STRUKTUR SOLVASI ION SKANDIUM(I) DALAM AMMONIA BERDASARKAN METODE MEKANIKA KUANTUM DAN MEKANIKA KLASIK

dokumen-dokumen yang mirip
Struktur dan Dinamika Solvasi Ion Scandium(I) Singlet Dalam Air Dengan Metode AB INITIO QM/MM MD

KIMIA KOMPUTASI Pengantar Konsep Kimia i Komputasi

PAH akan mengalami degradasi saat terkena suhu tinggi pada analisis dengan GC dan instrumen GC sulit digunakan untuk memisahkan PAH yang berbentuk

BAB I PENDAHULUAN 1.1 Latar Belakang dan Permasalahan

Struktur Molekul:Teori Orbital Molekul

Austrian-Indonesian i Centre (AIC) for Computational ti lchemistry, Jurusan Kimia i. KIMIA KOMPUTASI Konsep Perhitungan Mekanika Kuantum 2 (Basis Set)

MAKALAH KARAKTERISTIK POTENSIAL BADAN-3: SISTEM Zn(II)-AIR-AMONIAK

KIMIA. Sesi KIMIA UNSUR (BAGIAN IV) A. UNSUR-UNSUR PERIODE KETIGA. a. Sifat Umum

larutan yang lebih pekat, hukum konservasi massa, hukum perbandingan tetap, hukum perbandingan berganda, hukum perbandingan volume dan teori

SOLVATION STRUCTURE DETERMINATION OF Ni 2+ ION IN WATER BY MEANS OF MONTE CARLO METHOD

Komponen Materi. Kimia Dasar 1 Sukisman Purtadi

PERHITUNGAN MEKANIKA MOLEKUL

LEMBARAN SOAL 6. Mata Pelajaran : KIMIA Sat. Pendidikan : SMA Kelas / Program : XI IPA ( SEBELAS IPA )

SKL 1. Ringkasan Materi

IKATAN KIMIA DALAM BAHAN

Siswa diingatkan tentang struktur atom, bilangan kuantum, bentuk-bentuk orbital, dan konfigurasi elektron

TINGKAT PERGURUAN TINGGI 2017 (ONMIPA-PT) SUB KIMIA FISIK. 16 Mei Waktu : 120menit

SIFAT SIFAT ATOM DAN TABEL BERKALA

30 Soal Pilihan Berganda Olimpiade Kimia Tingkat Kabupaten/Kota 2011 Alternatif jawaban berwarna merah adalah kunci jawabannya.

OAL TES SEMESTER I. I. Pilihlah jawaban yang paling tepat! a. 2d d. 3p b. 2p e. 3s c. 3d 6. Unsur X dengan nomor atom

Mekanika Kuantum. Orbital dan Bilangan Kuantum

STRUKTUR HIDRASI KOBALT(II) BERDASARKAN SIMULASI DINAMIKA MOLEKUL QUANTUM MECHANICAL CHARGE FIELD

BAB I PENDAHULUAN Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang

IKATAN KIMIA MAKALAH KIMIA DASAR

SOAL KIMIA 2 KELAS : XI IPA

Pemodelan Interaksi Serium(III) dan Air dengan Teori Perhitungan Ab Initio serta Penentuan Himpunan Fungsi Basisnya

IKATAN KIMIA Isana SYL

PEMODELAN INTERAKSI ETER MAHKOTA BZ15C5 TERHADAP KATION Zn 2+ BERDASARKAN METODE DENSITY FUNCTIONAL THEORY

MODEL-MODEL IKATAN KIMIA

Penyelesaian Tugas Kuliah Kimia Umum C (Soal bagi kelompok jadwal kuliah Kamis pagi pukul 08.00)

UJIAN I - KIMIA DASAR I A (KI1111)

LAPORAN PRAKTIKUM KIMIA FISIK PERCOBAAN - 9 STRUKTUR DAN SIFAT TERMODINAMIKA AIR : SIMULASI MONTE CARLO

HAND OUT FISIKA KUANTUM MEKANISME TRANSISI DAN KAIDAH SELEKSI

KISI-KISI PENULISAN SOAL USBN

Ikatan Kimia. 2 Klasifikasi Ikatan Kimia :

Bab V Ikatan Kimia. B. Struktur Lewis Antar unsur saling berinteraksi dengan menerima dan melepaskan elektron di kulit terluarnya. Gambaran terjadinya

