VIBRATION MEASUREMENT AND PROTECTION GAS TURBIN GENERATOR (GTG) PADA SPEEDTRONIC TM MARK V Oleh : EZUFATRIN (L2F )

dokumen-dokumen yang mirip
PENGENDALIAN SUPPLY BAHAN BAKAR DENGAN PARAMETER EXHAUST TEMPERATURE

SISTEM KONTROL SPEEDTRONIC TM MARK V SEBAGAI PENGENDALI KECEPATAN PADA GAS TURBINE GENERATOR (GTG) Oleh : HARYO PAMUNGKAS S.

PENGENGENDALIAN DAN PROTEKSI TEMPERATUR EXHAUST GAS TURBIN GENERATOR (GTG) PADA SPEEDTRONIC TM MARK V Oleh : RAHADIAN NURFANSYAH (L2F )

PENGATURAN INLET GUIDE VANES

SISTEM KONTROL SPEEDTRONIC TM MARK V PADA PENGENDALIAN KECEPATAN TURBIN GAS FASE START UP

terdapat sistem kontrol SPEEDTRONIC TM Mark V dengan fungsi dan tugas masingmasing.

PENGENDALIAN ELECTROHYDRAULIC SERVO VALVE DENGAN SPEEDTRONIC TM MARK V PADA GAS TURBIN GENERATOR (GTG)

Sistem Kontrol SPEEDTRONIC TM MARK V Pada Proses Penentuan FUEL STROKE REFERENCE Pada GAS TURBINE GENERATOR

KONTROL PEMAKAIAN BAHAN BAKAR CAIR (HSD) PADA GAS TURBINE GENERATOR (GTG) Oleh : ZABIB BASHORI (L2F )

PENGENDALIAN START UP GAS TURBINE GENERATOR Di PT INDONESIA POWER UBP SEMARANG

MODUL V-C PEMBANGKIT LISTRIK TENAGA GAS UAP (PLTGU)

Kata Kunci : PLC, ZEN OMRON, HP Bypass Turbine System, pompa hidrolik

PENGONTROLAN START UP GAS TURBINE GENERATOR DENGAN SPEEDTRONIC TM MARK V

Prinsip kerja PLTG dapat dijelaskan melalui gambar dibawah ini : Gambar 1.1. Skema PLTG

JURUSAN TEKNIK ELEKTRO KONSENTRASI TEKNIK ELEKTRONIKA FAKULTAS TEKNOLOGI INDUSTRI UNIVERSITAS GUNADARMA

STEAM TURBINE. POWER PLANT 2 X 15 MW PT. Kawasan Industri Dumai

Session 11 Steam Turbine Protection

SISTEM KONTROL PADA HIGH PRESSURE TURBINE BYPASS VALVE. Oleh: Meilia Safitri (L2F008061) Jurusan Teknik Elektro Fakultas Teknik Universitas Diponegoro

Makalah Seminar Kerja Praktek

Makalah Seminar Kerja Praktek PERANCANGAN APLIKASI PLC OMRON SYSMAC CPM1A PADA MODUL SISTEM SILO

BAB II LANDASAN TEORI. stage nozzle atau nozzle tingkat pertama atau suhu pengapian turbin. Apabila suhu

BAB II LANDASAN TEORI

ANALISA EFISIENSI PERFORMA HRSG ( Heat Recovery Steam Generation ) PADA PLTGU. Bambang Setyoko * ) Abstracts

BAB III SISTEM PLTGU UBP TANJUNG PRIOK

BAB I PENDAHULUAN. Dalam proses PLTU dibutuhkan fresh water yang di dapat dari proses

Pertemuan-1: Pengenalan Dasar Sistem Kontrol

Makalah Seminar Kerja Praktek APLIKASI SISTEM PENGAMAN ELEKTRIS UTAMA PADA GAS TURBIN GENERATOR PLTGU

BAB I PENDAHULUAN. Penyusunan tugas akhir ini terinspirasi berawal dari terjadinya kerusakan

PEMBANGKIT LISTRIK TENAGA GAS (PLTG)

SEJARAH DAN STRUKTUR ORGANISASI PT INDONESIA POWER

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB II TINJAUAN PUSTAKA

BAB I PENDAHULUAN. gesekan pada saat rotor turbin berputar, maka bantalan-bantalan. penyangga tersebut harus dilumasi dengan minyak pelumas.

