Gambar 2.1 Rangkaian Ekivalen Starting Motor [4]

dokumen-dokumen yang mirip
STUDI KOORDINASI RELE ARUS LEBIH DAN PENGARUH KEDIP TEGANGAN AKIBAT PENAMBAHAN BEBAN PADA SISTEM KELISTRIKAN DI PT. ISM BOGASARI FLOUR MILLS SURABAYA

Studi Analisis dan Mitigasi Harmonisa pada PT. Semen Indonesia Pabrik Aceh

Koordinasi Proteksi Tegangan Kedip dan Arus Lebih pada Sistem Kelistrikan Industri Nabati

KOORDINASI PROTEKSI TEGANGAN KEDIP DAN ARUS LEBIH PADA SISTEM KELISTRIKAN INDUSTRI NABATI

JURNAL TEKNIK ITS Vol. 1, No. 1 (Sept. 2012) ISSN: B-97

Simulasi dan Analisis Stabilitas Transien dan Pelepasan Beban pada Sistem Kelistrikan PT. Semen Indonesia Pabrik Aceh

Arrifat Lubis

Analisis Unjuk Kerja Filter Pasif dan Filter Aktif pada Sisi Tegangan Rendah di Perusahaan Semen Tuban, Jawa Timur

STUDI KOORDINASI RELE ARUS LEBIH DAN PENGARUH KEDIP TEGANGAN AKIBAT PENAMBAHAN BEBAN PADA SISTEM KELISTRIKAN DI PT. ISM BOGASARI FLOUR MILLS SURABAYA

TUGAS AKHIR ANALISIS STABILITAS TRANSIEN DAN PELEPASAN BEBAN DI PT. WILMAR NABATI GRESIK AKIBAT ADANYA PENGEMBANGAN SISTEM KELISTRIKAN FASE 2

FAKULTAS TEKNIK UNIVERSITAS NEGERI YOGYAKARTA

BAB II LANDASAN TEORI ANALISA HUBUNG SINGKAT DAN MOTOR STARTING

PERBAIKAN REGULASI TEGANGAN

Studi Koordinasi Proteksi Sistem Kelistrikan di Project Pakistan Deep Water Container Port

STUDI KESTABILAN SISTEM BERDASARKAN PREDIKSI VOLTAGE COLLAPSE PADA SISTEM STANDAR IEEE 14 BUS MENGGUNAKAN MODAL ANALYSIS

ANALISA GANGGUAN PADA ELECTRIC ARC FURNACE (EAF) AKIBAT ARUS INRUSH TRANSFORMATOR & RESONANSI FILTER HARMONISA PABRIK PELEBURAN BAJA PT.

STUDI KOORDINASI RELE PROTEKSI PADA SISTEM KELISTRIKAN PT. BOC GASES GRESIK JAWA TIMUR


BAB IV DATA DAN PEMBAHASAN. Dalam penelitian ini menggunakan data plant 8 PT Indocement Tunggal

Analisis Kestabilan Transien di PT. PUSRI Akibat Penambahan Pembangkit 35 MW dan Pabrik P2-B Menggunakan Sistem Synchronizing Bus 33 kv

Analisis Kestabilan Transien dan Pelepasan Beban Pada Sistem Integrasi 33 KV PT. Pertamina RU IV Cilacap akibat Penambahan Beban RFCC dan PLBC

Evaluasi Ground Fault Relay Akibat Perubahan Sistem Pentanahan di Kaltim 1 PT. Pupuk Kaltim

ANALISIS KEDIP TEGANGAN AKIBAT GANGGUAN HUBUNG SINGKAT PADA PENYULANG ABANG DI KARANGASEM

BAB II TINJAUAN PUSTAKA

KAJIAN PROTEKSI MOTOR 200 KW,6000 V, 50 HZ DENGAN SEPAM SERI M41

ANALISIS KUALITAS DAYA LISTRIK DI PABRIK GULA TRANGKIL PATI DENGAN MENGGUNAKAN SOFTWARE ETAP 12.6

Analisis Kestabilan Transien dan Mekanisme Pelepasan Beban di PT. Pertamina (Persero) Refinery Unit (RU) VI Balongan

JURNAL TEKNIK ITS Vol. 1, No. 1 (Sept. 2012) ISSN: B-91

Analisis Kestabilan Transien Dan Mekanisme Pelepasan Beban Di PT. Pusri Akibat Penambahan Generator Dan Penambahan Beban

KOORDINASI PROTEKSI TEGANGAN KEDIP DAN ARUS LEBIH PADA SISTEM KELISTRIKAN PT. WILMAR NABATI, GRESIK JAWA TIMUR

PEMODELAN STATIS DAN DINAMIS PADA MOTOR STARTING UNTUK ANALISIS STABILITAS TRANSIEN DENGAN MENGGUNAKAN SOFTWARE ETAP 7.

SIMULASI DAN ANALISIS TRANSIEN CAPACITOR BANK SWITCHING TERHADAP KUALITAS DAYA LISTRIK DI PT HOLCIM INDONESIA,TBK PLANT CC#2 CILACAP

BAB IV DATA DAN PEMBAHASAN. panasbumi Unit 4 PT Pertamina Geothermal Energi area Kamojang yang. Berikut dibawah ini data yang telah dikumpulkan :

PENGARUH CAPACITOR BANK SWITCHING TERHADAP KUALITAS DAYA EFFECT OF CAPACITOR BANK SWITCHING ON POWER QUALITY

BAB II LANDASAN TEORI

Voltage sag atau yang sering juga disebut. threshold-nya. Sedangkan berdasarkan IEEE Standard Voltage Sag

Jurusan Teknik Elektro Fakultas Teknologi Industri Institut Teknologi Sepuluh Nopember Surabaya

ANALISA RUGI-RUGI PADA GARDU 20/0.4 KV

PEMODELAN STATIS DAN DINAMIS PADA MOTOR STARTING UNTUK ANALISIS STABILITAS TRANSIEN DENGAN MENGGUNAKAN SOFTWARE ETAP 7.