PENGANTAR KIMIA KOMPUTASI

SOAL LATIHAN CHEMISTRY OLYMPIAD CAMP 2016 (COC 2016)

Struktur atom, dan Tabel periodik unsur,

FAKULTAS TEKNIK UNIVERSITAS NEGERI YOGYAKARTA BAHAN AJAR KIMIA DASAR BAB VI IKATAN KIMIA

STRUKTUR ATOM. 3. Perhatikan gambar berikut :

LAMPIRAN C CCT pada Materi Ikatan Ion

KIMIA ANORGANIK TRANSISI

DAFTAR PUSTAKA. 1. Dra. Sukmriah M & Dra. Kamianti A, Kimia Kedokteran, edisi 2, Penerbit Binarupa Aksara, 1990

Materi Pokok Bahasan :

Aris Arianto. Guru Kimia di SMAN Madani Palu. STUDENT S BOOk

RENCANA PEMBELAJARAN SEMESTER. Mata Kuliah : KIMIA KOMPUTASI Semester: VI (ENAM) sks: 3 Kode: D

LOGO STOIKIOMETRI. Marselinus Laga Nur

Jilid 1. Penulis : Citra Deliana D.S, M.Si. Copyright 2013 pelatihan-osn.com. Cetakan I : Oktober Diterbitkan oleh : Pelatihan-osn.

BAB 1 PERKEMBANGAN TEORI ATOM

SAP DAN SILABI KIMIA DASAR PROGRAM STUDI TEKNOLOGI PANGAN UNIVERSITAS PASUNDAN

SAP-GARIS-GARIS BESAR PROGRAM PENGAJARAN

Peranan elektron dalam pembentukan ikatan kimia

kimia Kelas X TABEL PERIODIK K-13

Struktur Atom dan Sistem Periodik Unsur. Kelompok 1 Atifa Rahmi ( ) Lelly Shelviyani ( ) Nur Ayu Fitriani ( ) Suhartini ( )

Bilangan Kuantum Utama (n)

IKATAN KIMIA. RATNAWATI, S.Pd

kimia REVIEW I TUJUAN PEMBELAJARAN

STRUKTUR LEWIS DAN TEORI IKATAN VALENSI

BAB FISIKA ATOM. Model ini gagal karena tidak sesuai dengan hasil percobaan hamburan patikel oleh Rutherford.

BAB 4 HASIL PERCOBAAN DAN PEMBAHASAN

THE INTERACTION OF Co 2+ -AMMONIA MODELLING: THE COMPARATIVE STUDY BETWEEN AB INITIO AND ELECTRON CORRELATION METHODS

OLIMPIADE NASIONAL MATEMATIKA DAN ILMU PENGETAHUAN ALAM TINGKAT PERGURUAN TINGGI (ONMIPA-PT) Bidang Kimia Sub bidang Kimia Anorganik

Studi Adsorpsi Molekul Nh 3 Pada Permukaan Cr(111) Menggunakan Program Calzaferri

TUJUAN INSTRUKSIONAL KHUSUS

ANALISIS SOAL ULANGAN HARIAN I. Total. Dimensi Proses Pengetahuan Kognitif Menerapkan Menganalisa (C4) 15 3,6,9,11,21 4,12,18,26 5,19,20,25

FISIKA. Sesi TEORI ATOM A. TEORI ATOM DALTON B. TEORI ATOM THOMSON

BAB IV. HASIL DAN PEMBAHASAN

D. 2 dan 3 E. 2 dan 5

Bab IV Hasil Penelitian dan Pembahasan. IV.1 Sintesis dan karaktrisasi garam rangkap CaCu(CH 3 COO) 4.6H 2 O

TUGAS INDIVIDU MATA KULIAH KIMIA UNSUR UNSUR NITROGEN. Disusun Oleh : Indah Ar ( )

APLIKASI TEORI THOMAS-FERMI UNTUK MENENTUKAN PROFIL KERAPATAN DAN ENERGI ATOM HIDROGEN, ATOM LITIUM, DAN MOLEKUL!!

Tabel Periodik. Bab 3a. Presentasi Powerpoint Pengajar oleh Penerbit ERLANGGA Divisi Perguruan Tinggi 2010 dimodifikasi oleh Dr.

