BAB II DASAR DASAR PERENCANAAN STRUKTUR ATAS. Secara umum struktur atas adalah elemen-elemen struktur bangunan yang

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB II DASAR DASAR PERENCANAAN STRUKTUR ATAS. Secara umum struktur atas adalah elemen-elemen struktur bangunan yang"

Transkripsi

1 BAB II DASAR DASAR PERENCANAAN STRUKTUR ATAS 2.1 Tinjauan Umum Secara umum struktur atas adalah elemen-elemen struktur bangunan yang biasanya di atas permukaan tanah yang berfungsi menerima dan menyalurkan beban-beban yang bekerja terhadapnya ke pondasi (struktur bawah). Struktur atas terdiri dari pelat lantai, balok dan kolom. Pelat lantai adalah elemen struktur yang menerima beban-beban diatasnya dan menyalurkan ke balok. Pelat lantai dapat dianggap sebagai dasar atau landasan dari struktur yang membentuk ruang. Sedangkan balok adalah elemen struktur yang menerima distribusi beban dari plat lantai dan menerima beban diatasnya dan mendistribusikannya ke kolom. Dan Kolom adalah elemen struktur yang menumpu/menahan distribusi beban dari balok-balok dan disalurkan ke pondasi. Sehingga kolom ini sangat berarti bagi struktur atas. Jika kolom runtuh, maka runtuh pulalah bangunan secara keseluruhan. Oleh karena ini masing-masing elemen struktur harus memenuhi syaratsyarat dalam proses perencanaannya. Syarat-syarat dalam mendesain suatu struktur diantaranya ; II-1

2 a. Kekuatan Elemen struktur harus kuat terhadap gaya-gaya dan beban-beban yang bekerja Dalam hal ini yang ditinjau adalah beban yang bekerja dan mutu bahan yang digunakan. b. Kekakuan Struktur dan elemen struktur harus aman dalam batas kekakuan dan deformasinya seperti menahan momen lentur dan torsi. c. Stabilitas Struktur secara umum harus dapat mencapai kesetimbangan baik arah vertikal dan horizontal sehingga dapat dikatakan aman dan nyaman, terutama dalam menahan beban gempa. d. Efesiensi Syarat ini mencangkup tujuan desain struktur yang relatif lebih ekonomis. Tujuan perencanaan struktur selain 3 faktor tinjauan konstruksi diatas yaitu dari segi biaya, dimana struktur yang direncanakan bisa lebih ekonomis dalam segi pembiayaannya. Ada beberapa jenis material konstruksi pembentuk struktur bangunan, diantaranya ; struktur beton bertulang, struktur baja dan struktur beton prategang. Dalam perencanaan kali ini desain perencanaan struktur yang digunakan adalah struktur beton bertulang. II-2

3 2.2 Dasar Teori Elemen Struktur Beton Bertulang Pelat Lantai (Slab) Sistem lantai biasanya terbuat dari beton bertulang yang dicor di tempat. Untuk merencanakan pelat beton bertulang yang perlu dipertimbangkan tidak hanya pembebanan, tetapi juga ukuran dan syarat-syarat tumpuan pada tepi. Syarat-syarat tumpuan menentukan jenis perletakan dan jenis penghubung di tempat tumpuan. Bila pelat dapat berotasi bebas pada tumpuan, maka pelat itu dikatakan ditumpu bebas contoh jika pelat tertumpu pada pelat bata. Bila tumpuan mencegah pelat berotasi dan relative sangat kaku terhadap momen puntir, maka pelat itu terjepit penuh dimana pelat adalah monolit (menyatu) dengan balok. Struktur bangunan gedung biasanya tersusun atas komponen pelat lantai, balok anak, balok induk dan kolom yang pada umumnya dapat merupakan satu kesatuan monolit atau terangkai seperti halnya pada sistem perletakan, pelat juga dipakai untuk atap, dinding, lantai dan tangga. Petak pelat dibatasi oleh balok atau balok anak pada kedua sisi panjang terhadap sisi pendek yang saling tegak lurus, namun apabila perbandingan sisi panjang terhadap sisi pendek yang saling tegak lurus lebih dari dua maka pelat dapat dianggap hanya bekerja sebagai pelat satu arah. II-3

4 Pelat satu arah dapat didefinisikan sebagai pelat yang didukung pada dua tepi yang berhadapan sehingga lenturan yang timbul hanya dalam satu arah saja, yaitu pada arah yang tegak lurus terhadap arah dukungan tepi. Gambar 2.1 berikut adalah pelat satu arah yang ditumpu pada 2 sisi balok. Balok Pelat 1 arah Balok Kolom Momen Negatif Momen Negatif Momen positif Gambar 2.1. Pelat monolit satu arah II-4

5 Sedangkan pelat yang ditumpu pada keempat sisinya dan lebar sisi panjang tidak lebih dari 2 kali lebar sisi pendek maka pelat tersebut pelat dua arah, dimana akan terjadi momen lentur dari balok-balok yang berhadapan. Pada struktur gedung bertingkat kebanyakan menggunakan pelat dua arah. Gambar 2.2 berikut menggambarkan pelat monolit dua arah yang mengalami dua momen lentur arah x (Mx) dan arah y (My) Momen Negatif arah y (-My) Kolom Momen positif arah y(my) Pelat 2 arah Balok Momen Negatif Arah y (-My) Momen Negatif arah x (-Mx) Momen positif arah x (Mx) Momen Negatif Arah x (-Mx) Gambar 2.2. Pelat monolit dua arah II-5

6 Dalam hal ini perencanaan pelat lebih kepada perencanaan pelat dua arah. Berdasar (SNI pasal 15.2(4) Pada konstruksi monolit atau komposit penuh, suatu balok mencangkup juga bagian pelat pada setiap sisi balok sebesar proyeksi balok yang berada di atas atau di bawah pelat tersebut. (lihat gambar 2.3) Gambar 2.3. Bagian Pelat yang diperhitungkan Sedangkan untuk penentuan tebal pelat mengacu pada SNI pasal Ayat (2) Tebal minimum pelat tanpa balok interior yang menghubungkan tumpuan-tumpuannya mempuyai rasio bentang panjang terhadap bentang pendek yang tidak melebihi dari dua harus memenuhi ketentuan table 10 dan tidak boleh kurang dari nilai berikut ; (a) Pelat tanpa penebalan = 120mm (b) Pelat dengan penebalan = 100mm II-6

7 Tabel 2.1 Lendutan ijin Maksimum II-7

8 Ayat (3) Tebal pelat minimum dengan balok yang menghubungkan tumpuan pada semua sisinya harus memenuhi ketentuan berikut ; (a) Untuk m yang sama atau lebih kecil dari 2 harus menggunakan pasal 11.5(3)(2) (b) Untuk m lebih besar dari 0.2 dan tidak lebih dari 2, maka ketebalan pelat minimum harus memenuhi ; h min = Ln (0,8 + fy/1500) β( m-0.2) Dan tidak boleh kurang dari 120mm (c) Untuk m lebih besar dari 2 ketebalan pelat minimum tidak boleh kurang dari h min = Ln (0,8 + fy/1500) β Dan tidak boleh kurang dari 90mm Untuk perencanaan penulangan pelat mengacu pada SNI pasal 15.6.(2)(2) dengan metode perencanaan langsung dimana jumlah absolute dari momenterfaktor positif dan momen terfaktor negative rata-rata dalam masing masing arah tidak boleh kurang dari Mo = 1/8 Wu l 2. ln 2. Dan untuk faktor distribusinya mengikuti pada table 13 pasal 15.6.(3)(3) II-8

9 Tabel 2.2 Distribusi Momen Total Terfaktor Dan pada lokasi lajur kolom harus dirancang dapat memikul momen terfaktor yang dinyatakan dalam persen Mo. Tabel 2.3 Faktor Distribusi Momen Negatif Dalam Mo pada Lajur Kolom Tabel 2.4 Faktor Distribusi Momen Negatif Luar Mo pada Lajur Kolom II-9

10 2.2.2 Balok Pada desain penampangnya ditentukan telebih dahulu untuk kemudian dianalisa untuk menentukan penampang tersebut dapat dengan aman memikul beban luar yang diperlukan atau tidak. Untuk mendalami prinsip-prinsip mekanika dasar mengenai keseimbangan merupakan hal yang harus terpenuhi untuk setiap keadaan pembebanan. Seperti pada pelat, balok juga terdapat beberapa peraturan penggambaran detail penulangan yang lebih banyak berhubungan dengan praktek merencana struktur yang baik daripada berdasar perhitungan. Jarak antara batang tulangan harus cukup lebar agar butir-butir agregat terbesar dapat melewatinya dan stick penggetar (vibrator) dapat dimasukan ke dalam pemadatan beton. Untuk ini jarak antar batang tulangan diambil sebesar 40mm baik untuk tulangan atas maupun tulangan bawah dan jarak ini dianggap sebagai nilai minimum. Dari segi ekonomis berlaku peraturan praktis berikut bagi tulangan balok ; - Batasilah penggunaan beberapa diameter batang yang berbeda-beda - Gunakan diameter-diameter yang ada di pasaran seperti berikut : 6, 8, 10, 12, 13, 16, 19, 22, 25, 28, 32 - Gunakan tulangan sedikit mungkin yaitu dengan mengambil jarak antara tulangan sebesar mungkin - Gunakan panjang batang yang ada di pasaran II-10