STUDI PERENCANAAN PENGGUNAAN PROTEKSI POWER BUS DI PT. LINDE INDONESIA GRESIK

BAB 2 TINJAUAN PUSTAKA

Analisis Kestabilan Transien dan Mekanisme Pelepasan Beban di PT. Pertamina (Persero) Refinery Unit (R.U.) VI Balongan Jawa Barat

SIMULASI PEMULIHAN KEDIP TEGANGAN AKIBAT GANGGUAN ARUS HUBUNG SINGKAT MENGGUNAKAN DYNAMIC VOLTAGE RESTORER (DVR)

BAB IV ANALISA DATA. Berdasarkan data mengenai kapasitas daya listrik dari PLN dan daya

Simulasi dan Analisis Fenomena Resonansi Akibat Harmonisa Orde Genap dengan Menggunakan Software ETAP

Pemasangan Kapasitor Bank untuk Perbaikan Faktor Daya

Analisis Stabilitas Transien dan Pelepasan Beban di Perusahaan Minyak Nabati

JURNAL TEKNIK POMITS Vol. 1, No 1, (2013) 1-6

Rifgy Said Bamatraf Dosen Pembimbing Dr. Ir. Margo Pujiantara, MT Dr. Dedet Chandra Riawan, ST., M.Eng.

Pengaruh Kedip Tegangan dan Koordinasi Rele Arus Lebih pada Pabrik Semen

Pemodelan dan Analisis Fault Current Limiter Sebagai Pembatas Arus Hubung Singkat Pada GI Sengkaling Malang

Pada kenyataannya, banyak permasalahanpermasalahan

Perencanaan Filter Hybrid untuk Mengurangi Dampak Harmonisa pada PT. Semen Indonesia Pabrik Rembang

Analisa Stabilitas Transien dan Koordinasi Proteksi pada PT. Linde Indonesia Gresik Akibat Penambahan Beban Kompresor 4 x 300 kw

PENENTUAN PERALATAN UNTUK MEREDAM HARMONISA BERDASAKAN JENIS SUMBER HARMONISA, ORDE DAN MAGNITUDE HARMONISA DENGAN MEMPERHITUNGKAN BIAYA INVESTASI

BAB 2 TINJAUAN PUSTAKA. Beban non linier pada peralatan rumah tangga umumnya merupakan peralatan

KUKUH WIDARSONO

PENYEMPURNAAN DESAIN FILTER HARMONISA MENGGUNAKAN KAPASITOR EKSISTING PADA PABRIK SODA KAUSTIK DI SERANG - BANTEN

BAB IV 4.1. UMUM. a. Unit 1 = 100 MW, mulai beroperasi pada tanggal 20 januari 1979.

Erik Tridianto, Ontoseno Penangsang, Adi Soeprijanto Jurusan Teknik Elektro FTI - ITS

STUDI PENGARUH PEMASANGAN STATIC VAR COMPENSATOR TERHADAP PROFIL TEGANGAN PADA PENYULANG NEUHEN

Arrifat Lubis

JURNAL TEKNIK ITS Vol. 5, No. 2, (2016) ISSN: ( Print)

ANALISIS HUBUNG SINGKAT 3 FASA PADA SISTEM DISTRIBUSI STANDAR IEEE 18 BUS DENGAN ADANYA PEMASANGAN DISTRIBUTED GENERATION (DG)

Analisis Implementasi Fixed Capacitor, SVC, Stabilitas Tegangan pada Sistem Petrochina

JURNAL IPTEKS TERAPAN Research of Applied Science and Education V8.i4 ( ) Perbaikan Jatuh Tegangan Dengan Pemasangan Automatic Voltage Regulator

BAB 1 PENDAHULUAN. serta dalam pengembangan berbagai sektor ekonomi. Dalam kenyataan ekonomi

Studi Perencanaan Penggunaan Proteksi Power Bus di Sistem Kelistrikan Industri Gas

BAB I PENDAHULUAN. sistem tenaga listrik terdiri dari beberapa sub sistem, yaitu pembangkitan,

Nama : Ririn Harwati NRP : Pembimbing : 1. Prof. Ir. Ontoseno Penangsang, M.Sc, PhD 2. Prof. Dr. Ir. Adi Soeprijanto, MT.

