BAB III Metode Penelitian Laboratorium

dokumen-dokumen yang mirip
BAB III METODE PENELITIAN LABORATORIUM

PENGARUH POLA ALIRAN DAN PENGGERUSAN LOKAL DI SEKITAR PILAR JEMBATAN DENGAN MODEL DUA DIMENSI ABSTRAK

TESIS. Karya tulis sebagai salah satu syarat untuk memperoleh gelar Magister dari Institut Teknologi Bandung. Oleh

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB IV ANALISA DAN PERHITUNGAN DATA

BAB IV METODE PENELITIAN

BAB IV METODOLOGI PENELITIAN

BAB IV METODE PENELITIAN

BAB IV METODE PENELITIAN

BAB V PERCOBAAN ABUTMENT KACA DAN INITIAL CONDITION

STUDI PERENCANAAN HIDRAULIK PEREDAM ENERGI TIPE BAK TENGGELAM (CEKUNG) DENGAN MODEL FISIK DUA DIMENSI

BAB III METODE PENELITIAN. fakultas teknik Universitas Diponegoro Semarang. Penelitian yang dilakukan

STUDI KARAKTERISTIK ALIRAN AIR MELALUI PINTU TONJOL DAN PENGARUHNYA TERHADAP PENGGERUSAN DENGAN MODEL FISIK DUA DIMENSI

BAB V HASIL DAN PEMBAHASAN. Tabel 5.1 Analisis Gradasi Butiran sampel 1. Persentase Kumulatif (%) Jumlah Massa Tertahan No.

GERUSAN YANG TERJADI DI SEKITAR ABUTMENT BERSAYAP PADA JEMBATAN (KAJIAN LABORATORIUM) Oleh : EKA RISMA ZAIDUN PEMBIMBING

KARAKTERISTIK ALIRAN AIR DAN PENGGERUSAN MELALUI PINTU TONJOL PADA ALIRAN TIDAK SEMPURNA DENGAN UJI MODEL FISIK DUA DIMENSI

FAKULTAS TEKNIK JURUSAN TEKNIK SIPIL UNIVERSITAS KRISTEN MARANATHA BANDUNG ABSTRAK

PENGARUH PEMASANGAN KRIB PADA SALURAN DI TIKUNGAN 120 ABSTRAK

BAB I Pendahuluan Latar Belakang

BAB 1 PENGUJIAN ANALISIS SARINGAN AGREGAT HALUS DAN KASAR

BAB IV OLAHAN DATA DAN PEMBAHASAN

BAB IV METODE PENELITIAN

BAB IV METODE PENELITIAN

BAB IV METODOLOGI PENELITIAN

STUDI PERENCANAAN KOEFISIEN DEBIT MELALUI PINTU TONJOL DENGAN MODEL FISIK DUA DIMENSI

Cara Mengukur dan Menghitung Debit Saluran

BAB IV METODE PENELITIAN. A. Tinjauan Umum. B. Maksud dan Tujuan

Agung Wiyono. Joko Nugroho. Widyaningtias. Eka Risma Zaidun. Kata-kata Kunci : Abutment, gerusan, saluran menikung, saluran lurus, dan sedimentasi.

STUDI PERENCANAAN HIDRAULIK BENDUNG TIPE GERGAJI DENGAN UJI MODEL FISIK DUA DIMENSI ABSTRAK

BAB V HASIL DAN PEMBAHASAN. A. Data Penelitian

Tata cara pembuatan model fisik sungai dengan dasar tetap

BAB I ALIRAN MELEWATI AMBANG ( AMBANG LEBAR DAN AMBANG TAJAM )

BAB IV METODE PENELITIAN. A. Tinjauan Umum

PERENCANAAN PUSAT LISTRIK TENAGA MINI HIDRO PERKEBUNAN ZEELANDIA PTPN XII JEMBER DENGAN MEMANFAATKAN ALIRAN KALI SUKO

PENGARUH BENTUK PILAR TERHADAP PENGGERUSAN LOKAL DI SEKITAR PILAR JEMBATAN DENGAN MODEL DUA DIMENSI. Vinia Kaulika Karmaputeri