11 - Batang yang dibengkokkan harus cukup pendek, sebaiknya gunakan batang tulangan yang panjang hanya untuk tulangan lurus. - Bila mungkin hanya menggunakan sengkang yang semuanya terbuat dari satu mutu baja dengan diameter sama - Diameter batang yang dipilih dalam satu penampang disarankan jangan mempunyai perbedaan lebih dari satu meter. - Usahakan agar jarak antara sepasang batang pada tulangan atas balok tidak kurang dari 50mm agar dapat terbentuk celah memanjang yang cukup lebar untuk pengecoran dan pemadatan, ini khususnya bila terdapat dua lapis. Jarak maks. Tul samping 300mm Jarak min. 25mm disarankan 40mm Tebal penutup beton : - Tidak berhubungan cuaca = 40mm - Berhubungan dengan cuaca = 50mm Jarak maks. Sengakang - 250mm untuk tulangan polos - 300mm untuk tulangan ulir Jarak min. 25mm Gambar 2.4. Syarat penulangan balok II-11

12 11.5 berikut : Penentuan dimensi balok mengacu pada SNI tabel 8 pasal Tabel 2.5. Tinggi Minimum pada Perencanaan balok Sedangkan untuk lebar balok diambil minimum ½ dari tinggi balok. Desain penulangan balok terdiri dari desain penulangan lentur dengan mengikuti hasil output luas tulangan dari analisa ETABS dan desain tulangan geser untuk menahan beban gempa yang ditentukan khusus menurut SNI pasal 23.3 (4) dimana gaya geser rencana Ve harus ditentukan dari peninjauan gaya statik pada komponen struktur antara dua muka tumpuan. II-12

13 Gambar 2.5. Desain gaya Geser Pada balok Momen Mpr harus dihitung dari tulangan terpasang dengan tegangan tarik 1.25 fy. Mpr = As (1.25fy) (d ½ a) a = As (1.25fy) / (0.85 f c. b) Ve Wu = (Mpr kiri + Mpr kanan)/l + ½ Wu x L = 1.2 D + 1 L Vs = Ve /..< Vs maks Vs maks = 2/3. bw. d f c S = Av. fy. d / Vs Tulangan sengkang ditengah balok pada jarak 2h ; mengikuti SNI pasal Vu = (Mpr kiri + Mpr kanan)/l + ½ Wu x (L-2.2h) Vs = Vu/0,75 1/6 f c.b.d II-13

14 2.2.3 Kolom Kolom kolom di sebuah konstruksi berfungsi meneruskan beban- beban dari balok dan pelat ke bawah sampai pondasi. Karenanya kolom merupakan bagian konstruksi tekan, meskipun mungkin harus pula menahan gaya gaya lentur akibat kontinuitas dari konstruksi. Perencanaan kolom memperhatikan batas tegangan ( kekuatan) dam kekakuan untuk menghindari deformasi yang berlebihan dan tekuk. Menurut SNI pasal 10.8 berikut beberapa persyaratan yang harus dipenuhi dalam perencanaan kolom : 1. Kolom harus direncanakan untuk memikul beban aksial terfaktor yang bekerja pada semua lantai atau atap dan momen maksimum yang berasal dari beban terfaktor pada satu bentang terdekat dari lantai atau atap yang ditinjau. Kombinasi pembebanan yang menghasilkan rasio maksimum dari momen terhadap beban aksial juga harusdiperhitungkan. 2. Pada konstruksi rangka atau struktur menerus, pengaruh dari adanya beban yang tak seimbang pada lantai atau atap terhadap kolom luar ataupun dalam harus diperhitungkan. Demikian pula pengaruh dari beban eksentris karena sebab lainnya juga harus diperhitungkan. 3. Dalam menghitung momen akibat beban gravitasi yang bekerja pada kolom, ujung-ujung terjauh kolom dapat dianggap terjepit, selama ujungujung tersebut menyatu (monolit)dengan komponen struktur lainnya. II-14

15 4. Momen-momen yang bekerja pada setiap level lantai atau atap harus didistribusikan pada kolom di atas dan di bawah lantai tersebut berdasarkan kekakuan relatif kolom dengan juga memperhatikan kondisi kekangan pada ujung kolom. Berdasarkan loakasi pembebanan pembagian desain kolom per tiap lantai juga direncanakan pada daerah ; - Kolom area tengah (interior) - Kolom area tepi (eksterior) - Kolom area sudut Untuk menentukan dimensi kolom yang ekonomis berdasarkan beban Pu yang bekerja ; Ag Pu n (f c + fy. t) Dimana ; - Ag = Luas penampang kolom beton - f c = Mutu beton - fy = Mutu baja - t = rasio tulangan ekonomis Pu = Beban terfaktor - n = Konstanta II-15

16 Desain penulangan memanjang/lentur kolom menggunakan program PCACOL dimana dimensi kolom, gaya aksial dan momen yang didapat dari ETABS di investigasi apakah masih masuk dalam diagram interaksi hasil output PCACOL. Sedangkan desain tulangan geser yang ditentukan khusus menurut SNI pasal 23.3 (4) dimana gaya geser rencana Ve harus ditentukan dengan memperhitungkan gaya maksimum yang dapat terjadi di muka hubungan balok kolom pada setiap ujung komponen struktur. Gambar 2.6. Desain gaya Geser Pada Kolom Ve = (Mpr kiri + Mpr kanan)/h Vs = Ve /..< Vs maks Vs maks = 2/3. bw. d f c S = Av. fy. d / Vs II-16

17 2.3 Perencanaan Struktur Gempa Gempa Rencana dan Katagori Gedung Gempa rencana ditetapkan mempunyai periode ulang 500 tahun, agar probabilitas terjadinya terbatas pada 10 % selama umur gedung 50 tahun. Untuk berbagai katagori gedung, tergantung pada probabilitas terjadinya keruntuhan struktur gedung selama umur rencana dan umur gedung tersebut yang diharapkan, pengaruh gempa rencana terhadapnya harus dikalikan dengan suatu faktor keuatmaan I menurut persamaan : Dimana : I = I 1. I 2 I 1 = faktor keuatamaan yang menyesuaikan perioda ulang gempa berkaitan dengan penyesuaian probabilitas terjadinya gempa itu selama umur gedung I 2 = faktor keutamaan untuk menyesuaiakan perioda ulang gempa berkaitan dengan penyesuaian umur gedung tersebut. Dalam perencanaan kali ini kategori gedung dipergunakan untuk apartement dan perkantoran maka berdasar tabel 1 SNI faktor probabilitas keruntuhan struktur gedung tertera dalam tabel 2.1 dibawah ini ; II-17

18 Tabel 2.6 Faktor Keutamaan untuk berbagai katagori gedung dan bangunan Daktilitas Struktur Bangunan dan Pembebanan Gempa Nominal Faktor reduksi ( R ) dan faktor daktilitas gedung ( ) berdasar tabel 2 dan tabel 3 SNI Tabel 2.7 Faktor Reduksi dan Daktilitas Gedung II-18

19 Tabel 2.8 Faktor Reduksi Daktilitas Subsistem Gedung II-19

20 2.3.3 Perencanaan Struktur Gedung Struktur Gedung Beraturan Berdasar SNI pasal 6 bahwa struktur gedung beraturan dapat direncanakan terhadap pembebanan gempa nominal akibat pengaruh Gempa Rencana dalam arah masing-masing sumbu utama denah struktur tersebut, berupa beban gempa nominal statik ekuivalen, yang ditetapkan lebih lanjut dalam pasalpasal berikut. Apabila kategori gedung memiliki Faktor Keutamaan I menurut Tabel 1 dan strukturnya untuk suatu arah sumbu utama denah struktur dan sekaligus arah pembebanan Gempa Rencana memiliki faktor reduksi gempa R dan waktu getar alami fundamental T1, maka beban geser dasar nominal statik ekuivalen V yang terjadi di tingkat dasar dapat dihitung menurut persamaan : V1 = (C 1. I / R) Wt dimana C1 adalah nilai Faktor Respons Gempa yang didapat dari Spektrum Respons Gempa Rencana menurut Gambar 2 untuk waktu getar alami fundamental T1, sedangkan Wt adalah berat total gedung, termasuk beban hidup yang sesuai. Beban geser dasar nominal V menurut Pasal harus dibagikan sepanjang tinggi struktur gedung menjadi beban-beban gempa nominal statik ekuivalen Fi yang menangkap pada pusat massa lantai tingkat ke-i menurut persamaan : Fi (x,y) = Wi. hi Wi. hi. V (x)(y) II-20

21 di mana Wi adalah berat lantai tingkat ke-i, termasuk beban hidup yang sesuai, zi adalah ketinggian lantai tingkat ke-i diukur dari taraf penjepitan lateral menurut Pasal dan Pasal 5.1.3, Waktu getar alami fundamental struktur gedung beraturan dalam arah masingmasing sumbu utama dapat ditentukan dengan rumus Rayleigh sebagai berikut : T rayleigh = 6,3 Wi. di 2 g Fi. di di mana Wi dan Fi mempunyai arti yang sama seperti yang disebut dalam Pasal 6.1.3, di adalah simpangan horisontal lantai tingkat ke-i dinyatakan dalam mm dan g adalah percepatan gravitasi yang ditetapkan sebesar 9810 mm/det2. Apabila waktu getar alami fundamental T1 struktur gedung untuk penentuan Faktor Respons Gempa C1 menurut Pasal ditentukan dengan rumus-rumus empiric atau didapat dari hasil analisis vibrasi bebas 3 dimensi, nilainya tidak boleh menyimpang lebih dari 20% dari nilai yang dihitung menurut Pasal Perhitungan eksentrisitas pusat massa dan pusat rotasi mengacu pada SNI pasal 5.4 II-21

