Bab II Studi Pustaka

dokumen-dokumen yang mirip
Bab II Tinjauan Pustaka

II. TINJAUAN PUSTAKA. sawit kasar (CPO), sedangkan minyak yang diperoleh dari biji buah disebut

Bab IV Hasil dan Pembahasan

Bab IV Hasil dan Pembahasan

BAB II TINJAUAN PUSTAKA

Bab IV Hasil dan Pembahasan. IV.2.1 Proses transesterifikasi minyak jarak (minyak kastor)

IV. HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN

Sintesis Metil Ester dari Minyak Goreng Bekas dengan Pembeda Jumlah Tahapan Transesterifikasi

PEMBUATAN BIODIESEL DARI ASAM LEMAK JENUH MINYAK BIJI KARET

Biodiesel Dari Minyak Nabati

PEMBUATAN BIODIESEL DARI MINYAK NYAMPLUNG MENGGUNAKAN PEMANASAN GELOMBANG MIKRO

IV. HASIL DAN PEMBAHASAN

Bab III Metodologi Penelitian

BAB II TINJAUAN PUSTAKA

PENGARUH STIR WASHING, BUBBLE WASHING, DAN DRY WASHING TERHADAP KADAR METIL ESTER DALAM BIODIESEL DARI BIJI NYAMPLUNG (Calophyllum inophyllum)

LAMPIRAN A DATA PENGAMATAN

LAMPIRAN A DATA PENGAMATAN. 1. Data Pengamatan Ekstraksi dengan Metode Maserasi. Rendemen (%) 1. Volume Pelarut n-heksana (ml)

BAB IV HASIL DAN PEMBAHASAN. 4:1, MEJ 5:1, MEJ 9:1, MEJ 10:1, MEJ 12:1, dan MEJ 20:1 berturut-turut

METODE PENELITIAN Kerangka Pemikiran

PENDAHULUAN TINJAUAN PUSTAKA

III. METODOLOGI PENELITIAN

BAB II TINJAUAN PUSTAKA DAN PERUMUSAN HIPOTESIS

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA

Bab II Tinjauan Pustaka

BAB II TINJAUAN PUSTAKA

4 Pembahasan Degumming

sidang tugas akhir kondisi penggorengan terbaik pada proses deep frying Oleh : 1. Septin Ayu Hapsari Arina Nurlaili R

: Muhibbuddin Abbas Pembimbing I: Ir. Endang Purwanti S., MT

HASIL DAN PEMBAHASAN

PROSES PEMBUATAN BIODIESEL MINYAK JARAK PAGAR (Jatropha curcas L.) DENGAN TRANSESTERIFIKASI SATU DAN DUA TAHAP. Oleh ARIZA BUDI TUNJUNG SARI F

PEMBUATAN BIODIESEL SECARA SIMULTAN DARI MINYAK JELANTAH DENGAN MENGUNAKAN CONTINUOUS MICROWAVE BIODISEL REACTOR

Jurnal Flywheel, Volume 3, Nomor 1, Juni 2010 ISSN :

BAB II TINJAUAN PUSTAKA DAN DESKRIPSI PROSES

B. Struktur Umum dan Tatanama Lemak

Pembuatan Biodiesel dari Minyak Kelapa dengan Katalis H 3 PO 4 secara Batch dengan Menggunakan Gelombang Mikro (Microwave)

PEMBUATAN BIODIESEL DARI CRUDE PALM OIL (CPO) SEBAGAI BAHAN BAKAR ALTERNATIF MELALUI PROSES TRANSESTERIFIKASI LANGSUNG

PERBANDINGAN PEMBUATAN BIODIESEL DENGAN VARIASI BAHAN BAKU, KATALIS DAN TEKNOLOGI PROSES

A. RUMUS STRUKTUR DAN NAMA LEMAK B. SIFAT-SIFAT LEMAK DAN MINYAK C. FUNGSI DAN PERAN LEMAK DAN MINYAK

LAMPIRAN 1 DATA BAHAN BAKU

Bab II Tinjauan Pustaka

II. TINJAUAN PUSTAKA

Pengertian lipid. Minyak dan air tidak bercampur

LIPID. Putri Anjarsari, S.Si., M.Pd

Lampiran 1. Prosedur analisis sifat fisikokimia minyak dan biodiesel. 1. Kadar Air (Metode Oven, SNI )