BAB II LANDASAN TEORI. melakukan kerja atau usaha. Daya memiliki satuan Watt, yang merupakan

PENGARUH DISTRIBUTED GENERATION (DG) TERHADAP IDENTIFIKASI LOKASI GANGGUAN ANTAR FASA PADA JARINGAN TEGANGAN MENENGAH (JTM)

ANALISIS KESTABILAN TRANSIEN DAN PELEPASAN BEBAN PADA SISTEM INTEGRASI 33 KV PT. PERTAMINA RU IV CILACAP AKIBAT PENAMBAHAN BEBAN RFCC DAN PLBC

Analisis Pengaruh Pemasangan Dynamic Voltage Restorer (DVR) terhadap Kedip Tegangan akibat Gangguan Hubung Singkat 3 Fasa pada Penyulang Kampus

Abstrak. Kata kunci: kualitas daya, kapasitor bank, ETAP 1. Pendahuluan. 2. Kualitas Daya Listrik

SIMULASI PEMASANGAN FILTER HARMONISA PADA SISTEM TENAGA LISTRIK MENGGUNAKAN SOFTWARE ETAP

Perencanaan Filter Hybrid untuk Mengurangi Dampak Harmonisa pada PT. Semen Indonesia Pabrik Rembang

Koordinasi Proteksi Sebagai Upaya Pencegahan Terjadinya Sympathetic Trip Di Kawasan Tursina, PT. Pupuk Kaltim

III PENGUMPULAN DAN PENGOLAHAN DATA

PEMASANGAN KAPASITOR BANK UNTUK PERBAIKAN FAKTOR DAYA PADA PANEL UTAMA LISTRIK GEDUNG FAKULTAS TEKNIK UNIVERSITAS IBN KHALDUN BOGOR

ANALISIS SETTING RELE PENGAMAN MOTOR BERDASARKAN METODE STARTING MOTOR. STUDI KASUS SISTEM KELISTRIKAN PABRIK SEMEN TONASA IV.

Keandalan dan kualitas listrik

ANALISIS KEDIP TEGANGAN AKIBAT PENGASUTAN MOTOR INDUKSI

BAB 2 TINJAUAN PUSTAKA

BAB 3 METODE PENELITIAN. Serdang. Dalam memenuhi kebutuhan daya listrik industri tersebut menggunakan

JURNAL TEKNIK ITS Vol. 4, No. 2, (2015) ISSN: ( Print) A-130

BAB II TINJAUAN PUSTAKA

Analisis Transien dan Penggunaan Metode Synchronous Closing Breaker Untuk Mengurangi Efek Transien Capacitor Bank Switching

Implementasi Dynamic Voltage Restorer (DVR) Multifungsi untuk perbaikan kualitas daya

JURNAL TEKNIK ITS Vol. 1, No. 1 (Sept. 2012) ISSN: B-136

EVALUASI KOORDINASI RELE PENGAMAN PADA JARINGAN DISTRIBUSI 20 KV DI GARDU INDUK GARUDA SAKTI, PANAM-PEKANBARU

BAB IV ANALISA GANGGUAN DAN IMPLEMENTASI RELAI OGS

Gambar 1 Motor Induksi. 2 Karakteristik Arus Starting pada Motor Induksi

Penyeimbang Beban Tiga Fasa Tiga Kawat Dengan Static Var Compensator (SVC) Tipe Thyristor Controlled Reactor Fixed Capacitor (TCR-FC)

Studi koordinasi Proteksi pada Joint Operating Pertamina-Petrochina di Tuban akibat Integrasi Sukowati Plant

DAYA ELEKTRIK ARUS BOLAK-BALIK (AC)

Dari Gambar 1 tersebut diperoleh bahwa perbandingan daya aktif (kw) dengan daya nyata (kva) dapat didefinisikan sebagai faktor daya (pf) atau cos r.

Analisis Fenomena Ferroresonance pada Capacitive Voltage Transformer (CVT) Akibat Pelepasan Beban Secara Mendadak

Perencanaan Koordinasi Rele Pengaman Pada Sistem Kelistrikan Di PT. Wilmar Gresik Akibat Penambahan Daya

BAB 2 TINJAUAN PUSTAKA. induk agar keandalan sistem daya terpenuhi untuk pengoperasian alat-alat.

Transkripsi:

Analisis dan Proteksi Voltage Sag and Swell akibat Pengoperasian Motor dengan Kapasitas diatas 5000 kw Pada Sistem Kelistrikan P.T Semen Gresik Pabrik Rolandi Tumpal Siregar, Ontoseno Penangsang, Ardyono Priyadi Jurusan Teknik Elektro, Fakultas Teknologi Industri, Institut Teknologi Sepuluh Nopember (ITS) Kampus ITS Keputih Sukolilo, Surabaya 60111 E-mail: ontosenop@ee.its.ac.id, priyadi@ee.its.ac.id 1 Abstrak Sebagai upaya untuk terus meningkatkan jumlah produksi semen, PT Semen Gresik (Persero) Tbk saat ini membangun PT Semen Gresik pabrik.untuk mendukung hal tersebut, tersedianya kualitas daya listrik yang baik dan kontinu diperlukan,agar proses produksi terus berjalan tanpa adanya gangguan. Hasil yang diperoleh menunjukkan bahwa saat motor induksi berkapasitas besar start, terjadi voltage sag yang melebihi standar IEEE 1159 tahun 2009 recommended practice for monitoring electric power quality. Begitu juga saat terjadi pelepasan motor induksi berkapasitas besar, terjadi voltage swell yang melebihi yang melebihi standar. Oleh sebab itu di butuhkan proteksi untuk mengatasi voltage sag. Cara yang dapat dilakukan adalah dengan membuat urutan pengoperasian starting motor dengan pengubahan nilai tap trafo. Cara lain adalah dengan menggunakan Y-D starter. Hasilnya adalah tegangan pada bus motor induksi dan bus lainnya sudah berada pada level tegangan yang aman. Proteksi yang lainnya adalah dengan rele undervoltage dengan setting 90 % level tegangan dan delay 1detik. Sedangkan untuk proteksi voltage swell adalah dengan reactor. Saat di pasang reactor pada saat terjadi pelepasan motor 344RM01M01 t=25 detik, tegangan bus 106 % dari tegangan normal, saat di pasang reactor pada saat terjadi pelepasan motor 344FN03M01 t=25 detik, tegangan bus 110 % dari tegangan normal, dan saat di pasang reactor pada saat terjadi pelepasan motor 547RM01MO1 t=25 detik, tegangan bus 106 % dari tegangan normal. Proteksi yang lainnya adalah dengan rele overvoltage, dan static VAR compensator. Relay overvoltage diatur dengan 110 % level tegangan dan delay 1 detik.dan hasil hasil simulasi, SVC mampu mengatur tegangan sistem dengan memberikan daya reaktif sesuai kebutuhan. Satu hal yang harus dilihat adalah masalah penempatan SVC untuk proteksi voltage swell. Kata Kunci Starting Motor,Pelepasan beban,voltage Sag, Voltage Swell, Reactor, Y-D Starter, Relay Undervoltage dan Overvoltage, Reactor, Static VAR Compensator I. PENDAHULUAN enggunaan motor di dalam suatu pabrik banyak dibutuhkan sebagai penggerak untuk mengaduk campuran Psemen, bahan baku, penghancuran bahan baku semen, penggilingan bahan baku,dan proses packing semen. Umumnya motor dapat distart langsung ke tegangan jala-jala jika motor tersebut berkapasitas kecil dan tidak terlalu berakibat terhadap kualitas daya listrik. Tetapi jika kapasitas motor besar, maka harus di perhitungkan akibat yang ditimbulkan pada waktu starting. Motor membutuhkan arus lebih tinggi pada saat starting, sehingga menyebabkan tegangan sistem turun yang dapat menggangu operasi peralatan lainnya seperti power converter,vsd (Variable Speed Drive)[1]. Adapun penyebab lain akibat pengoperasian motor berkapasitas besar adalah terjadinya voltage swell yang merupakan peningkatan tegangan rms atau arus pada frekuensi daya untuk jangka waktu dari 0.5 siklus sampai 1 menit. Kenaikan tegangan antara 1,1 dan 1,8 pu. [2]. Voltage swell terjadi akibat pelepasan beban secara tiba-tiba,dan gangguan satu fasa ke tanah. Voltage sag dan swell dapat menyebabkan peralatan sensitif seperti peralatan semikonduktor rusak, ketidakseimbangan arus yang besar, merusak fuse, menyebabkan trip circuit breaker [3]. Kesemuanya itu akan berakibat pada kerusakan pada peralatan pabrik dan kerugian produksi yang dapat merugikan perusahaan. Untuk mengatasi hal tersebut maka dalam tugas akhir ini dilakukan analisa melalui simulasi starting motor berkapasitas besar, simulasi terjadi pelepasan beban secara tiba-tiba. Setelah diketahui akibat dari pengoperasian motor berkapasitas besar, maka dilakukan proteksi akibat pengoperasian motor berkapasitas besar. II.1 VOLTAGE SAG SAAT MOTOR STARTING Voltage Sag adalah penurunan sesaat nilai rms tegangan pada frekuensi daya antara 0.1 sampai 0.9 pu selama durasi waktu dari 0.5 cycles hingga 1 menit, yang disebabkan oleh ganguan sistem dan starting motor induksi dengan kapasitas besar, kegagalan sistem, switching beban besar. Permasalahan kualitas daya seperti voltage sag dapat terjadi saat motor starting dikarenakan inrush current. Inrush current terjadi karena motor membutuhkan arus 6 sampai 10 kali dari arus nominal untuk menghasilkan torsi awal. Besarnya voltage sag akibat starting motor berkapsitas besar dapat dihitung sesuai persamaan 2.1 dan dari gambar 2.1. V sag = Zm. E.(2.1) Zs+Zm Gambar 2.1 Rangkaian Ekivalen Starting Motor [4]