22 Pusat massa lantai tingkat suatu struktur gedung adalah titik tangkap resultante beban mati, berikut beban hidup yang sesuai, yang bekerja pada lantai tingkat itu. Pada perencanaan struktur gedung, pusat massa adalah titik tangkap beban gempa static ekuivalen atau gaya gempa dinamik. Pusat rotasi lantai tingkat suatu struktur gedung adalah suatu titik pada lantai tingkat itu yang bila suatu beban horisontal bekerja padanya, lantai tingkat tersebut tidak berotasi, tetapi hanya bertranslasi, sedangkan lantai-lantai tingkat lainnya yang tidak mengalami beban horisontal semuanya berotasi dan bertranslasi. Antara pusat massa dan pusat rotasi lantai tingkat harus ditinjau suatu eksentrisitas rencana ed. Apabila ukuran horisontal terbesar denah struktur gedung pada lantai tingkat itu, diukur tegak lurus pada arah pembebanan gempa, dinyatakan dengan b, maka eksentrisitas rencana ed harus ditentukan sebagai berikut : untuk 0 < e < 0,3 b : ed = 1,5 e + 0,05 b (21) atau ed = e - 0,05 b (22) - untuk e > 0,3 b : ed = 1,33 e + 0,1 b (23) atau ed = 1,17 e - 0,1 b II-22

23 Struktur Gedung Tidak Beraturan Berdasar ketentuan SNI pasal jenis gedung yang direncanakan masuk dalam kategori struktur gedung tidak beraturan, karena tinggi gedung yang melebihi 40m atau lebih dari 10 tingkat. Maka perencanaan harus ditentukan melalui analisis respon dinamik 3 dimensi. Beban gempa dinamik dihitung menggunakan Respon Spektrum sesuai SNI harus dimodelkan dahulu Respon Spektrum Gempa Rencana sesuai Gambar 2 SNI Gambar 2.7. Respon Spektrum Gempa Rencana II-23

24 Khusus untuk beban gempa untuk mensimulasikan arah pengaruh beban gempa yang sembarang perlu dimodelkan adanya arah pembebanan Gempa Orthogonal (SNI pasal 5.8) sehingga dapat dimodelkan sebagai berikut ; - Beban gempa respon spectrum arah X (RSPX) : 100% untuk arah X dan 30% untuk arah Y. - Beban gempa respon spectrum arah Y (RSPY) : 30% untuk arah X dan 100% untuk arah Y. Menurut SNI pasal : nilai ordinatnya harus dikalikan dengan faktor koreksi I/R (nilai I = 1, dan R = 8.5). Sedangkan nilai C dinyatakan dengan percepatan gravitasi (9.81 m/det) Menurut SNI pasal ; bahwa perhitungan Respon Dinamik Struktur harus sedemikian rupa sehingga partisipasi Massa dalam menghasilkan Respon Total harus sekurang-kurangnya 90%. Menurut SNI pasal : bahwa Nilai Akhir Spektrum tidak boleh diambil kurang dari 80% Nilai Respon Ragam pertama atau V dinamik > 0.8 V statik. Dimana V 1 adalah gaya geser nominal sebagai respon ragam yang pertama terhadap gempa rencana menurut persamaan berikut ; V1 = (C 1. I / R) Wt II-24

25 Dimana C1 adalah faktor respon gempa yang didapat dari spektruk respon gempa rencana menurut gambar 2 (SNI ) untuk waktu getar alami pertama T1, I adalah faktor keutamaan menurut tabel 1 (SNI ) dan R adalah faktor reduksi gempa representative dari struktur yang bersangkutan sedangkan Wt adalah berat total gedung termasuk beban hidup yang sesuai Menurut pasal SNI gaya geser tingkat nominal pengaruh gempa rencana sepanjang tinggi struktur gedung hasil analisis ragam spectrum respon dalam suatu arah tertentu harus dikalikan nilainya dengan suatu faktor skala berikut Faktor skala = 0.8V 1 / Vt 1 Dimana Vt adalah gaya geser nominal yang didapat dari hasil analisis ragam spectrum yang telah dilakukan Dalam analisis reson dinamik riwayat waktu berdasar pasal SNI dapat dihitung nilai percepatan puncak A sebagai berikut A = Ao. I / R Dimana Ao adalah percepatan puncak muka tanah menurut tabel 5 SNI II-25

26 2.3.4 Kinerja Struktur Gedung Kinerja struktur gedung ditinjau dari kinerja batas layan dan kinerja batas ultimit. 1. Kinerja batas layan Kinerja batas layan struktur gedung ditentukan oleh simpangan antar tingkat akibat pengaruh gempa rencana, yaitu untuk membatasi terjadinya pelelehan baja dan peretakan beton yang berlebihan, di samping untuk mencegah kerusakan non struktur dan ketidaknyamanan penghuni. SImpangan antar tingkat ini harus dihitung dari simpangan struktur gedung tersebut akibat pengaruh gempa nominal yang telah di bagi faktor skala. Untuk memenuhi persyaratan kierja batas layan struktur gedung dalam segala simpangan antar tingkat yang dihitung dari simpangan sturktur gedung maka tidak boleh melampaui 0.003/R kali tinggi tingkat yang bersangkutan atau 30mm, tergantung mana yang nilainya terkecil 2. Kinerja batas ultimit Kinerja batas ultimit struktur gedung ditentukan oleh simpangan dan simpangan antar tingkat maksimum struktur gedung akibat pengaruh gempa rencana dalam kondisi struktur gedung di ambang keruntuhan, yaitu membatasi kemungkinan terjadinya keruntuhan struktur gedung yang dapat menimbulkan korban jiwa manusia dan untuk mencegah benturan berbahaya antar gedung atau antar bagian struktur gedung yang dipisah deletasi. II-26

27 Simpangan-simpangan antar tingkat ini harus dihitung dari simpangan struktur gedung akibat pembebanan gempa nominal dikalikan faktor pengali ξ sebagai berikut ; - Untuk struktur gedung beraturan ξ = 0.7 R - Untuk struktur gedung tidak beraturan ξ = 0.7R / faktor skala Dimana R adalah faktor reduksi gempa dan faktor skala adalah seperti yang ditetapkan dalam pasal II-27

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Tinjauan Umum Konsep perencanaan struktur bangunan bertingkat tinggi harus memperhitungkan kemampuannya dalam memikul beban-beban yang bekerja pada struktur tersebut, diantaranya

Lebih terperinci

PERENCANAAN GEDUNG BETON BERTULANG BERATURAN BERDASARKAN SNI DAN FEMA 450

PERENCANAAN GEDUNG BETON BERTULANG BERATURAN BERDASARKAN SNI DAN FEMA 450 PERENCANAAN GEDUNG BETON BERTULANG BERATURAN BERDASARKAN SNI 02-1726-2002 DAN FEMA 450 Eben Tulus NRP: 0221087 Pembimbing: Yosafat Aji Pranata, ST., MT JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Ruang Terbuka Hijau di Jakarta Jakarta adalah ibukota negara republik Indonesia yang memiliki luas sekitar 661,52 km 2 (Anonim, 2011). Semakin banyaknya jumlah penduduk maka

Lebih terperinci

DAFTAR NOTASI. Luas penampang tiang pancang (mm²). Luas tulangan tarik non prategang (mm²). Luas tulangan tekan non prategang (mm²).

DAFTAR NOTASI. Luas penampang tiang pancang (mm²). Luas tulangan tarik non prategang (mm²). Luas tulangan tekan non prategang (mm²). DAFTAR NOTASI A cp Ag An Atp Luas yang dibatasi oleh keliling luar penampang beton (mm²). Luas bruto penampang (mm²). Luas bersih penampang (mm²). Luas penampang tiang pancang (mm²). Al Luas total tulangan

Lebih terperinci

BAB III LANDASAN TEORI. Bangunan Gedung SNI pasal

BAB III LANDASAN TEORI. Bangunan Gedung SNI pasal BAB III LANDASAN TEORI 3.1. Analisis Penopang 3.1.1. Batas Kelangsingan Batas kelangsingan untuk batang yang direncanakan terhadap tekan dan tarik dicari dengan persamaan dari Tata Cara Perencanaan Struktur

Lebih terperinci

ANALISIS DAN DESAIN STRUKTUR TAHAN GEMPA DENGAN SISTEM BALOK ANAK DAN BALOK INDUK MENGGUNAKAN PELAT SEARAH

ANALISIS DAN DESAIN STRUKTUR TAHAN GEMPA DENGAN SISTEM BALOK ANAK DAN BALOK INDUK MENGGUNAKAN PELAT SEARAH ANALISIS DAN DESAIN STRUKTUR TAHAN GEMPA DENGAN SISTEM BALOK ANAK DAN BALOK INDUK MENGGUNAKAN PELAT SEARAH David Bambang H NRP : 0321059 Pembimbing : Daud Rachmat W., Ir., M.Sc. FAKULTAS TEKNIK JURUSAN

Lebih terperinci

PERANCANGAN STRUKTUR ATAS GEDUNG CONDOTEL MATARAM CITY YOGYAKARTA. Oleh : KEVIN IMMANUEL KUSUMA NPM. :

PERANCANGAN STRUKTUR ATAS GEDUNG CONDOTEL MATARAM CITY YOGYAKARTA. Oleh : KEVIN IMMANUEL KUSUMA NPM. : PERANCANGAN STRUKTUR ATAS GEDUNG CONDOTEL MATARAM CITY YOGYAKARTA Laporan Tugas Akhir sebagai salah satu syarat untuk memperoleh gelar Sarjana dari Universitas Atma Jaya Yogyakarta Oleh : KEVIN IMMANUEL

Lebih terperinci

BAB III LANDASAN TEORI. A. Pembebanan

BAB III LANDASAN TEORI. A. Pembebanan BAB III LANDASAN TEORI A. Pembebanan Dalam perancangan suatu struktur bangunan harus memenuhi peraturanperaturan yang berlaku sehingga diperoleh suatu struktur bangunan yang aman secara konstruksi. Struktur

Lebih terperinci

BAB III METODOLOGI PENELITIAN. menggunakan sistem struktur penahan gempa ganda, sistem pemikul momen dan sistem

BAB III METODOLOGI PENELITIAN. menggunakan sistem struktur penahan gempa ganda, sistem pemikul momen dan sistem BAB III METODOLOGI PENELITIAN 3.1 Alur Penelitian Dalam penelitian ini akan dilakukan analisis sistem struktur penahan gempa yang menggunakan sistem struktur penahan gempa ganda, sistem pemikul momen dan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Pembebanan Dalam perencanaan suatu struktur bangunan harus memenuhi peraturanperaturan yang berlaku untuk mendapatkan suatu struktur bangunan yang aman secara konstruksi berdasarkan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Pembebanan Pembebanan merupakan faktor penting dalam merancang stuktur bangunan. Oleh karena itu, dalam merancang perlu diperhatikan beban-bean yang bekerja pada struktur agar

Lebih terperinci

DAFTAR NOTASI BAB I β adalah faktor yang didefinisikan dalam SNI ps f c adalah kuat tekan beton yang diisyaratkan f y

DAFTAR NOTASI BAB I β adalah faktor yang didefinisikan dalam SNI ps f c adalah kuat tekan beton yang diisyaratkan f y DAFTAR NOTASI BAB I β adalah faktor yang didefinisikan dalam SNI 03-2847-2002 ps. 12.2.7.3 f c adalah kuat tekan beton yang diisyaratkan BAB III A cv A tr b w d d b adalah luas bruto penampang beton yang

Lebih terperinci

PERANCANGAN STRUKTUR ATAS GEDUNG TRANS NATIONAL CRIME CENTER MABES POLRI JAKARTA. Oleh : LEONARDO TRI PUTRA SIRAIT NPM.