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. Isu kelangkaan dan pencemaran lingkungan pada penggunakan bahan

BAB I PENDAHULUAN 1.1 Latar Belakang dan Permasalahan Penelitian

BAB IV HASIL DAN PEMBAHASAN

BAB II TINJAUAN PUSTAKA

BAB I PENDAHULUAN. Bab I Pendahuluan

Lemak dan minyak adalah trigliserida atau triasil gliserol, dengan rumus umum : O R' O C

I. PENDAHULUAN. produksi biodiesel karena minyak ini masih mengandung trigliserida. Data

Perbedaan minyak dan lemak : didasarkan pada perbedaan titik lelehnya. Pada suhu kamar : - lemak berwujud padat - minyak berwujud cair

Pembuatan produk biodiesel dari Minyak Goreng Bekas dengan Cara Esterifikasi dan Transesterifikasi

Bab IV Hasil dan Pembahasan

BAB IV HASIL DAN PEMBAHASAN

BAB III RENCANA PENELITIAN

Proses Pembuatan Biodiesel (Proses Trans-Esterifikasi)

Bab IV Hasil dan Pembahasan

: Dr. Rr. Sri Poernomo Sari ST., MT.

BAB III RANCANGAN PENELITIAN

HASIL DAN PEMBAHASAN A. ANALISIS GLISEROL HASIL SAMPING BIODIESEL JARAK PAGAR

LAMPIRAN A DATA BAHAN BAKU

UJI LIPID (TES KELARUTAN)

BAB VII IMPLEMENTASI, VALIDASI DAN VERIFIKASI

BAB III METODE PENELITIAN. Penelitian ini akan dilakukan pada bulan Januari Februari 2014.

I. PENDAHULUAN. Potensi PKO di Indonesia sangat menunjang bagi perkembangan industri kelapa

Rekayasa Proses Produksi Biodiesel

LAMPIRAN 1 DATA BAHAN BAKU

BAB IV HASIL DAN PEMBAHASAN

Nama Kelompok : MUCHAMAD RONGGO ADITYA NRP M FIKRI FAKHRUDDIN NRP Dosen Pembimbing : Ir. IMAM SYAFRIL, MT NIP.

SAINS II (KIMIA) LEMAK OLEH : KADEK DEDI SANTA PUTRA

BAB II TINJAUAN PUSTAKA

LAMPIRAN 1 DATA BAHAN BAKU

BAB II TINJAUAN PUSTAKA

LAMPIRAN 1 DATA BAHAN BAKU

Alkena dan Alkuna. Pertemuan 4

lebih ramah lingkungan, dapat diperbarui (renewable), dapat terurai

BAB III ALAT, BAHAN, DAN CARA KERJA. Penelitian ini dilakukan di Laboratorium Kimia Farmasi Kuantitatif

Dibimbing Oleh: Prof. Dr. Ir. Mahfud, DEA Ir. Rr. Pantjawarni Prihatini

BAB IV HASIL DAN PEMBAHASAN. Analisa awal yang dilakukan pada minyak goreng bekas yang digunakan

BAB II TINJAUAN PUSTAKA

Memiliki bau amis (fish flavor) akibat terbentuknya trimetil amin dari lesitin.

BAB II TINJAUAN PUSTAKA

berupa ikatan tunggal, rangkap dua atau rangkap tiga. o Atom karbon mempunyai kemampuan membentuk rantai (ikatan yang panjang).

