Effect of atmospheric Stability near the Ground On Vertical Entity Transfers

dokumen-dokumen yang mirip
Data Center Governance Information Security Compliance Assessment Based on the Cobit Framewok (Case Study The Sleman Regency Data Center)

Data sheet acquired from Harris Semiconductor SCHS031

Khurmi, R. et al.; Theory of Machines, 14th ed.; S. Chand & Co. Ltd., New Dehli 2005; ISBN

PERBANDINGAN LAJU TRANSFER MOMENTUM DALAM KONDISI TIDAK STABIL, NETRAL DAN KONDISI STABIL DI DAERAH DATARAN RENDAH

Evaluation of the Indonesian Scholastic Aptitude Test According to the Rasch Model and Its Paradigm

CFD simulation for predicting the wind effect on the high rise building: NET Tower Surabaya

TUGAS BROWSING. Diajukan untuk memenuhi salah satu tugas Eksperimen Fisika Dasar 1. Di susun oleh : INDRI SARI UTAMI PEND. FISIKA / B EFD-1 / C

Keseimbangan Torsi Coulomb

Entrepreneurship-Based Course Design: A Case Study of Its Application in Human Resource Planning and Development Course

Electrostatics. Wenny Maulina

Biomass Gasification and Pyrolysis : Practical Design and Theory

Departemen Ilmu dan Teknologi Pangan Universitas Brawijaya

JUTAAN UMKM PAHLAWAN PAJAK: URUS PAJAK ITU SANGAT MUDAH (INDONESIAN EDITION) BY CHANDRA BUDI

ABSTRACT. a women with a career ineducate a child in a familyenvironment at Kasrepan

Informasi Data Pokok Kota Surabaya Tahun 2012 BAB I GEOGRAFIS CHAPTER I GEOGRAPHICAL CONDITIONS

ANALISIS KINERJA COOLANT PADA RADIATOR

H R L T Length of a structural bolt is measured from the underhead bearing surface to the extreme end of the bolt. Width Across Corners

PENGUJIAN PERBANDINGAN UNJUK KERJA ANTARA SISTEM AIR-COOLED CHILLER

RANCANG BANGUN TEMPORARY AIR CONDITIONER BERBASIS PENYIMPANAN ENERGI TERMAL ES

Nama : SUDARMAN. Nim : Kelas : FISIKA D

MA4081 PENGANTAR PROSES STOKASTIK Topik Khusus: M

ABSTRAK. Universitas Kristen Maranatha

Analysis of Sea Transportation Development to Support National Connectivity and Economic Growth of Papua Province

Metode Pemulusan Eksponensial Sederhana

Pemrograman Lanjut. Interface

STUDI TENTANG KONSTANTA LAJU PERPINDAHAN MASA-KESELURUHAN (K L a) H2S PADA PENYISIHAN NH 3 DAN DENGAN STRIPPING -UDARA KOLOM JEJAL.

DAN OZON STRATOSFER DI EQUATORIAL

MANAJEMEN RISIKO 1 (INDONESIAN EDITION) BY IKATAN BANKIR INDONESIA

ANALISA PEFORMANSI SISTEM PENGERING DALAM PROSES LAUNDRY DENGAN MEMVARIASIKAN TATA LETAK PAKAIAN

Dependent VS independent variable

ABSTRAK. Kata kunci : Kompetensi Pedagogik, Kompetensi Profesional, dan Hasil Belajar

DINAMIKA PROSES PENGUKURAN TEMPERATUR (Siti Diyar Kholisoh)

SIMULASI ALIRAN PANAS PADA SILINDER YANG BERGERAK. Rico D.P. Siahaan, Santo, Vito A. Putra, M. F. Yusuf, Irwan A Dharmawan

IDENTIFIKASI DAN ANALISIS KARAKTERISTIK FISIS WAVEFORM SATELIT ALTIMETRI STUDI KASUS: PESISIR PULAU JAWA

ABSTRAK PENGARUH ATRIBUT PRODUK TERHADAP KEPUTUSAN PEMBELIAN DAIHATSU SIRION PADA PT ASTRA DAIHATSU MOTOR BANDAR LAMPUNG. Oleh.