BAB IV METODOLOGI PENELITIAN A. Bagan Alir Rencana Penelitian

STUDI PERENCANAAN HIDRAULIK PEREDAM ENERGI TIPE MDO DENGAN MODEL FISIK DUA DIMENSI

STUDI EKSPERIMEN AGRADASI DASAR SUNGAI PADA HULU BANGUNAN AIR

LAMPIRAN 1 DISTRIBUSI UKURAN BUTIRAN

PERENCANAAN PEMBANGKIT LISTRIK TENAGA MIKROHIDRO DI BENDUNGAN SEMANTOK, NGANJUK, JAWA TIMUR

BAB III METODOLOGI PENELITIAN

STUDI PENGGERUSAN LOKAL DISEKITAR PILAR JEMBATAN AKIBAT ALIRAN AIR DENGAN MENGGUNAKAN MODEL 2 DIMENSI

PENGARUH ARAH SAYAP PELIMPAH SAMPING DAN KEDALAMAN ALIRAN TERHADAP KOEFISIEN DEBIT

METODE PENGUJIAN HUBUNGAN ANTARA KADAR AIR DAN KEPADATAN PADA CAMPURAN TANAH SEMEN

PENGARUH ENDAPAN DI UDIK BENDUNG TERHADAP KAPASITAS ALIRAN DENGAN MODEL 2 DIMENSI

III. METODE PENELITIAN. Penelitian ini bertujuan untuk mengetahui pengaruh fly ash terhadap kuat

BAB III METODE PENELITIAN

BAB IV METODE PENELITIAN. A. Tinjauan Umum

NASKAH SEMINAR 1. ANALISIS MODEL FISIK TERHADAP GERUSAN LOKAL PADA PILAR JEMBATAN (Studi Kasus Pilar Kapsul dan Pilar Tajam Pada Aliran Subkritik)

9. Dari gambar berikut, turunkan suatu rumus yang dikenal dengan rumus Darcy.

MODEL BANGUNAN PENDUKUNG PINTU AIR PAK TANI BERBAHAN JENIS KAYU DAN BAN SEBAGAI PINTU IRIGASI

Studi Pengaruh Sudut Belokan Sungai Terhadap Volume Gerusan

BAB IV METODE PENELITIAN

BAB IV METODE ANALISIS

Cara uji kepadatan ringan untuk tanah

PENYELIDIKAN OPERASI PINTU INTAKE EMBUNG SAMIRAN DENGAN UJI MODEL HIDROLIK. Dwi Kurniani *) Kirno **)

STUDI PERENCANAAN HIDRAULIK PEREDAM ENERGI TIPE VLUGHTER DENGAN MODEL FISIK DUA DIMENSI

LAPORAN UJI MODEL FISIK

Koordinat : S : ,64 E : Hari tanggal : Sabtu, 1 April 2017 Jam :15.32 WIB Elevasi : m SKETSA

BAB VI KESIMPULAN DAN SARAN

KARAKTERISTIK ALIRAN SEDIMEN SUSPENSI PADA SALURAN MENIKUNG USULAN PENELITIAN DESERTASI

GALIH EKO PUTRA Dosen Pembimbing Ir. Abdullah Hidayat SA, MT

BAB III METODOLOGI PENELITIAN

BAB IV PEMBAHASAN DAN ANALISIS

BAB V HASIL PENELITIAN DAN PEMBAHASAN

ANALISIS GERUSAN DI HILIR BENDUNG TIPE USBR-IV (UJI MODEL DI LABORATORIUM)