PERANCANGAN STRUKTUR ATAS GEDUNG TRANS NATIONAL CRIME CENTER MABES POLRI JAKARTA. Oleh : LEONARDO TRI PUTRA SIRAIT NPM. PERANCANGAN STRUKTUR ATAS GEDUNG TRANS NATIONAL CRIME CENTER MABES POLRI JAKARTA Laporan Tugas Akhir Sebagai salah satu syarat untuk memperoleh gelar Sarjana dari Universitas Atma Jaya Yogyakarta Oleh

Lebih terperinci

DAFTAR ISTILAH. Al = Luas total tulangan longitudinal yang memikul puntir

DAFTAR ISTILAH. Al = Luas total tulangan longitudinal yang memikul puntir DAFTAR ISTILAH A0 = Luas bruto yang dibatasi oleh lintasan aliran geser (mm 2 ) A0h = Luas daerah yang dibatasi oleh garis pusat tulangan sengkang torsi terluar (mm 2 ) Ac = Luas inti komponen struktur

Lebih terperinci

BAB III LANDASAN TEORI. untuk bangunan gedung (SNI ) dan tata cara perencanaan gempa

BAB III LANDASAN TEORI. untuk bangunan gedung (SNI ) dan tata cara perencanaan gempa BAB III LANDASAN TEORI 3.1. Pembebanan Beban yang ditinjau dan dihitung dalam perancangan gedung ini adalah beban hidup, beban mati dan beban gempa. 3.1.1. Kuat Perlu Beban yang digunakan sesuai dalam

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Konsep Pemilihan Struktur Desain struktur harus memperhatikan beberapa aspek, diantaranya : Aspek Struktural ( kekuatan dan kekakuan struktur) Aspek ini merupakan aspek yang

Lebih terperinci

STUDI DESAIN STRUKTUR BETON BERTULANG TAHAN GEMPA UNTUK BENTANG PANJANG DENGAN PROGRAM KOMPUTER

STUDI DESAIN STRUKTUR BETON BERTULANG TAHAN GEMPA UNTUK BENTANG PANJANG DENGAN PROGRAM KOMPUTER STUDI DESAIN STRUKTUR BETON BERTULANG TAHAN GEMPA UNTUK BENTANG PANJANG DENGAN PROGRAM KOMPUTER Andi Algumari NRP : 0321059 Pembimbing : Daud Rachmat W., Ir., M.Sc. FAKULTAS TEKNIK JURUSAN TEKNIK SIPIL

Lebih terperinci

DESAIN TAHAN GEMPA BETON BERTULANG PENAHAN MOMEN MENENGAH BERDASARKAN SNI BETON DAN SNI GEMPA

DESAIN TAHAN GEMPA BETON BERTULANG PENAHAN MOMEN MENENGAH BERDASARKAN SNI BETON DAN SNI GEMPA DESAIN TAHAN GEMPA BETON BERTULANG PENAHAN MOMEN MENENGAH BERDASARKAN SNI BETON 03-2847-2002 DAN SNI GEMPA 03-1726-2002 Rinto D.S Nrp : 0021052 Pembimbing : Djoni Simanta,Ir.,MT FAKULTAS TEKNIK JURUSAN

Lebih terperinci

PERANCANGAN STRUKTUR ATAS GEDUNG APARTEMEN SEMBILAN LANTAI DI YOGYAKARTA. Oleh : PRISKA HITA ERTIANA NPM. :

PERANCANGAN STRUKTUR ATAS GEDUNG APARTEMEN SEMBILAN LANTAI DI YOGYAKARTA. Oleh : PRISKA HITA ERTIANA NPM. : PERANCANGAN STRUKTUR ATAS GEDUNG APARTEMEN SEMBILAN LANTAI DI YOGYAKARTA Laporan Tugas Akhir sebagai salah satu syarat untuk memperoleh gelar Sarjana dari Universitas Atma Jaya Yogyakarta Oleh : PRISKA

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Pembebanan Komponen Struktur Pada perencanaan bangunan bertingkat tinggi, komponen struktur direncanakan cukup kuat untuk memikul semua beban kerjanya. Pengertian beban itu

Lebih terperinci

BAB VI KONSTRUKSI KOLOM

BAB VI KONSTRUKSI KOLOM BAB VI KONSTRUKSI KOLOM 6.1. KOLOM SEBAGAI BAHAN KONSTRUKSI Kolom adalah batang tekan vertikal dari rangka struktur yang memikul beban dari balok. Kolom merupakan suatu elemen struktur tekan yang memegang

Lebih terperinci

BAB 2 DASAR TEORI Dasar Perencanaan Jenis Pembebanan

BAB 2 DASAR TEORI Dasar Perencanaan Jenis Pembebanan BAB 2 DASAR TEORI 2.1. Dasar Perencanaan 2.1.1 Jenis Pembebanan Dalam merencanakan struktur suatu bangunan bertingkat, digunakan struktur yang mampu mendukung berat sendiri, gaya angin, beban hidup maupun

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pendahuluan Berdasarkan Pasal 3.25 SNI 03 2847 2002 elemen struktural kolom merupakan komponen struktur dengan rasio tinggi terhadap dimensi lateral terkecil melebihi tiga,

Lebih terperinci

DESAIN DINDING GESER TAHAN GEMPA UNTUK GEDUNG BERTINGKAT MENENGAH. Refly. Gusman NRP :

DESAIN DINDING GESER TAHAN GEMPA UNTUK GEDUNG BERTINGKAT MENENGAH. Refly. Gusman NRP : DESAIN DINDING GESER TAHAN GEMPA UNTUK GEDUNG BERTINGKAT MENENGAH Refly. Gusman NRP : 0321052 Pembimbing : Ir. Daud R. Wiyono, M.Sc. Pembimbing Pendamping : Cindrawaty Lesmana, ST., M.Sc.(Eng) FAKULTAS

Lebih terperinci

PERENCANAAN GEDUNG PASAR TIGA LANTAI DENGAN SATU BASEMENT DI WILAYAH BOYOLALI (DENGAN SISTEM DAKTAIL PARSIAL)

PERENCANAAN GEDUNG PASAR TIGA LANTAI DENGAN SATU BASEMENT DI WILAYAH BOYOLALI (DENGAN SISTEM DAKTAIL PARSIAL) PERENCANAAN GEDUNG PASAR TIGA LANTAI DENGAN SATU BASEMENT DI WILAYAH BOYOLALI (DENGAN SISTEM DAKTAIL PARSIAL) Tugas Akhir untuk memenuhi sebagian persyaratan mencapai derajat Sarjana S 1 Teknik Sipil diajukan

Lebih terperinci

2.5.3 Dasar Teori Perhitungan Tulangan Torsi Balok... II Perhitungan Panjang Penyaluran... II Analisis dan Desain Kolom...

2.5.3 Dasar Teori Perhitungan Tulangan Torsi Balok... II Perhitungan Panjang Penyaluran... II Analisis dan Desain Kolom... DAFTAR ISI Lembar Pengesahan Abstrak Daftar Isi... i Daftar Tabel... iv Daftar Gambar... vi Daftar Notasi... vii Daftar Lampiran... x Kata Pengantar... xi BAB I PENDAHULUAN 1.1 Latar Belakang... I-1 1.2

Lebih terperinci

L p. L r. L x L y L n. M c. M p. M g. M pr. M n M nc. M nx M ny M lx M ly M tx. xxi

L p. L r. L x L y L n. M c. M p. M g. M pr. M n M nc. M nx M ny M lx M ly M tx. xxi DAFTAR SIMBOL a tinggi balok tegangan persegi ekuivalen pada diagram tegangan suatu penampang beton bertulang A b luas penampang bruto A c luas penampang beton yang menahan penyaluran geser A cp luasan

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Menurut PBI 1983, pengertian dari beban-beban tersebut adalah seperti yang. yang tak terpisahkan dari gedung,

BAB II TINJAUAN PUSTAKA. Menurut PBI 1983, pengertian dari beban-beban tersebut adalah seperti yang. yang tak terpisahkan dari gedung, BAB II TINJAUAN PUSTAKA 2.1. Pembebanan Dalam perencanaan suatu struktur bangunan harus memenuhi peraturanperaturan yang berlaku untuk mendapatkan suatu struktur bangunan yang aman secara kontruksi. Struktur

Lebih terperinci

BAB III PEMODELAN DAN ANALISIS STRUKTUR

BAB III PEMODELAN DAN ANALISIS STRUKTUR BAB III PEMODELAN DAN ANALISIS STRUKTUR 3.1. Pemodelan Struktur Pada tugas akhir ini, struktur dimodelkan tiga dimensi sebagai portal terbuka dengan penahan gaya lateral (gempa) menggunakan 2 tipe sistem