Perbandingan Akurasi Backpropagation Neural Network dan ANFIS Untuk Memprediksi Cuaca

KARAKTERISTIK KEKASAPAN PERMUKAAN DAN

STUDI METODA ANALISIS LINING TEROWONGAN DAN PERMODELAN KASUS TEROWONGAN PADA TANAH LUNAK

PENGARUH PERUBAHAN PARAMETER "A" SKEMPTON PADA KELAKUAN KONSOLIDASI TANAH LUNAK AKIBAT BEBAN TIMBUNAN

Callista Sulaiman

STUDI PERBANDINGAN PENURUNAN KELOMPOK TIANG DITINJAU DARI FAKTOR INTERAKSI DENGAN PENDEKATAN ELASTIK TESIS

KINETIKA & LAJU REAKSI

ANALISIS SUB-BULUH PADA MODEL REAKTOR SUSUNAN BAHAN BAKAR BUJURSANGKAR ATAU HEKSAGONAL

matematis siswa SMPN 1 Karangrejo Tulungagung Tahun Pelajaran 2016/2017 yang menggunakan model discovery learning lebih baik daripada menggunakan mode

mempunyai satuan momentum per satuan luas per satuan waktu [ (kg)(m/det)/(m 2 )(det)] atau

PERBANDINGAN KOMPETENSI ANTARA KURIKULUM KTSP DENGAN IGSE (Physics Science) Heru Kuswanto. Kompetensi Dasar

BAB II LANDASAN TEORI

MODULE 1 GRADE XI VARIATION OF EXPRESSIONS

Analisis Dasar dalam Runtun Waktu

KARAKTERISTIK CURAH HUJAN DKI JAKARTA DENGAN METODE EMPIRICAL ORTHOGONAL FUNCTION (EOF)

TRANSFER MOMENTUM. Massa = m B

IMPLEMENTASI ALAT PEMANGGIL IKAN BERBASIS PEMANCAR SUARA DAN CAHAYA

FISIKA THERMAL II Ekspansi termal dari benda padat dan cair

Lecture #6. Dioda Semikonduktor (Semiconductor Diode) Rangkaian Peredam Sinyal (Filter) Filter lolos rendah pasif Filter lolos tinggi pasif

aintis Volume 12 Nomor 1, April 2011, 22-28

ABSTRACT. Keywords: Celebrity endorser, attractiveness, trustworty, expertise and purchase intention. Universitas Kristen Maranatha

MODEL POLA LAJU ALIRAN FLUIDA DENGAN LUAS PENAMPANG YANG BERBEDA MENGGUNAKAN METODE BEDA HINGGA

KESASTRAAN MELAYU TIONGHOA DAN KEBANGSAAN INDONESIA: JILID 2 FROM KPG (KEPUSTAKAAN POPULER GRAMEDIA)

ADDING RTGS BENEFICIARY FOR CHECKER MAKER SYSTEM

Physic Work sheet Grade XI Semester I. 2. Newton s Law of Gravitation

ABSTRACT. Key words : accounting information system, sales credit, sales effectiveness. Universitas Kristen Maranatha

THE ROLE OF INTERNAL AUDIT IN THE PREVENTION OF FRAUD

Dermatoglifi tipe pola dan jumlah sulur ujung jari tangan beberapa strata pendidikan masyarakat Indonesia

PREDIKSI KECEPATAN PHASE GELOMBANG SOLITER TERGANGGU AHMAD HAKIM

PESTA SAINS NASIONAL 2012 KOMPETISI FISIKA

SKRIPSI PERAN INTERNATIONAL LABOUR ORGANIZATION (ILO) TERHADAP PELANGGARAN HAM BERUPA PERDAGANGAN ORANG YANG TERJADI PADA ANAK BUAH KAPAL (ABK)

ABSTRACT. i Universitas Kristen Maranatha

Time series Linier Models

PENGARUH KONDISI BATAS TEPI TERHADAP DAYA DUKUNG PONDASI DANGKAL MENERUS PADA TANAH LEMPUNG ABSTRAK

No Urut : 120/S2-TL/TPL/1999

ABSTRAK GAMBARAN PENGETAHUAN DAN PERILAKU KARYAWAN LAPANGAN PERUSAHAAN LISTRIK NEGARA (PLN) BANDUNG TERHADAP KESELAMATAN DAN KECELAKAAN KERJA 2010

10/2/2012 TANK SYSTEM AQUACULTURE ENGINEERING

Entrepreneurship Education in Islamic Community: Its Application in Human Resource Planning and Development Course

