjadi pusat perhatian untuk dikaji baik untuk menghindari bahayanya,

Kesalahan pembulatan Kesalahan ini dapat terjadi karena adanya pembulatan angka-angka di belakang koma. Adanya pembulatan ini menjadikan hasil

Gambar Kedudukan Air Sepanjang Jalur Arus (a) sebelum dan (b) sesudah Tembus Air Pada Sumur Produksi 3)

4 Hasil dan Pembahasan

Analisa Injection Falloff Pada Sumur X dan Y di Lapangan CBM Sumatera Selatan dengan Menggunakan Software Ecrin

BAB IV VALIDASI MODEL SIMULASI DENGAN MENGGUNAKAN DATA LAPANGAN

BAB 2. Landasan Teori. 2.1 Persamaan Dasar

STUDI KESTABILAN BUSA MENGENAI PENGARUH SUHU DAN ELEKTROLITSERTA KONSENTRASI SURFAKTAN DENGAN DAN TANPA MINYAK

Metodologi Penelitian. Mulai. Pembuatan model fluida reservoir. Pembuatan model reservoir

BAB II LANDASAN TEORI

DAFTAR ISI LEMBAR PENGESAHAN ABSTRAK ABSTRACT

pendinginan). Material Teknik Universitas Darma Persada - Jakarta

Seminar Nasional Cendekiawan 2015 ISSN:

BAB III PERSAMAAN DIFUSI, PERSAMAAN KONVEKSI DIFUSI, DAN METODE PEMISAHAN VARIABEL

Sifat fisika kimia - Zat Aktif

LAPORAN PRAKTIKUM KIMIA FISIKA II

BAB II LANDASAN TEORI

Sidang Tugas Akhir - Juli 2013

BAB II DASAR TEORI. 2.1 Persamaan Kontinuitas dan Persamaan Gerak

HASIL DAN PEMBAHASAN. kedua, dan 14 jam untuk Erlenmeyer ketiga. Setelah itu larutan disaring kembali, dan filtrat dianalisis kadar kromium(vi)-nya.

KAJIAN METODE BUCKLEY LEVERETT UNTUK PREDIKSI PENINGKATAN PEROLEHAN MINYAK DI SUMUR MT-02 LAPANGAN X

KAJIAN AWAL LABORATORIUM MENGENAI VISKOSITAS POLIMER TERHADAP PENGARUH SALINITAS, TEMPERATUR DAN KONSENTRASI POLIMER (Laboratorium Study)

BAB II TEORI DASAR. Di dalam ilmu kebumian, permeabilitas (biasanya bersimbol κ atau k)

BAB V KIMIA AIR. 5.1 Tinjauan Umum

ALAT TRANSFER MASSA ABSORBER DAN STRIPPER

Diagram Fasa. Latar Belakang Taufiqurrahman 1 LOGAM. Pemaduan logam

KELAKUAN FASA CAMPURAN ANTARA RESERVOAR-INJEKSI-SURFAKTAN UNTUK IMPLEMENTASI ENHANCED WATER FLOODING

SUHU DAN KALOR DEPARTEMEN FISIKA IPB

Seminar Nasional Cendekiawan 2015 ISSN: STUDI LABORATORIUM PENGARUH KONSENTRASI SURFAKTAN TERHADAP PENINGKATAN PEROLEHAN MINYAK

ELEKTROFORESIS. Muawanah. Sabaniah Indjar Gama

HASIL DAN PEMBAHASAN. Preparasi Adsorben

Kelarutan & Gejala Distribusi

Suatu proses yang terjadi ketika suatu fluida, cairan maupun gas, terikat kepada suatu padatan atau cairan (zat penyerap/ adsorben).

BAB IV GEOKIMIA AIR PANAS

METODOLOGI PENELITIAN

HASIL DAN PEMBAHASAN. Adsorpsi Zat Warna

BAB II. KESEIMBANGAN

Bab II Pemodelan. Gambar 2.1: Pembuluh Darah. (Sumber:

HASIL DAN PEMBAHASAN. Skema interaksi proton dengan struktur kaolin (Dudkin et al. 2004).