Lebih terperinci

BAB III METODOLOGI PERENCANAAN

BAB III METODOLOGI PERENCANAAN BAB III METODOLOGI PERENCANAAN III.. Gambaran umum Metodologi perencanaan desain struktur atas pada proyek gedung perkantoran yang kami lakukan adalah dengan mempelajari data-data yang ada seperti gambar

Lebih terperinci

PERENCANAAN GEDUNG PERPUSTAKAAN KOTA 4 LANTAI DENGAN PRINSIP DAKTAIL PARSIAL DI SURAKARTA (+BASEMENT 1 LANTAI)

PERENCANAAN GEDUNG PERPUSTAKAAN KOTA 4 LANTAI DENGAN PRINSIP DAKTAIL PARSIAL DI SURAKARTA (+BASEMENT 1 LANTAI) 1 PERENCANAAN GEDUNG PERPUSTAKAAN KOTA 4 LANTAI DENGAN PRINSIP DAKTAIL PARSIAL DI SURAKARTA (+BASEMENT 1 LANTAI) Naskah Publikasi untuk memenuhi sebagian persyaratan mencapai S-1 Teknik Sipil diajukan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 5 BAB II TINJAUAN PUSTAKA 2.1. Pembebanan Struktur Dalam perencanaan suatu struktur bangunan gedung bertingkat tinggi sebaiknya mengikuti peraturan-peraturan pembebanan yang berlaku untuk mendapatkan suatu

Lebih terperinci

BAB II TINJAUAN PUSTAKA. desain untuk pembangunan strukturalnya, terutama bila terletak di wilayah yang

BAB II TINJAUAN PUSTAKA. desain untuk pembangunan strukturalnya, terutama bila terletak di wilayah yang BAB II TINJAUAN PUSTAKA 2.1 Umum Struktur bangunan bertingkat tinggi memiliki tantangan tersendiri dalam desain untuk pembangunan strukturalnya, terutama bila terletak di wilayah yang memiliki faktor resiko

Lebih terperinci

Yogyakarta, Juni Penyusun

Yogyakarta, Juni Penyusun KATA PENGANTAR Assalamu Alaikum Warahmatullahi Wabarakatuh Alhamdulillah, dengan segala kerendahan hati serta puji syukur, kami panjatkan kehadirat Allah SWT, karena atas segala kasih sayang-nya sehingga

Lebih terperinci

BAB IV POKOK PEMBAHASAN DESAIN. Perhitungan prarencana bertujuan untuk menghitung dimensi-dimensi

BAB IV POKOK PEMBAHASAN DESAIN. Perhitungan prarencana bertujuan untuk menghitung dimensi-dimensi BAB IV POKOK PEMBAHASAN DESAIN 4.1 Perencanaan Awal (Preliminary Design) Perhitungan prarencana bertujuan untuk menghitung dimensi-dimensi rencana struktur, yaitu pelat, balok dan kolom agar diperoleh

Lebih terperinci

BAB III LANDASAN TEORI. dasar ke permukaan tanah untuk suatu situs, maka situs tersebut harus

BAB III LANDASAN TEORI. dasar ke permukaan tanah untuk suatu situs, maka situs tersebut harus BAB III LANDASAN TEORI 3.1 Perencanaan Beban Gempa 3.1.1 Klasifikasi Situs Dalam perumusan kriteria desain seismik suatu bangunan di permukaan tanah atau penentuan amplifikasi besaran percepatan gempa

Lebih terperinci

BAB II LANDASAN TEORI. kestabilan struktur dalam menahan segala pembebanan yang dikenakan padanya,

BAB II LANDASAN TEORI. kestabilan struktur dalam menahan segala pembebanan yang dikenakan padanya, BAB II LANDASAN TEORI 2.1. Tinjauan Pustaka. Dalam merancang suatu struktur bangunan harus diperhatikan kekakuan, kestabilan struktur dalam menahan segala pembebanan yang dikenakan padanya, serta bagaimana

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA A. Deskripsi umum Desain struktur merupakan salah satu bagian dari keseluruhan proses perencanaan bangunan. Proses desain merupakan gabungan antara unsur seni dan sains yang membutuhkan

Lebih terperinci

DAFTAR ISI. Halaman Judul Pengesahan Persetujuan Surat Pernyataan Kata Pengantar DAFTAR TABEL DAFTAR GAMBAR DAFTAR NOTASI DAFTAR LAMPIRAN

DAFTAR ISI. Halaman Judul Pengesahan Persetujuan Surat Pernyataan Kata Pengantar DAFTAR TABEL DAFTAR GAMBAR DAFTAR NOTASI DAFTAR LAMPIRAN DAFTAR ISI Halaman Judul i Pengesahan ii Persetujuan iii Surat Pernyataan iv Kata Pengantar v DAFTAR ISI vii DAFTAR TABEL x DAFTAR GAMBAR xiv DAFTAR NOTASI xviii DAFTAR LAMPIRAN xxiii ABSTRAK xxiv ABSTRACT

Lebih terperinci

BAB II DASAR-DASAR PERENCANAAN STRUKTUR GEDUNG BERTINGKAT

BAB II DASAR-DASAR PERENCANAAN STRUKTUR GEDUNG BERTINGKAT BAB II DASAR-DASAR PERENCANAAN STRUKTUR GEDUNG BERTINGKAT 2.1 KONSEP PERENCANAAN STRUKTUR GEDUNG RAWAN GEMPA Pada umumnya struktur gedung berlantai banyak harus kuat dan stabil terhadap berbagai macam

Lebih terperinci

BAB II TINJAUAN PUSTAKA. pembebanan yang berlaku untuk mendapatkan suatu struktur bangunan

BAB II TINJAUAN PUSTAKA. pembebanan yang berlaku untuk mendapatkan suatu struktur bangunan BAB II TINJAUAN PUSTAKA 2.1.Pembebanan Struktur Dalam perencanaan struktur bangunan harus mengikuti peraturanperaturan pembebanan yang berlaku untuk mendapatkan suatu struktur bangunan yang aman. Pengertian

Lebih terperinci

BAB II TINJAUAN PUSTAKA. gedung dalam menahan beban-beban yang bekerja pada struktur tersebut. Dalam. harus diperhitungkan adalah sebagai berikut :

BAB II TINJAUAN PUSTAKA. gedung dalam menahan beban-beban yang bekerja pada struktur tersebut. Dalam. harus diperhitungkan adalah sebagai berikut : 4 BAB II TINJAUAN PUSTAKA 2.1.Pembebanan Struktur Perencanaan struktur bangunan gedung harus didasarkan pada kemampuan gedung dalam menahan beban-beban yang bekerja pada struktur tersebut. Dalam Peraturan

Lebih terperinci

ANALISIS DAN DESAIN STRUKTUR BETON BERTULANG UNTUK GEDUNG TINGKAT TINGGI

ANALISIS DAN DESAIN STRUKTUR BETON BERTULANG UNTUK GEDUNG TINGKAT TINGGI ANALISIS DAN DESAIN STRUKTUR BETON BERTULANG UNTUK GEDUNG TINGKAT TINGGI Raden Ezra Theodores NRP : 0121029 Pembimbing : Ir. DAUD R. WIYONO, M.Sc FAKULTAS TEKNIK JURUSAN TEKNIK SIPIL UNIVERSITAS KRISTEN

Lebih terperinci

TUGAS AKHIR PERENCANAAN GEDUNG DUAL SYSTEM 22 LANTAI DENGAN OPTIMASI KETINGGIAN SHEAR WALL

TUGAS AKHIR PERENCANAAN GEDUNG DUAL SYSTEM 22 LANTAI DENGAN OPTIMASI KETINGGIAN SHEAR WALL TUGAS AKHIR PERENCANAAN GEDUNG DUAL SYSTEM 22 LANTAI DENGAN OPTIMASI KETINGGIAN SHEAR WALL Diajukan sebagai syarat untuk meraih gelar Sarjana Teknik Strata 1 (S 1) Disusun oleh : Nama : Lenna Hindriyati

Lebih terperinci

d b = Diameter nominal batang tulangan, kawat atau strand prategang D = Beban mati atau momen dan gaya dalam yang berhubungan dengan beban mati e = Ek

d b = Diameter nominal batang tulangan, kawat atau strand prategang D = Beban mati atau momen dan gaya dalam yang berhubungan dengan beban mati e = Ek DAFTAR NOTASI A g = Luas bruto penampang (mm 2 ) A n = Luas bersih penampang (mm 2 ) A tp = Luas penampang tiang pancang (mm 2 ) A l =Luas total tulangan longitudinal yang menahan torsi (mm 2 ) A s = Luas

Lebih terperinci

Laporan Tugas Akhir Perencanaan Struktur Gedung Apartemen Salemba Residences 4.1 PERMODELAN STRUKTUR Bentuk Bangunan

Laporan Tugas Akhir Perencanaan Struktur Gedung Apartemen Salemba Residences 4.1 PERMODELAN STRUKTUR Bentuk Bangunan BAB IV ANALISIS STRUKTUR 4.1 PERMODELAN STRUKTUR 4.1.1. Bentuk Bangunan Struktur bangunan Apartemen Salemba Residence terdiri dari 2 buah Tower dan bangunan tersebut dihubungkan dengan Podium. Pada permodelan

Lebih terperinci

BAB IV ANALISIS & PEMBAHASAN

BAB IV ANALISIS & PEMBAHASAN BAB IV ANALISIS & PEMBAHASAN 4.1 EKSENTRISITAS STRUKTUR Pada Tugas Akhir ini, semua model mempunyai bentuk yang simetris sehingga pusat kekakuan dan pusat massa yang ada berhimpit pada satu titik. Akan