BAB I SISTEM KONTROL TNA 1

BAB I PENDAHULUAN. listrik. Adapun pembangkit listrik yang umumnya digunakan di Indonesia yaitu

KENDALI KOMPUTER TERHADAP PROSES (COMPUTER PROCESS CONTROL)

PEMBANGKIT LISTRIK TENAGA GAS (PLTG) Prepared by: anonymous

Dosen Pembimbing : Ir. Teguh Yuwono Ir. Syariffuddin M, M.Eng. Oleh : ADITASA PRATAMA NRP :

MODUL V-B PEMBANGKIT LISTRIK TENAGA GAS

BAB III LANDASAN TEORI

BAB II TEORI DASAR. Dasar dari teknologi turbin gas adalah pemanfaatan energi dari gas bersuhu % sebagai pendingin, antara lain

MODUL KULIAH SISTEM KENDALI TERDISTRIBUSI

BAB IV PENGUJIAN DAN ANALISA SISTEM. Pengujian dilakukan dengan menghubungkan Simulator Plant dengan

MAKALAH PEMBANGKIT LISTRIK TENAGA GAS (PLTG)

Analisa Pengaruh Variasi Pinch Point dan Approach Point terhadap Performa HRSG Tipe Dual Pressure

: Sistem Kontrol, Instrumentasi, PLC, Pengontrolan

Session 13 STEAM TURBINE OPERATION

BAB I PENDAHULUAN. modern ini, Indonesia sudah banyak mengembangkan kegiatan pendirian unit -

BAB II TINJAUAN PUSTAKA

BAB III METODOLOGI PENELITIAN. Penelitian ini dilaksanakan di PT. Industri Karet Deli Tanjung Mulia

Makalah Seminar Kerja Praktek APLIKASI SISTEM PENGAMAN ELEKTRIS CADANGAN GAS TURBIN GENERATOR PADA PLTGU TAMBAK LOROK BLOK II

ANALISIS PENGOPERASIAN SPEED DROOP GOVERNOR SEBAGAI PENGATURAN FREKUENSI PADA SISTEM KELISTRIKAN PLTU GRESIK

Session 10 Steam Turbine Instrumentation

SISTEM KENDALI DIGITAL

BAB I PENDAHULUAN. Pusat listrik tenaga gas (PLTG) adalah Salah satu jenis pembangkit listrik

Pertemuan ke-2. Pengantar PLC

Makalah Seminar Kerja Praktek KONTROL TEMPERATUR PADA RICH SOLUTION HEATER (101-E) DI CO 2 REMOVAL PLANT SUBANG

APLIKASI REDUNDANT SYSTEM

BAB IV HASIL DAN ANALISIS

SESSION 3 GAS-TURBINE POWER PLANT

I Wayan Widiyana, Ade Lili Hermana. PRR-Batan, kawasan Puspiptek Serpong, ABSTRAK ABSTRACT

MODUL KULIAH SISTEM KENDALI TERDISTRIBUSI

BAB III PERENCANAAN DAN REALISASI SISTEM

PERANCANGAN APLIKASI OMRON SYSMAC CPM1A PADA SISTEM OTOMATISASI POMPA AIR UNTUK PENGISIAN WATER TANK DI APARTEMENT GRIYA PRAPANCA

BAB IV PEMBAHASAN BUILDING AUTOMATION SYSTEM (BAS) DI GEDUNG LABORATORIUM DEPKES JAKARTA A. PENDAHULUAN

SISTEM PROTEKSI PUTARAN LEBIH (OVER SPEED) PADA TURBIN UAP PLTGU DI PT.PLN (Persero) SEKTOR PEMBANGKITAN KERAMASAN

BAB III DASAR TEORI SISTEM PLTU

MAKALAH PEMBANGKIT LISRIK TENAGA GAS (PLTG) DAN PEMBANGKIT LISRIK TENAGA GAS UAP (PLTGU)