KROMATOGRAFI. Kromatografi adalah teknik pemisahan campuran didasarkan atas perbedaan

D. Tinjauan Pustaka. Menurut Farmakope Indonesia (Anonim, 1995) pernyataan kelarutan adalah zat dalam

LAPORAN PRAKTIKUM KIMIA FISIKA I DIAGRAM TERNER (SISTEM ZAT CAIR TIGA KOMPONEN)

KELARUTAN ZAT PADAT DALAM CAIRAN

BAB II LANDASAN TEORI UJI SUMUR DRAWDOWN DAN BUILD UP

Study Peningkatan Oil Recovery Pada Injeksi Surfaktan-Polimer Pada Batuan Karbonat

BAB IV HASIL DAN PEMBAHASAN. Sebelum melakukan uji kapasitas adsorben kitosan-bentonit terhadap

BAB III TEORI FISIKA BATUAN. Proses perambatan gelombang yang terjadi didalam lapisan batuan dikontrol oleh

*ÄÂ ¾½ Á!" ÄÂ Â. Okki Novian / Michael Wongso / Jindrayani Nyoo /

KEGIATAN OPERASI DAN PRODUKSI MINYAK DAN GAS BUMI DI PT. MEDCO E&P INDONESIA ( S&C SUMATERA ) FIELD SOKA

BAB II LANDASAN TEORI

Diagram Segitiga dan Kesetimbangan Cair-Cair

SOIL COMPONENT EKOSARI R. 2011

BAB 1 PENDAHULUAN. Universitas Sumatera Utara

BAB I PENDAHULUAN A. Latar Belakang

BAB III ANALISA TRANSIEN TEKANAN UJI SUMUR INJEKSI

Prosiding Matematika ISSN:

Lembaran Pengesahan KINETIKA ADSORBSI OLEH: KELOMPOK II. Darussalam, 03 Desember 2015 Mengetahui Asisten. (Asisten)

ANALISIS KONSEP KESETIMBANGAN DALAM LARUTAN. Contoh Analisis Konsep untuk Materi Kesetimbangan dalam Larutan- By : Dr. Ida Farida, M.Pd.

1.1 Latar Belakang dan Identifikasi Masalah

STUDI KELAYAKAN PENERAPAN INJEKSI SURFAKTAN DAN POLIMER DI LAPANGAN X MENGGUNAKAN SIMULATOR NUMERIK TESIS EMA FITRIANI NIM :

ANALISIS NUMERIK UNTUK PERSOALAN WATER FLOODING DENGAN MENGGUNAKAN METODE VOLUME HINGGA

BAB V DIAGRAM FASE ISTILAH-ISTILAH

II LANDASAN TEORI. Contoh. Ditinjau dari sistem yang didefinisikan oleh:

Bab II Model Lapisan Fluida Viskos Tipis Akibat Gaya Gravitasi

Analisa Pola dan Sifat Aliran Fluida dengan Pemodelan Fisis dan Metode Automata Gas Kisi

BAB II TINJAUAN PUSTAKA

BAB II DASAR TEORI. Aliran hele shaw..., Azwar Effendy, FT UI, 2008

JURNAL TEKNIK POMITS Vol. 1, No. 1, (2012) 1-5 1

Untuk mengetahui pengaruh ph medium terhadap profil disolusi. atenolol dari matriks KPI, uji disolusi juga dilakukan dalam medium asam

I.PENDAHULUAN 1 BAB II. TINJAUAN UMUM LAPANGAN

Kimia Fisika Bab 6. Kesetimbangan Fasa OLEH: RIDHAWATI, ST, MT

2 Tinjauan Pustaka. 2.1 Teknik Voltametri dan Modifikasi Elektroda

BAB II DASAR TEORI. FeO. CO Fe CO 2. Fe 3 O 4. Fe 2 O 3. Gambar 2.1. Skema arah pergerakan gas CO dan reduksi

II TINJAUAN PUSTAKA 2.1. Klasifikasi Metode EOR

BAB IV HASIL DAN PEMBAHASAN

Perlakuan awal kaolin dan limbah padat tapioka. Pembuatan adsorben campuran kaolinlimbah KMK pada NDS dan HDTMA-Br

BAB 2 TINJAUAN PUSTAKA

BAB III PEMBAHASAN. dengan menggunakan penyelesaian analitik dan penyelesaian numerikdengan. motode beda hingga. Berikut ini penjelasan lebih lanjut.

Sistem Sumur Dual Gas Lift

BAB IV METODE PENELITIAN. Penelitian dilaksanakan di Laboratorium Penelitian Program Studi

WUJUD ZAT. 1. Fasa, Komponen dan Derajat Bebas

Seminar Nasional Cendekiawan 2015 ISSN:

BAB V ANALISA SENSITIVITAS MODEL SIMULASI

KISI-KISI UN KIMIA SMA/MA

Tembaga 12/3/2013. Tiga fasa materi : padat, cair dan gas. Fase padat. Fase cair. Fase gas. KIMIA ZAT PADAT Prinsip dasar

Transkripsi:

Bab 3 MODEL MATEMATIKA INJEKSI SURFACTANT POLYMER 1-D Pada bab ini akan dibahas model matematika yang dipakai adalah sebuah model injeksi bahan kimia satu dimensi untuk menghitung perolehan minyak sebagai sebuah fungsi dari beberapa peubah utama proses. Beberapa hal penting yang berpengaruh pada perolehan minyak adalah kelakuan fasa, tegangan permukaan, viskositas, kurva desaturasi kapiler, permeabilitas relatif, dispersi, penyerapan, serta pertukaran kation. Beberapa hal diatas digunakan untuk memprediksi performa reservoir dengan menggunakan hukum kekekalan massa yang akan dibahas pada subbab 3.1. Hasil persamaan kesetimbangan kemudian kita diskritisasi dengan menggunakan metode beda hingga yaitu FTBS Forward Time Backward Space yang akan dibahas pada subbab 3.2. Kita ingin melihat faktor - faktor penting dalam keberhasilan perolehan minyak yang akan dibahas pada subbab 3.3. Hasil pemodelan pada subbab 3.3 digunakan untuk memodelkan persamaan ruang keadaan yang akan dibahas pada subbab 3.4 45

BAB 3. MODEL MATEMATIKA INJEKSI SURFACTANT POLYMER 1-D 46 3.1 Persamaan Kesetimbangan Model komposisi bahan kimia yang diinjeksikan bergantung pada total konsentrasi bahan kimia yang digunakan. Asumsi asumsi yang digunakan untuk pemodelan persamaan kesetimbangan adalah:[1] 1. Aliran 1-D pada medium berpori yang homogen, isotropis dan isothermal. 2. Equilibrum termodinamik local di sepanjang reservoir. 3. Gravitasi dan tekanan kapiler diabaikan. 4. Sifat sifat cairan hanya merupakan fungsi dari komposisi. 5. Kepadatan komponen murni adalah konstan. 6. Volume campuran total tidak berubah selama pencampuran berlangsung. 7. Berlaku hukum Darcy. 8. Dispersi fisik dapat diaproksimasi melalui dispersi numerik dengan pilihan partisi jarak dan waktu. Persamaan kesetimbangan digunakan untuk memprediksi performa reservoir. Persamaan kesetimbangan dari asumsi asumsi di atas diturunkan dengan Hukum Kekekalan Massa. Hukum Kekekalan Massa menyatakan bahwa di dalam suatu medium, perubahan debit fluida yang keluar dan masuk selama selang waktu t akan sama besar dengan debit pertambahan massa fluida dalam suatu elemen volume, qt x qt Gambar 3.1: Hukum kekekalan massa pada medium batuan

BAB 3. MODEL MATEMATIKA INJEKSI SURFACTANT POLYMER 1-D 47 perubahan debit fluida debit pertambahan massa fluida = 3.1 selama selang waktu Δt dalam elemen volume ΔV [ q t j=1 AφΔx ] 3 3 f j C ij x q t f j C ij x+δx Δt = [ C i i=1 3 S j j=1 C i ] 3 S j t+δt i=1 t +AΔx [A i ρ gr 1 φ t A i ρ gr 1 φ t+δt ], 3.2 kedua ruas dari persamaan 3.2 dibagi dengan AΔtΔx, sehingga menjadi [q t 3j=1 f ] [ jc ij x q t 3j=1 f Ci jc ij x+δx φ 3 i=1 S j C 3 t+δt i i=1 S ] j t = AΔx Δt + [A iρ gr 1 φ t A i ρ gr 1 φ t+δt ]. Δt Jika Δx danδt, maka persamaan di atas menjadi 3 j=1 f 3 jc ij j=1 S jc i q t Aφ x = t + 1 φ A i ρ gr 1 φ, 3.3 t dengan mendefinisikan Ĉi = A iρ gr1 φ, sehingga persamaan 3.3 menjadi φ 3 q t j=1 f jc ij Aφ x = 3 j=1 S jc i t + C i t, 3.4 dengan analisis dimensi dimana x D = x, t L D = qtt, persamaan 3.4 menjadi AφL 3 j=1 S jc i t D C i + + t D 3 j=1 f jc ij x D =, 3.5 karena S 1 + S 2 + S 3 = 1, sehingga persamaan 3.5 menjadi Ci +C 3 i j=1 f jc ij =. 3.6 t D x D