BAB III METODA PENELITIAN. yang umum digunakan di laboratorium kimia, set alat refluks (labu leher tiga,

BAB III METODOLOGI PENELITIAN

BAB II PUSTAKA PENDUKUNG. Ketersediaan energi fosil yang semakin langka menyebabkan prioritas

BAB III METODE PENELITIAN

BAB IV HASIL DAN PEMBAHASAN. Tabel 4.1. Karakteristik Bahan Baku Biodiesel. Propertis Minyak Kelapa (Coconut Oil)

Pengaruh Ukuran Arang Aktif Ampas Tebu sebagai Biomaterial Pretreatment terhadap Karakteristik Biodiesel Minyak Jelantah

BAB II TINJAUAN PUSTAKA

IV. HASIL DAN PEMBAHASAN

Potensi Produk Transesterifikasi Minyak Dedak Padi (Rice Bran Oil) sebagai Bahan Baku Pembuatan Base Oil Epoksi Metil Ester

III. METODE PENELITIAN

BAB I PENDAHULUAN. Latar Belakang

ASAM KARBOKSILAT. Deskripsi: Struktur, tata nama, penggolongan dan manfaat asam karboksilat

KAJIAN PROSES PEMBUATAN BIODIESEL DARI MINYAK JELANTAH DENGAN MENGGUNAKAN KATALIS ABU TANDAN KOSONG SAWIT

Transkripsi:

4 Bab II Studi Pustaka 2.1 Biodiesel Metil ester yang diperoleh dari proses transesterifikasi trigliserida dari minyak nabati dan minyak hewani dapat dimanfaatkan menjadi suatu bahan bakar mesin diesel konvensional tanpa memerlukan modifikasi mesin atau menggunakan conferter kit terlebih dahulu dan disebut biodiesel. Transesterifikasi merupakan suatu proses esterifikasi dari suatu trigliserida dengan mengunakan alkohol dan bantuan katalis basa seperti NaH atau KH. 5 Biodiesel mempunyai sifat kimia dan fisika yang serupa dengan petrodiesel sehingga dapat digunakan langsung untuk mesin diesel atau dicampur dengan petrodiesel. Pencampuran 20 % biodiesel dengan petrodiesel menghasilkan produk bahan bakar tanpa mengubah sifat fisik secara nyata. 6 Di banyak negara, biodiesel kini sudah diproduksi, diperdagangkan, dan digunakan sebagai bahan bakar mesin diesel dalam bentuk aneka campuran dengan solar seperti: B5, B10, B20, B30, bahkan B100. Angka di belakang huruf B menyatakan persentase volume biodiesel dalam campuran dengan solar. Sebagai contoh, biodiesel diperdagangkan dalam bentuk B100 di Jerman, Austria dan Swedia; B30 B36 di eko, Spayol, dan Prancis; B20 di Amerika Serikat; serta B5 di Inggris dan Peranscis. 7 Penggunaan biodiesel pada dasarnya tidak perlu modifikasi pada mesin diesel, bahkan biodiesel mempunyai efek pembersihan terhadap tangki bahan bakar, injektor dan selang. 8 2.2 Pembuatan Biodiesel Biodiesel dapat dibuat dengan mereaksikan minyak atau lemak dengan alkohol menggunakan katalis asam atau basa, melalui reaksi transesterifikasi. Proses pembuatannya, minyak dipanaskan terlebih dahulu sampai suhu 60 º. Alkohol