KAJIAN PERILAKU DEBIT ALAT UKUR AMBANG LEBAR TERHADAP PROFIL ALIRAN

NUR EFENDI NIM: PROGRAM STUDI TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS PASIR PENGARAIAN KABUPATEN ROKAN HULU RIAU/2016

STUDI PERENCANAAN HIDRAULIK PEREDAM ENERGI TIPE SCHOKLITSCH DENGAN MODEL FISIK DUA DIMENSI

Tujuan: mendapatkan campuran agregat halus dan kasar yang optimal, sehingga menghasilkan beton yang murah dan workable Syaratnya:

STUDI PERENCANAAN HIDRAULIK PEREDAM ENERGI TIPE USBR II DENGAN METODE UJI FISIK MODEL DUA DIMENSI

PENGARUH VARIASI LAPISAN DASAR SALURAN TERBUKA TERHADAP KECEPATAN ALIRAN ABSTRAK

BAB III METODOLOGI PENELITIAN

UNIVERSITAS MUHAMMADIYAH YOGYAKARTA Fakultas Teknik Program Studi S-1 Teknik Sipil Laboratorium Teknologi Bahan Kontruksi

BAB 4 HASIL DAN ANALISA

Tata cara pengukuran kecepatan aliran pada uji model hidraulik fisik (UMH-Fisik) dengan alat ukur arus tipe baling-baling

Berfungsi mengendalikan limpasan air di permukaan jalan dan dari daerah. - Membawa air dari permukaan ke pembuangan air.

REVITALISASI PEMBANGKIT LISTRIK TENAGA MIKROHIDRO SEWON. Laporan Tugas Akhir. Atma Jaya Yogyakarta. Oleh : WELLY EKA CHARISMA NPM.

EXECUTIVE SUMMARY JARINGAN IRIGASI PERPIPAAN

UNIVERSITAS MUHAMMADIYAH YOGYAKARTA Fakultas Teknik Program Studi S-1 Teknik Sipil Laboratorium Teknologi Bahan Kontruksi

Vol.17 No.2. Agustus 2015 Jurnal Momentum ISSN : X

DAMPAK PENYEMPITAN PENAMPANG SUNGAI TERHADAP KONDISI ALIRAN (Studi Kasus Pada Sungai Krueng Pase)

BAB V HASIL DAN PEMBAHASAN

LAMPIRAN 1 DISTRIBUSI UKURAN BUTIRAN

BAB III LANDASAN TEORI

BAB III LANDASAN TEORI

BAB V HASIL ANALISIS DAN PEMBAHASAN

BAB 4 HASIL DAN PEMBAHASAN

BAB V HASIL ANALISIS DAN PEMBAHASAN

BAB I PENDAHULUAN 1.1 Latar Belakang

III. METODE PENELITIAN. ini adalah paving block dengan tiga variasi bentuk yaitu berbentuk tiga

BAB IV METODOLOGI PENELITIAN

PENGUKURAN DEBIT ALIRAN PADA SALURAN TERBUKA

Jom FTEKNIK Volume 3 No.2 Oktober

METODE PENGUJIAN TEBAL DAN PANJANG RATA-RATA AGREGAT

METODE PENELITIAN. Sampel tanah yang digunakan berupa tanah lempung anorganik yang. merupakan bahan utama paving block sebagai bahan pengganti pasir.

Mengenalkan kepada Peserta beberapa contoh bangunan irigasi, khususnya bangunan sadap, bangunan pembawa, serta bangunan pembagi.

