BAB II BAB 1 TINJAUAN PUSTAKA. 1. Tata Cara Perhitungan Struktur Beton Untuk Bangunan Gedung (SNI 03

dokumen-dokumen yang mirip
DAFTAR NOTASI. Luas penampang tiang pancang (mm²). Luas tulangan tarik non prategang (mm²). Luas tulangan tekan non prategang (mm²).

DAFTAR ISTILAH. Al = Luas total tulangan longitudinal yang memikul puntir

DAFTAR NOTASI. xxvii. A cp

D = Beban mati atau momen dan gaya dalam yang berhubungan dengan beban mati e = Eksentrisitas dari pembebanan tekan pada kolom atau telapak pondasi

BAB III LANDASAN TEORI. A. Pembebanan

DAFTAR NOTASI. = Luas efektif bidang geser dalam hubungan balok-kolom (mm²) = Luas penampang tiang pancang (mm²)

xxv = Kekuatan momen nominal untuk lentur terhadap sumbu y untuk aksial tekan yang nol = Momen puntir arah y

DAFTAR NOTASI. = Luas yang dibatasi oleh keliling luar penampang beton, mm² = Luas efektif bidang geser dalam hubungan balokkolom

DAFTAR NOTASI. = Luas yang dibatasi oleh keliling luar penampang beton, mm² = Luas efektif bidang geser dalam hubungan balokkolom

DAFTAR NOTASI. A cp. = Luas yang dibatasi oleh keliling luar penampang beton, mm² = Luas efektif bidang geser dalam hubungan balokkolom

d b = Diameter nominal batang tulangan, kawat atau strand prategang D = Beban mati atau momen dan gaya dalam yang berhubungan dengan beban mati e = Ek

BAB VII PENUTUP 7.1 Kesimpulan

BAB III LANDASAN TEORI. untuk bangunan gedung (SNI ) dan tata cara perencanaan gempa

DAFTAR NOTASI BAB I β adalah faktor yang didefinisikan dalam SNI ps f c adalah kuat tekan beton yang diisyaratkan f y

BAB 2 DASAR TEORI Dasar Perencanaan Jenis Pembebanan

PERANCANGAN STRUKTUR ATAS GEDUNG APARTEMEN SEMBILAN LANTAI DI YOGYAKARTA. Oleh : PRISKA HITA ERTIANA NPM. :

PERANCANGAN STRUKTUR ATAS GEDUNG CONDOTEL MATARAM CITY YOGYAKARTA. Oleh : KEVIN IMMANUEL KUSUMA NPM. :

BAB V ANALISIS PEMBEBANAN

BAB III LANDASAN TEORI. dan SNI 1726, berikut kombinasi kuat perlu yang digunakan:

L p. L r. L x L y L n. M c. M p. M g. M pr. M n M nc. M nx M ny M lx M ly M tx. xxi

DAFfAR NOTASI. = Luas total tulangan longitudinal yang menahan torsi ( batang. = Luas dari tulangan geser dalam suatu jarak s. atau luas dari tulangan

PERHITUNGAN ULANG STRUKTUR GEDUNG ASRAMA KEBIDANAN LEBO WONOAYU DENGAN METODE SISTEM RANGKA PEMIKUL MOMEN MENENGAH

= keliling dari pelat dan pondasi DAFTAR NOTASI. = tinggi balok tegangan beton persegi ekivalen. = luas penampang bruto dari beton

Yogyakarta, Juni Penyusun

PERANCANGAN STRUKTUR ATAS GEDUNG TRANS NATIONAL CRIME CENTER MABES POLRI JAKARTA. Oleh : LEONARDO TRI PUTRA SIRAIT NPM.

DAFTAR ISI. HALAMAN JUDUL.. i. LEMBAR PENGESAHAN ii. KATA PENGANAR.. iii ABSTRAKSI... DAFTAR GAMBAR Latar Belakang... 1

PRESENTASI TUGAS AKHIR PROGRAM STUDI D III TEKNIK SIPIL FAKULTAS TEKNIK SIPIL DAN PERENCANAAN INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2010

BAB IV POKOK PEMBAHASAN DESAIN. Perhitungan prarencana bertujuan untuk menghitung dimensi-dimensi

BAB III LANDASAN TEORI. dan pasal SNI 1726:2012 sebagai berikut: 1. U = 1,4 D (3-1) 2. U = 1,2 D + 1,6 L (3-2)

DESAIN TAHAN GEMPA BETON BERTULANG PENAHAN MOMEN MENENGAH BERDASARKAN SNI BETON DAN SNI GEMPA

BAB IV ESTIMASI DIMENSI KOMPONEN STRUKTUR

BAB II DASAR DASAR PERENCANAAN STRUKTUR ATAS. Secara umum struktur atas adalah elemen-elemen struktur bangunan yang

2.5.3 Dasar Teori Perhitungan Tulangan Torsi Balok... II Perhitungan Panjang Penyaluran... II Analisis dan Desain Kolom...

