PENDAHULUAN 1. Latar Belakang Pelabuhan adalah daerah yang terlindung dari gelombang pesat dan arus yang kuat. Tinggi gelombang yang terjadi dikolam p

dokumen-dokumen yang mirip
BAB III DATA DAN ANALISA

Perencanaan Layout dan Penampang Breakwater untuk Dermaga Curah Wonogiri

Trestle : Jenis struktur : beton bertulang, dengan mtu beton K-300. Tiang pancang : tiang pancang baja Ø457,2 mm tebal 16 mm dengan panjang tiang

BAB IV ALTERNATIF PEMILIHAN BENTUK SALURAN PINTU AIR

LEMBAR PENGESAHAN TUGAS AKHIR PERENCANAAN PEMECAH GELOMBANG PELABUHAN PERIKANAN SAMUDERA CILACAP

Perancangan Dermaga Pelabuhan

PERENCANAAN INFRASTRUKTUR REKLAMASI PANTAI MARINA SEMARANG ( DESIGN OF THE RECLAMATION INFRASTRUCTURE OF THE MARINA BAY IN SEMARANG )

BAB II STUDI PUSTAKA

Perencanaan Bangunan Pemecah Gelombang di Teluk Sumbreng, Kabupaten Trenggalek

BAB X PENUTUP KESIMPULAN

BAB VI PERHITUNGAN STRUKTUR BANGUNAN PANTAI

BAB III METODOLOGI 3.1 Diagram Alir Penyusunan Laporan Tugas Akhir

ANALISIS STABILITAS BANGUNAN PEMECAH GELOMBANG BATU BRONJONG

BAB II KAJIAN PUSTAKA. pelabuhan, fasilitas pelabuhan atau untuk menangkap pasir. buatan). Pemecah gelombang ini mempunyai beberapa keuntungan,

BAB VII PERHITUNGAN STRUKTUR BANGUNAN PELINDUNG PANTAI

KAJIAN KINERJA DAN PERENCANAAN PELABUHAN PERIKANAN MORODEMAK JAWA TENGAH

TUGAS AKHIR SIMON ROYS TAMBUNAN

BAB IV PENGUMPULAN DAN ANALISIS DATA

DAFTAR ISI DAFTAR ISI

BAB III METODOLOGI MULAI. Investigasi Data Hidro- Oceanografi Dan Kepelabuhan

PERENCANAAN BREAKWATER DI PELABUHAN PENYEBERANGAN NANGAKEO, NUSA TENGGARA TIMUR

PERENCANAAN STRUKTUR DERMAGA UMUM MAKASAR - SULAWESI SELATAN

PERENCANAAN SEAWALL ( TEMBOK LAUT ) DAN BREAK WATER ( PEMECAH GELOMBANG ) UNTUK PENGAMAN PANTAI TUBAN. Suyatno

BAB I PENDAHULUAN. Gambar 1.1 Sketsa Pembangunan Pelabuhan di Tanah Grogot Provinsi Kalimantan Timur

BAB III METODOLOGI. 3.1 Diagram Alir Penyusunan Laporan Tugas Akhir

BAB IV ANALISIS DATA

PERENCANAAN PELABUHAN PERIKANAN SAMUDRA TELUK BUNGUS

Diperlukannya dermaga untuk fasilitas unloading batubara yang dapat memperlancar kegiatan unloading batubara. Diperlukannya dermaga yang dapat

Beban hidup yang diperhitungkan pada dermaga utama adalah beban hidup merata, beban petikemas, dan beban mobile crane.

PERENCANAAN STRUKTUR GEDUNG PUSAT GROSIR BARANG SENI DI JALAN Dr. CIPTO SEMARANG

3 Kondisi Fisik Lokasi Studi

BAB IV METODOLOGI 4.1. TAHAP PERSIAPAN

METODE PELAKSANAAN LIFTING JACK TIANG PANCANG

Erosi, revretment, breakwater, rubble mound.

BAB II TINJAUAN PUSTAKA. rancu pemakaiannya, yaitu pesisir (coast) dan pantai (shore). Penjelasan mengenai

LAPORAN TUGAS AKHIR (KL-40Z0) Perancangan Dermaga dan Trestle Tipe Deck On Pile di Pelabuhan Garongkong, Propinsi Sulawesi Selatan. Bab 1.

Modifikasi Struktur Jetty pada Dermaga PT. Petrokimia Gresik dengan Metode Beton Pracetak

KL 4099 Tugas Akhir. Desain Pengamananan Pantai Manokwari dan Pantai Pulau Mansinam Kabupaten Manokwari. Bab 4 ANALISA HIDRO-OSEANOGRAFI

BAB III METODOLOGI. 3.1 Tahap Persiapan

BAB IV ANALISIS. 4.1 Data Teknis Data teknis yang diperlukan berupa data angin, data pasang surut, data gelombang dan data tanah.