MODEL FISIK KINCIR AIR SEBAGAI PEMBANGKIT LISTRIK

ANALISIS HIDROLIKA BANGUNAN KRIB PERMEABEL PADA SALURAN TANAH (UJI MODEL LABORATORIUM)

III. METODOLOGI PENELITIAN. Untuk memperoleh hasil penelitian yang baik dan sesuai, maka diperlukan

Transkripsi:

BAB III Metode Penelitian Laboratorium 3.1. Model Saluran Terbuka Pemodelan fisik untuk mempelajari perbandingan gerusan lokal yang terjadi di sekitar abutment dinding vertikal tanpa sayap dan dengan sayap pada saluran lurus, tikungan 90 derajat, dan 180 derajat ini dilakukan di Laboratorium Uji Model Hidraulika, Departemen Teknik Sipil, Institut Teknologi Bandung. Saluran terbuka ini di modelkan dengan dinding fiberglass dan dasar saluran terbuat dari semen, saluran memiliki bagian lurus serta sudut tikungan 90 dan 180. Panjang as saluran dari hulu ke hilir adalah 12,4 meter, lebar saluran 0,5 meter dan tinggi saluran 0,4 meter, dengan dasar pasir yang ditimbun setinggi 0,2 meter. Saluran terbagi menjadi lima bagian, dari hulu ke hilir yaitu: Bagian lurus I : saluran lurus sepanjang 3 meter, memiliki segmen antara 200 cm 0 cm Bagian tikungan I : saluran menikung 180 dan berjari jari as 1,25 meter, memiliki segmen antara 0º - 180º Bagian lurus II : saluran lurus sepanjang 1,5 meter, memiliki segmen antara 0 150 cm Bagian tikungan II : saluran menikung 90 dan berjari jari as 1,25 meter, memiliki segmen antara 0º - 90º Bagian lurus III : saluran lurus sepanjang 2 meter, memiliki segmen antara 0 100 cm Denah model saluran dapat dilihat pada Gambar 3.1. III-1

Gambar 3. 1 Denah Model Saluran Terbuka dengan Tikungan 90 Derajat dan 180 Derajat Model saluran terbuka dengan tikungan 180 derajat dan 90 derajat ini bila dikembangkan untuk prototype di lapangan, apabila diasumsikan undistorted scale adalah 1 : 50, serupa dengan saluran dengan panjang as 620 meter (0,6 km), lebar 25 meter, dan tinggi saluran hingga dasar adalah 10 meter. Sedangkan waktu pengaliran selama 6 (enam) jam pada model apabila diaplikasikan untuk prototype akan membutuhkan waktu pengaliran selama 42,4 jam atau 42 jam 24 menit. Gambar 3. 2 Tipikal Prototype Saluran dengan Abutment yang Mengakibatkan Penyempitan pada Badan Saluran (Lokasi: Teluk Naga, Banten, Desember 2007) III-2

3.2. Material Dasar Material dasar yang digunakan dalam penelitian berupa pasir dari Gunung Galunggung. Pasir tersebut disaring dengan menggunakan saringan 1,7 mm dan 1,0 mm sehingga diperoleh butiran berdiameter 1,0 1,7 mm., yang berarti bahwa butiran ini lolos saringan 1,7 mm dan tertahan saringan 1,0 mm. Pasir dihamparkan pada dasar saluran hingga mencapai ketebalan 20 cm. Selanjutnya, pasir sebagai material dasar ini dites di laboratorium untuk mengetahui sebaran gradasi butiran. Dari grafik kurva gradasi pada Gambar 3.3, didapat harga d 10 = 0,30 mm, d 50 = 0,90 mm, d 60 = 1,2 mm, dan d 90 = 1,9 mm. Hasil perhitungan analisis saringan berdasarkan standar ASTM 136 84a/ASHTO T.27 74 dapat dilihat pada Tabel 3.1. Penggunaan pasir dari Gunung Galunggung bertujuan untuk mempermudah penelitian, yaitu: Kondisinya relatif sama untuk setiap kali running. Tidak dibutuhkan dalam jumlah yang banyak karena dapat digunakan untuk beberapa kali running. Sudah tersedia di Laboratorium Uji Model Hidraulika ITB. III-3