BAB III ESTIMASI DIMENSI ELEMEN STRUKTUR

Perencanaan Struktur Tangga

BAB III LANDASAN TEORI

BAB V PENULANGAN STRUKTUR

BAB III LANDASAN TEORI. Kuat perlu dihitung berdasarkan kombinasi beban sesuai dengan SNI

ANALISIS DAN DESAIN STRUKTUR TAHAN GEMPA DENGAN SISTEM BALOK ANAK DAN BALOK INDUK MENGGUNAKAN PELAT SEARAH

STUDI DESAIN STRUKTUR BETON BERTULANG TAHAN GEMPA UNTUK BENTANG PANJANG DENGAN PROGRAM KOMPUTER

TUGASAKHffi PERENCANAAN STRUKTUR GEDUNG KANTOR Y.KP.P. DENGAN SISTEM PRACETAK. Luas bagian penampang antara muka serat lentur tarik dan titik berat

DAFTAR ISI KATA PENGANTAR DAFTAR TABEL DAFTAR GAMBAR DAFTAR LAMPIRAN DAFTAR NOTASI DAN SIMBOL

PERENCANAAN GEDUNG BETON BERTULANG BERATURAN BERDASARKAN SNI DAN FEMA 450

PERHITUNGAN STRUKTUR GEDUNG SANTIKA HOTEL BEKASI DENGAN METODE SISTEM RANGKA PEMIKUL MOMEN MENENGAH (SRPMM)

PERANCANGAN ULANG STRUKTUR GEDUNG BANK MODERN SOLO

BAB II TINJAUAN PUSTAKA

BAB V DESAIN TULANGAN STRUKTUR

BAB III STUDI KASUS 3.1 UMUM

BAB III LANDASAN TEORI. A. Pembebanan Pada Pelat Lantai

PERANCANGAN HOTEL 7 LANTAI DAN 1 BASEMENT YOGYAKARTA (SNI 1726:2012 & SNI 2847:2013)

1. Rencanakan Tulangan Lentur (D19) dan Geser (Ø =8 mm) balok dengan pembebanan sbb : A B C 6 m 6 m

Analisis Perilaku Struktur Pelat Datar ( Flat Plate ) Sebagai Struktur Rangka Tahan Gempa BAB III STUDI KASUS

BAB II TINJAUAN PUSTAKA

BAB II LANDASAN TEORI

Andini Paramita 2, Bagus Soebandono 3, Restu Faizah 4 Jurusan Teknik Sipil, Fakultas Teknik Universitas Muhammadiyah Yogyakarta

Gambar 5.1 Struktur Portal Balok dan Kolom

NOTASI DAFTAR. Luas bagian penampang antara muka serat lentur tarik dan titik berat. penampang bruto

BAB II TINJAUAN PUSTAKA. gedung dalam menahan beban-beban yang bekerja pada struktur tersebut. Dalam. harus diperhitungkan adalah sebagai berikut :

BAB IV ANALISA STRUKTUR

PERANCANGAN STRUKTUR BANGUNAN RUMAH SUSUN DI SURAKARTA

TUGAS AKHIR PERANCANGAN ULANG STRUKTUR PORTAL GEDUNG PPPPTK MATEMATIKA YOGYAKARTA

PERENCANAAN GEDUNG PASAR TIGA LANTAI DENGAN SATU BASEMENT DI WILAYAH BOYOLALI (DENGAN SISTEM DAKTAIL PARSIAL)

BAB III LANDASAN TEORI

BAB 2 TINJAUAN PUSTAKA

BAB III METODE PENELITIAN

BAB II TINJAUAN PUSTAKA

BAB II KAJIAN PUSTAKA

ANALISA STRUKTUR DAN KONTROL KEKUATAN BALOK DAN KOLOM PORTAL AS L1-L4 PADA GEDUNG S POLITEKNIK NEGERI MEDAN

5.2 Dasar Teori Perilaku pondasi dapat dilihat dari mekanisme keruntuhan yang terjadi seperti pada gambar :

1.6 Tujuan Penulisan Tugas Akhir 4

PERENCANAAN GEDUNG PERPUSTAKAAN KOTA 4 LANTAI DENGAN PRINSIP DAKTAIL PARSIAL DI SURAKARTA (+BASEMENT 1 LANTAI)