Lebih terperinci

TUGAS AKHIR PERENCANAAN STRUKTUR ATAS DAN STRUKTUR BAWAH GEDUNG BERTINGKAT 25 LANTAI + 3 BASEMENT DI JAKARTA

TUGAS AKHIR PERENCANAAN STRUKTUR ATAS DAN STRUKTUR BAWAH GEDUNG BERTINGKAT 25 LANTAI + 3 BASEMENT DI JAKARTA TUGAS AKHIR PERENCANAAN STRUKTUR ATAS DAN STRUKTUR BAWAH GEDUNG BERTINGKAT 25 LANTAI + 3 BASEMENT DI JAKARTA Disusun oleh : HERDI SUTANTO (NIM : 41110120016) JELITA RATNA WIJAYANTI (NIM : 41110120017)

Lebih terperinci

BAB II TINJAUAN PUSTAKA. pergesekan lempeng tektonik (plate tectonic) bumi yang terjadi di daerah patahan

BAB II TINJAUAN PUSTAKA. pergesekan lempeng tektonik (plate tectonic) bumi yang terjadi di daerah patahan BAB II TINJAUAN PUSTAKA 2.1 Umum Gempa adalah fenomena getaran yang diakibatkan oleh benturan atau pergesekan lempeng tektonik (plate tectonic) bumi yang terjadi di daerah patahan (fault zone). Besarnya

Lebih terperinci

PENGARUH PENEMPATAN DAN POSISI DINDING GESER TERHADAP SIMPANGAN BANGUNAN BETON BERTULANG BERTINGKAT BANYAK AKIBAT BEBAN GEMPA

PENGARUH PENEMPATAN DAN POSISI DINDING GESER TERHADAP SIMPANGAN BANGUNAN BETON BERTULANG BERTINGKAT BANYAK AKIBAT BEBAN GEMPA PENGARUH PENEMPATAN DAN POSISI DINDING GESER TERHADAP SIMPANGAN BANGUNAN BETON BERTULANG BERTINGKAT BANYAK AKIBAT BEBAN GEMPA Lilik Fauziah M. D. J. Sumajouw, S. O. Dapas, R. S. Windah Fakultas Teknik

Lebih terperinci

PERANCANGAN ULANG STRUKTUR ATAS GEDUNG PERKULIAHAN FMIPA UNIVERSITAS GADJAH MADA

PERANCANGAN ULANG STRUKTUR ATAS GEDUNG PERKULIAHAN FMIPA UNIVERSITAS GADJAH MADA PERANCANGAN ULANG STRUKTUR ATAS GEDUNG PERKULIAHAN FMIPA UNIVERSITAS GADJAH MADA Laporan Tugas Akhir sebagai salah satu syarat untuk memperoleh gelar Sarjana dari Universitas Atma Jaya Yogyakarta Oleh

Lebih terperinci

BAB III ANALISA PERENCANAAN STRUKTUR

BAB III ANALISA PERENCANAAN STRUKTUR BAB III ANALISA PERENCANAAN STRUKTUR 3.1. ANALISA PERENCANAAN STRUKTUR PELAT Struktur bangunan gedung pada umumnya tersusun atas komponen pelat lantai, balok anak, balok induk, dan kolom yang merupakan

Lebih terperinci

PERENCANAAN STRUKTUR GEDUNG PARKIR SUNTER PARK VIEW APARTMENT DENGAN METODE ANALISIS STATIK EKUIVALEN

PERENCANAAN STRUKTUR GEDUNG PARKIR SUNTER PARK VIEW APARTMENT DENGAN METODE ANALISIS STATIK EKUIVALEN PERENCANAAN STRUKTUR GEDUNG PARKIR SUNTER PARK VIEW APARTMENT DENGAN METODE ANALISIS STATIK EKUIVALEN (1) Maria Elizabeth, (2) Bambang Wuritno, (3) Agus Bambang Siswanto (1) Mahasiswa Teknik Sipil, (2)

Lebih terperinci

DAFTAR ISI. HALAMAN JUDUL.. i. LEMBAR PENGESAHAN ii. KATA PENGANAR.. iii ABSTRAKSI... DAFTAR GAMBAR Latar Belakang... 1

DAFTAR ISI. HALAMAN JUDUL.. i. LEMBAR PENGESAHAN ii. KATA PENGANAR.. iii ABSTRAKSI... DAFTAR GAMBAR Latar Belakang... 1 DAFTAR ISI HALAMAN JUDUL.. i LEMBAR PENGESAHAN ii KATA PENGANAR.. iii ABSTRAKSI... DAFTAR ISI DAFTAR GAMBAR.. DAFTAR NOTASI. v vi xii xiii BAB I PENDAHULUAN 1.1. Latar Belakang...... 1 1.2. Maksud dan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pembebanan Komponen Struktur Pada perencanaan bangunan bertingkat tinggi, komponen struktur direncanakan cukup kuat untuk memikul semua beban kerjanya. Pengertian beban itu

Lebih terperinci

BAB III LANDASAN TEORI. dan SNI 1726, berikut kombinasi kuat perlu yang digunakan:

BAB III LANDASAN TEORI. dan SNI 1726, berikut kombinasi kuat perlu yang digunakan: BAB III LANDASAN TEORI 3.1. Pembebanan Beban yang digunakan dalam peranangan adalah kombinasi dari beban hidup, beban mati, dan beban gempa. 3.1.1. Kuat Perlu Kuat perlu dihitung berdasarkan kombinasi

Lebih terperinci

T I N J A U A N P U S T A K A

T I N J A U A N P U S T A K A B A B II T I N J A U A N P U S T A K A 2.1. Pembebanan Struktur Besarnya beban rencana struktur mengikuti ketentuan mengenai perencanaan dalam tata cara yang didasarkan pada asumsi bahwa struktur direncanakan

Lebih terperinci

DAFTAR NOTASI. xxvii. A cp

DAFTAR NOTASI. xxvii. A cp A cp Ag An Atp Al Ao Aoh As As At Av b bo bw C C m Cc Cs d DAFTAR NOTASI = Luas yang dibatasi oleh keliling luar penampang beton, mm² = Luas bruto penampang (mm²) = Luas bersih penampang (mm²) = Luas penampang

Lebih terperinci

BAB II TINJAUAN PUSTAKA. geser membentuk struktur kerangka yang disebut juga sistem struktur portal.

BAB II TINJAUAN PUSTAKA. geser membentuk struktur kerangka yang disebut juga sistem struktur portal. BAB II TINJAUAN PUSTAKA 2.1 Sistem Struktur Bangunan Suatu sistem struktur kerangka terdiri dari rakitan elemen struktur. Dalam sistem struktur konstruksi beton bertulang, elemen balok, kolom, atau dinding

Lebih terperinci

Modifikasi Struktur Gedung Graha Pena Extension di Wilayah Gempa Tinggi Menggunakan Sistem Ganda

Modifikasi Struktur Gedung Graha Pena Extension di Wilayah Gempa Tinggi Menggunakan Sistem Ganda TUGAS AKHIR RC09 1380 Modifikasi Struktur Gedung Graha Pena Extension di Wilayah Gempa Tinggi Menggunakan Sistem Ganda Kharisma Riesya Dirgantara 3110 100 149 Dosen Pembimbing Endah Wahyuni, ST., MSc.,

Lebih terperinci

BAB III METODOLOGI PEMBAHASAN

BAB III METODOLOGI PEMBAHASAN BAB III METODOLOGI PEMBAHASAN III.1 Data Perencanaan Studi kasus pada penyusunan skripsi ini adalah perancangan Apartement bertingkat 21 lantai dengan bentuk bangunan L ( siku ) dan dibuat dalam tiga variasi

Lebih terperinci

03. Semua komponen struktur diproporsikan untuk mendapatkan kekuatan yang. seimbang yang menggunakan unsur faktor beban dan faktor reduksi.

03. Semua komponen struktur diproporsikan untuk mendapatkan kekuatan yang. seimbang yang menggunakan unsur faktor beban dan faktor reduksi. BAB II TINJAUAN PUSTAKA 2.1 Pendahuluan Perancangan struktur suatu bangunan gedung didasarkan pada besarnya kemampuan gedung menahan beban-beban yang bekerja padanya. Disamping itu juga harus memenuhi

Lebih terperinci

BAB III LANDASAN TEORI. A. Pembebanan Pada Pelat Lantai

BAB III LANDASAN TEORI. A. Pembebanan Pada Pelat Lantai 8 BAB III LANDASAN TEORI A. Pembebanan Pada Pelat Lantai Dalam penelitian ini pelat lantai merupakan pelat persegi yang diberi pembebanan secara merata pada seluruh bagian permukaannya. Material yang digunakan

Lebih terperinci

ANALISIS DINAMIK BEBAN GEMPA RIWAYAT WAKTU PADA GEDUNG BETON BERTULANG TIDAK BERATURAN

ANALISIS DINAMIK BEBAN GEMPA RIWAYAT WAKTU PADA GEDUNG BETON BERTULANG TIDAK BERATURAN ANALISIS DINAMIK BEBAN GEMPA RIWAYAT WAKTU PADA GEDUNG BETON BERTULANG TIDAK BERATURAN Edita S. Hastuti NRP : 0521052 Pembimbing Utama : Olga Pattipawaej, Ph.D Pembimbing Pendamping : Yosafat Aji Pranata,

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Beban Struktur Pada suatu struktur bangunan, terdapat beberapa jenis beban yang bekerja. Struktur bangunan yang direncanakan harus mampu menahan beban-beban yang bekerja pada