Tabel 3. 1 Hasil Analisis Saringan Pasir yang Digunakan dalam Model (Sumber: Dr. Ir. Agung Wiyono dan Tim) Ukuran Saringan Berat Tertahan Persentase Tertahan Persentase Tertahan Kumulatif Persentase Lolos Kumulatif SPEC ASTM (mm) (gr) (%) (%) (%) C33-90 9.5 0 0 0 100 100 4.75 0 0 0 100 95-100 2.36 0 0 0 100 80-100 1.18 165.5 33 33 67 50-85 0.6 201 40 73 27 25-60 0.3 78 16 89 11 10-30 0.15 39 8 97 3 2-10 0.075 16 3 100 0 PAN 0.5 0 100 0 Modulus Kehalusan 2.92 Gambar 3. 3 Kurva Gradasi Agregat Halus Pasir yang Digunakan dalam Model Tes gradasi agregat juga dilakukan untuk pasir yang hanyut terbawa ke hilir selama proses pengaliran debit 7 liter/detik. Diambil selama pengaliran dengan debit III-4

terbesar dengan pertimbangan bahwa secara logika, debit terbesarlah yang memberikan jumlah pasir hanyut paling banyak, sehingga diharapkan hasil gradasi agregatnya pun bisa mewakili gradasi agregat yang hanyut selama pengaliran dengan debit lebih rendah. Dari hasil tes ini diperoleh bahwa pasir yang hanyut memiliki d 10 = 0,38 mm, d 50 = 0,81 mm, d 60 = 0,86 mm, dan d 90 = 1,6 mm. Hasil analisis saringan agregat halus yang hanyut selama pengaliran dapat dilihat pada Tabel 3.2. Sedangkan kurva gradasinya dapat dilihat pada Gambar 3.4. Tabel 3. 2 Hasil Analisis Saringan Pasir yang Hanyut selama Pengaliran Debit 7 liter/detik (Sumber: Dr. Ir. Agung Wiyono dan Tim) Ukuran Saringan Berat Tertahan Persentase Tertahan Persentase Tertahan Kumulatif Persentase Lolos Kumulatif SPEC ASTM (mm) (gr) (%) (%) (%) C33-90 9.50 0 0 0 100 100 4.75 0 0 0 100 95-100 2.36 2 0 0 100 80-100 1.18 98 20 20 80 50-85 0.60 285 57 77 23 25-60 0.30 91 18 96 4 10-30 0.15 17 3 99 1 2-10 0.075 2 0 99 1 PAN 3 1 100 0 Modulus Kehalusan 2.92 III-5

100 90 Persentase Lolos Kumulatif 80 70 60 50 40 30 20 10 0 0.01 0.1 1 10 Ukuran Saringan (mm) Gambar 3. 4 Kurva Gradasi Agregat Halus Pasir yang Hanyut selama Pengaliran Debit 7 liter/detik (Sumber: Dr. Ir. Agung Wiyono dan Tim) Di samping itu dilakukan pula tes analisis saringan untuk pasir yang masih tertinggal setelah pengaliran dengan debit 7 liter/detik. Dari hasil tes ini dapat diketahui distribusi gradasi agregat sebagai berikut: d 10 = 0,39 mm, d 50 = 0,82 mm, d 60 = 0,9 mm, dan d 90 = 1,7 mm. Hasil analisis saringan agregat halus yang tertinggal setelah pengaliran kurva gradasinya dapat dilihat pada Tabel 3.3 dan Gambar 3.5. III-6