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA

TUGAS AKHIR DESAIN ALTERNATIF STRUKTUR GEDUNG YAYASAN PRASETIYA MULYA DENGAN LANTAI BETON BERONGGA PRATEGANG PRACETAK

ABSTRAK. Kata Kunci : Gedung Parkir, Struktur Baja, Dek Baja Gelombang

BAB II TINJAUAN PUSTAKA

BAB V ANALISIS PEMBEBANAN STRUKTUR. A. Spesifikasi Data Teknis Banguan

BAB II TINJAUAN PUSTAKA. yang aman. Pengertian beban di sini adalah beban-beban baik secara langsung

PERHITUNGAN STRUKTUR STRUKTUR BANGUNAN 2 LANTAI

BAB II TINJAUAN PUSTAKA

PERANCANGAN STRUKTUR BANGUNAN RUMAH SUSUN DI YOGYAKARTA

BAB III LANDASAN TEORI. A. Analisis Pembetonan Struktur Portal

BAB II TINJAUAN PUSTAKA. pembebanan yang berlaku untuk mendapatkan suatu struktur bangunan

ANALISA PELAT LANTAI DUA ARAH METODE KOEFISIEN MOMEN TABEL PBI-1971

DAFTAR ISI. Halaman Judul Pengesahan Persetujuan Surat Pernyataan Kata Pengantar DAFTAR TABEL DAFTAR GAMBAR DAFTAR NOTASI DAFTAR LAMPIRAN

IV. HASIL DAN PEMBAHASAN

BAB II TINJAUAN PUSTAKA. gedung dalam menahan beban-beban yang bekerja pada struktur tersebut.

BAB II TINJAUAN PUSTAKA

PERENCANAAN STRUKTUR GEDUNG RUSUNAWA UNIMUS

BAB II LANDASAN TEORI

BAB 2 DASAR TEORI. Bab 2 Dasar Teori. TUGAS AKHIR Perencanaan Struktur Show Room 2 Lantai Dasar Perencanaan

Jl. Banyumas Wonosobo

BAB III LANDASAN TEORI

BAB II TINJAUAN PUSTAKA. Menurut PBI 1983, pengertian dari beban-beban tersebut adalah seperti yang. yang tak terpisahkan dari gedung,

Struktur Balok-Rusuk (Joist) 9 BAB 3. ANALISIS DAN DESAIN Uraian Umum Tinjauan Terhadap Lentur 17

3.4.5 Beban Geser Dasar Nominal Statik Ekuivalen (V) Beban Geser Dasar Akibat Gempa Sepanjang Tinggi Gedung (F i )

B A B I I TINJAUAN PUSTAKA. getaran elastis yang dipancarkan ke segala arah dari titik runtuh (rupture point).

PERENCANAAN STRUKTUR GEDUNG PERHOTELAN DENGAN SISTEM RANGKA PEMIKUL MOMEN KHUSUS (SRPMK) DI KOTA PADANG

ANALISIS DAN DESAIN STRUKTUR BETON BERTULANG UNTUK GEDUNG TINGKAT TINGGI

PERENCANAAN GEDUNG HOTEL 4 LANTAI & 1 BASEMENT DENGAN SISTEM DAKTAIL PARSIAL DI WILAYAH GEMPA 4

Transkripsi:

BAB II BAB 1 TINJAUAN PUSTAKA 2.1. Peraturan-Peraturan yang Dugunakan 1. Tata Cara Perhitungan Struktur Beton Untuk Bangunan Gedung (SNI 03 2847 2002), 2. Peraturan Pembebanan Indonesia Untuk Bangunan Gedung (PPIUG 1983), 3. Tata Cara Perencanaan Ketahanan Gempa Untuk Bangunan Gedung (SNI 03 1726 2002), 4. Peraturan Beton Bertulang Indonesia 1971 (PBBI 1971). 5. Perhitungan struktur menggunakan SAP 2000 2.2. Teori Pembebanan Suatu struktur gedung mempunyai beban-beban yang dipikul oleh bangunan tersebut, baik beban tetap maupun yang tidak tetap. Dalam penentuan beban yang terjadi pada bangunan, menurut ketentuan dibedakan sebagai berikut: 2.2.1. Beban mati (PPIUG 1983 pasal 1.0-1) Beban Mati adalah berat dari semua bagian dari suatu gedung yang bersifat tetap, termasuk segala unsur tambahan, penyelesaianpenyelesaian mesin-mesin serta peralatan tetap yang merupakan bagian yang tak terpisahkan dari gedung itu. a. Beban mati pada atap, terdiri dari : - Berat sendiri ducting - Beban plafond dan rangka plafond, - Instalasi listrik, dan AC. 5