2 Dari persamaan 2.1, dapat ditentukan besarnya tegangan pada bus pcc akibat starting motor. Di mana Z m adalah impedansi motor dan Z s adalah impedansi sumber Perhitungan ini sebenarnya adalah berupa perkiraan, tetapi memiliki hasil yang akurat terhadap fenomena voltage sag. Kurangnya pemahaman mengenai arus inrush menyebabkan kualitas daya menjadi tidak baik dan dapat merusak motor atau mempengaruhi beban sensitif di sekitarnya. Peralatan di pabrik memiliki tingkat sensitivitas yang berbeda terhadap voltage sag. Nilai sensitif suatu peralatan terhadap voltage sag di tentukan oleh tipe dari beban, pengaturan kontrol, dan aplikasinyakarakteristik umum yang digunakan adalah durasi dan besaran sag. Kelompok ini mencakup perangkat seperti relay undervoltage, kontrol proses, kontrol drive motor,dan banyak jenis mesin otomatis (misalnya, peralatan semikonduktor). II.2 VOLTAGE SWELL SAAT PELEPASAN BEBAN [5] Voltage swell didefinisikan merupakan penambahan pada tegangan (lamanya kurang dan 0.07-0.5 detik) di luar dari toleransi normal peralatan elektronik. Sedangkan oleh IEEE 1159 sebagai kenaikan tingkat tegangan rms 110% - 180% dari nominal, pada frekuensi daya untuk durasi ½ siklus sampai satu 1 menit. Gelombang tegangan ini pada dasarnya adalah kebalikan dari voltage sag. Untuk lebih jelas dapat dilihat pada gambar 2.2. Gambar 2.2 Gelombang Voltage Swell Voltage Swell disebabkan dari pengurangan beban besar yang mendadak. Voltage swell dapat merusakkan peralatan elektronika seperti komputer dll. Lama dari swell ini tergantung pada sistem proteksinya, yang mana dapat berlangsung selama beberapa detik Selain karena pelepasan beban besar, voltage swell biasanya berhubungan dengan kondisi kesalahan seperti akibat gangguan 1 fase ke tanah. Selain itu, energization kapasitor bank besar juga dapat menyebabkan voltage swell, Masalah yang ditimbulkan dapat menyebabkan panas berlebihan pada peralatan dan menyebabkan pemadaman. Peralatan elektronik, dan peralatan sensitif lainnya rentan terhadap kerusakan akibat voltage swell. II.3 OVERVOLTAGE DAN UNDERVOLTAGE RELAY [6] Kestabilan supplai listrik dalam suatu sistem sangat diperlukan. Adanya gangguan dalam supplai listrik dapat mempengaruhi bahkan merusak suatu sistem rangkaian listrik. Gangguan yang dapat terjadi antara lain adalah adanya under voltage atau over voltage. Salah satu cara untuk mengatasi hal tersebut adalah dengan menggunakan alat pengaman yaitu relay. Relay ini digunakan untuk mendeteksi adanya under voltage atau over voltage. Output dari relay dapat dihubungkan pada rangkaian pemutus (circuit breaker/cb) untuk memutuskan aliran listrik jika terjadi gangguan. Relay yang dirancang bertujuan untuk mendeteksi adanya under voltage atau over voltage pada tegangan 3 phasa 220/380 V 50 Hz. Fungsi relay untuk menentukan dengan segera pemutusan / penutupan pelayanan penyaluran setiap elemen sistem tenaga listrik bila mendapatkan gangguan atau kondisi kerja yang abnormal, disamping itu relay harus bisa mengetahui letak dan jenis gangguan, sehingga dari pengaman ini dapat dipakai untuk pedoman perbaikan peralatan yang rusak.tabel 2.1 adalah contoh datasheet rele tegangan lebih dan tegangan kurang SPAU 121 C. Tabel 2.1 Overvoltage and undervoltage relay SPAU 121 C Over Start Voltage U> 0,8.1,6x U n Voltage Start Time, Present Values 0.1s,1s, 10s,60s U> Operate time t> at definite 0.05,.10.0 s time operation characteristic Under Start Voltage U< 0,4.1,2x U n voltage Start Time, Present Values 0.1s or 30 s Stage Operate time at definite 1 100 s U< time operation characteristic II.4 REACTOR [7] Reaktor yang digunakan dalam sistem tenaga listrik secara umum dapat diklasifikasikan menjadi dua kelompok utama: a. reaktor seri untuk pembatasan arus hubung singkat b. reaktor shunt untuk kompensasi reaktif Reactor shunt merupakan sebuah alat untuk kompensasi reaktansi kapasitif. Arus lagging diambil oleh reaktor shunt digunakan untuk mengurangi atau membatalkan arus leading yang diambil oleh shunt reaktansi kapasitif. Dengan demikian, reaktor shunt biasanya digunakan untuk mengkompensasi arus kapasitansi besar pada sistem tenaga listrik. Reaktor shunt dapat langsung terhubung ke busbar (Pos. 1), saluran transmisi (Pos. 2) atau terhubung ke kumparan tersier transformator daya besar (Pos. 3), seperti yang ditunjukkan pada gambar 2.3. Gambar 2.3 Cara Pemasangan Shunt Reactor II.5. STATIC VAR COMPENSATOR [8] Static Var Compensator (SVC) adalah komponen FACTS (Flexible AC Transmission Systems), yang fungsinya untuk mengatur tegangan pada bus tertentu dengan cara mengontrol besaran reaktansi ekuivalen.peralatan ini biasanya dipasang pada sistem utilitas atau sistem industri, untuk mengatur tegangan dengan respon yang sangat cepat untuk menyuplai atau mengkonsumsi daya reaktif.gambar 2.4 merupakan gambar pemasangan static VAR compensator.