TINJAUAN PUSTAKA. menahan gaya angkat keatas. Pondasi tiang juga digunakan untuk mendukung

BAB III METODOLOGI 3.1 PERSIAPAN PENDAHULUAN

BAB V ANALISIS DATA. Tabel 5.1. Data jumlah kapal dan produksi ikan

Perencanaan Detail Pembangunan Dermaga Pelabuhan Petikemas Tanjungwangi Kabupaten Banyuwangi

BAB III METODOLOGI III-1

PERENCANAAN REVETMENT MENGGUNAKAN TUMPUKAN BRONJONG DI PANTAI MEDEWI JEMBRANA

TIPE DERMAGA. Dari bentuk bangunannya, dermaga dibagi menjadi dua, yaitu

BAB I PENDAHULUAN I - 1 BAB I PENDAHULUAN Latar Belakang

BAB III PERENCANAAN PERAIRAN PELABUHAN

LAPORAN TUGAS AKHIR PERENCANAAN PELABUHAN PERIKANAN GLAGAH KAB. KULON PROGO YOGYAKARTA BAB III METODOLOGI

Analisis Struktur Dermaga Deck on Pile Terminal Peti Kemas Kalibaru 1A Pelabuhan Tanjung Priok

BAB II TINJAUAN PUSTAKA. dengan tanah dan suatu bagian dari konstruksi yang berfungsi menahan gaya

JURNAL TEKNIK ITS Vol. 6, No. 1, (2017) ISSN: ( Print D-44

BAB I PENDAHULUAN D3 TEKNIK SIPIL POLITEKNIK NEGERI BANDUNG. Gambar 1.1 Pulau Obi, Maluku Utara

4.1. DEFINISI DASAR 4.2. FASILITAS UTAMA DAN FASILITAS DASAR PERAIRAN

BAB I PENDAHULUAN. langsung berada dibawah Dinas Kelautan dan Perikanan Provinsi Aceh.

BDE QSHE PADA METODE OPEN CUT BOTTOM UP NO : BDEQSHE/GEDUNG/2015/076

PENANGANAN DAERAH ALIRAN SUNGAI. Kementerian Pekerjaan Umum

BAB 4 ANALISA DAN PENGOLAHAN DATA

1. Pendahuluan 2. Metodologi 3. Konstruksi Oprit dengan Pile Slab 4. Metode Pelaksanaan 5. Analisa Biaya 6. Penutup

3.2. SURVEY PENDAHULUAN

BAB I PENDAHULUAN. gelombang laut, maka harus dilengkapi dengan bangunan tanggul. diatas tadi dengan menggunakan pemilihan lapis lindung berupa

BAB II STUDI PUSTAKA

KAJIAN BEBERAPA ALTERNATIF LAYOUT BREAKWATER DESA SUMBER ANYAR PROBOLINGGO

LEMBAR PENGESAHAN. Disusun oleh : DHANANG SAMATHA PUTRA L2A DWI RETNO ANGGRAENI L2A Disetujui pada : Hari : Tanggal : November 2009

BAB IV ALTERNATIF DESAIN DAN ANALISIS PERKUATAN FONDASI

MODIFIKASI PERENCANAAN STRUKTUR JEMBATAN MALO-KALITIDU DENGAN SYSTEM BUSUR BOX BAJA DI KABUPATEN BOJONEGORO M. ZAINUDDIN

Jl. Banyumas Wonosobo

BAB VII PENUTUP. Dari analisa Perencanaan Struktur Dermaga Batu Bara Kabupaten Berau Kalimantan Timur, diperoleh beberapa kesimpulan sebagai berikut :

KRITERIA PERENCANAAN BENDUNG KARET

Bab III METODOLOGI PENELITIAN. Diagram alur perhitungan struktur dermaga dan fasilitas

STUDI PERBANDINGAN PERANCANGAN DINDING TURAP DENGAN MENGGUNAKAN METODE MANUAL DAN PROGRAM OASYS GEO 18.1

PENGANTAR PONDASI DALAM

DESAIN DAN PERHITUNGAN STABILITAS BREAKWATER

BAB VII PEMBAHASAN MASALAH. Pekerjaan pondasi dibagi menjadi dua bagian, yaitu pondasi dangkal dan pondasi

BAB III METODOLOGI PENELITIAN

PRE-DRIVING ANALYSIS MENGGUNAKAN TEORI GELOMBANG UNTUK PEMANCANGAN OPTIMAL. David E. Pasaribu, ST Ir. Herry Vaza, M.Eng.Sc