Lebih terperinci

TUGAS AKHIR PERENCANAAN STRUKTUR KONSTRUKSI BAJA GEDUNG DENGAN PERBESARAN KOLOM

TUGAS AKHIR PERENCANAAN STRUKTUR KONSTRUKSI BAJA GEDUNG DENGAN PERBESARAN KOLOM TUGAS AKHIR PERENCANAAN STRUKTUR KONSTRUKSI BAJA GEDUNG DENGAN PERBESARAN KOLOM Diajukan sebagai syarat untuk meraih gelar Sarjana Teknik Setrata I (S-1) Disusun oleh : NAMA : WAHYUDIN NIM : 41111110031

Lebih terperinci

TUGAS AKHIR PERANCANGAN ULANG STRUKTUR PORTAL GEDUNG PPPPTK MATEMATIKA YOGYAKARTA

TUGAS AKHIR PERANCANGAN ULANG STRUKTUR PORTAL GEDUNG PPPPTK MATEMATIKA YOGYAKARTA TUGAS AKHIR PERANCANGAN ULANG STRUKTUR PORTAL GEDUNG PPPPTK MATEMATIKA YOGYAKARTA Disusun oleh : ZUL PAHMI 20070110044 JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS MUHAMMADIYAH YOGYAKARTA 2012 LEMBAR

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pembebanan Komponen Struktur Pada perencanaan bangunan bertingkat tinggi, komponen struktur direncanakan cukup kuat untuk memikul semua beban kerjanya. Pengertian beban itu

Lebih terperinci

BAB 1 PENDAHULUAN Latar Belakang Isi Laporan

BAB 1 PENDAHULUAN Latar Belakang Isi Laporan BAB 1 PENDAHULUAN 1.1. Latar Belakang Dengan semakin pesatnya perkembangan dunia teknik sipil di Indonesia saat ini menuntut terciptanya sumber daya manusia yang dapat mendukung dalam bidang tersebut.

Lebih terperinci

D = Beban mati atau momen dan gaya dalam yang berhubungan dengan beban mati e = Eksentrisitas dari pembebanan tekan pada kolom atau telapak pondasi

D = Beban mati atau momen dan gaya dalam yang berhubungan dengan beban mati e = Eksentrisitas dari pembebanan tekan pada kolom atau telapak pondasi DAFTAR NOTASI A cp = Luas yang dibatasi oleh keliling luar penampang beton, mm 2 Ag = Luas bruto penampang (mm 2 ) An = Luas bersih penampang (mm 2 ) Atp = Luas penampang tiang pancang (mm 2 ) Al = Luas

Lebih terperinci

BAB II STUDI PUSTAKA

BAB II STUDI PUSTAKA BAB II STUDI PUSTAKA 2.1. TINJAUAN UMUM Pada Studi Pustaka ini akan membahas mengenai dasar-dasar dalam merencanakan struktur untuk bangunan bertingkat. Dasar-dasar perencanaan tersebut berdasarkan referensi-referensi

Lebih terperinci

BAB II BAB 1 TINJAUAN PUSTAKA. 1. Tata Cara Perhitungan Struktur Beton Untuk Bangunan Gedung (SNI 03

BAB II BAB 1 TINJAUAN PUSTAKA. 1. Tata Cara Perhitungan Struktur Beton Untuk Bangunan Gedung (SNI 03 BAB II BAB 1 TINJAUAN PUSTAKA 2.1. Peraturan-Peraturan yang Dugunakan 1. Tata Cara Perhitungan Struktur Beton Untuk Bangunan Gedung (SNI 03 2847 2002), 2. Peraturan Pembebanan Indonesia Untuk Bangunan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Pembebanan Struktur Dalam perencaaan struktur bangunan harus mengikuti peraturan pembebanan yang berlaku untuk mendapatkan struktur bangunan yang aman. Pengertian beban adalah

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA DAFTAR ISI Halaman Judul... i Lembar Pengesahan... ii Kata Pengantar... iii Daftar Isi... iv Daftar Notasi... Daftar Tabel... Daftar Gambar... Abstraksi... BAB I PENDAHULUAN... 1 1.1 Latar Belakang Masalah...

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3.1 Kerangka Berfikir Sengkang merupakan elemen penting pada kolom untuk menahan beban gempa. Selain menahan gaya geser, sengkang juga berguna untuk menahan tulangan utama dan

Lebih terperinci

PERANCANGAN STRUKTUR ATAS STUDENT PARK APARTMENT SETURAN YOGYAKARTA

PERANCANGAN STRUKTUR ATAS STUDENT PARK APARTMENT SETURAN YOGYAKARTA PERANCANGAN STRUKTUR ATAS STUDENT PARK APARTMENT SETURAN YOGYAKARTA Laporan Tugas Akhir sebagai salah satu syarat untuk memperoleh gelar Sarjana dari Universitas Atma Jaya Yogyakarta Oleh: Cinthya Monalisa

Lebih terperinci

MODIFIKASI STRUKTUR GEDUNG WISMA SEHATI MANOKWARI DENGAN MENGGUNAKAN SISTEM GANDA

MODIFIKASI STRUKTUR GEDUNG WISMA SEHATI MANOKWARI DENGAN MENGGUNAKAN SISTEM GANDA MODIFIKASI STRUKTUR GEDUNG WISMA SEHATI MANOKWARI DENGAN MENGGUNAKAN SISTEM GANDA Oleh : ELVAN GIRIWANA 3107100026 1 Dosen Pembimbing : TAVIO, ST. MT. Ph.D Ir. IMAN WIMBADI, MS 2 I. PENDAHULUAN I.1 LATAR

Lebih terperinci

TUGAS AKHIR ANALISA PEMBESARAN MOMEN PADA KOLOM (SRPMK) TERHADAP PENGARUH DRIFT GEDUNG ASRAMA MAHASISWI UNIVERSITAS TRUNOJOYO MADURA

TUGAS AKHIR ANALISA PEMBESARAN MOMEN PADA KOLOM (SRPMK) TERHADAP PENGARUH DRIFT GEDUNG ASRAMA MAHASISWI UNIVERSITAS TRUNOJOYO MADURA TUGAS AKHIR ANALISA PEMBESARAN MOMEN PADA KOLOM (SRPMK) TERHADAP PENGARUH DRIFT GEDUNG ASRAMA MAHASISWI UNIVERSITAS TRUNOJOYO MADURA Untuk memenuhi sebagian persyaratan dalam memperoleh Gelar Sarjana (

Lebih terperinci

BAB IV PERMODELAN STRUKTUR

BAB IV PERMODELAN STRUKTUR BAB IV PERMODELAN STRUKTUR IV.1 Deskripsi Model Struktur Kasus yang diangkat pada tugas akhir ini adalah mengenai retrofitting struktur bangunan beton bertulang dibawah pengaruh beban gempa kuat. Sebagaimana

Lebih terperinci

ANALISA STRUKTUR DAN KONTROL KEKUATAN BALOK DAN KOLOM PORTAL AS L1-L4 PADA GEDUNG S POLITEKNIK NEGERI MEDAN

ANALISA STRUKTUR DAN KONTROL KEKUATAN BALOK DAN KOLOM PORTAL AS L1-L4 PADA GEDUNG S POLITEKNIK NEGERI MEDAN ANALISA STRUKTUR DAN KONTROL KEKUATAN BALOK DAN KOLOM PORTAL AS L1-L4 PADA GEDUNG S POLITEKNIK NEGERI MEDAN LAPORAN Ditulis untuk Menyelesaikan Mata Kuliah Tugas Akhir Semester VI Pendidikan Program Diploma

Lebih terperinci

BAB III METODOLOGI PERANCANGAN

BAB III METODOLOGI PERANCANGAN BAB III METODOLOGI PERANCANGAN 3.1 Diagram Alir Perancangan Mulai Pengumpulan Data Perencanaan Awal Pelat Balok Kolom Flat Slab Ramp Perhitungan beban gempa statik ekivalen Analisa Struktur Cek T dengan

Lebih terperinci

MODIFIKASI PERENCANAAN STRUKTUR BAJA KOMPOSIT PADA GEDUNG PERPUSTAKAAN UNIVERSITAS NEGERI JEMBER

MODIFIKASI PERENCANAAN STRUKTUR BAJA KOMPOSIT PADA GEDUNG PERPUSTAKAAN UNIVERSITAS NEGERI JEMBER MAKALAH TUGAS AKHIR PS 1380 MODIFIKASI PERENCANAAN STRUKTUR BAJA KOMPOSIT PADA GEDUNG PERPUSTAKAAN UNIVERSITAS NEGERI JEMBER FERRY INDRAHARJA NRP 3108 100 612 Dosen Pembimbing Ir. SOEWARDOYO, M.Sc. Ir.

Lebih terperinci

PEMODELAN DINDING GESER BIDANG SEBAGAI ELEMEN KOLOM EKIVALEN PADA MODEL GEDUNG TIDAK BERATURAN BERTINGKAT RENDAH

PEMODELAN DINDING GESER BIDANG SEBAGAI ELEMEN KOLOM EKIVALEN PADA MODEL GEDUNG TIDAK BERATURAN BERTINGKAT RENDAH PEMODELAN DINDING GESER BIDANG SEBAGAI ELEMEN KOLOM EKIVALEN PADA MODEL GEDUNG TIDAK BERATURAN BERTINGKAT RENDAH Yunizar NRP : 0621056 Pemnimbing : Yosafat Aji Pranata, ST., MT. FAKULTAS TEKNIK JURUSAN

Lebih terperinci

BAB 2 DASAR TEORI. Bab 2 Dasar Teori. TUGAS AKHIR Perencanaan Struktur Show Room 2 Lantai Dasar Perencanaan

BAB 2 DASAR TEORI. Bab 2 Dasar Teori. TUGAS AKHIR Perencanaan Struktur Show Room 2 Lantai Dasar Perencanaan 3 BAB DASAR TEORI.1. Dasar Perencanaan.1.1. Jenis Pembebanan Dalam merencanakan struktur suatu bangunan bertingkat, digunakan struktur yang mampu mendukung berat sendiri, gaya angin, beban hidup maupun

Lebih terperinci

PERANCANGAN STRUKTUR GEDUNG KANTOR BOSOWA MAKASSAR

PERANCANGAN STRUKTUR GEDUNG KANTOR BOSOWA MAKASSAR PERANCANGAN STRUKTUR GEDUNG KANTOR BOSOWA MAKASSAR Laporan Tugas Akhir sebagai salah satu syarat untuk memperoleh gelar Sarjana dari Universitas Atma Jaya Yogyakarta Oleh : Y. PODOHARTIKO EKA WASKITHO

Lebih terperinci

PERANCANGAN STRUKTUR HOTEL DI JALAN LINGKAR UTARA YOGYAKARTA

PERANCANGAN STRUKTUR HOTEL DI JALAN LINGKAR UTARA YOGYAKARTA PERANCANGAN STRUKTUR HOTEL DI JALAN LINGKAR UTARA YOGYAKARTA Laporan Tugas Akhir sebagai salah satu syarat untuk memperoleh gelar Sarjana dari Universitas Atma Jaya Yogyakarta Oleh : PENTAGON PURBA NPM.