BAB I PENDAHULUAN I-1

Analisa Efisiensi Isentropik dan Exergy Destruction Pada Turbin Uap Sistem Pembangkit Listrik Tenaga Gas dan Uap

BAB I PENDAHULUAN. Bertambahnya perindustrian di Indonesia menyebabkan meningkatnya

APLIKSI KONTROL PERMUKAAN BERBASIS PROGRAMMABLE LOGIC CONTROLLER (PLC)

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB III METODOLOGI PENELITIAN

BAB IV ANALISA DATA DAN PEMBAHASAN

Gbr. 2.1 Pusat Listrik Tenaga Gas dan Uap (PLTGU)

BAB II TINJAUAN PUSTAKA

KARAKTERISTIK GETARAN DAN TEKANAN RUANG SILINDER AKIBAT VARIASI PUTARAN KOMPRESOR PADA LIMA MODEL PROFIL DUDUKAN KATUP TEKAN SEBUAH KOMPRESOR TORAK

ANALISIS UNJUK KERJA HEAT RECOVERY STEAM GENERATOR (HRSG) PADA PLTGU MUARA TAWAR BLOK 5 ABSTRAK

BAB I PENDAHULUAN. 1.1 Latar Belakang

III. METODE PENELITIAN

Makalah Seminar Kerja Praktek SISTEM PROTEKSI PADA TRANSFORMATOR TENAGA GAS TURBINE GENERATOR 1.1 PLTGU TAMBAK LOROK

OTOMASI WORK STATION (FMS) BERBASIS PROGRAMMABLE LOGIC CONTROLLER Purnawan

BAB IV. SISTEM KONTROL SENSOR PROXIMITI PADA MESIN BUILDING BTU DENGAN MENGGUNAKAN PLC DI PT GAJAH TUNGGAL Tbk.

BAB III LANDASAN TEORI

SESSION 12 POWER PLANT OPERATION

III. METODELOGI PENELITIAN. Tempat dan waktu penelitian yang telah dilakukan pada penelitian ini adalah

PEMELIHARAAN CB DAN ROTATING DIODA, SERTA SISTEM OPERASI PADA PLTU UNIT 3 PT INDONESIA POWER UBP SEMARANG

ANALISIS PENGARUH PEMAKAIAN BAHAN BAKAR TERHADAP EFISIENSI HRSG KA13E2 DI MUARA TAWAR COMBINE CYCLE POWER PLANT

Pratama Akbar Jurusan Teknik Sistem Perkapalan FTK ITS

BAB III METODOLOGI PENELITIAN

BAB IV PENGUJIAN ALAT

BAB III TINJAUAN PUSTAKA

PRESENTASI P3 SKRIPSI PENENTUAN PARAMETER TURBIN GAS UNTUK PENAMBAHAN HEAT RECOVERY STEAM GENERATOR DAN PENINGKATAN PERFORMA PADA BLOK 2 PLTGU GRATI

BAB I PENDAHULUAN. Bertambahnya perindustrian di Indonesia menyebabkan peningkatan

BAB 2 LANDASAN TEORI

LAPORAN KERJA PRAKTEK EVALUASI KINERJA DAN PROSES PERAWATAN LOW PRESSURE BOILER FEED PUMP PADA PLTGU BLOK III PT. PJB UP GRESIK

PENGATURAN BAHAN BAKAR GAS PADA GAS TURBIN DI UP MUARA TAWAR

MODUL 3 TEKNIK TENAGA LISTRIK PRODUKSI ENERGI LISTRIK (1)

BAB II LANDASAN TEORI

Transkripsi:

VIBRATION MEASUREMENT AND PROTECTION GAS TURBIN GENERATOR (GTG) PADA SPEEDTRONIC TM MARK V Oleh : EZUFATRIN (L2F 008 032) Abstrak PT. INDONESIA POWER UNIT BISNIS PEMBANGKITAN SEMARANG dalam proses produksinya di Pembangkit/Pusat Listrik Tenaga Gas Uap (PLTGU) menggunakan pengontrol Programmable Logic Controller (PLC), SPEEDTRONIC TM MARK V, dan Distributed Control System (DCS). Sistem Kontrol SPEEDTRONIC TM MARK V yang dikembangkan oleh General Electric (GE) Industrial System adalah sistem kontrol yang dapat diprogram dan dirancang untuk memenuhi kebutuhan industri listrik dalam kendali turbin gas dan uap yang semakin komplek. SPEEDTRONIC TM MARK V dapat melakukan kontrol, proteksi dan monitoring sekaligus terhadap kerja turbin. Sistem kontrol SPEEDTRONIC TM MARK V pada PLTGU dapat melakukan proteksi terhadap vibrasi, sehingga dapat menyelamatkan Gas Turbin Generator (GTG) dari kerusakan fatal. Sensor velocity yang digunakan untuk membaca vibrasi pada GTG dan dikomunikasikan dengan SPEEDTRONIC TM MARK V sehingga jika vibrasi yang dibaca oleh sensor melebihi setpoint yang telah ditentukan, maka SPEEDTRONIC TM MARK V akan melakukan tindakan secara otomatis sehingga GTG terhindar dari kerusakan. Kata Kunci : SPEEDTRONIC TM Mark V, GTG, vibrasi. I. PENDAHULUAN 1.1 Latar Belakang Dalam dunia industri, semakin cepatnya perkembangan teknologi peralatan yang di gunakan pada proses produksi juga semakin berkembang. Sistem kontrol untuk turbin yang tadinya hanya menggunakan governor dikembangkan oleh General Electric (GE) menjadi sistem kontrol yang lebih modern yang dinamakan SPEEDTRONIC TM. Dengan semakin kompleksnya pengontrolan untuk turbin, SPEEDTRONIC TM pun terus berkembang mulai dari SPEEDTRONIC TM Mark I hingga yang terakhir SPEEDTRONIC TM Mark VI. PT. INDONESIA POWER UBP SEMARANG dalam proses produksinya di Pembangkit/Pusat Listrik Tenaga Gas Uap (PLTGU) menggunakan SPEEDTRONIC TM Mark V sebagai kontroler pada Gas Turbin Generator (GTG). Salah satu kontrol yang dilakukan oleh SPEEDTRONIC adalah proteksi terhadap vibrasi yang terjadi pada sepanjang Generator Gas Turbin (GTG). Sehingga dapat mengoptimalkan kerja pembangkit dan dapat menjaga umur pembangkit agar tidak cepat rusak. Tiga tipe yang berbeda dari sensor vibrasi dapat secara langsung dihubungkan ke Mark V, adapun ketiga sensor vibrasi tersebut adalah input seismik (kecepatan), accelerometer inputs (percepatan), dan proximity transducer inputs (jarak). Pada sistem TMR, di antara ketiga input processor kontrol di alarm sebagai pesan error internal sementara sistem proteksi vibrasi meneruskan kalkulasi normal yang berdasar sinyal vibrasi rata- rata. 1.2 Maksud dan Tujuan Hal-hal yang menjadi tujuan penulisan laporan Kerja Praktek ini adalah: 1. Mengetahui sistem dan lingkungan kerja di PT. Indonesia Power UBP Semarang. 2. Mengetahui sistem kerja Pembangkit Listrik Tenaga Gas Uap (PLTGU). 3. Memberikan gambaran mengenai sistem kontrol SPEEDTRONIC TM MARK V secara umum. 4. Menjelaskan sistem kontrol SPEEDTRONIC TM MARK V untuk mengendalikan dan proteksi temperatur exhaust pada Gas Turbin Generator (GTG) di PLTGU. 1.3 Pembatasan Masalah Laporan Kerja Praktek ini difokuskan pada permasalahan pengendalian dan proteksi temperatur exhaust Gas Turbine Generator (GTG) pada SPEEDTRONIC TM MARK V dengan materi lain yang berkaitan sebagai pelengkap. II. PROSES PEMBANGKIT LISTRIK TENAGA GAS UAP (PLTGU) PLTGU yaitu pembangkit listrik yang menggunakan tenaga gas uap dalam menghasilkan energi listrik.