b. Beban mati pada pelat lantai, terdiri dari : - Berat sendiri pelat, - Beban spesi dan keramik, - Beban plafond dan rangka, - Beban instalasi listrik dan AC. c. Beban mati pada balok, terdiri dari : - Berat sendiri balok, - Beban mati pelat lantai, - Berat dinding setengah bata. 2.2.2. Beban hidup (PPIUG 1983 pasal 1.0-1) Beban Hidup adalah semua beban yang terjadi akibat penghunian suatu gedung atau penggunaan suatu gedung dan kedalamannya yang termasuk beban-beban pada lantai yang berasal dari barang-barang yang dapat berpindah, mesin-mesin serta peralatan yang tidak merupakan bagian yang tak terpisahkan dari gedung dan dapat diganti selama masih hidup dari gedung itu, sehingga mengakibatkan perubahan dalam pembebanan lantai dan atap tersebut. Beban hidup struktur bangunan ditentukan sebagai berikut : Beban Hidup Atap (pekerja)...100 kg/m 2 Beban Hidup Lantai...250 kg/m 2 6

2.2.3. Beban gempa ( PPIUG 1983 pasal 1.0-4 ) a. Perencanaan Beban Gempa Sesuai dengan filsofi perencanaan bangunan gedung tahan gempa menurut SNI 03-1726-2002 bahwa suatu struktur gedung pada daerah gempa haruslah menjamin bahwa struktur gedung tersebut tidak runtuh atau rusak pada saat terjadi gempa kecil atau sedang tetapi oleh gempa kuat boleh rusak tetapi tidak boleh runtuh. Oleh karena itu dalam merencanakan suatu gedung, perlu di pertimbangkan sifat daktilitas gedung tersebut. Daktilitas adalah kemampuan suatu struktur untuk mengalami deformasi bolak-balik diatas titik lelehnya tanpa mengalami pengurangan dalam kemampuan kapasitas penampangnya. Gedung Setiabudi Fraser Office terletak di wilayah gempa 4 (SNI 03_1726-2002) cukup direncanakan dengan tingkat daktilitas 2 (terbatas) dengan SRPMM. Gedung ini merupakan gedung yang beraturan, sehingga dapat ditampilkan sebagai akibat dari beban gempa statik ekuivalen, dimana gaya yang bekerja dapat dihitung dengan rumus sebagai berikut: - Waktu getar struktur (T) Waktu getar alami struktur gedung dinyatakan dalam detik yang menentukan besarnya Faktor Respons Gempa struktur gedung dan kurvanya ditampilkan dalam Spektrum Respons Gempa Rencana. T = 0,06 x h 3/4 7

- Faktor respon gempa (C) Faktor Respons Gempa dinyatakan dalam percepatan gravitasi yang nilainya bergantung pada waktu getar alami struktur gedung dan kurvanya ditampilkan dalam - Faktor keutamaan (I) Faktor Keutamaan gedung, faktor pengali dari pengaruh Gempa Rencana pada berbagai kategori gedung, untuk menyesuaikan perioda ulang gempa yang berkaitan dengan penyesuaian probabilitas dilampauinya pengaruh tersebut selama umur gedung itu dan penyesuaian umur gedung itu. - Faktor reduksi gempa (R) Faktor reduksi gempa, rasio antara beban gempa maksimum akibat pengaruh Gempa Rencana pada struktur gedung elastik penuh dan beban gempa nominal akibat pengaruh Gempa Rencana pada struktur gedung daktail, bergantung pada faktor daktilitas struktur gedung tersebut; factor reduksi gempa representatif struktur gedung tidak beraturan. 8