5 dan katalisator juga dipanaskan pada suhu yang sama hingga katalisator larut sempurna dalam alkohol. Kedua cairan itu dicampur dan diaduk selama 60 menit pada suhu 60 º. Setelah proses ini akan terjadi dua lapisan, fase cair bagian atas menyatakan biodiesel, sedangkan fase cair bagian bawah menyatakan fase polar yang terdiri dari gliserol, sabun, katalis, sisa asam lemak bebas, dan air. Dua lapisan akan terbentuk sempurna setelah dibiarkan selama 24 jam, kemudian dipisahkan antara biodiesel dan fase cair lainnya. Biodiesel hasil reaksi ini kemudian dicuci menggunakan air panas untuk menghilangkan pengotor berupa sisa gliserol, asam lemak bebas, dan katalis sisa. Akhirnya dikeringkan dengan menggunakan al 2. 9 Persamaan reaksi pembuatan biodiesel secara umum dapat dilihat pada Gambar 2.1 berikut: H 2 H H 2 1 2 + 3H 3 H H H + 3 H 2 H H 2 H 1 2 3 H 3 H 3 H 3 Trigliserida Metanol Gliserol Biodisel Gambar 2-1 Persamaan reaksi pembuatan biodiesel Faktor yang mempengaruhi rendemen biodiesel yang dihasilkan pada reaksi transesterifikasi adalah perbandingan molar antara trigliserida dengan alkohol, jenis katalis, suhu reaksi, waktu reaksi, kandungan air, kandungan asam lemak bebas yang terdapat pada bahan baku yang digunakan. 9 Pada produksi biodiesel skala laboratorium, dilakukan pada labu leher tiga, terbuat dari kaca yang dilengkapi dengan kondensor refluks, dan termometer. Jika menggunakan reaktan metanol, perbandingan metanol dan minyaknya adalah 1:10. Katalis KH dengan konsentrasi 1 % dari minyak yang digunakan. Bejana tersebut ditempatkan pada penangas air dengan pengaduk magnetik, suhu reaksi antara 60 º sampai dengan 65 º. 10

6 2.3 Standar Mutu Biodiesel Standar mutu biodiesel di tiap negara berbeda-beda tergantung pada kondisi masing-masing negara, terutama bahan baku biodiesel dan kondisi iklim negara tersebut. Secara umum, parameter yang menjadi standar mutu biodiesel adalah: titik awan, densitas, titik nyala, angka setana, viskositas kinematik, energi yang dihasilkan, bilangan iod, bilangan asam, kandungan ester, kandungan metanol, total sulfur, fosfor, air dan sedimen, gliserol total, total kontaminasi dan residu karbon. 11 Standar mutu biodiesel Indonesia menurut SNI EB 020551 diperlihatkan pada Tabel 2.1 berikut: Tabel 2. 1 Spesifikasi biodiesel standar Indonesia SNII B 020551. No Parameter kualitas dan units Batas Nilai Metode Uji 1. Berat jenis pada 40 º (kg/m 3 ) 850-890 ASTM D 1298 2. Kinematika viskositas pada 40 o (mm 2 /s) 2,3-6,0 ASTM D 445 3. Angka setane min. 51 ASTM D 613 4. Titik nyala ( º ) min 100 ASTM D 93 5. Titik awan ( º ) maks. 18 ASTM D 2500 6. esidu karbon (%-b) maks.0,05 ASTM D 4530 7. Air dan sedimen (%-vol) maks.0,05 ASTM D 2709 8. Abu tersulfaktan (%- b) maks.0,02 ASTM D 874 9. Sulfur (mg/kg) maks.100 ASTM D 5453 10. Phosphor (mg/kg) maks.10 AS a 12-55 11. Angka asam (mg-kh/gr) maks.0,8 AS d 3-63 12. Gliserol bebas (%-b) maks.0,02 AS a 14-56 13. Total gliserol (%-b) maks.0,24 AS a 14-56 14. Kandungan ester alkil (%-b) min. 96,5 Dihitung 15. Angka iodin (%-b) maks.115 AS d 1-25