3 sag terbesar terjadi pada bus / bus motor induksi 547RM01MO1 starting. Saat motor distart terjadi drop tegangan 25 % atau terjadi penurunan tegangan 75 % tegangan nominal. Kemudian semakin jauh jarak bus yang lain dari bus motor induksi starting, maka besar voltage sag semakin kecil. Gambar 2.4 Cara Pemasangan Static VAR Compensator II.6 Y-D STARTER Ada juga cara lain untuk mengatasi arus start motor yang besar yaitu dengan menaikkan tap trafo di bus motor tersebut, menggunakan UPS, ataupun dengan starter Y-D. Pada kesempatan ini, saya akan membahas mengenai starter Y-D untuk mengatasi masalah arus start motor yang besar. Prinsip kerja starter ini adalah bekerja dengan 2 tahap, yaitu: awalnya motor terhubung dengan rangkaian wye (Y), setelah beberapa saat motor melepas rangkaian Y dan beroperasi dengan hubungan delta. III. HASIL SIMULASI DAN ANALISIS A. Simulasi Starting Motor Induksi Skenario 1 Simulasi dilakukan dengan motor induksi 547RM01MO1 Cement Mill pada bus dengan sumber PLN 41.724 MVA. Metode starting yang dilakukan adalah direct on line dengan langsung menghubungkan motor ke sumber 3 fase. Untuk menghasilkan torsi, motor induksi membutuhkan arus start yang besar yang mencapai 5-7 kali arus nominal.hasil simulasi voltage sag motor induksi ini dapat dilihat pada tabel 3.1 dan gambar 3.1 merupakan analisis tegangan bus motor induksi 547RM01M01. Dari tabel 3.1 didapatkan data bahwa pada bus-bus tersebut terjadi voltage sag pada bus-bus yang di tentukan sebelumnya. Pada tabel 3.1 disimpulkan juga bahawa voltage Gambar 3.1 Voltage Sag Pada Bus B. Proteksi Voltage Sag B.1 Dengan Urutan Pengoperasian Motor Dari hasil simulasi berbagai motor induksi berkapasitas besar yang distart secara bersamaan dengan berbagai skenario seperti hasil percobaan di dapatkan bahwa terjadi voltage sag melebihi standar IEEE 1159 tahun 2009 recommended practice for monitoring electric power quality.maka untuk menjalankan semua motor berkapasitas besar tersebut diperlukan sebuah urutan pengoperasian motor untuk mengurangi efek voltage sag pada sistem dan dengan pengubahan tap trafo yang berada di dekat motor tersebut. Tabel 3.2 menunjukkan urutan pengoperasian motor berdasarkan besarnya voltage sag yang terjadi pada bus motor tersebut Tabel 3.2 Urutan Pengoperasian Motor No Waktu (detik) Motor Starting 1 1 344FN03M01 Raw Mill ID Fan 2 21 344RM01M01 Role Mill Table 3 41 547RM01MO1 Cement Mill Table 4 61 548RM01MO1 Cement Mill Table Bus Tabel 3.1 Voltage sag Saat Static Motor Starting 547RM01MO1 Kondisi Starting Selama Bus Sebelum (kv) (kv) Drop (%) Sesudah (Kv) 6.3 4.91 25 6.3 6.3 4.91 25 6.3 824-MV142 20 17.2 14 19.4 824-MV141 814.MV11 20 17 15 19.6 Main bus 1 150 145.5 3 150 Bus PLN 150 145.5 3 150 MV272 Dan menurut IEEE 1159 tentang voltage sag standarnya sebagai berikut: Voltage sag 90% jika di dalam sistem terdapat beban yang paling sensitive terhadap perubahan level tegangan. Pada simulasi urutan pengoperasian motor, tap trafo 824- TX131 di primer diubah menjadi -5 % dan di sekunder diubah menjadi 5 %. Dan juga tap trafo 824-TX141 di bagian primer di ubah menjadi -5 %, di bagian sekunder diubah menjadi 5 %. Hal ini dilakukan agar tidak terjadi voltage sag pada bus motor tersebut maupun bus yang lain.dari hasil urutan pengoperasian motor seperti tabel 3.2, maka di dapatkan hasil dari keseluruhan operasi motor pada bus

4 tidak terjadi voltage sag akibat pengoperasian motor, karena telah dibuat standar pengoperasian motor. Karena dalam sistem terdapat peralatan sensitif maka digunakan standar voltage sag 90 % sehingga pada bus berada pada level tegangan yang aman. Dan gambar 3.2 menunjukkan hasil simulasi pada bus yang lain. Gambar 3.2 Hasil Simulasi Tegangan Bus Lain Dengan Urutan Pengoperasian Motor Karena dari hasil simulasi urutan operasi motor sudah berada pada level tegangan yang aman, tetap diperlukan rele undervoltage untuk mencegah hal yang tidak di inginkan. Untuk mengatur setting relay undervoltage, terlebih dahulu harus mengetahui level voltage sag pada bus akibat urutan starting motor berkapasitas besar dengan waktu yang dibutuhkan motor selama akselerasi. B.2 Dengan Undervoltage Relay Dari data plant motor di PT. Semen Gresik bahwa waktu akselarasi motor berkapasitas besar ini adalah 20 detik. Oleh sebab itu, untuk penundaan waktu operasi relay harus lebih lama dari waktu akselarasi motor tersebut kira-kira sampai 25 detik. Setting dari relay dapat diatur dari 1 s sampai 10 s. Jika terjadi voltage sag kurang dari 90% dari tegangan normalnya selama lebih dari 1 detik maka relay akan trip.relay UV ini dipasang pada bus yang terhubung langsung dengan motor seperti bus pada tabel 3.3. Tabel 3.3 Setting Relay UnderVoltage pada Bus yang Terhubung ke Motor Setting Relay UV Bus % Voltage Sag x U n Delay Time (s) 814.MV11 8 x 0.9 1 Main bus 1 2 x 0.9 1 Bus PLN 2.2 x 0.9 1 15 x 0.9 1 15 x 0.9 1 824-MV132 824-MV131 8 x 0.9 1 Setting Relay UV Bus % Voltage Sag x U n Delay Time (s) 25 x 0.9 1 MV272 824-MV142 824-MV141 11 x 0.9 1 25 x 0.9 1 14 x 0.9 1 B.3 Dengan Y- D Starter Dari data motor didapatkan bahwa waktu akselerasi motor adalah 20 detik sehingga diperlukan waktu 20 detik untuk perpindahan dari starter Y ke D dan dalam simulasi pengoperasian motor tap trafo 824-TX141 diubah disisi primer -5 % dan di bagian sekunder 5 %, sedangkan tap trafo 824- TX131 disisi primer diubah -5 % dan disisi sekunder 5 % untuk mencegah voltage sag Dan gambar 3.3 hasil simulasi tegangan bus lain dengan starter Y-D berdasarkan urutan pengoperasian motor. Gambar 3.3 Hasil Simulasi Tegangan Bus Lain Dengan Starter Y-D Berdasarkan Urutan Pengoperasian Motor C. Simulasi Pelepasan Motor Induksi Studi Kasus 1 Pada studi kasus ini akan dilakukan simulasi pelepasan motor induksi 344RM01M01 pada bus. Dari tabel 3.4 dan gambar 3.4 didapatkan data bahwa pada bus-bus tersebut terjadi voltage swell pada bus-bus yang di tentukan sebelumnya. Pada tabel 3.4 disimpulkan juga bahwa voltage swell terbesar terjadi pada bus / bus motor induksi 344RM01M01. Saat motor sementara beroperasi beban penuh dan terjadi pelepasan beban saat t=25 detik, terjadi kenaikan tegangan 16 % atau 116 % tegangan nominal pada bus. Kemudian semakin jauh jarak bus yang lain dari bus motor induksi, maka besar voltage swell semakin kecil. Tabel 3.4 Voltage swell Pelepasan Motor Saat Motor Induksi 344RM01M01 Beban Penuh Kondisi Pelepasan Selama Bus Sebelum (Kv) (Kv) Kenaikan (%) Sesudah (Kv) 6.3 7.30 16 6.3 6.3 7.30 16 6.3 824-MV132 20 22 10 20.4 824-MV131 814.MV11 20 22.4 12 20.6