PENUNTUN PRAKTIKUM OSEANOGRAFI FISIKA

DINDING PENAHAN TANAH ( Retaining Wall )

1 Pendahuluan. 1.1 Latar Belakang. Bab

PERENCANAAN PENGEMBANGAN PELABUHAN LAUT SERUI DI KOTA SERUI PAPUA

D3 TEKNIK SIPIL POLITEKNIK NEGERI BANDUNG BAB I PENDAHULUAN

Perhitungan Struktur Bab IV

Gambar 2.1 Peta batimetri Labuan

TURAP REKAYASA PONDASI II 2013/2014

BAB III METODOLOGI. 3.2 Pengumpulan Data

BAB I PENDAHULUAN. sangat luas, dirasakan sangat perlu akan kebutuhan adanya angkutan (transport) yang

PERENCANAAN ABUTMEN DAN ALTERNATIF JALAN PENDEKAT JEMBATAN BRAWIJAYA KEDIRI. Wilman Firmansyah

BAB II TINJAUAN PUSTAKA. menahan gaya beban diatasnya. Pondasi dibuat menjadi satu kesatuan dasar

BAB III METODOLOGI PERENCANAAN

JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK SIPIL DAN PERENCANAAN INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2013

STABILITAS DERMAGA AKIBAT KENAIKAN MUKA AIR LAUT (STUDI KASUS: PELABUHAN PERIKANAN NUSANTARA PEMANGKAT KALIMANTAN BARAT)

MATERI KULIAH MEKANIKA TEKNIK OLEH : AGUNG SEDAYU TEKNIK PONDASI TEKNIK ARSITEKTUR UIN MALIKI MALANG

HALAMAN PENGESAHAN LAPORAN TUGAS AKHIR PERENCANAAN DERMAGA PELABUHAN NAMLEA PULAU BURU

PERENCANAAN BREAKWATER PELABUHAN PENDARATAN IKAN (PPI) TAMBAKLOROK SEMARANG

PERENCANAAN KONSTRUKSI DINDING PENAHAN TANAH UNDERPASS JEMURSARI SURABAYA

BAB VI PEMILIHAN ALTERNATIF BANGUNAN PELINDUNG MUARA KALI SILANDAK

PERENCANAAN ELEVASI DERMAGA PERIKANAN STUDI KASUS PELABUHAN PERIKANAN TUMUMPA SULAWESI UTARA

BAB III METODOLOGI. Bab III Metodologi 3.1. PERSIAPAN

BAB II TINJAUAN PUSTAKA. Tanah lempung adalah tanah yang memiliki partikel-partikel mineral tertentu

Transkripsi:

PERENCANAAN KONSTRUKSI BREAKWATER YANG DILENGKAPI BACK FILL PADA REKLAMASI MUARA BARU JAKARTA UTARA DENGAN MENGGUNAKAN SIGMA/W (Planning Of Construction Of Breakwater By Back Fill at Reclamation Muara Baru North Jakarta By Using SIGMA/W) Nama Alamat Email : Arrayune Pussya Braza : Jatimulya Bekasi timur Jawa Barat : co2_arra@yahoo.com

PENDAHULUAN 1. Latar Belakang Pelabuhan adalah daerah yang terlindung dari gelombang pesat dan arus yang kuat. Tinggi gelombang yang terjadi dikolam pelabuhan maupun didermaga tidak boleh mengganggu manuver kapal atau aktifitas bongkar muat. Bila tinggi gelombang yang terjadi terlalu besar sehingga mengganggu aktifitas tersebut diatas, maka perlu dibangun breakwater untuk memperkecil tinggi gelombang sesuai dengan yang diizinkan. Breakwater yang terletak pada Pelabuhan Perikanan Muara Baru Jakarta Utara mengalami penurunan yang dapat menyebabkan ketidakstabilan konstruksi breakwater yang ada, sehingga diperlukan perencanaan ulang untuk rehabilitasi dan perbaikan konstruksi breakwater. 2. Tujuan Penulisan ini bertujuan : 1. Merencanakan struktur breakwater beserta spesifikasinya meliputi tinggi breakwater optimum, disain berat batu breakwater (B/W), disain ukuran batu breakwater (B/W), lebar overtopping breakwater, lapisan stabil filter. 2. Menghitung penurunan (settlement) dan stabilitas breakwater secara manual dan menggunakan program SIGMA/W. 3. Batasan Masalah Merencanakan konstruksi breakwater yang sesuai berdasarkan kondisi area, kemudian melakukan analisis secara statis terhadap gaya aktif tanah dengan menggunakan data tanah reklamasi di Muara Baru Jakarta Utara 4. Lokasi Lokasi yang diambil adalah Pelabuhan Perikanan Muara Baru Jakarta Utara Indonesia.