7 2.4 Titik Awan dan Titik Tuang Titik awan (cloud point) adalah temperatur pada saat bahan bakar mulai tampak keruh ketika didinginkan. Hal ini timbul karena munculnya kristal-kristal padatan di dalam bahan bakar. Meski bahan bakar masih dapat mengalir pada titik ini, keberadaan kristal di dalam bahan bakar bisa mempengaruhi kelancaran aliran bahan bakar di dalam filter, pompa, dan injektor. Titik tuang (pour point) adalah temperatur terendah yang masih memungkinkan terjadinya aliran bahan bakar. Di bawah titik tuang bahan bakar tidak lagi bisa mengalir karena terbentuknya kristal atau gel yang dapat menyumbat aliran bahan bakar. Pada umumnya permasalahan pada aliran bahan bakar terjadi pada temperatur di antara titik awan dan titik tuang, pada saat keberadaan kristal mengganggu proses filtrasi bahan bakar. 12 Umumnya titik awan dan titik tuang biodiesel lebih tinggi dari petrodiesel. Hal ini bisa menimbulkan masalah pada penggunaan biodiesel, terutama di negara-negara yang mengalami musim dingin. Untuk mengatasi hal ini, biasanya ditambahkan aditif pada biodiesel untuk mencegah aglomerasi kristal-kristal yang terbentuk dalam biodiesel pada temperatur rendah. Selain menggunakan aditif, bisa juga dilakukan blending antara dua atau lebih jenis biodiesel. Teknik lain yang bisa digunakan untuk menurunkan titik awan dan titik tuang bahan bakar adalah dengan melakukan winterization. 10 Metode ini dilakukan dengan cara pendinginan pada bahan bakar hingga terbentuk kristal-kristal yang selanjutnya kristal dipisahkan dari bahan bakar dengan cara disaring. Proses winterization sebenarnya merupakan pengurangan kandungan asam lemak jenuh pada biodiesel, dengan berkurangnya kadar asam lemak jenuh pada biodiesel di satu sisi dapat menurunkan titik awan, tetapi dapat menurunkan kualitas biodiesel karena berkurangnya angka setana.

8 2.5 Asam Lemak Asam lemak merupakan asam organik yang terdapat sebagai ester trigliserida atau lemak, baik yang berasal dari hewan atau tumbuhan. Asam ini adalah asam karboksilat yang mempunyai rantai karbon panjang dengan rumus umum dapat dilihat pada Gambar 2.2 berikut: H Gambar 2.2 umus umum asam karboksilat di mana adalah rantai karbon jenuh atau tidak jenuh dan terdiri atas 4 sampai 24 buah atom karbon. Pada umumnya asam lemak mempumpunyai jumlah atom karbon genap 13. Semakin panjang rantai atom asam lemak semakin tinggi titik awannya, namun apabila ada ikatan tak jenuhnya, maka titik awan akan turun. Jenis- jenis asam lemak dan titik cairnya ditunjukkan dalam Tabel 2.2, Tabel 2.3 dan 2.4 berikut: 14 Tabel 2. 2 Jenis-jenis asam lemak jenuh. antai Nama umum Nama sistematis Titik leleh º 4 6 8 10 12 14 16 18 20 22 24 Butirat Kaproat Kaprilat Kaprat Laurat Miristat Palmitat Stearat Arakhidat Behenat Lignoserat Butanoat Heksanoat ktanoat Dekanoat Dodekanoat Tetradekanoat Heksadekanoat ktadekanoat Eikosanoat Dokosanoat Tetrakosanoat -8,0-3,4 16,7 31,6 44,2 54,4 62,9 69,6 75,4 80,0 84,2