RANCANG BANGUN HEAT EXCHANGER TUBE NON FIN SATU PASS, SHELL TIGA PASS UNTUK MESIN PENGERING EMPON-EMPON

PENGARUH PERBEDAAN BUDAYA TERHADAP PROSES KOMUNIKASI INTERPERSONAL SKRIPSI

ABSTRAK PENGARUH DAN HUBUNGAN TINGGI BADAN TERHADAP KAPASITAS VITAL PADA PRIA DEWASA NORMAL

Statistik Bisnis 1. Week 9 Discrete Probability

Institut Teknologi Bandung Jl. Ganesha 10 Bandung, itb. ac. id

Teams Achievement Division (STAD) pada mata pelajaran Matematika materi

Isyarat. Oleh Risanuri Hidayat. Isyarat. Bernilai real, skalar Fungsi dari variabel waktu Nilai suatu isyarat pada waktu t harus real

oleh WAHYUNI PUTRANTO NIM. M SKRIPSI ditulis dan diajukan untuk memenuhi sebagian persyaratan memperoleh gelar Sarjana Sains Matematika

Analisa Unjuk Kerja Heat Recovery Steam Generator (HRSG) dengan Menggunakan Pendekatan Porous Media di PLTGU Jawa Timur

E VA D A E L U M M A H K H O I R, M. A B. P E R T E M U A N 2 A N A

ANALISIS NUMERIK PROFIL SEDIMENTASI PASIR PADA PERTEMUAN DUA SUNGAI BERBANTUAN SOFTWARE FLUENT. Arif Fatahillah 9

Psikometri. Analisis Item 1

PENGARUH VARIASI LAPISAN DASAR SALURAN TERBUKA TERHADAP KECEPATAN ALIRAN ABSTRAK

ANALISIS CAPAIAN OPTIMASI NILAI SUKU BUNGA BANK SENTRAL INDONESIA: SUATU PENGENALAN METODE BARU DALAM MENGANALISIS 47 VARIABEL EKONOMI UNTU

Pengembangan pertanian organik (kasus penerapan pupuk organik pada padi sawah di kecamatan arga makmur; Kabupaten Bengkulu Utara, Propinsi Bengkulu)

APA ITU MEKANIKA? CABANG ILMU FISIKA YANG BERBICARA TENTANG KEADAAN DIAM ATAU GERAKNYA BENDA-BENDA YANG MENGALAMI KERJA ATAU AKSI GAYA,

TESIS MAGISTER OLEH : RM. RUSTAMAJI NIM

The Analysis of Velocity Flow Effect on Drag Force by Using Computational Fluid Dynamics

INTEGRASI NUMERIK KAPASITAS PANAS DEBYE MATERIAL LOGAM MENGGUNAKAN METODE NEWTON-COTES

METODE PEMOTONGAN DERET FOURIER UNTUK MENYELESAIKAN PERSAMAAN GERAK GELOMBANG INTERNAL YANG PERIODIK PADA FLUIDA DUA LAPISAN MUHBAHIR

ABSTRAK. Kata kunci: Kreativitas Guru PAI, Metode Pembelajaran

Sistem Informasi. Soal Dengan 2 Bahasa: Bahasa Indonesia Dan Bahasa Inggris

PERANCANGAN SISTEM KENDALI MODEL FOLLOWING DINAMIKA GERAK LONGITUDINAL PADA IN-FLIGHT SIMULATOR N250-PA1 DENGAN METODE KENDALI OPTIMAL KUADRAT LINIER

ABSTRAK PERBANDINGAN EFEKTIVITAS PENGGUNAAN ABATE (TEMEFOS) PADA LARVA NYAMUK CULEX DI DALAM DAN DI LUAR RUANGAN

FENOMENA FLASHBACK DI RUANG BAKAR JET DENGAN MENGGUNAKAN FLAME HOLDER

Universitas Kristen Maranatha

ABSTRAK. Universitas Kristen Maranatha

Transkripsi:

Effect of atmospheric Stability near the Ground On Vertical Entity Transfers Rolles N. Palilingan, Meity M. Pungus Physics Department, Faculty of Mathematics and Sciences Manado State University Subardjo Meteorological and Geophysical Agency, Manado ABSTRAK Dalam penelitian tentang fenomena transfer entitas yang dapat berupa transfer momentum panas dan massa dalam sistim Permukaan-Atmosfir, kondisi stabilitas atmosfir dekat permukaan harus diperhitungkan karena pada kenyataan laju transfer entitas turut ditentukan oleh kondisi stabilitas ini. Kondisi stabilitas dapat berupa kondisi stabil, netral dan tidak stabil. Untuk menentukan kondisi ini dalam praktek, digunakan parameter bilangan Richardson (Ri), yang dapat dihitung dengan mengadakan pengukuran rata-rata kecepatan angin dan suhu udara pada dua ketinggian (z 1, z ) di atas permukaan. Kondisi stabilitas memberikan efek terhadap laju transfer entitas. Oleh karena itu dalam menentukan laju transfer dengan metode aerodinamik, sangat perlu untuk memperhitungkan kondisi stabilitas ini. Kekeliruan yang cukup menyolok dapat terjadi bila kondisi stabilitas tidak diperhitungkan. Faktor koreksi pada persamaan-persamaan transfer akan semakin besar dengan semakin tidak stabilnya atmosfir dan akan semakin kecil di bawah nol dengan semakin stabilnya atmosfir. Efek faktor stabilitas terhadap laju transfer biasanya valid dalam kisaran Ri yang mendekati batas -1 dan +1. 1. Introduction In the subject of environmental physics the system of Surface-Atmosphere is frequently used as a focus of study about physical properties of the system. Some of physics concepts that important are transfer of entity that can be momentum, heat and mass (like O, CO, and others). The rate of transfer depends on conditions of the atmosphere near the ground. The conditions are usually stated as stability of atmosphere. In practice, the conditions of the atmosphere near the ground are calculated by using Richardson number (Calder, 1949; Rosenberg et al. 1990), g ( / +Γ) Ri= (1) Τ ( / ) in which g, gravity acceleration; T, mean of temperature in layer of air above the surface; dan are velocity and temperature gradient. Because of important role of stability factor in calculating the rate of entity so that as the first step we have to know the stability condition at the time on which the measurements of the properties were done.. The Conditions of Atmosphere Near The Ground Physically, the conditions of the atmosphere near the ground are detected by looking turbulent motion of the air molecules. In the air, as fluid, the motions of the fluid are investigated by using the concept of parcel or eddy circle. Calder (1949) with complicated steps mathematically stated the rate of mean kinetic energy of the parcel by the equation, Ε ρg ρ =ρk ( ) K ( +Γ) M Τ H D [ w' ( p' + 1/ ρw' )] () According to Richardson Calder s equation becomes simple by neglecting a number of terms in the equation () those are: 1. the dissipation of energy D by molecular forces.. the convective change of E associated with the mean motion (this requires the mean eddying energy to be uniform horizontally). 3. the diffusion of E associated with the eddy motion. JURNAL METEOROLOGI DAN GEOFISIKA Vo. 5 Bo. 1 Januari-Maret 004 1

4. the rate of working of the fluctuating gradients of static pressure on the eddying motion. and is assumed that 5. the vertical heat flux is given by equation, T H = - ρc p K H ( + Γ) Equation (3) can be rearranged as E( z, K z K = t M ( )( ) { M g(/ +Γ) } (4) K u z H Τ ( / ) Since K H (z) (/) is essentially positive and different from zero (except it the trivial Ε( z, case u = constan, the sign of No Damped forced R 1 Fully 10 1,0 0,1 0,01 0,001 Stability 0,5-0,5-0,15 - F = (1 5Ri) Stable F = (1 16Ri) 3/4-8 unstable - 4 - -0,001 0,01 0,1 1,0-10 forced Mixed R 1 Stability factor Free Figure 1. Non-dimensional stability factor (φ V φ P ) -1 plotted logarithmically against the Richardson number stability parameter. Flux calculated in non-neutral conditions using flux-gradient equations valid for neutral conditions must be multiplied by this factor. Also showing the characteristic flow regimes at different stability (Oke, 1978; Thom, 1975). 6. K H = K M Richardson s fundamental equation is E( z, g = K ( z)( ) K ( z)( +Γ) M H (3) T in which Ε( z, = rate of increase of the mean turbulent kinetic energy per unit mass of the fluid at height z above the earth s surface. dan = mean velocity and temperature gradient. K M (z), K H (z) = coefficients of turbulent diffusion for momentum and heat respectively (i.e. the eddy viscosity and eddy conductivity) Γ = dry adiabatic lapse rate. g = acceleration due to gravity depends on the non-dimensional quantity g ( / +Γ) Ri= Τ ( / ) called Richardson number (Ri). On the assumption that K M (z) = K H (z), whether turbulence will increase or decrease will depend on the non-dimensional quantity, Ri. In the latter development Richardson number has became the principal criterion to detect the condition of the atmosphere near the ground. Based on many investigations about characteristic of fluid motion Thom (1975) and Oke (1978) had described the relation between Richardson number and stability regimes in relation to regimes of as can be seen in the figure 1 above. From the figure we also JURNAL METEOROLOGI DAN GEOFISIKA Vo. 5 Bo. 1 Januari-Maret 004

