4. Hasil dan Pembahasan

dokumen-dokumen yang mirip
3. Metodologi Penelitian

Bab IV Hasil Penelitian dan Pembahasan

3 Metodologi Penelitian

Makalah Pendamping: Kimia Paralel E PENGARUH KONSENTRASI KITOSAN DARI CANGKANG UDANG TERHADAP EFISIENSI PENJERAPAN LOGAM BERAT

Hasil dan Pembahasan

Bab III Metodologi Penelitian

Untuk mengetahui pengaruh ph medium terhadap profil disolusi. atenolol dari matriks KPI, uji disolusi juga dilakukan dalam medium asam

PENGARUH ph DAN LAMA KONTAK PADA ADSORPSI ION LOGAM Cu 2+ MENGGUNAKAN KITIN TERIKAT SILANG GLUTARALDEHID ABSTRAK ABSTRACT

PENGGUNAAN KITOSAN DARI TULANG RAWAN CUMI-CUMI (LOLIGO PEALLI) UNTUK MENURUNKAN KADAR ION LOGAM Cd DENGAN MENGGUNAKAN SPEKTROFOTOMETRI SERAPAN ATOM

BAB III METODE PENELITIAN. Penelitian ini dilakukan di Laboratorium Riset Kimia Jurusan Pendidikan

4 Hasil dan Pembahasan

BAB V HASIL DAN PEMBAHASAN. Kulit udang yang diperoleh dari pasar Kebun Roek Ampenan kota

BAB 3 METODOLOGI PERCOBAAN. Alat-alat yang digunakan dalam penelitian ini adalah: Beaker glass 50 ml pyrex. Beaker glass 100 ml pyrex

TINGKATAN KUALISTAS KITOSAN HASIL MODIFIKASI PROSES PRODUKSI. Abstrak

4 Hasil dan Pembahasan

BAB IV HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN. Modifikasi Ca-Bentonit menjadi kitosan-bentonit bertujuan untuk

4.1 Isolasi Kitin. 4 Hasil dan Pembahasan

2 TINJAUAN PUSTAKA 2.1 Osteoarthritis (OA) 2.2 Glukosamin hidroklorida (GlcN HCl)

Hasil dan Pembahasan

Metode Penelitian. 3.1 Alat dan Bahan Penelitian Daftar alat

PENGARUH SUHU DAN WAKTU REAKSI PADA PEMBUATAN KITOSAN DARI TULANG SOTONG (Sepia officinalis)

Bab IV Hasil Penelitian dan Pembahasan. IV.1 Sintesis dan karaktrisasi garam rangkap CaCu(CH 3 COO) 4.6H 2 O

BAB IV. karakterisasi sampel kontrol, serta karakterisasi sampel komposit. 4.1 Sintesis Kolagen dari Tendon Sapi ( Boss sondaicus )

PEMBUATAN KHITOSAN DARI KULIT UDANG UNTUK MENGADSORBSI LOGAM KROM (Cr 6+ ) DAN TEMBAGA (Cu)

HASIL DAN PEMBAHASAN. Lanjutan Nilai parameter. Baku mutu. sebelum perlakuan

Karakterisasi Kitosan dari Cangkang Rajungan dan Tulang Cumi dengan Spektrofotometer FT-IR Serta Penentuan Derajat Deasetilasi Dengan Metode Baseline

IV. HASIL DAN PEMBAHASAN. protein dari sampel, sedangkan demineralisasi merupakan proses pemisahan

PEMANFAATAN KITOSAN DARI CANGKANG RAJUNGAN PADA PROSES ADSORPSI LOGAM NIKEL DARI LARUTAN NiSO 4

PENGARUH WAKTU PROSES DEASETILASI KITIN DARI CANGKANG BEKICOT (Achatina fulica) TERHADAP DERAJAT DEASETILASI

PEMBUATAN KITOSAN DARI KULIT UDANG PUTIH (Penaeus merguiensis) DAN APLIKASINYA SEBAGAI PENGAWET ALAMI UNTUK UDANG SEGAR

3 Percobaan. 3.1 Tahapan Penelitian Secara Umum. Tahapan penelitian secara umum dapat dilihat pada diagram alir berikut :