Pembakaran bahan bakar pada PLTG akan menghasilkan gas untuk memutar turbin gas. Gas buang dari turbin gas ini akan dialirkan ke HRSG untuk memanaskan air pada HRSG sehingga menghasilkan uap yang akan digunakan untuk memutar turbin uap. Secara umum sistem produksi tenaga listrik pada PLTGU dibagi menjadi dua siklus, yaitu : 1. Open Cycle Biasanya disebut proses turbin gas (PLTG), yaitu gas buang atau uap dari GTG (Gas Turbin Generator) langsung dibuang ke udara melalui stack. 2. Close Cycle Biasanya disebut proses turbin uap (PLTU), yaitu gas buang dari GTG (Gas Turbin Generator) tidak langsung dibuang ke udara tetapi digunakan untuk memanaskan air yang ada di HRSG (Heat Recovery Steam Generator). Uap yang dihasilkan dari HRSG digunakan untuk memutar turbin uap. Proses Pembangkit Listrik Tenaga Gas Uap dapat dibagi menjadi dua proses, yaitu : 1. Proses Turbin Gas Bahan bakar minyak yang dipasok dari kapal atau tongkang ditampung di dalam tangki. Penyaluran bahan bakar dilakukan dengan transportasi laut dengan tujuan memungkinkan bahan bakar yang diangkut lebih banyak daripada melalui transportasi darat. Selain itu lokasi pembangkit yang dekat dengan pelabuhan semakin memperkecil biaya transportasi. Bahan bakar dipompa dari tangki ke combustion chamber (ruang pembakaran) bersama-sama udara dari compressor setelah terlebih dahulu melalui air filter. Campuran ini dibakar dan menghasilkan gas panas yang selanjutnya digunakan untuk memutar turbin gas. Gas buang dari turbin gas akan langsung dibuang melalui cerobong apabila dioperasikan open cycle dan akan dilewatkan HRSG apabila dioperasikan close cycle. 2. Proses Turbin Uap Air pengisi dari deaerator dipompa melalui Low Pressure and High Pressure Water dimasukkan ke HRSG untuk diubah menjadi uap. Hasil uap dari HRSG dimasukkan ke High Pressure Turbine kemudian masuk ke Low Pressure Turbine untuk mengubah energi panas uap menjadi energi putar rotor. Uap bekas setelah dipakai di Low Pressure Turbine dialirkan ke condenser untuk dikondensasikan oleh air pendingin atau air laut yang dipompa melalui Circulating Water Pump (CWP). Air condensate dipompakan oleh condensate pump untuk selanjutnya dimasukkan ke deaerator. III. DASAR TEORI 3.1 Gambaran umum SPEEDTRONIC Mark V SPEEDTRONIC Mark V adalah suatu sistem kontrol, proteksi dan monitoring pada turbin yang telah dikembangkan oleh GE dan mewakili kesuksesan dari seri-seri SPEEDTRONIC dalam sistem pengaturan. Tujuan sistem kontrol dan proteksi ini adalah menghasilkan output yang maksimal untuk melindungi turbin gas dari kerusakan saat turbin dalam kondisi operasi sehingga lifetimenya dapat lebih lama. 3.2 Konfigurasi kendali SPEEDTRONIC Mark V SPEEDTRONIC TM Mark V adalah sistem kendali turbin yang bersifat programmable yang didesain sesuai dengan kebutuhan industri tenaga modern untuk sistem turbin yang bersifat kompleks dan dinamis. Keunggulan sistem ini pada fitur-fiturnya antara lain: 1. Implementasi software dengan teknologi fault tolerance (SIFT), yang memungkinkan turbin tetap beroperasi meskipun terjadi kesalahan tunggal dengan mempertahankan status on-line, dan memungkinkan operasi saat prosesor kontrol shut down untuk perbaikan atau sebab lain. 2. Operator interface yang user-friendly 3. Interface dengan sensor direct yang memungkinkan kendali dan monitoring secara real time 4. Kemampuan diagnosa yang built-in menyatu dengan sistem 5. Arsitektur berbasis TMR (Triple Modular Redundant) SPEEDTRONIC TM Mark V menggunakan tiga buah modul kontrol, masing-masing <R>, <S>, dan <T> yang identik untuk menjalankan keseluruhan algoritma kendali yang vital, proses sinyal proteksi, dan proses sekuensial. Konfigurasi inilah yang disebut TMR (Triple Modular Redundant). Untuk fungsi proteksi