Tabel 3. 3 Hasil Analisis Saringan Pasir yang Tertinggal setelah Pengaliran Debit 7 liter/detik (Sumber: Dr. Ir. Agung Wiyono dan Tim) Ukuran Saringan Berat Tertahan Persentase Tertahan Persentase Tertahan Kumulatif Persentase Lolos Kumulatif SPEC ASTM (mm) (gr) (%) (%) (%) C33-90 9.50 0 0 0 100 100 4.75 0 0 0 100 95-100 2.36 2 0 0 100 80-100 1.18 84 17 17 83 50-85 0.60 316 63 80 20 25-60 0.30 75 15 95 5 10-30 0.15 20 4 99 1 2-10 0.075 2 0 100 0 PAN 1 0 100 0 Modulus Kehalusan 2.93 100 90 Persentase Lolos Kumulatif 80 70 60 50 40 30 20 10 0 0.01 0.1 1 10 Ukuran Saringan (mm) Gambar 3. 5 Kurva Gradasi Agregat Halus Pasir yang Tertinggal setelah Pengaliran Debit 7 liter/detik (Sumber: Dr. Ir. Agung Wiyono dan Tim) III-7

3.3. Abutment Sesuai dengan tujuan penelitian, maka abutment yang digunakan ada 2 (dua) jenis; abutment dinding vertikal tanpa sayap (vertical-wall abutment, Tugas Akhir Widyaningtias dan Khristina Farida Astuti, 2006), dan abutment dinding vertikal dengan sayap (wing-wall abutment). 3.3.1. Abutment Dinding Vertikal Tanpa Sayap Abutment dinding vertikal tanpa sayap yang digunakan dalam percobaan terbuat dari bahan kayu. Spesifikasi ukuran dari abutment yang digunakan adalah : Panjang : 12 cm Lebar : 9 cm Tinggi : 40 cm Abutment yang digunakan dalam berjumlah empat buah dan ditempatkan pada: 1. Bagian saluran lurus (panjang 3 meter), yaitu pada titik 100 cm 2. Bagian menikung 180, yaitu pada titik 90 3. Bagian saluran lurus (panjang 1,5 meter), yaitu pada titik 70 cm 4. Bagian menikung 90, yaitu pada titik 45 Penempatan keempat abutment tersebut didasarkan pada perbedaan kondisi pada setiap segmen saluran, yaitu : 1. Pada segmen lurus I, kondisi saluran adalah saluran lurus. Dimana, air yang masuk pada segmen saluran tersebut berasal dari saluran lurus sebelumnya. 2. Pada segmen Tikungan I, kondisi saluran adalah tikungan saluran sebesar 180 o. 3. Pada segmen lurus II, kondisi saluran adalah saluran lurus yang diapit oleh dua tikungan. Kondisi pada saluran lurus ini jelas berbeda dengan segmen III-8

saluran lurus I. Aliran air yang datang dari tikungan sebelumnya memberikan pengaruh terhadap kondisi aliran air pada segmen saluran ini. 4. Pada segmen Tikungan II, kondisi saluran adalah tikungan saluran sebesar 90 o. Distribusi kecepatan aliran air pada segmen ini akan berbeda dengan distribusi kecepatan aliran air pada tikungan 180 o. Sketsa dan gambr peletakan abutment di model saluran terbuka dapet dilihat pada Gambar 3.4, dan 3.5. 200 cm 100 cm 0 cm 90 o LURUS III 45 o TIKUNGAN II 150 cm 200 cm 0 o L 150 cm U 100 cm R 70 cm U S 180 o II 0 cm 0 cm L U R U S I 0 o 300 cm : abutment TIKUNGAN I 90 o Gambar 3. 4 Sketsa Penempatan Abutment Dinding Vertikal Tanpa Sayap pada Model Saluran Terbuka III-9

Gambar 3. 5 Abutment Dinding Vertikal Tanpa Sayap dan Penempatannya pada Model Saluran Terbuka 3.3.2. Abutment Dinding Vertikal Dengan Sayap Pada prinsipnya, spesifikasi dan penempatan abutment dinding vertical dengan sayap sama dengan abutment dinding vertical tanpa sayap yang sudah dijelaskan pada subbab sebelumnya. Sebagai tambahan, sayap dipasang dengan sudut 45 derajat dari dinding samping abutment. Gambar penempatan abutment dalam model saluran terbuka dapat dilihat pada Gambar 3. 6. III-10