BAB 3. MODEL MATEMATIKA INJEKSI SURFACTANT POLYMER 1-D 48 Kita definisikan C i = C i +C i, maka persamaan kesetimbangan sesuai dengan asumsi asumsidiatasadalah Ci dengan t D 3 j=1 f jc ij =,i=1, 2,...6, 3.7 x D f j = k rj / μj 3 i=1 k ri / μ i,i=1, 2, 3. 3.8 Kita tuliskan C i menjadi y, danf j C ij menjadi gy. Keadaan sistem yang berkaitan dengan kontrol v dinyatakan oleh yv, dengan yv ={y 1,..., y 6 }. y merupakan suatu fungsi dari x D Ωdant D,T, yaitu yv =yx D,t D ; v. Kita kembali menuliskan persamaan kesetimbangan di atas menjadi y = gy. 3.9 t D x D Syarat awal yang digunakan adalah keadaan komponen di reservoir pasca waterflooding. Untuk syarat awal dituliskan sebagai berikut: yx D, = S 1rw S 1rw C 5I C 6I. 3.1 Arti fisis untuk persamaan 3.1 adalah pada baris pertama menyatakan bahwa kondisi injeksi surfactant-polymer setelah injeksi air sehingga di reservoir masih tertinggal air sisa dari injeksi air, yang dinyatakan dengan Saturasi Residual Water S 1rw. Untuk baris yang kedua menyatakan bahwa masih ada sisa minyak setelah injeksi air yang dinyatakan dengan Saturasi Residual Minyak S 2rw. Untuk baris yang ketiga dan keempat, bahan kimia masih belum diinjeksikan. Untuk baris kelima dan keenam yaitu total anion dan ion kalsium yang masih ada yang tertinggal

BAB 3. MODEL MATEMATIKA INJEKSI SURFACTANT POLYMER 1-D 49 di reservoir. Syarat batas sebagai komponen di x D = dituliskan sebagai berikut: 1 v 3 v y,t D = 3. 3.11 v 4 v 5 Arti fisis dari persamaan 3.11, baris pertama menjelaskan bahwa konsentrasi inflow surfactant dan alkohol akan mengurangi konsentrasi air. Baris kedua menyatakan bahwa tidak ada minyak yang diinjeksikan. Baris ketiga sampai baris keenam berturut turut menyatakan konsentrasi inflow surfactant, polymer, total anion, dan ion kalsium. v 6 3.2 Skema Numerik Persamaan kesetimbangan yang telah kita peroleh, kita lakukan diskritisasi dengan menggunakan Metode Finite Difference. Metode Finite Difference yang dipilih adalah Forward Time Backward Space FTBS. y = gy, 3.12 t D x D Diskritisasi Spasial dapat dituliskan sebagai berikut: n+1 j y = y y n j, 3.13 t D h Diskritisasi Waktu dapat dituliskan sebagai berikut: gy x D = gy n j gyn j 1 τ. 3.14 Kita substitusikan persamaan 3.13 dan persamaan 3.14 ke persamaan 3.12, sehingga menjadi y n+1 j = y n j + τ h [ ] gy n+1 j gy n j, 3.15

BAB 3. MODEL MATEMATIKA INJEKSI SURFACTANT POLYMER 1-D 5 dengan h panjang partisi spasial dan τ panjang partisi waktu. Arti fisis dari persamaan 3.15 adalah konsentrasi komponen di suatu tempat, katakan z = k, pada waktu berikutnya, yaitu t = n + 1, sama dengan konsentrasi komponen di z = k pada saat t = n dikurangi konsentrasi yang pergi dari z = k lalu ditambah dengan konsentrasi yang pergi dari z = k 1menujuz = k. Skema numeriknya setelah memasukkan syarat batas dan syarat awalnya, sehingga model persamaan kesetimbangan adalah sebagai berikut Y n +1=Y n+βgy n,vn, 3.16 dengan β = τ h, 3.17 Y n v = [ C1,1; n GY n,vn = T ; C1,k; n C2,1; n ; C2,k; n ; C7,k] n, 3.18 gy1,n + Dvn+E gy2,n gy1,n gy3,n gy2,n.. 3.19.. gyk, n gyk 1,n Skema numerik untuk persamaan kesetimbangan yang digunakan mengandung asumsi asumsi sebagai berikut: Skema bergantung pada banyaknya partisi spasial, yaitu k. Skema numerik yang digunakan dengan memilih nilai k = 1. Konsentrasi komponen i pada fasa batuan dianggap konstan, atau Ci t D =.

BAB 3. MODEL MATEMATIKA INJEKSI SURFACTANT POLYMER 1-D 51 Skema numerik dari asumsi asumsi di atas dapat dimodelkan sebagai berikut: C 1 n +1 C 2 n +1 C 3 n +1 C 4 n +1 C 5 n +1 C 6 n +1 = C 1 n C 2 n C 3 n C 4 n C 5 n C 6 n β f 1 C 11 n+f 2 C 12 n+f 3 C 13 n f 1 C 21 n+f 2 C 22 n+f 3 C 23 n. f 1 C 61 n+f 2 C 62 n+f 3 C 63 n + β 1 v 3 v 7 v 3 v 4 v 5 v 6 v 7, 3.2 C 1 n +1 C 2 n +1 C 3 n +1 C 4 n +1 C 5 n +1 C 6 n +1 = C 1 n C 2 n C 3 n C 4 n C 5 n C 6 n β f 1 C 11 n+f 2 C 12 n+f 3 C 13 n f 1 C 21 n+f 2 C 22 n+f 3 C 23 n. f 1 C 61 n+f 2 C 62 n+f 3 C 63 n + β 1 1 1 1 1 v 3 v 4 v 5 v 6 + β. 3.21