dijalankan oleh tiga prosessor proteksi <X>,<Y> dan <Z> pada core <P>. Untuk konfigurasi secara umum dapat dilihat pada gambar berikut ini. R <C> <I> <R> Protection <P> Gambar 1 Dasar sistem TMR pada SPEEDTRONIC TM MARK V Seperti terlihat pada gambar di atas, untuk bisa bekerja dengan baik, informasi dikomunikasikan, dibagi dan diputuskan pada sistem proteksi tersebut melalui tiga jaringan yang berbeda. Yang pertama adalah jaringan eksternal (Stage Link) yaitu alat utama komunikasi antara Operator Interface (<I>) dan Common Data Processor (<C>) dari panel kontrol. Link ini adalah bagian konfigurasi ARCNET. Kedua adalah Data Exchange Network (DENET) yang merupakan jenis ARCNET yang termasuk bagian dalam jaringan komunikasi SPEEDTRONIC Mark V kontrol panel. Adapun fungsi dari DENET itu sendiri adalah untuk menyediakan link atau hubungan komunikasi antara prossesor internal dari kontrol panel. Panel TMR merupakan bagian dasar untuk mem-voting proses yang terjadi pada sinyal kontrol. Untuk jaringan internal yang ketiga yaitu jaringan I/O (IONET). Fungsinya adalah untuk mengkomunikasikan sinyal I/O antara prosesor kontrol (DCCA), Protection Core (<P>) atau TCEA dan core (). Seluruh IONET identik di dalam semua prosesor dengan pengecualian untuk core (<C>). Core ini tidak mempuyai link secara langsung ke core (<P>). Oleh karena itu, maka IONET hanya mengkomunikasikan <S> Protection <P> <T> Protection <P> data hanya antara core (<C>) dan card Digital I/O Kontrol. Pada konfigurasi TMR sendiri terdapat tiga buah modul kontrol <R>, <S>, dan <T> yang berfungsi sebagai redundant. Sinyal kontrol yang diberikan merupakan hasil voting dari ketiga modul tersebut. 3.3 Operator Interface Mark V Interface Mark V berfungsi sebagai upload, download, monitoring maupun pengontrolan sehingga dengan interface ini seluruh aktifitas dari Mark V kontrol panel bisa terwakili. Work Station Interface < I >, terdiri dari serangkaian alat alat, antara lain: sebuah PC (Personal Computer) layar monitor berwarna, Cursor Positioning Device (Mouse, atau Trackball), Keyboard (QWERTY Keyboard) dan Printer. Peralatan-peralatan tersebut dapat menghubungkan antara operator dengan keadaan mesin atau sebagai work station pemeliharaan lokal, baik itu pengamatan peralatan turbin, pengontrolan turbin, pengamanan turbin maupun pemasukan data baru ke kontrol panel. 3.4 Hardware Input-Output Mark V di desain untuk berhubungan langsung dengan peralatan turbin dan generator seperti : magnetic speed pickups servos dan LVDT/Rs sensor vibrasi thermocouples Resistive Temperature Devices (RTDs) IV. VIBRATION MEASUREMENT DAN PROTEKSI GETARAN PADA GAS TURBINE GENERATOR (GTG) 4.1 Sistem Kontrol SPEEDTRONIC TM MARK V Pengendalian turbin gas dilakukan pada saat start up, akselerasi, kecepatan, temperatur, shutdown, dan fungsi control manual. turbin dikendalikan oleh Minimum Value Gate, yaitu nilai yang paling minimal dari input-input tersebut. Nilai input yang paling minimal merupakan kondisi operasi unit yang diutamakan untuk dikendalikan. Misalkan ketika tombol start-up diaktifkan maka kondisi paling minimal adalah start-up. Kondisi start-up akan memerintahkan sistem bekerja sesuai dengan diagram pengontrolan start-up. Contoh lain adalah ketika nilai paling