Gaya geser dasar gempa : CI V R Wt Gambar 2.1. Gambar gaya geser dasar gempa Gambar 2.2. Gambar wilayah Gempa 4 9

b. Arah Pembebanan Gempa Dalam perencanaan struktur gedung, arah utama pengaruh Gempa rencana harus ditentukan sedemikian rupa, sehingga memberi pengaruh terbesar terhadap unsur-unsur subsistem dan sistem struktur gedung secara keseluruhan. (SNI-03-1726-2002 psl. 5.8.1.) Untuk menstimulasikan arah pengaruh Gempa rencana yang sembarang terhadap struktur gedung, pengaruh pembebanan gempa dalam arah utama yang ditentukan menurut pasal 5. 8. 1. harus dianggap efektif 100% dan harus dianggap terjadi bersamaan dengan pengaruh pembebanan gempa dalam arah tegak lurus pada arah utama pembebanan tadi, tetapi dengan efektifitas hanya 30%. (SNI-03-1726-2002 psl. 5.8.2.) Gambar 2.3. Gambar peta zonasi gempa indonesia 10

2.3. Kombinasi Pembebanan Kombinasi pembebanan yag digunakan dalam perhitungan struktur antara lain: U = 1,4DL U = 1,0DL + 1,0LL U = 1,2DL + 1,6LL U = 1,2DL + 1,0LL U = 1,2DL + 1,0LL + 1,0QX U = 1,2DL + 1,0LL + 1,0QY U = 1,2DL + 1,0LL ± 1,0QX ± 1,0QY 2.4. Sistem Rangka Pemikul Momen Menengah Sistem rangka pemikul momen adalah suatu sistem struktur yang pada dasarnya memiliki rangka ruang pemikul beban gravitasi secara lengkap. Beban lateral dipikul rangka pemikul momen terutama melalui mekanisme lentur. Dalam perencanaan bangunan tahan gempa, telah ditetapkan dalam Standart Nasional Indonesia Tata Cara Perencanaan Ketahanan Gempa untuk bangunan gedung, bahwa sistem rangka pemikul momen dibagi dalam 3 (tiga) kelas yaitu : 1. Sistem Rangka Pemikul Momen Biasa (SRPMB) untuk wilayah gempa dengan resiko kegempaan rendah (wilayah gempa 1 dan 2), 2. Sistem Rangka Pemikul Momen Menengah (SRPMM) untuk wilayah gempa dengan resiko kegempaan sedang (wilayah gempa 3 dan 4), 3. Sistem Rangka Pemikul Momen Khusus (SRPMK) untuk wilayah gempa dengan resiko kegempaan tinggi (wilayah gempa 5 dan 6). 11

Pada perencanaan bangunan Gedung KPP Pratama Pemda Lamongan ini menggunakan Sistem Rangka Pemikul Momen Menengah di mana semua rangka struktur bangunan memikul beban gravitasi dan beban lateral yang diakibatkan oleh beban gempa sedang. Syarat-syarat dan perumusan yang dipakai pada perencanaan komponen struktur dengan sistem rangka pemikul momen menengah menurut SNI-03-2847-2002. 2.4.1. Detail penulangan Detail penulangan komponen SRPMM harus memenuhi ketentuanketentuan pasal 23.10(4), bila beban aksial tekan terfaktor pada komponen struktur tidak melebihi (A g f c /10). Bila beban aksial tekan terfaktor pada komponen struktur melebihi (A g f c /10), maka pasal 23.10(5) harus dipenuhi.. Bila konstruksi pelat dua arah tanpa balok digunakan sebagai bagian dari sistem rangka pemikul beban lateral, maka detail penulangannya harus memenuhi pasal 23.10(6). 2.4.2. Kuat geser Kuat geser rencana balok, kolom dan konstruksi pelat dua arah yang memikul beban gempa tidak boleh kurang daripada: - Jumlah gaya lintang yang timbul akibat termobilisasinya kuat lentur nominal komponen struktur pada setiap ujung bentang bersihnya dan gaya lintang akibat beban gravitasi terfaktor, atau - φ Vc = 0,6 x 1/6 x (f c)0,5 bw d 12

- Gaya lintang maksimum yang diperoleh dari kombinasi beban rencana termasuk pengaruh beban gempa, E, dimana nilai E diambil sebesar dua kali nilai yang ditentukan dalam peraturan perencanaan tahan gempa. 2.5. Perencanaan Pelat 2.5.1. Perencanaan ketebalan pelat Komponen struktur beton yang mengalami lentur harus direncanakan agar mempunyai kekakuan yang cukup untuk membatasi lendutan atau deformasi apapun yang dapat memperlemah kekuatan ataupun mengurangi kemampuan layan struktur pada beban kerja Untuk menentukan ketebalan pelat didasarkan kepada: Perencanaan pelat satu arah (one way slab) Ly Pelat satu arah terjadi apabila 2; dimana Lx adalah bentang Lx pendek sedangkan Ly adalah bentang panjang Perencanaan pelat dua arah (two way slab) Tebal pelat minimum dengan balok yang menghubungkan tumpuan pada semua sisinya dengan Ly < 2,0 maka harus memenuhi ketentuan Lx sebagai berikut : - Untuk αm 0,2, harus memenuhi ketentuan tabel 10 dan tidak boleh kurang dari nilai berikut: Pelat tanpa penebalan Pelat dengan penebalan > 120mm > 100mm 13