9 Tabel 2. 3 Jenis-jenis asam tak lemak jenuh dengan satu ikatan rangkap antai Nama umum Nama sistematis Titik leleh º 10 : 1 btusilat 4-Decenoat 10 : 1 Kaproleat 9-Decenoat 12 : 1 Linderat 4-Dodecenoat 1,3 12 : 1 Lauroleat 9-Dodecenoat 14 : 1 Tsuzuat 4-Tetradecenoat 18,5 14 : 1 Physterat 5-Tetradecenoat 14 : 1 Miristoleat 9-Tetradecenoat 16 : 1 Palmitoleat 9-Heksadecenoat 18 : 1 Petroselinat 6-ktadecenoat 30,0 18 : 1 leat 9-ktadecenoat 14 (16) 18 : 1 Vaccenat 11-trans-ktadecenoat 44,0 20 : 1 Gadoleat 9-Eikosenoat 20 : 1 11-Eikosenoat 22 : 1 etoleat 11-Dokosenoat 22 : 1 Erusal 13-Dokosenoat 33,5 24 : 1 Selakholeat 15-Tetrakosenoat 26 : 1 Ximenat 17-Heksasenoat 30 : 1 lumequeat 21-Triakontenoat

10 Tabel 2. 4 Jenis-jenis asam tak lemak jenuh dengan dua atau lebih ikatan rangkap. antai 18 : 2 18 : 3 18 : 3 18 : 3 18 : 4 20 : 4 22 : 5 Nama umum Nama sistematis Titik Leleh ( º ) Linoleat Linolenat Alfa-Eleostearat Beta-Eleostereat Parinarat Arakhidonat Klupanodoat is-cis-9, 12-ktadekadienat is-cis-9, 12, 15-ktadekatrienoat is-trans-trans-9,11,13- ktadekatrienoat Trans-trans-trans-9,11,13- ktadekatrienoat 9, 11, 13, 15-ktadekatetraenoat 5, 8, 11, 14-Eikosatetraenoat 4, 8, 12, 15, 19 Dokosapentaenoat -5,0-11,0 49,0 71,0 86-50,0 2.6 Minyak Jelantah Minyak goreng bekas (minyak jelantah) jika terus digunakan secara berulangulang akan menyebabkan oksidasi asam lemak tidak jenuh yang kemudian membentuk gugus peroksida dan monomer siklik. Beberapa penelitian menunjukkan bahwa gugus peroksida dalam dosis besar dapat merangsang terjadinya kanker kolon. 15 leh sebab itu minyak jelantah ini tidak boleh digunakan secara berulang karena akan dapat merusak kesehatan. Minyak jelantah dapat digunakan sebagai bahan baku pembuatan biodiesel, hal ini karena trigliserida pada minyak jelantah mampu menghasilkan ester sebagai sumber biodiesel jika dilakukan reaksi transesterifikasi. 2.7 Struktur Molekul Ditinjau dari jenis asam lemak yang terkandung dalam minyak jelantah, minyak jelantah mengandung asam lemak tak jenuh (seperti asam oleat dan asam linoleat). Adanya ikatan rangkap yang bergeometris cis pada asam lemak tak

11 jenuh menyebabkan ketidakteraturan bentuk molekul dan sulit untuk membentuk keseragaman dalam menyusun kisi kristal. 15 Selain adanya ikatan rangkap, ketidakteraturan molekul juga bisa disebabkan oleh adanya percabangan pada rantai karbon asam lemak. Minyak yang mengandung asam lemak jenuh dengan kadar yang besar memiliki titik awan tinggi. Tingginya nilai titik awan disebabkan adanya keteraturan penyusunan ruang pada rantai alifatik pada asam lemak. Sebagai contoh asam palmitat, merupakan asam lemak jenuh di mana rantai karbonnya semuanya berikatan tunggal. Keteraturan struktur molekulnya dapat dilihat seperti pada Gambar 2.3 berikut: H Asam palmitat Gambar 2-3 Struktur molekul asam palmitat Untuk asam lemak tak jenuh seperti asam oleat dengan geometri cis memiliki ketidakkompakan penyusunan ruang atom karbon hal ini penyebab rendahnya titik awan. Struktur molekul cis-asam oleat dapat dilihat pada Gambar 2.4 berikut: H Gambar 2-4 Struktur molekul cis asam oleat. Dari bahan dasar yang digunakan untuk membuat biodiesel akan sangat mempengaruhi kualitas biodiesel yang dihasilkan, terutama yang berkaitan dengan titik awan. Bila bahan dasarnya berasal dari senyawa yang banyak mengandung