ESTIMASI pk a dan pk b BERDASARKAN PENDEKATAN KIMIA KOMPUTASI DENGAN METODA SEMIEMPIRIK PM3

I. PENDAHULUAN. Pencemaran udara adalah masuknya, atau tercampurnya unsur-unsur berbahaya ke dalam

RENCANA PELAKSANAAN PEMBELAJARAN Nama Sekolah : SMA Negeri 1 Sanden Mata Pelajaran : Kimia Kelas/Semester : XI/1 Alokasi Waktu : 2 JP

UJIAN I - KIMIA DASAR I A (KI1111)

STRUKTUR ATOM DAN SISTEM PERIODIK Kimia SMK KELAS X SEMESTER 1 SMK MUHAMMADIYAH 3 METRO

TEORI ATOM. Ramadoni Syahputra

YAYASAN PEMBINA UNIVERSITAS NEGERI JAKARTA SMA LABSCHOOL KEBAYORAN

PANDUAN PRAKTIKUM KIMIA TERPADU GRUP IMC (INTERMOLECULAR CHEMISTRY) OLEH : Dr. Parsaoran Siahaan, MS

Ikatan kimia. 1. Peranan Elektron dalam Pembentukan Ikatan Kimia. Ikatan kimia

SILABUS MATAKULIAH. Revisi : 4 Tanggal Berlaku : 4 September 2015

JAWABAN. 8. Untuk obligasi tunggal antara sejenis atom, bagaimana kekuatan ikatan yang berhubungan dengan ukuran dari atom?jelaskan secara ilmiah.

IKATAN KIMIA. Tim Dosen Kimia Dasar FTP

16 Mei 2017 Waktu: 120 menit

SILABUS Sekolah : SMA Negeri 5 Surabaya Mata Pelajaran : Kimia Kelas/semester : XI/1 Referensi : BSNP / CIE Standar Kompetensi

SOAL SELEKSI OLIMPIADE SAINS TINGKAT KABUPATEN/KOTA 2004 CALON TIM OLIMPIADE KIMIA INDONESIA

STANDAR KOMPETENSI. 1.Menjelaskan sifat- sifat

kimia KONFIGURASI ELEKTRON

A. KESTABILAN ATOM B. STRUKTUR LEWIS C. IKATAN ION D. IKATAN KOVALEN E. IKATAN KOVALEN POLAR DAN NONPOLAR F. KATAN KOVALEN KOORDINASI G

MODUL KIMIA SMA IPA Kelas 10

K13 Revisi Antiremed Kelas 10 KIMIA

SOAL. Jawaban : D. Dapat kita lihat bahwa semua unsur diatas merupakan unsur perioda 3 (jumlah

UNIVERSITAS NEGERI YOGYAKARTA F A K U L T A S M I P A

LAPORAN PRAKTIKUM SIFAT PERIODISITAS SPESIES KIMIA ANORGANIK I

Bab 1 ZAT PADAT IKATAN ATOMIK DALAM KRISTAL

Pembuatan Garam Kompleks dan Garam Rangkap.

MATERI II TINGKAT TENAGA DAN PITA TENAGA

Transkripsi:

STRUKTUR SOLVASI ION SKANDIUM(I) DALAM AMMONIA BERDASARKAN METODE MEKANIKA KUANTUM DAN MEKANIKA KLASIK Crys Fajar Partana [1] email : crsfajar@gmail.com [1] Jurusan Pendidikan Kimia FMIPA Universitas Negeri Yogyakarta Abstrak Perkembangan kimia komputasi telah banyak memberikan manfaat di berbagai bidang. Salah satu manfaat yang dirasakan adalah mudahnya mengetahui struktur dan dinamika molekuler solvasi ion tertentu. Sekalipun kimia komputasi memberikan banyak kemudahan, namun kualitas output sangat ditentukan oleh input dan metode yang digunakan. Dalam artikel ini akan diuraikan struktur dan dinamika molekuler scandium(i) dalam ammonia dengan metode mekanika kuantum dan mekanika klasik. Analisis struktur solvasi skandium(i) dalam ammonia dengan metode mekanika kuantum memberikan hasil distribusi bilangan koordinasi sistem (NH 3 ) + n pada solvasi kulit pertama bervariasi mulai n=1-7, yaitu 3(37%), 2(32,52%), 4(15,52%), 5(10,%), 1(7,67%), 6(6,33), dan 7(0,62%), pada kulit kedua tidak menunjukkan adanya solvasi. Sedangkan analisis struktur dengan metoda mekanika klasik memberikan hasil bilangan koordinasi pada solvasi kulit pertama 9 (76,24%) dan 8 (23,19%), pada kulit kedua distribusi bilangan koordinasi berturut-turut: 28(22,81%), 27(18,209%), 29(20,2354%), 23(0.06), 24(1,07%), 25(4,02%), 26(11,76%), 30(14,06%), 31(5,22%), 32(1,72%), 33(0,043%), 34(0,15%), dan 35(0,06%). Berdasarkan hasil yang diperoleh dengan kedua metode tersebut terlihat bahwa sistem (NH 3 ) + n bersifat fleksibel. Kata kunci: solvasi, mekanika klasik, mekanika kuantum Pendahuluan Kimia komputasi merupakan bagian dari kimia teoritik yang berdasarkan penggabungan metode matematika dengan hukum-hukum dasar fisika. Kimia komputasi mempelajari prosesproses hubungan antar senyawa dan pemodelan suatu sistem dengan menggunakan komputer untuk menghasilkan data-data fisikokimia suatu zat, interaksi molekular dan reaksi kimia yang selama ini tidak dapat dilakukan dengan eksperimen. Keberhasilan metode kimia komputasi dipengaruhi oleh langkah pemodelan sistem dan metode perhitungan yang digunakan (Jensen, 1999). Langkah pemodelan sistem sangat beragam, tergantung asumsi yang digunakan oleh peneliti, sedangkan untuk metode perhitungan secara umum dibagi menjadi dua yaitu metode mekanika molekul (MM) dan metode struktur elektronik yang menggunakan konsep mekanika kuantum (QM). Metode MM digunakan untuk sistem yang melibatkan jumlah atom yang banyak. Dengan demikian metode MM memiliki karakter: kurang akurat, kebutuhan waktu perhitungan tidak besar, cocok untuk sistem beratom banyak (> 100 atom). Metode QM banyak digunakan untuk sistem yang beratom sedikit, dan membutuhkan kualitas perhitungan yang akurat. Sehingga metode QM bersifat: butuh waktu lama dalam perhitungan, hasilnya akurat, cocok untuk sistem beratom kecil (< 100 atom). Berdasarkan kualitas perhitungan, secara teoritik metode QM lebih baik dibanding metode MM. Untuk mengatasi masalah itu dilakukan kombinasi metode simulasi quantum mechanical/molecular mechanical (QM/MM) molecular dynamics (MD) atau quantum mechanical/molecular mechanical (QM/MM). Hal ini disebabkan karena dengan mengombinasi QM/MM hasil simulasi yang diperoleh sangat memuaskan serta waktu yang dibutuhkan tidak terlalu lama. Dalam artikel ini akan ditinjau penggunaan metode mekanika klasik dan metode mekanika Kuantum (QM) untuk menganalis struktur + -NH 3. Dengan membandingkan kedua metode tersebut, diharapkan akan diperoleh informasi tentang metode apa yang sebaiknya digunakan untuk analisis mempelajari solvasi dan dinamika ion dalam suatu pelarut. K-59