Karakterisasi Kitosan dari Limbah Kulit Kerang Simping (Placuna placenta) Characterization of Chitosan from Simping Shells (Placuna placenta) Waste

4 Hasil dan Pembahasan

BAB I PENDAHULUAN. Kitosan dihasilkan dari kitin dan mempunyai struktur kimia yang sama

3 Metodologi Penelitian

dengan panjang a. Ukuran kristal dapat ditentukan dengan menggunakan Persamaan Debye Scherrer. Dilanjutkan dengan sintering pada suhu

4 HASIL DAN PEMBAHASAN

BAB 4 HASIL PERCOBAAN DAN PEMBAHASAN

TINGKATAN KUALITAS KITOSAN HASIL MODIFIKASI PROSES PRODUKSI. Abstrak

BAB III METODOLOGI PENELITIAN. melakukan uji morfologi, Laboratorium Teknik Kimia Ubaya Surabaya. mulai dari bulan Februari 2011 sampai Juli 2011.

BAB IV. HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN

III. METODOLOGI PENELITIAN. dengan tahapan kegiatan, yaitu: pengambilan sampel cangkang udang di PT.

STUDI ANALISIS ANTIBAKTERI DARI FILM GELATIN- KITOSAN MENGGUNAKAN Staphylococcus aureus

3. Metodologi Penelitian

JKK, Tahun 2016, Volume 5(3), halaman ISSN

4 Hasil dan Pembahasan

4 HASIL DAN PEMBAHASAN

SEMINAR NASIONAL ke 8 Tahun 2013 : Rekayasa Teknologi Industri dan Informasi

BAB IV HASIL DAN PEMBAHASAN. metode freeze drying kemudian dilakukan variasi waktu perendaman SBF yaitu 0

BAB IV HASIL DAN PEMBAHASAN. memiliki kandungan air yang cukup tinggi sehingga sukar kering. Setelah kulit

ABSTRAK ABSTRACT PENDAHULUAN

Bab IV Hasil dan Pembahasan. IV.2.1 Proses transesterifikasi minyak jarak (minyak kastor)

BAB IV HASIL DAN PEMBAHASAN. Sebelum melakukan uji kapasitas adsorben kitosan-bentonit terhadap

3 Metodologi Penelitian

BAB IV METODE PENELITIAN. Penelitian ini menggunakan metode penelitian deskriptif eksploratif dan

HASIL DAN PEMBAHASAN. nm. Setelah itu, dihitung nilai efisiensi adsorpsi dan kapasitas adsorpsinya.

PEMANFAATAN KITOSAN DARI LIMBAH CANGKANG KERANG HIJAU (Perna viridis) SEBAGAI ADSORBAN LOGAM Cu

Kata kunci: surfaktan HDTMA, zeolit terdealuminasi, adsorpsi fenol

Adsorpsi Fenol pada Membran Komposit Khitosan Berikatan Silang

VARIASI KONSENTRASI DAN ph TERHADAP KEMAMPUAN KITOSAN DALAM MENGADSORPSI METILEN BIRU. Turmuzi Tammi, Ni Made Suaniti, dan Manuntun Manurung

TINJAUAN PUSTAKA. adalah tanah-tanah bereaksi masam (ph rendah) dan miskin unsur hara, seperti

BAB III METODOLOGI PENELITIAN. furnace, desikator, timbangan analitik, oven, spektronik UV, cawan, alat

PENGARUH ph DAN WAKTU KONTAK PADA ADSORPSI Pb(II) MENGGUNAKAN ADSORBEN KITIN TERFOSFORILASI DARI LIMBAH CANGKANG BEKICOT (Achatina fulica) ABSTRAK

BAB I PENDAHULUAN. Dewasa ini penggunaan pestisida dari tahun ke tahun semakin meningkat.