12 ikatan jenuh pada rantai karbonnya akan menghasilkan biodiesel yang memiliki titik awan yang tinggi, dan sebaliknya bila berasal dari senyawa yang mengandung ikatan tak jenuh akan menghasilkan biodiesel yang memiliki titik awan yang rendah. Suatu biodiesel yang komponennya didominasi oleh metil palmitat akan memiliki titik awan yang tinggi sebab mudah membentuk keseragaman dalam menyusun kristal. Struktur molekul metil palmitat dapat dilihat pada pada Gambar 2.5 berikut ini: H H 3 3 metil metil palmitat palmitat Gambar 2.5 Struktur molekul metil palmitat Untuk biodiesel yang tersusun dari metil oleat akan memiliki titik awan yang rendah karena sulit untuk membentuk struktur kristal yang teratur. Struktur molekul metil oleat dapat dilihat pada Gambar 2. 6 berikut ini: H 3 Gambar 2-6 Seteruktur molekul metil oleat Sama halnya untuk biodiesel yang memiliki percabangan pada rantai karbonnya sulit untuk membentuk kekompakan antara sesama molekul dalam penyusunan kristal. Komponen senyawa penyusun biodiesel terasetilasi hasil sintesis diantaranya 9,10-diasetil metil stearat, disini pada rantai karbonnya ada percabangan asetil. Untuk lebih jelasnya struktur molekul 9,10-diasetil metil stearat dapat dilihat pada Gambar 2.7 di bawah ini:

13 H 3 H 3 H 3 Gambar 2-7 Struktur molekul 9, 10-diasetil metil stearat. 2.8 Epoksida Alkena bila direaksikan dengan asam peroksi benzoat dalam pelarut inert, seperti Kloroform atau tetraklorometana akan menghasilkan epoksida. 16 Secara umum proses pembentukan epoksida dapat dilihat pada Gambar 2.8 berikut: 2 2 + 2 H 2 2 2 + H 2 Alkena Hidrogen peroksida Epoksida Air Gambar 2-8 eaksi pembentukan epoksida eaksi tersebut di atas melibatkan transfer oksigen dari asam peroksida ke alkena. Mekanismenya dapat dilihat seperti Gambar 2. 9 berikut ini:. + Alkena H H Hidrogen peroksida + Epoksida H Air H Gambar 2-9 Mekanisme reaksi pembentukan epoksida.

14 Epoksida sangat reaktif, mengalami pembukaan cincin menjadi rantai terbuka bila diserang oleh nukleofil. Mekanisme reaksi pembukaan cincin epoksida ini secara umum dapat dilihat dari Gambar 2.10 berikut ini: HNu : + 2 H 2 2 2 Nu Gambar 2-10 Mekanisme reaksi pembukaan cincin epoksida. Epoksida bersifat reaktif maka dengan air dapat mengalami reaksi hidrolisis membentuk diol, dengan alkohol akan membentuk alkoksi alkohol, dengan amoniak membentuk amino alkohol. Semua reaksi-reaksi tersebut menggunakan katalis asam (H 2 S 4 ). 16 2.9 Biodiesel Termodifikasi Biodiesel termidofikasi merupakan alkil ester yang mana ikatan rangkap pada rantai karbonnya diadisi membentuk percabangan. Proses perubahan struktur ini di maksudkan untuk mengganggu kekompakan struktur ruang pada biodiesel sehingga dengan terbentuknya percabangan diharapkan akan mampu menurunkan titik awan. Gejala ini memungkinkan biodiesel terasetilasi dapat digunakan sebagai aditif penurun titik awan.