Lebih terperinci

PERENCANAAN STRUKTUR RANGKA BAJA BERATURAN TAHAN GEMPA BERDASARKAN SNI DAN FEMA 450

PERENCANAAN STRUKTUR RANGKA BAJA BERATURAN TAHAN GEMPA BERDASARKAN SNI DAN FEMA 450 PERENCANAAN STRUKTUR RANGKA BAJA BERATURAN TAHAN GEMPA BERDASARKAN SNI 03-1726-2002 DAN FEMA 450 Calvein Haryanto NRP : 0621054 Pembimbing : Yosafat Aji Pranata, S.T.,M.T. JURUSAN TEKNIK SIPIL FAKULTAS

Lebih terperinci

BAB III METEDOLOGI PENELITIAN. dilakukan setelah mendapat data dari perencanaan arsitek. Analisa dan

BAB III METEDOLOGI PENELITIAN. dilakukan setelah mendapat data dari perencanaan arsitek. Analisa dan BAB III METEDOLOGI PENELITIAN 3.1 Prosedur Penelitian Pada penelitian ini, perencanaan struktur gedung bangunan bertingkat dilakukan setelah mendapat data dari perencanaan arsitek. Analisa dan perhitungan,

Lebih terperinci

BAB III PEMODELAN STRUKTUR

BAB III PEMODELAN STRUKTUR BAB III Dalam tugas akhir ini, akan dilakukan analisis statik ekivalen terhadap struktur rangka bresing konsentrik yang berfungsi sebagai sistem penahan gaya lateral. Dimensi struktur adalah simetris segiempat

Lebih terperinci

BAB 1 PENDAHULUAN. hingga tinggi, sehingga perencanaan struktur bangunan gedung tahan gempa

BAB 1 PENDAHULUAN. hingga tinggi, sehingga perencanaan struktur bangunan gedung tahan gempa BAB 1 PENDAHULUAN 1.1 Latar Belakang Indonesia terletak dalam wilayah gempa dengan intensitas gempa moderat hingga tinggi, sehingga perencanaan struktur bangunan gedung tahan gempa menjadi sangat penting

Lebih terperinci

DAFTAR GAMBAR. Gambar 2.1 Denah Lantai Dua Existing Arsitektur II-3. Tegangan dan Gaya pada Balok dengan Tulangan Tarik

DAFTAR GAMBAR. Gambar 2.1 Denah Lantai Dua Existing Arsitektur II-3. Tegangan dan Gaya pada Balok dengan Tulangan Tarik DAFTAR GAMBAR Gambar 2.1 Denah Lantai Dua Existing Arsitektur II-3 Gambar 2.2 Tegangan dan Gaya pada Balok dengan Tulangan Tarik Saja II-4 Gambar 2.3 Tegangan dan Gaya pada Balok dengan Tulangan Ganda

Lebih terperinci

3.4.5 Beban Geser Dasar Nominal Statik Ekuivalen (V) Beban Geser Dasar Akibat Gempa Sepanjang Tinggi Gedung (F i )

3.4.5 Beban Geser Dasar Nominal Statik Ekuivalen (V) Beban Geser Dasar Akibat Gempa Sepanjang Tinggi Gedung (F i ) DAFTAR ISI HALAMAN JUDUL... i HALAMAN PENGESAHAN... ii HALAMAN PERSETUJUAN... iii PERNYATAAN BEBAS PLAGIARISME... iv KATA PENGANTAR... v HALAMAN PERSEMBAHAN... vii DAFTAR ISI... viii DAFTAR GAMBAR... xii

Lebih terperinci

DAFTAR ISI KATA PENGANTAR DAFTAR TABEL DAFTAR GAMBAR DAFTAR LAMPIRAN DAFTAR NOTASI DAN SIMBOL

DAFTAR ISI KATA PENGANTAR DAFTAR TABEL DAFTAR GAMBAR DAFTAR LAMPIRAN DAFTAR NOTASI DAN SIMBOL DAFTAR ISI HALAMAN JUDUL HALAMAN PERSETUJUAN DOSEN PEMBIMBING HALAMAN PENGESAHAN TIM PENGUJI LEMBAR PERYATAAN ORIGINALITAS LAPORAN LEMBAR PERSEMBAHAN INTISARI ABSTRACT KATA PENGANTAR DAFTAR ISI DAFTAR

Lebih terperinci

ANALISIS DAN DESAIN STRUKTUR RANGKA GEDUNG 20 TINGKAT SIMETRIS DENGAN SISTEM GANDA ABSTRAK

ANALISIS DAN DESAIN STRUKTUR RANGKA GEDUNG 20 TINGKAT SIMETRIS DENGAN SISTEM GANDA ABSTRAK ANALISIS DAN DESAIN STRUKTUR RANGKA GEDUNG 20 TINGKAT SIMETRIS DENGAN SISTEM GANDA Yonatan Tua Pandapotan NRP 0521017 Pembimbing :Ir Daud Rachmat W.,M.Sc ABSTRAK Sistem struktur pada gedung bertingkat

Lebih terperinci

TUGAS AKHIR PERENCANAAN STRUKTUR ATAS BETON BERTULANG GEDUNG ELLIPS DENGAN METODE SISTEM RANGKA PEMIKUL MOMEN KHUSUS (SRPMK)

TUGAS AKHIR PERENCANAAN STRUKTUR ATAS BETON BERTULANG GEDUNG ELLIPS DENGAN METODE SISTEM RANGKA PEMIKUL MOMEN KHUSUS (SRPMK) TUGAS AKHIR PERENCANAAN STRUKTUR ATAS BETON BERTULANG GEDUNG ELLIPS DENGAN METODE SISTEM RANGKA PEMIKUL MOMEN KHUSUS (SRPMK) Diajukan sebagai syarat untuk meraih gelar Sarjana Teknik Strata 1 (S-1) Disusun

Lebih terperinci

BAB II TINJAUAN PUSTAKA. harus dilakukan berdasarkan ketentuan yang tercantum dalam Tata Cara

BAB II TINJAUAN PUSTAKA. harus dilakukan berdasarkan ketentuan yang tercantum dalam Tata Cara 4 BAB II TINJAUAN PUSTAKA 2.1. Pembebanan Struktur Dalam perencanaan komponen struktur terutama struktur beton bertulang harus dilakukan berdasarkan ketentuan yang tercantum dalam Tata Cara Perhitungan

Lebih terperinci

BAB III LANDASAN TEORI. dan pasal SNI 1726:2012 sebagai berikut: 1. U = 1,4 D (3-1) 2. U = 1,2 D + 1,6 L (3-2)

BAB III LANDASAN TEORI. dan pasal SNI 1726:2012 sebagai berikut: 1. U = 1,4 D (3-1) 2. U = 1,2 D + 1,6 L (3-2) 8 BAB III LANDASAN TEORI 3.1. Elemen Struktur 3.1.1. Kuat Perlu Kuat yang diperlukan untuk beban-beban terfaktor sesuai pasal 4.2.2. dan pasal 7.4.2 SNI 1726:2012 sebagai berikut: 1. U = 1,4 D (3-1) 2.

Lebih terperinci

BAB III STUDI KASUS 3.1 UMUM

BAB III STUDI KASUS 3.1 UMUM BAB III STUDI KASUS 3.1 UMUM Tahap awal adalah pemodelan struktur berupa desain awal model, yaitu menentukan denah struktur. Kemudian menentukan dimensi-dimensi elemen struktur yaitu balok, kolom dan dinding

Lebih terperinci

PERBANDINGAN ANALISIS STATIK DAN ANALISIS DINAMIK PADA PORTAL BERTINGKAT BANYAK SESUAI SNI

PERBANDINGAN ANALISIS STATIK DAN ANALISIS DINAMIK PADA PORTAL BERTINGKAT BANYAK SESUAI SNI PERBANDINGAN ANALISIS STATIK DAN ANALISIS DINAMIK PADA PORTAL BERTINGKAT BANYAK SESUAI SNI 03-1726-2002 TUGAS AKHIR RICA AMELIA 050404014 BIDANG STUDI STRUKTUR DEPARTEMEN TEKNIK SIPIL FAKULTAS TEKNIK USU

Lebih terperinci

DAFTAR NOTASI. A cp. = Luas yang dibatasi oleh keliling luar penampang beton, mm² = Luas efektif bidang geser dalam hubungan balokkolom

DAFTAR NOTASI. A cp. = Luas yang dibatasi oleh keliling luar penampang beton, mm² = Luas efektif bidang geser dalam hubungan balokkolom DAFTAR NOTASI A cp Acv Ag An Atp Al Ao Aoh As As At Av b bo bw C Cc Cd = Luas yang dibatasi oleh keliling luar penampang beton, mm² = Luas efektif bidang geser dalam hubungan balokkolom (mm²) = Luas bruto

Lebih terperinci