- Untuk 0,2 < αm < 2,0, ketebalan pelat minimum harus memenuhi h = fy l n0,8 1500 36 5 m 0,2 > 120 mm. - Untuk αm > 2,0 ketebalan pelat minimum tidak boleh kurang dari h = ln0,8 fy 1500 > 90 mm 36 9 2.5.2. Penulangan pelat Analisis struktur pelat Rasio kekakuan balok terhadap pelat : Ecb Ib > 1 Ecp Ip Dimana : Ecb Ecp Ib Ip = modulus elastisitas balok beton = modulus elastisitas pelat beton = momen inersia terhadap sumbu pusat penampang bruto balok = momen inersia terhadap sumbu pusat penampang bruto pelat Kebutuhan tulangan pelat Perhitungan momen-momen yang terjadi pada pelat berdasarkan Peraturan Beton Bertulang Indonesia tahun 1971 (PBBI 1971) tabel 13.3.1 dan 13.3.2. 14

min 1,4 f y b 0 1.85 f f max 0, 75 b fy m 0,85 fc' y c ' 600 600 f y perlu 1 1 m 2 m Rn 1 fy Jika ρ perlu < ρ min maka ρ perlu dinaikkan 30%. Sehingga, ρ pakai = 1,3 x ρ perlu As = ρ perlu x b x d Kontrol jarak spasi tulangan S max < 2 x h Kontrol tulangan susut dan suhu Tulangan susut dan suhu harus paling sedikit memiliki rasio luas tulangan terhadap luas bruto penampang beton sebagai berikut, tetapi tidak kurang dari 0,0014. Kontrol jarak spasi tulangan susut dan suhu S max < 2 x h Kontrol retak tulangan Bila tegangan leleh rencana fy untuk tulangan tarik melebihi 300Mpa, maka penampang dengan momen positif dan negatif maksimum harus dirancang sedemikian sehingga nilai z yang diberikan oleh : 15

z 3 fs dc A tidak melebihi 30MN/m untuk penampang di dalam ruangan dan 25MN/m untuk penampang yang dipengaruhi cuaca luar. Tegangan pada tulangan akibat beban kerja fs (MPa) harus dihitung sebagai momen maksimum tak terfaktor dibagi dengan hasil kali luas tulangan baja dengan lengan momen dalam. Bila tidak dihitung dengan cara di atas, fs boleh diambil sebesar 60% dari kuat leleh fy yang disyaratkan. A = 2 x dc x s dimana s adalah jarak antara batang tulangan. Untuk lebar retak yang digunakan adalah : 6 3 1110 fs dc A 0,4mm untuk penampang didalam ruangan 0,3mm untuk penampang yang dipengaruhi cuaca luar. Spasi tulangan yang berada paling dekat pada permukaan tarik tidak boleh melebihi 9500 s 2, 5Cc. Tetapi tidak boleh melebihi fy 300 252 fs 2.6. Perencanaan Balok 2.6.1. Perencanaan dimensi balok Untuk menentukan tinggi balok, dapat menggunakan acuan SNI 03-2847-2002, Tabel 8, sedangkan lebarnya dapat diambil dari nilai 2/3 dari tinggi balok yang telah didapat. 16

Gambar 2.4. Gambar penampang balok 2.6.2. Perencanaan dimensi balok Perhitungan tulangan lentur Momen tumpuan dan lapangan pada balok diperoleh dari output program bantuan ETABS Cek jenis tulangan (tulangan rangkap atau tulangan tunggal) Mu Mn min 1,4 f y b 0 1.85 f f max 0, 75 b fy m 0,85 fc' y c ' 600 600 f y x b 600 d 600 fy X coba-coba dimana x < 0,75 x b d d' = bw decking Ø sengkang ½ Ø tul.utama = decking + Ø sengkang + ½ Ø tul.utama 17