Crys Fajar Partana Struktur Solvasi Ion... Mekanika Molekuler Metode mekanika molekuler didasarkan pada prinsip-prinsip berikut: (1) Inti dan elektron dipandang sebagai partikel bak atom (atom-like); (2) Partikel bak atom tersebut berbentuk sferis dan memiliki muatan neto; 3) Interaksi didasarkan pada potensial klasik dan pegas (hukum Hooke); (4) Interaksi harus dispesifikasikan terlebih dahulu untuk atom-atom yang dipelajari; (5) Interaksi menentukan distribusi ruang dari partikel dan energinya. Model mekanika molekuler dikembangkan untuk mendeskripsikan struktur dan sifat-sifat molekul sesederhana mungkin. Bidang aplikasi mekanika molekuler diterapkan pada: (1) Molekul yang tersusun oleh ribuan atom; (2) Molekul organik, oligonukleotida, peptida dan sakarida; (3) Molekul dalam lingkungan vakum atau berada dalam pelarut; (4) Senyawa dalam keadaan dasar; (5) Sifat-sifat termodinamika dan kinetika (melalui dinamika molekul). Mekanika Kuantum Kimia kuantum didasarkan pada postulat mekanika kuantum. Dalam kimia kuantum, sistem digambarkan sebagai fungsi gelombang yang dapat diperoleh dengan menyelesaikan persamaan hrödinger. Persamaan ini berkait dengan sistem dalam keadaan stasioner dan energi mereka dinyatakan dalam operator Hamiltonian. Mekanika kuantum dalam prakteknya terbagi atas dua metode, yaitu ab initio dan Semiempiris. Ke dua metode ini mempunyai perbedaan yang prinsip. Ab initio menyelesaikan semua persamaan secara eksak dan semua elektron yang ada diperhitungkan, sehingga memerlukan waktu perhitungan yang lama. Dibandingkan dengan ab initio, perhitungan dengan metode semiempirik dapat dijalankan lebih cepat karena tidak semua persamaan diselesaikan secara eksak dan elektron yang diperhitungkan hanyalah elektron valensi saja. Atau dapat dikatakan bahwa hasil perhitungan Ab initio lebih akurat bila dibandingkan hasil perhitungan semi empirik, walaupun dalam pengerjaannya ab initio memerlukan waktu yang lebih lama. Kenyataan keakuratan ab initio dibanding semi empirik terlihat jelas saat melakukan perhitungan pada atom atau molekul yang bermuatan. Persamaan hrödinger Semua perhitungan orbital molekul adalah perkiraan penyelesaian dari persamaan hrödinger. Energi dan fungsi gelombang sistem dalam keadaan stasioner dapat dihasilkan dengan mencari penyelesaian persamaan hrödinger : H E dalam persamaan ini H adalah operator Hamiltonian yang menyatakan energi kinetik dan potensial dari sistem yang mengandung elektron dan inti atom. Energi ini analog dengan energi kinetik mekanika klasik dari partikel dan interaksi elektrostatik Coulombik antara inti dan elektron. adalah fungsi gelombang, satu dari penyelesaian persamaan eigen-value. Fungsi gelombang ini bergantung pada posisi elektron dan inti atom. Hamiltonian disusun oleh tiga bagian yaitu energi kinetik inti, energi kinetik elektron dan energi potensial inti dan elektron. Pendekatan Born-Oppenheimer Pendekatan Born-Oppenheimer diterapkan dengan pemisahan fungsi gelombang untuk inti dan elektron. Fungsi gelombang total merupakan hasil perkalian dua faktor, Born-Oppenheimer : e, n n e Pendekatan ini didasarkan pada fakta bahwa elektron begitu ringan relatif terhadap inti sehingga gerakan elektron dapat mudah mengikuti gerakan inti. Dari segi eksperimental, pendekatan ini dapat dibuktikan kebenarannya. Dari pendekatan ini kita dapat menghitung fungsi gelombang elektronik, e yang didapatkan sebagai penyelesaian persamaan hrödinger elektronik, H e ( Rn ) ( re ) Ee ( Rn ) ( re ) Persamaan ini masih mengandung posisi inti walaupun bukan sebagai variabel tetapi sebagai parameter. Sifat andium() dan Amonia (NH 3 ) Skandium dengan nomor atom 21 termasuk unsur golongan logam transisi yang dalam tabel sistem periodik berada pada periode 4 dan golongan IIIB. Struktur atomik skandium memiliki radius 1.60 Å sedangkan dalam bentuk ion sebesar 0,74 Å, jari-jari kovalennya 1.44 Å. K-60