can detect the regime of of air motion. 3. The Effect of Stability on Entity transfer. The effect of stability on entity transfer like momentum, heat and masses in the Surface- Atmosphere system can be seen to the equations of transfer below (Monteith and Unsworth 1990; Palilingan 003), frequently called aerodynamic method. (1) Momentum transfer τ = ρk (z-d) (φ M ) - (5) () Heat transfer H = - T ρ c p k (z d) (φ H φ M ) -1 (6) (3) Water vapor transfer ρc λe = - p e k (z d) (φ V φ M ) -1 (7) γ (4) CO transfer CO = k (z-d) c (φ C φ M ) -1 (8) Factor (φ X φ M ) -1 indicate stability factor or also describe the effect of atmosphere conditions on the rate of entities transfers. As can be seen to the figure 1 that the stability factor increases in the regime unstable and decreases in stable regime, and in the neutral regime the stability factor nearly unity. Based on many investigations in fields and also in wind tunnel, correction factor written as, (φ X φ M ) -1 = (1-Ri) 3/4 (9) in unstable conditions and (φ X φ M ) -1 = (1-Ri) (10) in stable conditions, while in neutral conditions (φ X φ M ) -1 1 (11) So by above theoretical reality can be concluded that the rate of transfer is affected by the atmospheric condition. In unstable condition mixed and free dominate the mechanism of transfer, in neutral condition dominated by forced, while in stable condition by damped forced. As measurement of property observed in two heights z 1 and z and by assuming that d = 0, the transfer equations of entity written as (Oke (1978; Palilingan, 003), Momentum transfer Δu τ = ρk z (φm) - (1) Heat transfer H = - Δu ΔT ρ c p k z (φ H φ M ) -1 (13) Water vapor transfer ρc λe = - p Δu Δe k z ( Φ(φ V φ M ) -1 (14) γ CO transfer CO = k z Δu Δc (φcφ M ) -1 (15) where Δu = u (z )- u (z 1 ), ΔT = Τ (z )- Τ (z 1 ), Δe = e (z)- e (z 1 ), Δc = c (z)- c (z 1 ), And = z - z 1. By using equations 1 until 15 the rate of the transfers can be evaluated. 4. Examples of Data and calculating of correction factor in transfer equations In order to see how the stability affect the rate of transfer of entities, in appendix table 1 given the data observed in Papakelan station of climatology in Tondano observed on 15 until 17 October 1999. Based on this data would be shown the effect of atmospheric stability against the rate of transfers. As can be seen in the table that the correction factor (φ H φ M ) -1 are small in the neutral conditions where the value of the factors are in range -0,01<R I <0,01, and as in figure these are neutral regime. Neutral regime occurred especially in the period 1 until period 4. The correction factors of (φ H φ M ) -1 are large in period 5 up to period 10 and counted as unstable conditions. By using the equation 13 for heat transfer, for example, obtained the rates like in the last column of the appendix table. The wrong is done as the correction factor is neglected. As can be seen in period 9 and 10 the correction factors can reach the value 17.888 and 15.336. So these values can not be neglected in calculating the rate of transfer. Of course, beside the atmospheric stability, the rate of transfer determined by driving force as well. Driving force for momentum, heat, and mass (water vapor CO ) transfer are Δu, ΔT and Δe and Δc. The driving force is large more and JURNAL METEOROLOGI DAN GEOFISIKA Vo. 5 Bo. 1 Januari-Maret 004 3