4. Hasil dan Pembahasan

BAB IV HASIL DAN PEMBAHASAN. Dalam penelitian ini digunakan TiO2 yang berderajat teknis sebagai katalis.

4 Pembahasan. 4.1 Sintesis Resasetofenon

Jurnal Teknologi Kimia Unimal

4 Hasil dan Pembahasan

PENGARUH ph DAN WAKTU KONTAK PADA ADSORPSI Cd(II) MENGGGUNAKAN ADSORBEN KITIN TERFOSFORILASI DARI LIMBAH CANGKANG BEKICOT (Achatina fulica) ABSTRAK

HASIL DAN PEMBAHASAN

ASAM -BASA, STOIKIOMETRI LARUTAN DAN TITRASI ASAM-BASA

PENGARUH ph DAN LAMA KONTAK PADA ADSORPSI Ca 2+ MENGGUNAKAN ADSORBEN KITIN TERFOSFORILASI DARI LIMBAH CANGKANG BEKICOT (Achatina fulica) ABSTRAK

BAB III METODE PENELITIAN

BAB I PENDAHULUAN 1.1 Latar Belakang dan Permasalahan

BABrV HASIL DAN PEMBAHASAN

BAB I PENDAHULUAN 1.1. Latar Belakang

III. METODE PENELITIAN. Penelitian ini dilaksanakan pada bulan Mei sampai Juli 2015 di Laboratorium

I. PENDAHULUAN. Pembangunan pada bidang industri di Indonesia saat ini mengalami kemajuan

FILTRASI ION LOGAM Fe(III) DENGAN MEMBRAN KOMPOSIT KITOSAN-GLISEROL. FILTRATION OF Fe(III) METAL ION WITH CHITOSAN-GLYCEROL COMPOSITE MEMBRANE

Pemanfaatan Duri dan Tulang Ikan Bandeng Sebagai Resin Penyerap Tembaga SKRIPSI. Nur Enny Oktarina NIM

BAB III METODE PENELITIAN. Pelaksanaan penelitian dimulai sejak Februari sampai dengan Juli 2010.

BAB IV HASIL DAN PEMBAHASAN. Tumbuhan yang akan diteliti dideterminasi di Jurusan Pendidikan Biologi

ADSORPSI ZAT WARNA PROCION MERAH PADA LIMBAH CAIR INDUSTRI SONGKET MENGGUNAKAN KITIN DAN KITOSAN

BAB I PENDAHULUAN. Kolesterol adalah suatu molekul lemak di dalam sel yang terdiri atas LDL

I. PENDAHULUAN. serius, ini karena penggunaan logam berat yang semakin meningkat seiring

Gambar IV 1 Serbuk Gergaji kayu sebelum ekstraksi

BAB I PENDAHULUAN. industri tapioka, yaitu : BOD : 150 mg/l; COD : 300 mg/l; TSS : 100 mg/l; CN - :

BAB IV HASIL DAN PEMBAHASAN. 4:1, MEJ 5:1, MEJ 9:1, MEJ 10:1, MEJ 12:1, dan MEJ 20:1 berturut-turut

4 Hasil dan Pembahasan

BAB I PENDAHULUAN. 1.1 Latar Belakang. Industri yang menghasilkan limbah logam berat banyak dijumpai saat ini.