Elektronegatifitasnya 1,36 (skala Pauling), panas pembakarannya sebesar 14,1 kj/mol, entalpi atomisasi 343 kj/mol pada 25 C, entalpi penguapannya 314,2 kj/mol, volume molar 15,04 cm 3 /mol. Potensial ionisasi pertama sebesar 6,54, kedua sebesar 12,8 ketiga sebesar 24,76 dan potensial elektron valensinya -58 ev. Massa atom rata-rata 44,95, titik didih 3104 K (2831 C) massa jenisnya 2,99 g/cm 3 pada 300 K, pada suhu 20 C dan tekanan 1 atm berwujud padat, berwarna putih keperakan yang memiliki bercak ketika ada di udara dan mudah terbakar jika tersulut api. Konfigurasi elektron keadaan dasar adalah 1s 2 2s 2 2p 6 3s 2 3p 6 3d 1 4s 2. + mempunyai konfigurasi elektronnya 1s 2 2s 2 2p 6 3s 2 3p 6 4s 1 3d 1. Umumnya di alam keadaan bermuatan +3, dalam hal ini atom melepaskan elektron di 2 elektron subkulit 4s dan 1 elektron di subkulit 3dnya. Analisis hasil struktur + -(NH 3 ) metode mekanika klasik dan mekanika kuantum Radial Distribution Functions (RDF) Radial distribution function (RDF) menyatakan fungsi distribusi jarak NH 3 terhadap +. Fungsi distribusi jarak (RDF) dari -N dan -H beserta bilangan integrasinya, yang diperoleh dari hasil simulasi dinamika molekular klasik ditunjukkan pada gambar 1 dan 2 dan nilai karakteristiknya dalam tabel 1 Tabel 1 Nilai karakteristik dari fungsi distribusi jarak untuk sistem + -NH 3 Metode Mekanika Klasik Mekanika Kuantum N H N H r M1 m1 2,32505 2,91527 2,37 2,90 r 3,7155 3,92553 2,94 5,00 N m 1 r M 2 m2 9,0239 27,2739 ~3,00 ~45,00 r N m 2 4,4651 6,51557 ~27 4,99547 6,54554 ~81 3,48 4,49 ~9 Gambar 1. Fungsi distribusi sudut (RDF) N dan bilangan integrasi yang diperoleh dengan simulasi DM klasik dan DM MK/MM K-61

Crys Fajar Partana Struktur Solvasi Ion... Gambar 2. Fungsi distribusi jarak (RDF) + H beserta bilangan integrasi hasil simulasi DM klasik dan DM MK/MM Dari gambar 1 metode mekanika klasik menunjukkan daerah solvasi kulit pertama ion + oleh amoniak diwakili oleh puncak pertama dari RDF + -N yang berpusat pada 2,32505 Å yang berarti jarak antara + dengan N dari molekul NH 3 pada kulit pertama adalah 2,32505 Å. Nilai ini merupakan jarak + -N yang paling banyak ditemukan dalam simulasi, sehingga menunjukkan jarak terdekat + -N yang paling mungkin terdapat dalam sistem + -NH 3. Hasil ini tidak dapat dibandingkan dengan hasil eksperimen karena sampai saat ini data eksperimen tentang solvasi + dalam amoniak belum ada, sedangkan berdasarkan perhitungan ab initio energi SCF dari sistem + -NH 3 mencapai minimum pada saat + -N berjarak 2,30 Å. Jarak + -N hasil perhitungan ab initio energi dibandingkan dengan hasil simulasi terdapat selisih 0,02505 Å, yakni jarak + -N hasil simulasi lebih besar. Pada gambar 2 terlihat bahwa pada jarak 2,91 puncak RDF + -H mencapai nilai maksimum pertama dan turun sampai nilai minimum pada jarak 3,92 Å. puncak ini menunjukkan solvasi kulit pertama dari atom H dari molekul NH 3. Bilangan integrasi RDF + -H pada kulit solvasi pertama adalah sebesar ~27,27. Puncak kedua terjadi pada jarak + -H sebesar 4,99 Å dan mencapai minimum pada jarak 6,54 Å. Bilangan integrasi RDF + -H pada kulit solvasi kedua adalah sebesar ~81. Bilangan integrasi RDF + -H baik pada kulit solvasi pertama maupun pada kulit solvasi kedua sesuai dengan RDF -N. Kesesuaian ini ditunjukkan dengan jumlah H pada kulit solvasi pertama maupun pada kulit solvasi kedua sesuai dengan jumlah N untuk molekul NH 3. Puncak RDF + -H kedua yang berbentuk landai (tidak tajam) menunjukkan bahwa struktur solvasi kulit kedua tidak dapat ditentukan secara tepat. Jarak N dan H terhadap + berdasarkan RDF hasil simulasi pada kulit solvasi pertama adalah 2,32 Å dan 2,91 Å. Perbedaan jarak ini menunjukkan bahwa puncak pertama dari RDF + - N tidak tumpang tindih dengan puncak pertama dari RDF + -H serta puncak pertama RDF + -N terjadi pada jarak yang lebih pendek dari puncak pertama RDF + -H. Fenomena ini menunjukkan bahwa solvasi pada kulit pertama mempunyai struktur yang tetap dengan atom nitrogen mengarah ke ion + sedangkan atom hidrogen menjauh dari +. Analis dengan metode kimia kuantum telah memberikan indikasi yang jelas terhadap perilaku structure breaking dari ion, puncak asimetrik pada kulit pertama, dan sejumlah puncak subkulit adalah ciri untuk struktur yang fleksibel dan tidak beraturan dari solvasi dengan perubahan koordinasi ligan yang cepat. Berdasarkan grafik RDF N juga diprediksi pada rentang jarak 2,00-4,29 Ǻ pada kulit pertama terjadi dua macam solvasi yang bersifat dinamis (labil), yang ditandai 2 puncak pada rentang jarak tersebut. Puncak pertama berpusat pada 2,37 Å dan kedua K-62