more then the rate of transfer is large more and more. The others conclusion that are important in relation to the rate of entities transfer are: in unstable condition mixed and free dominate transfer mechanism, forced in neutral condition and damped forced in stable condition. From the value of the correction factor (φ H φ M ) -1 in every period and compared with the figure 1, the effect of atmospheric stability against the rate of transfer can be summarized in table 1. Table 1. Summarizing qualitatively effect of atmospheric stability against the correction factor in calculating the rate of transfers. Oke, T. R. 1978. Boundary Layer Climates. Methuen & LTD. London. 37p. Palilingan, R. N. 003. Fisika Lingkungan. Edisi Pertama. Media Pustaka Manado. 64p. Rosenberg, N. J, Blad, B. L. and S. B. Verma. 1990. Microclimate. The Biological Environment. nd ed. John Wiley & Sons. New York. 495p. Thom, A. S. 1975. Momentum, mass and heat exchange of plant communities. In: Vegetation and the Atmosphere. Volume I Principles. Ed. Monteith, J. L., pp 57-109. Academic Press. London. Condition Ri (φ H φ M ) -1 Stable Ri>0,01 < 1 Neutral -0,01<Ri<0,01 1 Unstable Ri<-0,01 >>>1 5. Conclusion By discussing this paper there are some conclusions that can be taken here those are: 1. In investigating physical properties of the atmosphere near the ground especially on the rate of entities transfers, the conditions of the atmosphere usually stated with stability must be taken into account. The effect of atmosphere conditions on the rate of entity transfers can be summarized as follows: The correction factor in the transfer equations become large in unstable condition so in calculating the rate of transfer this factor can not be neglected. In other word, we have to use the complete form of transfer equations that take into consideration the correction factor. 6. References Calder, K. L. 1949. The criterion of Turbulence in A Fluid of Variable Density, With Particular Reference to conditions in The Atmosphere. Quart.J.Roy. Meteorol.Soc. 75:71-78. Monteith, J. L. and M. H. Unsworth. 1990. Principles of Environmental Physics. nd ed. Edward Arnold, London 91p JURNAL METEOROLOGI DAN GEOFISIKA Vo. 5 Bo. 1 Januari-Maret 004 4

Table 1. Examples of data and calculating of correction factor in transfer equations. Data observed in 14 periods of observation. In every period data observed per 5 minute. Location of observation is Papakelan Tondano. Period 1 until period 4 observed on 15-17 October 1999 while period 5 until period 10 observed on 16-18 February 1999. Time Period of observation Temp. (K) T(K) Z (m) u(m/de Ri Stability T-T1 u-u1 (φ H φ M ) -1 heat transfer The rate of (Wm - ) 1 98.7 97.8 0.5 170.500-0.0000035 Neutral -1.90-164.7 1.000 8051.7 (07.00-07.5) 96.8 5.830 98.3 97.7 0.5 38.830-0.0000118 Neutral -1.5 7.34 1.000 8108.05 (07.30-07.55) 97.1 111.170 3 99.0 97.7 0.5 10.000-0.000456 Neutral -.67 3.17 1.003 556.64 (08.00-08.5) 96.3 33.170 4 300.0 98.4 0.5 6.830-0.0004049 Neutral -3.18 19.67 1.005 5635.09 (08.30-08.55) 96.8 6.500 5 300.4 300.0 0.5 0.413-0.0569 Unstable -0.80 0.835 1.618 96.09 13.30-13.55 99.6 1.48 6 99.6 99. 0.5 0.384-0.085311 Unstable -0.90 0.7 1.907 110.79 14.00-14.5 98.7 1.104 7 99.8 99.4 0.5 0.351-0.1393049 Unstable -0.80 0.531.409 91.74 14.30-14.55 99.0 0.88 8 97.8 97.5 0.5 0.4-0.05310 Unstable -0.60 0.38.978 60.88 15.00-15.5 97. 0.6 9 98.5 98.3 0.5 0.099 -.861396 Unstable -0.40 0.083 17.888 53.4 15.30-15.55 98.1 0.18 10 98.5 98. 0.5 0.078 -.318787 Unstable -0.70 0.1 15.336 117.41 16.00-16.5 97.8 0.00 Notes: the density of air (ρ) and the constant pressure heat capacity (c p ) on temperature average (the third column) calculated by using equations: pm 1,013 x 10 5 x9 ρ = = RT 8,31x10 3 and T c p = 6,713 + 0,4697x10-3 T + 1,147x10-6 T - 0,4696x10-9 T 3 (cal/gr-mol K) 1 cal/gr-mol K = 4.186x10 3 Joule/kg-mol K. JURNAL METEOROLOGI DAN GEOFISIKA Vo. 5 Bo. 1 Januari-Maret 004 5