minimal unit adalah speed. Kondisi speed ini mengendalikan bahan bakar untuk menjaga kecepatan pada referensinya yaitu sekitar 3000 rpm. Kondisi ini akan mengurangi bahan bakar jika kecepatan lebih dari referensi dan begitu pula sebaliknya. eksitasi getaran yang berasal dari mesin tersebut. Gambar 3 Letak pemasangan vibrasi sensor Gambar 2 Skema pengendalian pada turbin gas Kendali Minimum Value Gate juga memungkinkan proteksi pada kondisi yang dapat membahayakan turbin. Misalkan saat kondisi start-up dijalankan dan terjadi temperatur yang naik melebihi temperatur tertentu, maka nilai pengendali temperatur akan memiliki nilai paling kecil. Kondisi tersebut menyebabkan pengendali temperatur mengambil alih kendali sistem hingga temperatur kembali pada kondisi normal. Fuel Stroke Reference (FSR) adalah sinyal perintah untuk aliran bahan bakar. Minimum value gate menghubungkan sinyal output dari enam mode kontrol ke pengontrol FSR, output FSR yang terendah dari enam loop kontrol dibolehkan melewati gas ke sistem kontrol bahan bakar sebgai kontrol FSR. Pengontrolan FSR akan memberikan input bahan bakar ke turbin pada jumlah yang yang dibutuhklan sistem kontrol. Hanya satu loop kontrol yang akan dikontrol pada setiap waktu tertentu dan loop kontrol yang sedang mengontrol FSR akan ditampilkan pada layar komputer (CRT). 4.2 Vibration Measurment Getaran mesin (Mechanical Vibration) diartikan sebagai gerakan bolak-balik dari komponen mekanik dari suatu mesin sebagai reaksi dari adanya gaya dalam (gaya yang dihasilkan oleh mesin tersebut) maupun gaya luar (gaya yang berasal dari luar atau sekitar mesin). Kasus yang dominan dalam getaran permesinan adalah yang disebabkan oleh gaya Sensor vibrasi yang digunakan adalah Velocity Sensor 5485C, dengan menggunakan kumparan suspensi tanpa gesekan, sensor ini memberikan hasil pengukuran vibrasi yang akurat dan dapat diulang-ulang hingga rentang amplitudo dan frekuensi yang luas. Sensorsensor itu dibuat untuk bekerja terus menerus pada suhu yang tinggi. Gambar 4 Sensor velocity 5485C (375 C) high temperature Gambar 5 Spesifikasi sensor velocity 5485C (375 C) high temperature 4.3 Vibration Protection Proteksi sistem vibrasi adalah suatu system yang berfungsi untuk melindungi