Cc = T1 = 0,85 x β 1 x fc x b x X T1 Asc fy Mu Mns Mn Mnc Mnc Jika (Mn-Mnc) > 0, maka perlu tulangan rangkap, untuk menentukan kebutuhan tulangan rangkapnya dapat digunakan langkah-langkah berikut ini: Cs T 2 Mn Mnc d d'' x d'' fs ' 600 x Jika fs > fy, maka tulangan tekan leleh, fs = fy. Jika fs < fy, tulangan tekan tidak leleh. Maka : As' Cs fs' 0,85 fc' T2 Ass fy - Tulangan perlu : As = Asc + Ass As = As - Kontrol jarak spasi tulangan - Kontrol kekuatan Mu Mn bw (2 decking ) 2 n D) s n 1 18

Jika (Mn-Mnc) < 0, maka perlu tulangan tunggal, untuk menentukan kebutuhan tulangan tunggalnya dapat digunakan langkah-langkah berikut ini: fy m 0,85 fc' perlu 1 1 m 2 m Rn 1 fy Jika ρ perlu ρ min, maka ρ perlu dinaikkan 30%, sehingga, ρ pakai = 1,3 x ρ perlu As = ρ perlu x b x d 2.6.3. Perhitungan tulangan geser Penentuan Vu, Vc, Vs, dan Vn Gaya lintang maksimum yang diperoleh dari kombinasi beban rencana termasuk pengaruh beban gempa, E, dimana nilai E diambil sebesar dua kali nilai yang ditentukan dalam peraturan perencanaan tahan gempa. Mn kiri Wu = 1,2D + 1,0L V Ln V Mn kanan Gambar 2.5. Gaya Lintang Rencana pada Balok Untuk SRPMM V u Mn kiri Mn L n kanan Wu 2 19

Nilai fc yang digunakan tidak boleh melebihi 25/3 Mpa, kecuali seperti yang diizinkan di dalam SNI 03-2847-2002 pasal 13.1(2(1)) Kuat geser beton yang dibebani oleh geser dan lentur Ф Vu Vn Vn = Vc + Vs 1 Vc 6 fc' bw d Vs min= 1/3 x bw x d Vs max 1 fc' bw d 3 Vs Av min Av fy d s b w 3 fy Cek kondisi Kondisi 1: Vu 0.5 Vc tidak perlu tulangan geser Kondisi 2 0.5Vc Vu Vc perlu tulangan geser minimum Kondisi 3 (Vs perlu = Vs min ) Vc Vu ( Vc Vs min) perlu tulangan geser minimum 20

Komdisi 4 (Vs perlu = Vs min ) ( Vc Vs min ) Vu ( Vc Vs max ) perlu tulangan geser minimum ( Vs perlu Vu Vc) 2.6.4. Perhitungan tulangan torsi Pengaruh puntir pada struktur non-prategang dapat diabaikan bila nilai momen puntir terfaktor Tu besarnya kurang dari : fc' A Tu 12 P 2 cp cp Tulangan yang dibutuhkan untuk menahan puntir adalah : Tn T u Sedangkan tulangan sengkang yang dibutuhkan untuk menahan puntir adalah sebagai berikut : T n 2 A A f o s t yv cot 2.6.5. Perhitungan panjang penyaluran Panjang penyaluran ( l d ), dinyatakan dalam diameter d b. Nilai l d tidak boleh kurang dari 300 mm. Untuk batang ulir atau kawat ulir, nilai l d /d b harus diambil sebagai berikut: Batang D-19 dan lebih kecil atau kawat ulir 21

l d d b 12 f y 25 fc' Batang D-22 atau lebih besar l d d b 3 f y 5 fc' Panjang penyaluran ( l d ), dalam mm, untuk batang ulir yang berada dalam kondisi tekan harus dihitung dengan mengalikan panjang penyaluran dasar l db. Nilai l d tidak boleh kurang dari 200 mm. Panjang penyaluran dasar l db harus diambil sebesar kurang dari 0,04 x d b x fy. 2.7. Perencanaan Balok Lift d f b y 4 fc' dan tidak Dalam perencanaan lift, hal-hal yang perlu diperhatikan adalah balok-balok yang berkaitan dengan ruang mesin lift yaitu terdiri dari balom penumpu, balok penggantung, dan klom struktur lift. 2.7.1. Pembebanan balok lift Beban mati - Beban balok kolom : b x h x l x 2400 kg/m 3 - Bebn pelat : t plat x b x h x 2400 kg/m 3 Beban hidup 22