HASIL DAN PEMBAHASAN. Kadar Asetil (ASTM D )

PENJERAPAN LEMAK KAMBING MENGGUNAKAN ADSORBEN CHITOSAN

Wassalamu alaikum Wr.Wb. Bandung, Februari Penulis. viii

DERAJAT DEASETILASI KITOSAN DARI CANGKANG KERANG DARAH DENGAN PENAMBAHAN NaOH SECARA BERTAHAP

BAHAN DAN METODE Waktu dan Tempat Alat dan Bahan Metode Penelitian Hidrolisis Kitosan A dengan NaOH

BAB V HASIL DAN PEMBAHASAN. Etilendiaminopropil)-Trimetoksisilan). Perlakuan modifikasi ini diharapkan akan

BAB 3 METODE PENELITIAN

Transkripsi:

4. Hasil dan Pembahasan 4.1 Isolasi Kitin dan Kitosan Isolasi kitin dan kitosan yang dilakukan pada penelitian ini mengikuti metode isolasi kitin dan kitosan dari kulit udang yaitu meliputi tahap deproteinasi, demineralisasi, dan deasetilasi. Pada isolasi kitin dari tulang dan duri bandeng ini, sampel yang digunakan harus dalam keadaan segar untuk meminimalkan terjadinya biodegradasi. Hasil yang diperoleh dari tiap tahapan isolasi diberikan pada Tabel 4. 1. Tabel 4. 1. Reduksi massa sampel selama proses isolasi Sumber sampel m 0 (massa awal sampel) m 1 (massa setelah deproteinasi) m 2 (massa setelah demineralisasi) Tulang ikan bandeng 600 g 449,35 g 13,1013 g Duri ikan bandeng 275,7 g 77,19 g 9,9112 g Dari hasil yang terdapat pada Tabel 4. 1, dapat dilihat bahwa reduksi massa terbesar terjadi setelah proses demineralisasi. Hal ini sesuai dengan fakta bahwa kandungan terbesar dalam tulang dan duri ikan adalah mineral. Mineral-mineral tersebut dapat dihilangkan dari tulang dan duri bandeng dengan menggunakan asam klorida karena akan membentuk senyawa ionik dengan klorida. Senyawa ionik yang terbentuk ini akan larut dalam air sehingga dapat dipisahkan dari residu melalui penyaringan. Salah satu mineral yang terdapat dalam tulang dan duri ikan bandeng adalah kalsium karbonat dan proses yang terjadi pada proses penghilangan kalsium disebut dekalsifikasi. Reaksi dekalsifikasi diberikan oleh persamaan (4.1) berikut: CaCO 3 (s) + HCl(aq) CaCl 2 (aq) + H 2 O(l) + CO 2 (g) (4.1) Proses pencucian produk yang diperoleh dari tiap tahapan isolasi hingga tercapai ph netral merupakan prosedur kerja yang juga sangat penting untuk menghindari terjadinya degradasi lebih lanjut oleh senyawa kimia seperti asam. Setelah proses demineralisasi dan penentuan derajat deasetilasi (bab Hasil dan Pembahasan, sub bab Penentuan Derajat Deasetilasi), produk yang diperoleh dari tulang ikan bandeng sudah merupakan kitosan dengan persen rendemen sebesar 5,18%, sedangkan dari duri ikan bandeng diperoleh produk yang masih