5 Main bus 1 150 153 2 148.5 Bus PLN 150 153 2 148.5 Gambar 3.4 Voltage Swell Pelepasan Motor Pada Bus ER24-834- Saat Motor Induksi 344RM01M01 Beban Penuh D. Proteksi Voltage Swell D.1 Dengan Overvoltage Relay Cara pertama yang dilakukan untuk mengatasi hasil tersebut adala dengan menggunakan relay overvoltage. Setting relay overvoltage diatur berdasarkan kemungkinan terjadi voltage swell yang paling besar.standar toleransi tegangan untuk motor induksi ± 10% dan frekuensinya ± 5%. Pada tugas akhir ini saya menggunakan relay overvoltage tipe SPAU 121C. Relay Overvoltage ini dipasang pada bus yang terhubung langsung dengan motor seperti bus pada tabel 3.5. Tabel 3.5 Setting Relay OverVoltage pada Bus yang Terhubung ke Motor Pada Studi Kasus I Setting Relay OV Bus % Voltage x U n Delay Time (s) Swell 814.MV11 12 x 1.1 1 Main bus 1 2 x 1.1 1 Bus PLN 2 x 1.1 1 18 x 1.1 1 16 x 1.1 1 824-MV132 10 x 1.1 1 824-MV131 16 x 1.1 1 14 x 1.1 1 MV272 16 x 1.1 1 824-MV142 824-MV141 10 x 1.1 1 D.2. Proteski Voltage Swell Pada Motor Induksi 344RM01M01 dengan Shunt Reactor Sebelum melakukan pemasangan shunt reactor pada bus motor induksi ini perlu di ketahui parameter seperti daya reaktif 3 fasa, arus nominal, reaktansi dan impedansi shunt reactor.karena biasanya jarang sekali terjadi pelepasan motor saat start, maka pada proteksi ini digunakan shunt reactor saat motor beroperasi beban penuh. Motor ini mengalami voltage swell sebesar 16 % dari tegangan 6.3 kv saat terjadi pelepasan motor saat beban penuh. Dan gambar 3.5 berikut menunjukkan hasil simulasi proteksi pada bus lainnya dengan shunt reactor. Q bus = 2.6 Mvar X r = vbus 2 Qbus Dengan Z= 2 Ω 6.3 kv 2 = = 15.26 Ω I 2.6 Mvar n= QR3 2.6 Mvar = = 3 Un 3 6.3 kv 238.27 A dimana: Q bus = Daya reaktif pada bus motor 344RM01M01 (kvar) Z = Impedansi reaktor (Ω) X r = Reaktansi reaktor (Ω) I n = Rating arus kontinu yang dibatasi oleh reaktor (A) Gambar 3.5 Voltage Swell Bus Lain Saat terjadi Pelepasan Motor 344RM01M01 dengan Proteksi Shunt Reactor Dari gambar 3.5 dapat disimpulkan bahwa voltage swell sudah berkurang menjadi level yang aman sesuai standar kualitas daya. Berikut ini adalah hasil loadflow sebelum di tambahkan shunt reactor pada bus motor induksi ini: Tegangan : 6.129 kv Arus : 406 A P: 3.4 MW Q: 2.6 Mvar S: 4.3 MVA Cos Ɵ : 79.3 % Dan berikut adalah hasil loadflow setelah di tambahkan shunt reactor pada bus motor induksi ini: Tegangan : 6.27 kv Arus : 497.2 A P:3.5 MW Q: 4.1 Mvar S: 4.3 MVA Cos Ɵ : 79.3 % D.3. Proteski Voltage Swell Pada Motor Induksi 344RM01M01 dengan SVC Ada juga cara lain untuk mengatasi voltage swell akibat pelepasan motor Static Var Compensator. Static VAR Compensator adalah peralatan sistem tenaga listrik yang dapat digunakan untuk mengatur tegangan pada bus dengan menyerap atau memberikan daya reaktif. Dalam SVC ini, terdapat beberapa komponen seperti induktor dan kapasitor maupun beberapa komponen elektronik switching yang dapat mengatur daya reaktif yang di suplai dan diserap. Ketika tegangan rendah, SVC akan memberikan daya reaktif kapasitif, dan ketika tegangan tinggi, maka SVC akan menyerap daya reaktif melalui komponen induktor. Sebelum melakukan pemasangan SVC pada bus motor induksi ini perlu di ketahui parameter seperti daya reaktif kapasitif, daya reaktif induktif, tegangan maksimum dan