BAB 3. MODEL MATEMATIKA INJEKSI SURFACTANT POLYMER 1-D 52 3.3 Model Fisika Injeksi Surfactant Polymer 1 Dimensi Untuk mencari solusi persamaan 3.21, diperlukan hubungan antara konsentrasi komponen i pada fasa bergerak dengan konsentrasi komponen i pada fasa j. Untuk mencari hubungan tersebut, ada beberapa hal penting yang perlu diperhitungkan. 3.3.1 Kelakuan Fasa Surfactant dan Minyak Kelakuan fasa dari sistem tiga komponen direpresentasikan dengan ternary diagram. Tiga komponen tersebut yaitu surfactant, brine, dan minyak. Parameternya adalah salinitas efektif. Salinitas efektif adalah rata rata dari konsentrasi kation monovalent dan divalent dalam fasa surfactant air minyak. Ad tipe kelakuan fasa yang kita ketahui, yaitu Gambar 3.2: Kelakuan fasa

BAB 3. MODEL MATEMATIKA INJEKSI SURFACTANT POLYMER 1-D 53 1. Tipe I dsebut dengan salinitas tinggi, dimana surfactant berada pada fasa minyak kaya yang dominan. Dengan parameter salinitas efektif, C se C seu. 2. Tipe II disebut dengan salinitas rendah, dimana sufactant berada pada fasa air kaya yang dominan. Dengan parameter salinitas efektif, C se C sel. 3. Tipe III disebut dengan salinitas intermediet, dimana surfactant berada ditengah antara fasa minyak dan fasa air. Tipe III adalah tipe yang paling optimal karena tegangan permukaan yang sangat rendah. Model salinitas ini digunakan untuk memperbaiki proses efisiensi perolehan. Tegangan permukaan yang rendah adalah syarat perlu agar minyak dan air bisa bersatu. Karena posisi tegangan permukaan antara air dan minyak yang rendah membuat daya larut semakin tinggi sehingga air dan minyak seperti bersatu. Dengan parameter salinitas efektif, C sel <C se <C seu. Kita ingin melihat kelakuan fasa dari surfactant dan minyak dari tipe III, komposisi 2 fasa yang terletak di tie line dari total komposisi yang dimodelkan oleh pope dan Nelson adalah C 32 C 3 = C 31 C 3, 3.22 C 22 C 2 C 21 C 2 Dari persamaan 3.22 didapatkan solusi adalah C 32 = C 31, 3.23 C 22 = C 21. 3.24 3.3.2 Saturasi Fasa Saturasi fasa j adalah rasio volume j terhadap volume pori batuan. Jumlah total dari saturasi harus sama dengan total fluida yang ada. Bila komposisi fasa diketahui, saturasi masing masing fasa dihitung dari kesetimbangan massa adalah S 1 C i1 + S 2 C i2 + S 3 C i3 = C i,i=1, 2, 3, 3.25

BAB 3. MODEL MATEMATIKA INJEKSI SURFACTANT POLYMER 1-D 54 dengan S 1 + S 2 + S 3 =1. 3.26 Dari persamaan 3.18 jika kita uraikan dari masing masing dari tiap komponen, yaitu air, minyak dan surfactant. Untuk komponen air saturasi fasanya dimodelkan sebagai berikut: S 1 C 11 + S 2 C 12 + S 3 C 13 = C 1. 3.27 Untuk komponen minyak saturasi fasanya dimodelkan sebagai berikut: S 1 C 21 + S 2 C 22 + S 3 C 23 = C 2. 3.28 Untuk komponen surfactant saturasi fasanya dimodelkan sebagai berikut: S 1 C 31 + S 2 C 32 + S 3 C 33 = C 3. 3.29 3.3.3 Tegangan Permukaan Syarat perlu dari injeksi surfactant polymer adalah ingin menurunkan tegangan permukaan antara air dan minyak. Jika tegangan permukaan turun maka air dan minyak seolah olah menyatu dan bisa memperoleh minyak lebih optimal. Parameter dari tegangan permukaan adalah suatu fungsi dari daya larut yang merupakan perbandingan komposisi C 13 C 33 atau C 23 C 33. Tegangan permukaan pada fasa air dan mikroemulsi serta pada fasa minyak dan mikroemulsi, dimodelkan sebagai berikut log σ wm = G 12 + log σ mo = G 22 + G 11, 3.3 C G 13 13 C 33 +1 G 21. 3.31 C G 23 23 C 33 +1 Data G 11,G 12,G 13,G 21,G 22,G 23 diperoleh dari hasil eksperimen di laboratorium. Karena syarat perlunya adalah tegangan permukaan minyak dan air yang rendah oleh surfactant, sehingga log σ wm log σ mo. Untuk tipe I hanya digunakan persamaan 3.3, untuk tipe II hanya digunakan persamaan 3.31 dan untuk tipe III