merupakan kitin dengan persen rendemen 3,59%. Kitin dan kitosan yang diperoleh dari duri dan tulang bandeng ini dapat dilihat pada Gambar 4. 1. Bila dibandingkan dengan kulit udang dan kepiting (bab Tinjauan Pustaka, sub bab Kitin), kadar kitin/ kitosan dari limbah bandeng ini memiliki kadar yang lebih kecil. Hal ini disebabkan karena tulang maupun duri yang terdapat pada bagian dalam tubuh ikan tidak berfungsi sebagai pertahanan tubuh dari lingkungan luar sehingga tidak dibutuhkan sifat fisik yang terlalu keras seperti halnya kulit udang maupun cangkang kepiting. Gambar 4. 1. (a) Kitosan tulang bandeng; (b) Kitin duri bandeng Sebagaimana yang telah dijelaskan di atas, hasil isolasi yang diperoleh dari tulang ikan bandeng langsung berupa kitosan sedangkan dari duri ikan bandeng masih berupa kitin. Hal ini kemungkinan disebabkan karena kitin yang terdapat pada duri ikan bandeng lebih terlindungi oleh senyawa-senyawa lainnya, sedangkan kitin pada tulang ikan lebih tidak terlindungi sehingga lebih mudah terisolasi. Selain itu, melalui hasil ini juga dapat diketahui bahwa melalui proses deproteinasi dengan NaOH telah terjadi deasetilasi kitin tulang bandeng sehingga apabila diinginkan kitin dari tulang bandeng proses deproteinasi dapat dilakukan dengan menggunakan kondisi basa yang lebih lembut. Reaksi deasetilasi kitin merupakan reaksi hidrolisis amida dalam larutan basa. Hidrolisis basa suatu amida memiliki mekanisme yang serupa dengan reaksi penyabunan ester. Ion OH - dari basa menyerang karbon karbonil yang bersifat elektropositif sehingga oksigen yang terikat pada karbon karbonil bermuatan negatif. Untuk menstabilkan muatan negatif oksigen tersebut, maka terjadi eliminasi amina. Dalam proses deasetilasi kitin, amina yang tereliminasi merupakan amina primer yaitu kitosan. 4.2 Analisis Gugus Fungsi Produk hasil demineralisasi tulang (kitosan) dan duri ikan bandeng (kitin) dikarakterisasi dengan spektroskopi inframerah untuk memastikan bahwa produk yang terbentuk merupakan kitin/ kitosan dengan melihat gugus-gugus fungsi yang khas bagi kitin/ kitosan. Sebagaimana 24

yang telah dijelaskan pada bab Tinjauan Pustaka mengenai Spektroskopi Inframerah Kitin, bilangan-bilangan gelombang utama yang harus diperhatikan adalah pada daerah 1650 cm -1 dan 3450 cm -1. Daerah bilangan gelombang 1650 cm -1 merupakan bilangan gelombang bagi vibrasi ulur C=O amida sedangkan bilangan gelombang 3450 cm -1 merupakan daerah bilangan gelombang bagi vibrasi ulur O H hidroksil. Dari spektrum inframerah produk demineralisasi duri dan tulang ikan bandeng (Gambar 4. 2 dan Gambar 4. 3), produk yang diperoleh dapat diduga sebagai kitin. Hal ini dibuktikan dengan adanya puncak pada bilangan gelombang 1650 cm -1 dan 3450 cm -1. Namun jenis kitin yang terdapat pada tulang dan duri ikan bandeng ( α- atau β-kitin) tidak dapat diketahui dengan pasti. Secara kasad mata, puncak yang terdapat pada daerah bilangan gelombang 1650 cm -1 pada spektrum inframerah kitin dan kitosan dari duri dan tulang bandeng ini memang bukan merupakan puncak tunggal. Namun, karena pembelahan yang terjadi juga tidak terlihat jelas, maka kemungkinan terdapat campuran α- dan β-kitin yang lebih didominasi oleh α-kitin. Nilai-nilai serapan produk yang diperoleh dari tulang dan duri ikan bandeng dapat dilihat pada Tabel 4. 2. Tabel 4. 2. Nilai-nilai serapan inframerah produk deasetilasi tulang dan duri ikan bandeng Produk demineralisasi tulang ikan bandeng Bilangan gelombang (cm-1) Produk demineralisasi duri ikan bandeng Keterangan 1639,49 1629,85 Vibrasi ulur C=O amida 3446,79 3446,79 Vibrasi ulur O H 25

Gambar 4. 2. Spektrum inframerah kitin duri bandeng Gambar 4. 3. Spektrum inframerah kitosan tulang bandeng 26