Beban hidup yang bekerja pada sangkar lift adalah akibat dari mesin penggerak lift, berat kereta luncur, perlengkapan, dan bandul pemberat lift. 2.7.2. Faktor kejut Dalam PPIUG 1983 pasal 3.3.(3), disebutkan bahwa beban keran yang membebani struktur pemikulnya terdiri dari berat sendiri keran ditambah dengan berat muatan yang diangkatnya, dalam kedudukan keran induk dan keran angkat yang paling menentukan bagi struktur yang ditinjau. Sebagai beban rencana harus diambil beban keran tersebut dengan mengalikannya dengan suatu koefisien kejut yang ditentukan menurut rumus beikut: ( 1 k1 k2 V) 1,15 Dimana: = koefisien kejut yang nilainya tidak bleh diambil kurang dari 1,15 V = kecepatan angkat maksimum dalam m/dt pada pengangkatan muatan maksimum dalam keran induk dan keran angkat yang paling menentukan bagi struktur yang ditinjau dan nilainya tidak perlu lebih dari 1,00 m/dt k 1 = koefisien yang tergantung pada kekuatan struktur keran induk, untuk keran induk dengan struktur rangka pada umumnya diambil sebesar 0,6 23

k 2 = koefisien yang tergantung pada sifat-sifat mesin angkat dari keran angkatnya dan dapat diambil sebesar 1,3 Jadi, beban yang bekerja pada balok dapat diperoleh berdasarkan rumus berikut: P = R x Sehingga untuk perhitungan tulangan lentur, geser dan torsinya berprinsip sama dengan perhitungan tulangan balok pada pembahasan sebelumnya 2.8. Perencanaan Kolom 2.8.1. Perencanaan dimensi kolom I l kolom kolom I l balok balok dimana : I kolom = inersia kolom (1/12 x b x h 3 ) l kolom = tinggi bersih kolom I balok = inersia balok (1/12 x b x h 3 ) l balok = tinggi bersih balok b k dan d k 250 mm h k 25 b atau d 2.8.2. Penulangan lentur kolom Kontrol kelangsingan kolom EI / EI / kolom balok 24

EI 0,2 E I E I c g 1 d c g atau 0, 4 E c I g EI 1 d, pilih nilai terkecil P c 2 EI k 2 u kolom - Untuk rangka portal tak bergoyang k lu r M 34 12 M 1 2 - Untuk rangka portal bergoyang k lu r 22 k lu Apabila 100, maka diperlukan perhitungan momen orde dua r Pembesaran momen - Untuk rangka portal tak bergoyang Mc = ns x M 2 ns Cm Pu 1 0,75 P c 1 - Untuk rangka bergoyang M 1 = M 2 = M1 ns s M1 s M 2ns s M 2s Perhitungan tulangan - Tentukan harga - Nilai M ox dan M oy M ox M nx M ny h 1 b ; untuk M M ny nx b h 25

M oy M ny M nx b 1 h ; untuk M M ny nx b h Pu dan Ag Mox Ag x h didapat dari diagram interaksi perlu A s perlu bh Cek kemampuan kolom - Hitung M ox dan M oy baru - Cari dengan tabel hubungan interaksi lentur biaksial Mny Moy Mu M o Mnx Mox 1 2.8.3. Penulangan geser kolom Vu = M nt M h n nb gaya geser yang disumbangkan beton akibat gaya tekan aksial Vc = Nu 1 ' 1 f c bw d 14 Ag 6 Untuk komponen struktur yang dibebani tekan aksial, maka kuat geser (Vc) harus dihitung menggunakan rumus : Vc = 1+ Nu Ag 14 fc' b 6 w d Jarak spasi tulangan pada kolom 26

Menurut SNI 03-2847-2002 Pasal 23. 10, syarat untuk mnentukan jarak spasi maksimum tulangan pada kolom adalah sebagai berikut: Spasi maksimum sengkang tidak boleh melebihi : - d/4-8 x Ø tulangan longitudinal terkecil - 24 x Ø sengkang ikat - 300 mm Panjang lo tidak boleh kurang daripada nilai terbesar berikut ini : - 1/6 x tinggi bersih kolom - Dimensi terbesar penampang kolom - 500 mm - Sengkang ikat pertama harus dipasang pada jarak tidak lebih daripada 0,5 x So dari muka hubungan balok-kolom. (So adalah spasi maksimum tulangan tranversal). 2.9 Referensi Perbesaran kolom Perbesaran kolom dalam kasus ini adalah menghilangkan corewall sebagai pengaku pada struktur existing dan diganti kolom sebagai struktur utama nya, dan letak perbesaran kolom ada dalam beberapa konfigurasi yang telah di tentukan posisinya. 27