engine dari kerusakan fatal dikarenakan terindikasi kerusakan pada komponen yang mengakibatkan terjadinya vibrasi yang tinggi. Gambar 6 Standar desain redundant sensor Berikut beberapa tanda bahaya yang dapat ditampilkan pada interface SPEEDTRONICTM Mark-V: Vibration Sensor Disabled akan ditampilkan ketika setiap kanal masukan dinonaktifkan. High Vibration Alarm akan ditampilkan ketika setiap sinyal getaran melebihi alarm setpoint untuk waktu yang ditentukan pada spesifikasi kontrol. Vibration Tranducer Fault akan ditampilkan ketika kesalahan transducer terbuka dideteksi dan ada pada waktu tertentu. Pergerakan turbin tidak akan dihentikan tetapi alarm menunjukan bahwa pemeliharaan atau penggantian dibutuhkan. High Vibration Trip or Shutdown akan ditampilkan ketika kumpulan dari sinyal getaran dinonaktifkan untuk waktu tertentu, seperti berikut: Jika semua sensor turbin gas dinonaktifkan atau mengandung kesalahan atau jika semua sensor generator dinonaktifkan atau mengandung kesalahan alarm ini akan berujung pada penonaktivan turbin. Vibration Start Inhibit akan ditampilakan dan turbin gas akan dicegah ketika kondisi dibawah ini terjadi pada waktu tertentu: Jika tiga atau lebih sensor turbin gas dinonaktifkan atau mengandung kesalahan atau jika dua atau lebih sensor generator dinonaktifkan atau mengandung kesalahan. Vibration Differential Trouble akan ditampilkan ketika perbedaan level sinyal antara sensor redundant melebihi nilai yang telah ditentukan untuk waktu tertentu. Pergerakan turbin tidak akan dihentikan namun alarm menunjukan kebutuhan akan pemeliharaan dan penggantian sensor. Adalah mungkin untuk melihat level getaran dari setiap kanal saat turbin bekerja tanpa perlu menghentikan gerakannya, dengan menggunakan monitor operator interface. 4.4 Pendeteksian kerusakan sensor vibrasi Untuk mendeteksi kerusakan ataupun kesalahan pembacaan sensor vibrasi dapat dilakukan beberapa langkah sebagai berikut: 1. Dengan menggunakan ohmeter, kabel transducer dicek untuk mengetahui bahwa transducer terhubung dengan panel SPEEDTRONIC TM Mark V dan hanya terhubung ke panel yang bersesuaian dan tidak terhubung dengan yang lain 2. Menghubung singkatkan dua input terminal dari sebuah saismic vibration transducer di terminal card, TBQB. kemudian dicek bahwa pada layar tampil pesan peringatan berupa "Vibration Transducer Fault" 3. Jumper dilepas, reset dan cek bahwa peringatannya sudah tidak tampil kembali. 4. Salah satu dari ujung vibration transducer tersebut diputuskan (hubung terbuka) dan dicek bahwa pada layar tampil pesan peringatan berupa "Vibration Transducer Fault" 5. Pasang kembali konektor kemudian reset alarm 6. Ulangi langkah 1 hingga 5 untuk sensor vibrasi yang lain. V. Kesimpulan 1. Komponen utama sistem PLTGU terbagi menjadi tiga, yaitu Gas Turbine Generator (GTG), Heat Recovery Steam Generator (HRSG), dan Steam Turbin Gas(STG). 2. Sebuah blok PLTGU dapat dioperasikan dalam mode Open Cycle (Gas Turbine saja) atau Combined Cycle (Turbin gas dikombinasikan dengan Turbin Uap) 3. SPEEDTRONIC TM Mark V adalah suatu sistem yang dapat digunakan mengontrol

dan proteksi Gas Turbin Generator dan telah dikembangkan oleh General Electric (GE) dengan menggunakan software dan hardware yang modern. 4. SPEEDTRONIC TM Mark V menggunakan sistem TMR yang terdiri dari tiga buah processor control <R>, <S>, dan <T> pada core <R>, <S>, dan <T> dan processor dan tiga prosessor proteksi <X>,<Y> dan <Z> pada core proteksi <P>. 5. Sensor vibrasi yang digunakan sebanyak 8 buah yang dipasang di bearing sepanjang GTG. 6. SPEEDTRONIC TM Mark V akan melakukan tidakan secara otomatis jika pembacaan sensor vibrasi melebihi setpoint yang telah ditentukan. BIODATA Ezufatrin (L2F008032) lahir di Palembang, 17 Maret 1990. Saat ini sedang kuliah di Teknik Elektro Universitas Diponegoro angkatan 2008 dengan konsentrasi Kontrol Semarang, 05 November 2012 Mengetahui, Dosen Pembimbing VI. DAFTAR PUSTAKA [1] Kirom, Huda IlaL, Sistem Kontrol Speedtronic tm Mark V Pada Pengendalian Kecepatan Turbin Gas Fase Start Up, Laporan Kerja Praktek Jurusan Teknik Elektro Universitas Diponegoro, Semarang, 2012. [2] Subroto, Samsu Haryo, SpeedtronicTM Mark V, 2007 [3] Nurfansyah, Rahadian., Pengengendalian Dan Roteksi Temperatur Exhaust Gas Turbin Generator (GTG) Pada Speedtronic tm Mark V, Laporan Kerja Praktek Jurusan Teknik Elektro Universitas Diponegoro, Semarang, 2011. [4]...MS-9000 Service Manual:Turbine, Accessories and Generator Volume I, PT.PLN (Persero) Tambak Lorok. [5]... MS-9000 Service Manual:Turbine, Accessories and Generator Volume IA, PT.PLN (Persero) Tambak Lorok. [6]...SPEEDTRONIC TM Mark V Control Description and Application.Volume I, 1993. [7]...SPEEDTRONIC TM Mark V Control Gas Turbine - Spesification Document Volume II, 1993. Sumardi, ST., MT. NIP. 196811111994121001