4.3 Penentuan Derajat Deasetilasi Derajat deasetilasi kitin dan kitosan yang diperoleh dari duri dan tulang ikan bandeng ditentukan dengan menggunakan baseline (a) (Tinjauan Pustaka sub bab Penentuan Derajat Deasetilasi) pada spektrum inframerahnya masing-masing (Gambar 4. 4 dan Gambar 4. 5). Berdasarkan perhitungan dengan menggunakan persamaan (3) dan (4), absorbans pada daerah bilangan gelombang 1650 cm-1 dan 3450 cm-1 pada duri ikan bandeng berturut-turut adalah 0,63 dan 0,64. Sedangkan untuk tulang ikan bandeng diperoleh nilai absorbans 0,27 pada daerah bilangan gelombang 1650 cm-1 dan 0,84 pada daerah bilangan gelombang 3450 cm-1. Dengan membandingkan nilai absorbans pada daerah bilangan gelombang 1650 cm -1 terhadap absorbans pada daerah bilangan gelombang 3450 cm -1 sesuai dengan persamaan (1), diperoleh nilai derajat deasetilasi sebesar 75,83% untuk tulang ikan bandeng dan 25,99% untuk duri ikan bandeng. Nilai-nilai absorbans pada daerah bilangan gelombang 1650 cm-1 dan 3450 cm-1 serta besarnya derajat deasetilasi untuk tulang dan duri ikan bandeng terdapat pada Tabel 4. 3. Gambar 4. 4. Baseline untuk penentuan DD kitosan tulang bandeng 27

Gambar 4. 5. Baseline untuk penentuan DD kitin duri bandeng Tabel 4. 3. Nilai-nilai absorbans C=O amida dan O-H serta nilai derajat deasetilasi Sumber sampel Absorbans 1650 cm-1 3450 cm-1 Derajat deasetilasi Tulang ikan bandeng 0,27 0,84 75,83% Duri ikan bandeng 0,63 0,64 25,99% Dengan melihat nilai derajat deasetilasi, maka produk yang diperoleh dari tulang ikan bandeng setelah proses demineralisasi sudah merupakan kitosan sedangkan dari duri ikan bandeng masih berupa kitin. Namun, karena produk dari duri ikan bandeng yang diperoleh sangat sedikit, maka proses deasetilasi terhadap kitin duri bandeng tidak dilakukan pada penelitian ini. 4.4 Uji Kelarutan Kitosan Uji kelarutan kitosan dilakukan untuk memperoleh pelarut bagi kitosan agar kitosan hasil isolasi dapat dikarakterisasi lebih lanjut dan diaplikasikan dalam bidang kehidupan yang lebih luas. Pada umumnya, kitosan dapat dilarutkan dalam asam asetat 1%. Oleh karena itu, dalam penelitian ini uji kelarutan kitosan pertama kali dilakukan dalam asam asetat 1%. Namun, karena dalam pelarut tersebut kitosan tulang bandeng tidak larut, maka digunakan 28

asam asetat p.a dengan konsentrasi 98%. Dalam pelarut inipun kitosan hasil isolasi tidak dapat larut. Kitosan kemudian diuji kelarutannya dalam pelarut kitin yaitu larutan 5% LiCl dalam DMAC, namun tidak larut juga. Uji kelarutan kitosan kemudian dilanjutkan dengan menggunakan pelarut asam format, HCl, dan n-heksan. Pengujian dengan asam format dilatarbelakangi oleh literatur yang menyatakan bahwa kitosan dapat larut dalam asam-asam organik (Tinjauan Pustaka, sub bab Kelarutan Kitosan). Diantara ketiga pelarut terakhir yang digunakan (asam format, HCl, dan n-heksan), kitosan hasil isolasi dapat larut dalam asam format. Hasil-hasil uji kelarutan kitosan dalam berbagai pelarut yang telah disebutkan di atas, dapat dilihat pada Gambar 4. 6. Gambar 4. 6. Hasil uji kelarutan kitosan dalam (a) asam asetat 98%, (b) asam asetat 1%, (c) 5% LiCl/ DMAC, (d) n-heksan, (e) HCl Seperti yang telah dijelaskan pada bab Tinjauan Pustaka, sub bab Kelarutan Kitosan, kelarutan kitosan tidak hanya bergantung pada derajat deasetilasi melainkan juga pada distribusi gugus NH 2 sepanjang rantai. Kitosan akan larut dalam suatu pelarut karena terjadinya protonasi gugus NH 2 oleh H + dari pelarut. Setelah memperoleh pelarut yang dapat melarutkan kitosan, dilakukan sintesis membran dengan melarutkan kitosan dalam asam format sehingga diperoleh larutan kitosan dengan konsentrasi 1% b/v. Larutan kitosan kemudian dicetak sebagai membran dalam cawan petri. Setelah pelarutnya diuapkan, ternyata tidak diperoleh membran, melainkan kitosan kembali menjadi padatannya (Gambar 4. 7). 29