BAB 3. MODEL MATEMATIKA INJEKSI SURFACTANT POLYMER 1-D 55 digunakan persamaan 3.3 dan persamaan 3.31. Data data yang digunakan untuk persamaan 3.3 dan persamaan 3.31 adalah log σ wm log σ mo =1.2 G 11 =13.2G 21 =13.2 G 12 = 14.G 22 = 14. G 13 =.221G 23 =.221. Dari data data di atas diperoleh persamaan 3.3 dan persamaan 3.31 adalah C 23 = 5.95C 33, 3.32 C 13 = 5.95C 33. 3.33 3.3.4 Viskositas Fasa Viskositas fasa adalah fungsi dari komposisi fasa dan salinitas efektif. Jika harga viskositas minyak semakin kecil maka akan memperkecil perbandingan mobilitas. Nilai perbandingan mobilitas diperlukan untuk mengukur baik atau buruknya pendesakan. Akibatnya akan semakin memperkecil efisiensi penyapuan. Viskositas dari suatu fasa j dimodelkan μ j = C 1j μ p e α 1C 2j +C 3j + C 2j μ o e α 2C 1j +C 3j + C 2j α 3 α 6 e α 4C 1j +α 5 C 2j. 3.34 Data data yang digunakan untuk persamaan 3.34 adalah α 1 =., μ p =.44 α 2 =., μ o =5 α 3 =.1 μ w =1 α 4 =. α 5 =. α 6 =.. Dengan memasukkan data data yang ada di atas ke persamaan 3.34, viskositas pada fasa air dimodelkan 1=.44C 11 +5C 21. 3.35

BAB 3. MODEL MATEMATIKA INJEKSI SURFACTANT POLYMER 1-D 56 3.3.5 Absorpsi Surfactant dan Polymer Adsorpsi surfactant dan polymer merupakan hal yang penting dalam mekanisme injeksi kimia 1 dimensi. Adsorpsi surfactant disebabkan oleh gaya elektrostatik dan gaya van der Waals, yaitu daya tarik yang besar diantara molekul surfactant dan permukaan mineral. Adsorpsi bergantung pada temperatur, komposisi elektrolit, ph dari brine, dan konsentrasi surfactant. Untuk adsorpsi surfactant, dimodelkan dengan type langmuir isothermal[12] Ĉ 3 = C 3j. 3.36 1+b 3 C 3j Karena kelakuan fasa yang optimal adalah fasa tipe III, yaitu surfactant berada pada fasa mikroemulsi sehingga model pada persamaan 3.36 menjadi dengan Ĉ 3 = C 33 1+b 3 C 33 3.37 = 1 + 2 C se. 3.38 Untuk adsorpsi pada polymer, diasumsikan polimer seluruhnya berada pada fasa dominan air. Untuk adsorpsi polymer, dimodelkan dengan type langmuir isothermal yaitu: Ĉ 4 = a 4C 41. 3.39 1+b 4 C 41 Data data yang diperlukan untuk menyederhanakan persamaan 3.38 dan persamaan 3.39 adalah b 3 = b 4 =, sehingga dari persamaan 3.37 dan persamaan 3.39 diperoleh C 33 = Ĉ3, 3.4 C 41 = Ĉ4. 3.41 a 4 Rasio dari konsentrasi bahan kimia, yaitu surfactant dan polymer di fasa batuan dengan konsentrasi bahan kimia di mobile phase, dimodelkan dengan D 3 = Ĉ3 C 3, 3.42