pada 3,48 Å. Ini berarti bahwa solvasi ini dimungkinkan tidak tetap, ada kalanya + berjarak 2,37 Å dan lain waktu berjarak 3,48 Å. Hasil ini tidak dapat dibandingkan dengan hasil eksperimen karena sampai saat ini data eksperimen tentang solvasi + dalam amonia belum ada, sedangkan berdasarkan perhitungan ab initio energi SCF dari sistem + NH 3 mencapai minimum pada saat + N berjarak 2,30 Å. Jarak + N hasil perhitungan ab initio energi dibandingkan dengan hasil simulasi terdapat selisih 0,07 Å, yakni jarak + N hasil simulasi lebih panjang. Coordinasi Number Distribution(CND) Berdasarkan analisis dengan mekanika bilangan koordinasi atau jumlah ligan yang mengelilingi atom pusat baik pada kulit solvasi pertama maupun pada kulit solvasi kedua serta persentase kemungkinan yang terjadi dapat dianalisis berdasarkan informasi yang diperoleh dari CND. Distribusi bilangan koordinasi untuk sistem + -NH 3 ditunjukkan oleh gambar 3. Pada solvasi kulit pertama angka solvasi menunjukkan angka 9 dengan kelimpahan sebesar 76,24 % sedangkan pada solvasi kulit kedua menunjukkan angka 28 dengan kelimpahan sebesar 22,81%. Gambar 3. Distribusi bilangan koordinasi pada solvasi kulit pertama dan kedua dari sistem + -NH 3 hasil simulasi dinamika molekular klasik. Angka solvasi pada kulit solvasi pertama yang tidak mencapai 100 % menunjukkan bahwa ada kemungkinan bilangan koordinasi yang lain, meskipun kelimpahannya sangat kecil. Kemungkinan terbesar kedua bilangan koordinasi pada kulit solvasi pertama adalah 8 dengan persentase sebesar 23,19 %. Solvasi + oleh NH 3 pada kulit solvasi pertama dengan 10 ligan NH 3 mengelilingi + mungkin terjadi meskipun persentasenya sangat kecil, hal ini di tunjukan dengan CND pada bilangan koordinasi 10 dengan kelimpahan sebesar 0.24 %. Hal ini menunjukkan bahwa struktur solvasi pada kulit solvasi pertama tidak stabil dan tidak dapat ditentukan secara tepat, meskipun demikian hasil CND menunjukkan bahwa + dengan bilangan koordinasi 9 mempunyai kemungkinan paling besar. Bilangan koordinasi berdasarkan analisis CND + -NH 3 sesuai dengan bilangan koordinasi berdasarkan bilangan integrasi fungsi distribusi jarak (RDF) + -N maupun + -H. Pada kulit solvasi kedua distribusi bilangan koordinasi CND + -NH 3 menunjukkan bahwa jumlah NH 3 yang mengelilingi + yang paling banyak ditemukan adalah pada angka 28 dengan kelimpahan sebesar 22,81 %. Selain angka 28, bilangan koordinasi yang mempunyai kelimpahan cukup besar adalah pada angka 27 dengan kelimpahan sebesar 18,209 %, angka 29 dengan kelimpahan sebesar 20,2354 %. Angka solvasi pada kulit solvasi kedua yang mempunyai kelimpahan di bawah 15 % antara lain adalah 23 (0.06 %), 24 (1,07 %), 25 (4,02 %), 26 (11,76%), K-63