Gambar 4. 7. Padatan kitosan pada cawan petri setelah asam format diuapkan 4.5 Penentuan waktu kontak optimum penyerapan logam Cu Waktu kontak optimum merupakan waktu kontak kitosan dengan logam yang dibutuhkan agar terjadi penyerapan logam oleh kitosan secara optimum. Penyerapan logam oleh kitosan dipengaruhi oleh luas permukaan kitosan. Semakin besar luas permukaan, maka penyerapan logam akan semakin baik dan cepat. Dalam penentuan waktu kontak optimum penyerapan logam Cu oleh kitosan, digunakan larutan dengan konsentrasi logam Cu sebesar 200 ppm. Dari hasil yang diperoleh dengan mengalurkan absorbans logam yang tersisa setelah direaksikan dengan kitosan pada variasi waktu tertentu. Pada awalnya, variasi waktu yang digunakan adalah 15 menit, 30 menit, 45 menit, dan 1 jam. Namun, karena data absorbans yang diperoleh belum memberikan nilai yang konstan, maka waktu kontak diperpanjang, yaitu selama 12 jam dan 24 jam. Dengan menggabungkan seluruh hasil uji waktu kontak, diketahui bahwa waktu kontak optimum tercapai pada 12 jam karena setelah waktu tersebut nilai absorbans sampel relatif konstan. Hasil uji waktu kontak optimum dapat dilihat pada Gambar 4. 8. Gambar 4. 8. Kurva penentuan waktu kontak optimum 30

4.6 Penentuan Kadar Penyerapan Logam Cu Penentuan kadar penyerapan logam Cu oleh kitin dan kitosan dilakukan dengan meraksikan kitin dan kitosan dengan larutan logam Cu selama waktu kontak optimumnya. Konsentrasi Cu dalam larutan setelah dilakukan penyerapan oleh kitin/ kitosan ditentukan dengan menggunakan kurva kalibrasi. Larutan standar yang digunakan adalah larutan Cu 2+ dengan konsentrasi 1 ppm, 2 ppm, 3 ppm, 4 ppm, dan 5 ppm. Kurva kalibrasi yang diperoleh dapat dilihat pada Gambar 4. 9, sedangkan nilai absorbans dari tiap larutan standar dapat dilihat pada Tabel 4. 4. Tabel 4. 4. Nilai absorbans larutan standar Gambar 4. 9. Kurva kalibrasi Cu 2+ Konsentrasi Cu 2+ (ppm) A1 A2 A3 A rata-rata 1 0,1159 0,1190 0,1191 0,1180 2 0,2355 0,2359 0,2409 0,2374 3 0,3601 0,3669 0,3761 0,3677 4 0,4942 0,5033 0,5097 0,5024 5 0,6044 0,6137 0,6214 0,6132 Pada kurva kalibrasi dapat dilihat bahwa nilai intercept garis regresi linier tidak memberikan nilai sama dengan nol, melainkan -0,0088, yang berarti bahwa pada saat konsentrasi Cu 2+ sama dengan nol, alat SSA memberikan absorbans -0,0088 yang kemungkinan berasal dari matriks. Selanjutnya karena nilai absorbans ini relatif sangat kecil dibandingkan dengan 10% nilai absorbans konsentrasi larutan standar terkecil, maka diasumsikan bahwa matriks yang terdapat dalam larutan tidak memberikan nilai absorbans yang berarti sehingga kurva kalibrasi tersebut dapat digunakan untuk penentuan konsentrasi logam Cu dalam larutan sampel. Seperti yang telah dijelaskan pada bab Metodologi Penelitian sub bab Penentuan Kadar Penyerapan Logam Cu, kadar penyerapan logam oleh kitin dan kitosan dilakukan dengan 31