BAB 3. MODEL MATEMATIKA INJEKSI SURFACTANT POLYMER 1-D 57 D 4 = Ĉ4. 3.43 C 4 Persamaan absorpsi surfactant dan polymer dimodelkan dengan mensubstitusikan persamaan 3.42 ke persamaan 3.4 dan persamaan 3.43 ke persamaan 3.41 menjadi C 33 = D 3C 3, 3.44 C 41 = D 4C 4. 3.45 a 4 Perbandingan konsentarasi zat kimia yang diinjeksikan pada fasa batuan dan mobile phase adalah dimana V 3,V 4,D a konstan. D a = V 3 C 3, V 4 C 4 C 3 = D a C 4 D 3 V 4 + V 3, 3.46 3.3.6 Pertukaran Kation Hampir semua batuan reservoir yang menyimpan minyak berisi lempung dengan kapasitas pertukaran kation yang signifikan. Pertukaran kation di dalam lempung dan surfactant ini keduanya diasumsikan sepenuhnya berupa gabungan elektrostatik. Dalam pertukaran kation, asumsikan tidak ada penyerapan dan pertukaran dari total anion, tidak ada interaksi antara kation dan surfactant di permukaaan. Model pertukaran equilibrium oleh Gapon adalah [1] Q v C 6 C 6 = K g C 51 C 61 C 61, 3.47 dengan Q v,k g konstan. Susbtitusikan K g = 1 ke persamaan 3.47 menjadi C 61 C 51 = C 6 Q v. 3.48 Salinitas efektif adalah jumlah total anion di fasa x dibagi dengan volume fraksi x di fasa x, dimodelkan menjadi C 51 = C se C 11, 3.49

BAB 3. MODEL MATEMATIKA INJEKSI SURFACTANT POLYMER 1-D 58 C 52 = C se C 12, 3.5 C 53 = C se C 13. 3.51 3.3.7 Efek Alkohol Fungsi alkohol secara umum adalah untuk menaikkan daya larut surfactant dan mengatur viskositas fasa mikroemulsi. Alkohol memberi pengaruh pada penyerapan surfactant dan polymer serta dapat mengubah kelakuan fasa. Dalam hal ini efek alkohol tidak dimodelkan, diasumsikan alkohol menyatu dengan surfactant. 3.4 Analisis Ruang Keadaan dari Injeksi Surfactant Polymer 1 Dimensi Model model fisis yang telah diperoleh, kita buat ke dalam persamaan ruang keadaan. Persamaan persamaan yang diperoleh untuk membuat persamaan ruang keadaaan adalah kelakuan fasa surfactant dan minyak, saturasi fasa, tegangan permukaan, viskositas fasa, adsorpsi surfactant dan polimer, pertukaran kation. Model yang dibuat adalah untuk mencari hubungan antara C ij dengan C i. Kita modelkan konsentrasi komponen minyak pada fasa air C 21, dengan substitusikan persamaan 3.23 ke persamaan 3.28, sehingga diperoleh S 1 C 21 + S 2 C 22 + S 3 C 23 = C 2 3.52 S 1 + S 2 C 21 + S 3 C 23 = C 2. 3.53 Substitusikan persamaan 3.32 dan persamaan 3.44 ke persamaan 3.53, sehingga diperoleh S 1 + S 2 C 21 = C 2 S 3 C 23 5.95D3 S 1 + S 2 C 21 = C 2 + S 3 C 3 1 S 3 5.95D3 C 21 = C 2 + C 3. 3.54 S 1 + S 2 S 1 + S 2

BAB 3. MODEL MATEMATIKA INJEKSI SURFACTANT POLYMER 1-D 59 Model untuk konsentrasi komponen minyak pada fasa surfactant C 23 dimodelkan dengan mensubstitusikan persamaan 3.44 ke persamaan 3.32, sehingga diperoleh C 23 = 5.95D 3 C 3. 3.55 Model untuk konsentrasi komponen air pada fasa mikroemulsi C 13 dimodelkan dengan mensubstitusikan persamaan 3.44 ke persamaan 3.33, sehingga diperoleh C 13 = 5.95D 3 C 3. 3.56 Model untuk konsentrasi komponen surfactant pada fasa air C 31 dimodelkan dengan mensubstitusikan persamaan 3.22 dan persamaan 3.44 ke persamaan 3.29, sehingga diperoleh S 1 C 31 + S 2 C 32 + S 3 C 33 = S 1 + S 2 C 31 = C 3 S 3 C 33, 1 C 31 = S 1 + S 2 S 3 D 3 C 3. 3.57 S 1 + S 2 Persamaan untuk konsentrasi komponen surfactant dalam fasa oleic adalah C 32 = 1 S 1 + S 2 S 3 D 3 S 1 + S 2 C 3. 3.58 Model untuk konsentrasi komponen air pada fasa air dimodelkan dengan mensubstitusikan persamaan 3.54 ke persamaan 3.36, sehingga diperoleh C 11 = 1.44 5 1 C 2 + S 3 5.95D3 C 3. 3.59.44 S 1 + S 2 S 1 + S 2 Model untuk konsentrasi komponen air pada fasa minyak C 12 dimodelkan dengan mensubstitusikan persamaan 3.57 dan persamaan 3.55 ke persamaan 3.28, sehingga diperoleh C 12 = 1 S 1 C 1 S 1 S 2 1.44 5 1 C 2 + S 3.44 S 1 + S 2 S 1 + S 2 5.95D3 C 3 + S3 S 2 5.95D3 C 3. 3.6