Crys Fajar Partana Struktur Solvasi Ion... 30 (14,06 %), 31 (5,22 %), 32 (1,72 %), 33 (0.43 %), 34 (0,15 %) dan 35 (0,06 %). Dari data ini menunjukkan terjadi penyebaran jumlah molekul NH 3 yang mengelilingi + pada kulit solvasi kedua, sehingga penentuan struktur solvasi pada kulit solvasi kedua tidak dapat ditentukan secara tepat, tetapi dalam jangkauan yang lebar. Struktur solvasi + NH 3 berdasarkan metode mekanika kuantum distribusi bilangan koordinasi untuk sistem + NH 3 ditunjukkan oleh Gambar 4. Pada solvasi kulit pertama angka solvasi menunjukkan angka 3 dengan kebolehjadian sebesar 37 %. Karena rendahnya kebolehjadian solvasi kulit pertama, maka solvasi kulit kedua menjadi lebih kecil. Ini dapat dikatakan bahwa solvasi hanya terjadi pada kulit pertama. Rendahnya kebolehjadian angka solvasi yang ditunjukkan dengan distribusi bilangan koordinasi ini lebih menguatkan kebolehjadian bahwa solvasi yang terjadi pada + dalam amonia ini sangat fleksibel. Bilangan koordinasi berdasarkan analisis CND + NH 3 sesuai dengan bilangan koordinasi berdasarkan bilangan integrasi fungsi distribusi jarak (RDF) + N maupun + H. Gambar 4. Distribusi bilangan koordinasi pada solvasi kulit pertama dan kedua dari sistem + -NH 3 hasil simulasi dinamika molekular kuantum. Kesimpulan 1. Metode simulasi dinamika molekuler klasik yang digunakan untuk mempelajari struktur solvasi ion + dalam amoniak cair menghasilkan informasi bahwa struktur solvasi ion + dalam amoniak cair berbentuk fleksibel. Jarak antara + dengan N dari molekul NH 3 pada kulit solvasi pertama adalah 2,32505 Å, dengan bilangan integrasi sebesar 9. Probabilitas terbesar untuk menemukan N pada kulit solvasi kedua adalah pada jarak 4.4651 Å, dengan bilangan integrasi pada kulit solvasi kedua adalah sebesar ~27. 2. Metode simulasi dinamika molekuler kuantum yang digunakan untuk mempelajari struktur solvasi ion + dalam amoniak cair menghasilkan informasi bahwa struktur solvasi kulit pertama (I) terbentuk berbagai spesies kompleks (NH 3 ) n + di mana n mulai dari 1 7 dengan occurrence paling tinggi pada n=3 (37,50 %). Sedangkan solvasi pada kulit kedua tidak terbentuk PUSTAKA Armunanto, R., 2004, Simulation of Ag +, Au +, Co 2+ in Water, Liquid Ammonia and Water-Ammonia Mixture, Dissertation, Leopold-Franzens-Universität Innsbruck, Austria. Armunanto, R., hwenk, C.F., Rode, B.M., 2004, Gold(I) in Liquid Ammonia: Ab inito QM/MM Molecular Dynamics Simulations. J. Am. Chem. Soc., 126, 9934. K-64

Armunanto, R., hwenk, C.F., Randolf, B.R., Rode, B.M, 2004, Ab Initio QM/MM Molecular Dynamics Simulations of Co 2+ in Liquid Ammonia. Chem. Phys., 305, 135. Chen, M., Lu, H., Dong, J., Miao, L., and Zhou, M., 2002, Ammonia Activation by Early Transition Metal Atoms (, Ti, and V). Matrix Isolation Infrared Spectroscopic and Density Functional Theory Studies, J. Phys. Chem. A, 106, 11456-11464. Foresman, J.B., Frisch, L., 1996, Exploring Chemistry with Electronic Structure Methods, Gaussian, Pittsburg. IUPAC, 1997, Compendium of Chemical Terminology, Electronic version, Diakses Februari 2009, http://goldbook.iupac.org/s05747.html Pranowo, H.D., 2002, Pengantar Kimia Komputasi, Austrian-Indonesian Centre for Computational Chemistry (AIC), Jurusan Kimia Fakultas MIPA Universitas Gajah Mada, Yogyakarta. Selu, M., 2009, Penentuan Struktur Solvasi Ion (I) dalam Amoniak Cair dengan Metode Simulasi Dinamika Molekuler Klasik, Skripsi (Unpublished), FMIPA UGM, Yogyakarta. Urip., 2009. Simulasi Dinamika Molekuler Skandium(I) di dalam Amonia Cair denganmetode AB Initio Mekanika Kuantum/Mekanika Molekuler, Tesis(Unpublished), FMIPA UGM, Yogyakarta. K-65