6 minimum yang diizinkan.karena biasanya jarang sekali terjadi pelepasan motor saat start, maka proteksi ini digunakan dengan SVC saat motor beroperasi beban penuh. Motor ini mengalami voltage swell sebesar 16 % dari tegangan 6.3 kvsaat terjadi pelepasan motor saat beban penuh, sedangkan voltage sag sebesar 21 % dari tegangan 6.3 kv. Gambar 3.6 berikut menunjukkan hasil simulasi proteksi pada bus ER24-834- dengan SVC. Berikut adalah loadflow sebelum di pasang SVC: =3.4 MW Q=2.6 Mvar S=4.3 MVA Cos Ɵ=79.3 % 403.9 A 6.16 kv I c = 0.21 x 403.9 A = 84.81 A I c =403.9 A- 84.81 A= 319.08 A Q c = 3 V rated I c = 3 x 6300 x 319.08 = 3.48 Mvar I L = 0.16 x 403.9 A = 64.62 A I L = 403.9 A + 64.62 A = 468.52 A Q L = 3 V rated I L = 3 x 6300 x 468.52 = 5.11 Mvar Dengan V maks = 100 % dan V min = 99 % Di mana: Q c =Daya reaktif kapasitif SVC (Mvar) Q L =Daya reaktif induktif SVC (Mvar) V maks = Tegangan maksimum SVC (%) V min = Tegangan minimum SVC (%) I L = Arus induktif SVC (A) I C = Arus kapasitif SVC (A) V rated = Tegangan nominal sistem (kv) Gambar 3.6 Voltage Swell Bus Saat terjadi Pelepasan Motor 344RM01M01 dengan Proteksi Static VAR Compensator Walaupun tegangan pada bus sudah baik dengan adanya penambahan proteksi SVC, tetapi dari gambar 4.62 dapat dilihat pada bus lainnya seperti bus ER24-834-,terdapat voltage sag dengan durasi singkat lebih dari 90 %,maka perlu di tentukan penentuan SVC di bus dengan tepat. Berikut adalah loadflow setelah di pasang SVC: P=3.4 MW Q=2.6 MVAR S=4.3 MVA Cos Ɵ=79.3% 414.8 A 5.99 KV IV. KESIMPULAN Pada paper ini ditunjukkan untuk menganalisis dampak dari starting motor dan pelepasan motor berkapasitas besar terhadap voltage sag and swell. Hasil simulasi menunjukkan bahwa saat motor induksi berkapasitas besar starting, terjadi voltage sag 15-26 % dari tegangan normal dan saat terjadi pelepasan motor berkapasitas besar, terjadi voltage swell 15-25 % dari tegangan normal. Karena hasil simulasi tersebut tidak sesuai dengan IEEE 1159 tahun 2009 recommended practice for monitoring electric power quality, sehingga di butuhkan proteksi rele undervoltage, Y-D Starter, atau dengan urutan pengoperasian motor dengan pengubahan tap trafo. Sedangkan untuk proteksi voltage swell dapat menggunakan reactor yang dihubungkan seri antara bus motor dan motor tersebut.alternatif proteksi adalah dengan SVC untuk mengkompensasi daya reaktif untuk mengatur tegangan pada bus.dengan mempertimbangkan penempatan SVC pada bus yang akan di kompensasi daya reaktifnya. DAFTAR PUSTAKA [1] P.Boonchiam and N. Mithulananthan,"Understanding of Dynamic Voltage Restorers through MATLAB Simulation,"Thammasat Int. J.Sc.Tech.,Vol.11,No.3, July-Sept 2006. [2] IEEE Std. 1159-1995,"Recommended Practice for Monitoring Electric Power Quality". [3] A.Ghosh and G.Ledwich,"Power Quality Enhancement Using Custom Power Devices,"Kluwer, Academic Publishers,2002. [4] Sumber : Patil P.S.,"Starting Analysis Of Induction Motor A Computer Simulation By Etap PowerStation", International Conference on Emerging Trends in Engineering and Technology (ICETET), 2009 2nd, pp 494-499, 16/18 December 2009. [5] -----------, Power Quality Basics: Voltage Swell <URL: http://www.powerqualityworld.com/2011/04/voltage-swellpower-quality-basics.html>, April, 2011. [6] Engineering Education and Training, Three-Phase Overvoltage and Undervoltage Relay, ABB, 1999 [7] Electricity Training Association, Power System Protection Vol.3 Application, The Institution of Electrical Engineers, London UK, 1997 [8] Boudjella Houari, Modelling And Simulation Of Static Var Compensator (Svc) In Power System Studies By Matlab, The Annals Of Dunarea De Jos University Of Galati Fascicle III Vol.31, No.1, ISSN 1221-454X, 2008 RIWAYAT PENULIS Rolandi Tumpal Siregar dilahirkan di Manado, 19 Desember 1990. Penulis adalah putra pertama dari tiga bersaudara. Penulis memulai jenjang pendidikannya di SD Frater Don Bosco Manado, SMP Frater Don Bosco Manado, serta SMA Negeri 1 Manado hingga lulus tahun 2008. Penulis diterima sebagai mahasiswa S1 Lintas Jalur di Jurusan Teknik Elektro, Fakultas Teknologi Industri ITS sejak Agustus 2011. Penulis memilih bidang studi Teknik Sistem Tenaga dan berkonsentrasi pada bidang simulasi sistem tenaga listrik pada Tugas Akhir. Penulis dapat dihubungi di alamat email rolandisiregar@gmail.com.