menggunakan larutan Cu 2+ dengan konsentrasi 3 ppm. Larutan Cu 2+ 3 ppm digunakan sebagai larutan sampel logam yang diserap karena diharapkan kadar logam yang terdapat dalam filtrat setelah proses penyerapan oleh kitosan memberikan absorbans yang berada pada daerah linier kurva kalibrasi. Setelah dilakukan penyerapan selama waktu kontak optimumnya, diketahui kadar penyerapan logam Cu 2+ 3 ppm oleh kitin dan kitosan mencapai nilai 100% karena konsentrasi logam dalam filtrat larutan yang sudah diserap tidak dapat terdeteksi oleh SSA. 4.7 Penentuan Efektivitas Penyerapan Logam Cu Oleh Kitosan Untuk uji efektivitas penyerapan logam oleh kitosan, digunakan larutan Cu 2+ dengan orde yang meningkat yaitu satuan, puluhan, dan ratusan. Larutan Cu 2+ yang digunakan adalah 3 ppm, 10 ppm, dan 200 ppm. Pemilihan konsentrasi logam di setiap orde dilakukan secara acak. Berdasarkan hasil uji efektivitas penyerapan logam oleh kitosan, diketahui bahwa kitosan tulang bandeng masih memberikan penyerapan logam yang baik hingga konsentrasi larutan sampel Cu 2+ 200 ppm dengan kadar penyerapan logam 99,70%. Kurva efektivitas penyerapan logam oleh kitosan dapat dilihat pada Gambar 4. 10. Gambar 4. 10. Kurva efektivitas penyerapan logam oleh kitosan 4.8 Analisis Pembentukan Senyawa Kompleks Cu-Kitosan Mekanisme penyerapan logam oleh kitin ataupun kitosan terjadi melalui pembentukan senyawa kompleks antara Cu dengan kitin/ kitosan. Senyawa kompleks yang terbentuk ini dapat dideteksi dengan menggunakan spektrum inframerah residu hasil penyerapan logam oleh kitin/ kitosan. Apabila terbentuk kompleks antara kitosan dengan logam Cu, maka akan terjadi pergeseran puncak O H pada bilangan gelombang 3450 cm -1 dan puncak N H pada bilangan gelombang 3365 cm -1 sebesar 8 atau 20 satuan ke arah bilangan gelombang yang 32

lebih kecil [15]. Namun, karena puncak pada bilangan gelombang 3365 cm -1 tidak dapat teramati pada spektrum inframerah yang diperoleh, maka puncak yang diamati hanya pada bilangan gelombang 3450 cm -1. Dari spektrum yang diperoleh (Gambar 4. 11 dan Gambar 4. 12), memang terbukti bahwa terbentuk kompleks antara kitosan dengan logam Cu dengan terjadinya pergeseran sebesar 20 satuan pada bilangan gelombang vibrasi ulur O-H dari 3446,79 cm -1 ke bilangan gelombang 3423,65 cm -1. Gambar 4. 11. Spektrum inframerah kitosan sebelum penyerapan logam Cu Gambar 4. 12. Spektrum inframerah kitosan setelah penyerapan logam Cu 33