45 45 Gambar 3. 6 Abutment Dinding Vertikal dengan Sayap dan Penempatannya pada Model Saluran Terbuka 3.4. Alat Ukur 3.4.1. Alat Ukur Kecepatan (Currentmeter) Alat ukur kecepatan yang digunakan dalam penelitian ini adalah sebuah current meter yang menggunakan kipas (fan) dan sebuah mesin penghitung (counter) yang menghitung intensitas putaran dalam satuan Hertz (Hz). III-11

Currentmeter ini dilengkapi dengan grafik kalibrasi untuk menkonversi satuan dari Heartz ke satuan cm/detik. Grafik kalibrasi currentmeter dapat dilihat pada Gambar 3.7. Gambar 3. 7 Grafik Kalibrasi Currentmeter (Sumber Instuction Manual Propeller Velocity Meter) Untuk memperoleh hasil kalibrasi yang lebih akurat, maka dilakukan kalibrasi currentmeter dengan menggunakan flume model saluran ambang tajam (setelah sebelumnya melepas ambang tajam yang ada). Grafik yang memberikan persamaan dari hasil proses kalibrasi untuk currentmeter yang digunakan dalam percobaan abutment dinding vertikal tanpa sayap dapat dilihat pada Gambar 3.8. Sedangkan kalibrasi yang dilakukan pada saat percobaan abutment dinding vertikal dengan sayap dapat dilihat pada Gambar 3.9. III-12

Grafik Kalibrasi Currentmeter dalam Percobaan Abutment Dinding Vertikal Tanpa Sayap 1 m/detik 0.75 0.5 0.25 y = 0.0215x + 0.1999 0 0 5 10 15 20 Kalibrasi Hz Linear (Kalibrasi) Gambar 3. 6 Hasil Kalibrasi Currentmeter yang Digunakan dalam Percobaan Abutment Dinding Vertikal Tanpa Sayap Grafik Kalibrasi Currentmeter dalam Percobaan Abutment Dinding Vertikal dengan Sayap 0.5 0.4 y = 0.0068x + 0.24 m/detik 0.3 0.2 0.1 0.0 Kalibrasi 0 5 10 15 20 25 Linear (Kalibras i) Hz Gambar 3. 7 Hasil Kalibrasi Currentmeter yang Digunakan dalam Percobaan Abutment Dinding Vertikal dengan Sayap III-13

Gambar 3. 8 Proses Kalibrasi dengan Menggunakan Flume Ambang Tajam Gambar 3. 9 Currentmeter dan Frequency Counter 3.4.2. Alat Ukur Debit (Thomson Weir) Alat ukur debit yang digunakan dalam penelitian ini adalah pelimpah Thomson. Pengukuran dilakukan di bagian hilir saluran setelah masuk ke bak penenang. Alat ini umumnya digunakan untuk debit kecil. III-14

Gambar 3.10 Pelimpah Thompson (Thomson Weir) Perhitungan debit yang mengalir pada Thompson Weir menggunakan rumus sebagai berikut: Q = 8 15 α C.tan 2 2. g. ( ) 2, 5 d h Th Dimana: Q : debit aliran (m 3 /dt) α C d C d C d C d : 90 o : Koefisien debit Thompson : 0,58 (untuk air kotor) : 0,59 (untuk air irigasi) : 0,61 (untuk air bersih) g : 9,81 m/dt 2 h Th : tinggi aliran diatas pintu Thompson (m) Dengan memasukkan α = 90 o, C d = 0,58 dan g = 9,81 m/dt 2, Debit yang mengalir dihitung dengan rumus : III-15