BAB 3. MODEL MATEMATIKA INJEKSI SURFACTANT POLYMER 1-D 6 Polymer seluruhnya berada pada fasa air dominan, maka C 42 = C 43 =,dimodelkan C 41 = D 4C 4 a 4. 3.61 Model untuk konsentrasi komponen total anion pada fasa air C 51 dimodelkan dengan mensubstitusikan persamaan 3.57 ke persamaan 3.5, sehingga diperoleh C 51 = C se C 11, C 51 = C se.44 5C se 1 C 2 + S 3 5.95D3 C 3. 3.62.44 S 1 + S 2 S 1 + S 2 Model untuk konsentrasi komponen total anion pada fasa minyak C 52 dimodelkan dengan mensubstitusikan persamaan 3.59 ke persamaan 3.52, sehingga diperoleh C 52 = C se C 12 C 52 = C se C 1 3.63 S 1 C se S 1 1 S 2.44 5 1 C 2 + S 3 5.95D3 C 3 +.44 S 1 + S 2 S 1 + S 2 Cse S 3 5.95D3 C 3. 3.64 S 2 Model untuk konsentrasi komponen total anion pada fasa mikroemulsi C 53 dimodelkan dengan mensubstitusikan persamaan 3.56 ke persamaan 3.53, sehingga diperoleh C 53 = 5.95C sed 3 C 3. 3.65 Model untuk konsentrasi ion kalsium pada fasa air dimodelkan dengan mensubstitusikan persamaan 3.6 ke persamaan 3.5, sehingga diperoleh C 61 C 51 = C 6 Q v, C 61 = Q v C 6 C 51, Cse C 61 = Q v C 6.44 5C se 1 C 2 + S 3.44 S 1 + S 2 S 1 + S 2 5.95D3 Ion kalsium diasumsikan berada pada fasa air, maka C 62 = C 63 =. C 3. 3.66

BAB 3. MODEL MATEMATIKA INJEKSI SURFACTANT POLYMER 1-D 61 Persamaan ruang keadaannya adalah sebagai berikut: C 1 n +1 C 1 n C 2 n +1 C 2 n f 1 C 11 n+f 2 C 12 n+f 3 C 13 n C 3 n +1 C = 3 n f β 1 C 21 n+f 2 C 22 n+f 3 C 23 n C 4 n +1 C 4 n. C 5 n +1 C 5 n f 1 C 61 n+f 2 C 62 n+f 3 C 63 n C 6 n +1 C 6 n 1 β v 3 1 v + β 4 +. 1 v 5 1 v 6 1 dimana, C 11 = 1.44 5.44 1 C 12 = 1 C 1 S 1 1 S 1 S 2.44 5 S 1 + S 2 1.44 C 2 + S 3 S 1 + S 2 5.95D3 S 1 + S 2 C 2 + S 3 S 1 + S 2 C 3, 5.95D3 C 3 + S3 S 2 5.95D3 C 13 = 5.95D 3 1 S 3 5.95D3 C 21 = C 2 + S 1 + S 2 S 1 + S 2 1 S 3 5.95D3 C 22 = C 2 + S 1 + S 2 S 1 + S 2 C 23 = 5.95D 3 1 C 31 = S 1 + S 2 S 3 D 3 S 1 + S 2 1 C 32 = S 1 + S 2 S 3 D 3 S 1 + S 2

BAB 3. MODEL MATEMATIKA INJEKSI SURFACTANT POLYMER 1-D 62 C 51 = C se.44 5C se C 52 = C se S 1 C 1 C ses 1 S 2 C 33 = D 3C 3, C 41 = D 4C 4, a 4 C 42 = C 43 =, 1 C 2 + S 3 5.95D3.44 S 1 + S 2 S 1 + S 2 1.44 5 1 C 2 + S 3 5.95D3 C 3.44 S 1 + S 2 S 1 + S 2 + Cse S 3 S 2 5.95D3 C 53 = 5.95C sed 3 Cse C 61 = Q v C 6.44 5C se 1 C 2 + S 3.44 S 1 + S 2 S 1 + S 2 C 62 = C 63 =, C 3 = D a C 4 D 3 V 4 + V 3. 5.95D3 C 3, Setelah persamaan ruang keadaan untuk injeksi Surfactant Polymer terbentuk langkah selanjutnya adalah merancang sistem kontrol yang digunakan untuk optimasi perolehan minyak. Sistem kontrol ini terdiri dari plant yaitu objek yang akan dikontrol dan pengontrol untuk plant tersebut. Desain sistem kontrol ini dicari dengan menggunakan Prinsip Maksimum Pontryagin Kontinu dan Diskrit, pengontrol optimal H 2 dan pengontrol suboptimal H.