2,5 1,38. hth Q = (m 3 /dt) Gambar 3. 11 Sketsa Pengukuran Muka Air pada Pelimpah Thomson Dengan memasukkan debit yang direncanakan, dapat diketahui tinggi air diatas pintu Thompson yang harus dialirkan, yaitu : h Th = Q 1,38 0,4 Dimana: h Th : tinggi muka air di atas Thomson Weir 3.4.3. Alat Ukur Topografi Dasar Saluran dan Muka Air Alat ukur topografi dasar saluran dan muka air dalam penelitian ini adalah meteran taraf dengan ketelitian hingga 0,1 mm. Gambar 3. 12 Meteran Taraf III-16

3.4.4. Alat Ukur Berat Alat ukur berat yang digunakan dalam penelitian ini adalah timbangan dengan kapasitas 5000 gram dengan ketelitian hingga 25 gram. Gambar 3. 13 Timbangan 3.4.5. Alat Suplai Air (Pompa Air) Pompa digunakan untuk menaikkan air dari saluran penampung yang berada di sekeliling laboratorium ke saluran pengatur. Kapasitas pompa ini berkisar 20 liter/detik hingga 240 liter/detik. III-17

Gambar 3. 14 Pompa Listrik 3.5. Peralatan Bantu Peralatan bantu yang digunakan dalam penelitian ini adalah : Formulir pencatatan data Kantong penangkap pasir (tepat pada bagian hilir saluran) Disiapkan dua buah, untuk dipakai secara bergantian Kabel listrik Benang dan label (untuk penggambaran kontur) Kamera dan alat dokumentasi lainnya III-18

Gambar 3. 15 Kantong Penangkap Pasir 3.6. Pengukuran dan Pengamatan 3.6.1. Langkah Percobaan Langkah-langkah dalam melakukan percobaan dalam penelitian ini adalah : 1. Meratakan pasir setinggi 20 cm sepanjang saluran. 2. Mengukur elevasi awal saluran. 3. Mengalirkan debit aliran ke dalam saluran. Pada penelitian kali ini debit rencana yang dialirkan sebesar 4, 5, 6, dan 7 liter/detik. 4. Mengukur kecepatan aliran air dengan menggunakan currentmeter pada posisi yang telah ditentukan. Pengukuran kecepatan ini dilakukan pada awal pengaliran, sebagai initial condition, dan pada waktu debit sudah relatif stabil. 5. Mengukur elevasi akhir saluran dengan menggunakan meteran taraf pada posisi yang telah ditentukan. 6. Membuat kontur dasar saluran dengan benang dan label ketinggian kontur interval 1 cm. III-19

3.6.2. Pengukuran Kecepatan Pengukuran kecepatan dilakukan dengan menggunakan currentmeter yang menggunakan kipas (fan) dan mesin penghitung intensitas putaran digital (digital counter). Pembacaan intensitas kecepatan pada setiap titik pengukuran akan dilakukan dua kali, yaitu pada 0,2 kali kedalaman dan 0,8 kali kedalaman. Kecepatan aliran diukur pada titik-titik yang sudah ditentukan. Pengukuran ini dilakukan 2 (dua) kali, yaitu pada awal pengaliran, sebagai initial condition, dan pada waktu debit sudah relatif stabil. Gambar 3. 16 Pemasangan Abutment untuk Pengukuran Kecepatan pada Initial Condition a b Gambar 3. 17 Pengukuran Kecepatan Aliran; a) Pada Saat Initial Condition, b) Pada Saat Debit Sudah Relatif Stabil III-20

3.6.3. Pengukuran Topografi Dasar Saluran Pengukuran topografi dasar saluran untuk setiap pengaliran, dilakukan dua kali, yaitu sebelum dan sesudah percobaan. Tujuan dari pengukuran topografi adalah untuk mengetahui perubahan topografi dasar saluran yang terjadi pada setiap percobaan. Pada akhir percobaan, dibuat kontur permukaan pada dasar saluran menggunakan benang berwarna putih, untuk keperluan dokumentasi dan analisa. Data tersebut digunakan untuk membuat dokumentasi penggambaran kontur dasar saluran. Gambar 3. 18 Pengukuran Topografi Dasar Saluran III-21