TINJAUAN PUSTAKA 1. Angin Angin dan gelombang merupakan faktor yang perlu diperhitungkan dalam perencanaan suatu pelabuhan, oleh sebab itu data angin dan gelombang sangat diperlukan. Mengingat tidak adanya data gelombang, maka dengan menggunakan metode Hindcasting data angin dapat dipergunakan untuk menentukan karakteristik gelombang, seperti tinggi dan periode gelombang. Hal ini bisa dilakukan karena angin merupakan penyebab utama terbentuknya gelombang dilautan meskipun gelombang dapat disebabkan oleh macam-macam sebab, misalnya : letusan gempa didasar laut, tsunami (titik epicentra ada didasar laut), gerakan kapal dan sebagainya. Flowchart Hindcasting : Start Cek Durasi Pers.(2.17) No Pers.(2.18) Yes Fetch limited Yes Cek gelombang non fullydeveloped Pers.(2.12) No Fmin = F Pers.(2.12) dan (2.13) Untuk dapat Hmo dan Tp Pers.(2.15) dan (2.16) Untuk dapat Hmo dan Tp Gambar 1. Flowchart Hindcasting Program Hindcasting (g.td)/ua = 68.8 (gf/ua 2 ) 2/3 <= 7,5104..(1) (g.hmo)/ua 2 = 0,0016 (gf/ua 2 ) 1/2 <= 0,2433..(2) (g.tp)/ua = 0,2857 (gf/ua 2 ) 1/3 <= 8,134 (3) (g.td)/ua = 7,5104 (4)

(g.hmo)/ua 2 = 0,2433 (5) (g.tp)/ua = 8,134..(6) 68,8 (gf/ua 2 ) (Ua/g) <= td...(7) Fmin = ((g.td)/(68,8.ua)) 2/3.(Ua 2 /g)...(8) Dimana : td = durasi angin dalam dt F = panjang fetch dalam m Hmo = tinggi gelombang signifikan dalam m Tp = perioda puncak gelombang dalam dt Ts = 0,95 Tp Ua = 0,71 U 1,23 10 m/dt faktor tekanan angin U 10 = kecepatan angin ketinggian diukur 10 m dari permukaan Bila kecepatan angin diukur diatas 10m maka perlu dikalibrasi dengan U 10 = Uz (10/Z) 1/7 Z = ketinggian pengukuran 2. Gelombang Adapun proses terbentuknya gelombang adalah proses perpindahan energi, dari energi yang dikandung oleh angin ke badan laut melalui permukaan. Karena sifat air yang tidak menyerap energi, maka energi dirubah dalam bentuk gelombang yang kemudian dibawa ke pantai dan dilepaskan dengan pecahnya gelombang. Bentuk/besaran dari gelombang laut tergantung dari empat faktor yaitu : a. Kecepatan angin (u); b. Lamanya angin bertiup (T u ); c. Kedalaman laut (d) dan luasnya perairan; dan d. Fetch (F), yaitu jarak antara terjadinya angin sampai lokasi gelombang tersebut.

Tinggi Gelombang Rencana Untuk tinggi gelombang rencana tergantung pada jenis konstruksi yang akan dibangun. Beberapa pedoman untuk menentukan tinggi gelombang untuk beberapa keperluan : a. Konstruksi kaku (fixed virgid structure) Misal : menara bor lepas pantai, tinggi gelombang dipakai H max dengan periode ulang 100 tahun. b. Konstruksi flexibel (flexible structure) Tinggi gelombang rencana dipakai H s dengan periode ulang yang lebih kecil dari konstruksi kaku. Dalam memilih periode ulang harus ditinjau dengan analisa ekonomi. c. Konstruksi semi kaku (semi rigid structure) Misal :sea wall, tinggi gelombang rencana dipakai H 10. d. Proses yang terjadi di pantai Misal : peramalan angkutan sedimen Tinggi gelombang rencana dipakai H s atau Hrms tahunan. Tinggi Gelombang Izin Tinggi gelombang yang terjadi pada kolam pelabuhan maupun di dermaga tidak boleh mengganggu kegiatan bongkar muat. Bila tinggi gelombang yang terjadi terlalu besar sehingga dapat menganggu aktifitas tersebut, maka perlu dibangun breakwater untuk memperkecil tinggi gelombang sesuai dengan yang diizinkan. 3. Breakwater Pelabuhan dapat diartikan sebagai pintu masuk pintu gerbang yang masuk dari laut ke darat, atau dengan kata lain adalah tempat dimana terjadinya perubahan moda dari moda laut ke moda darat, atau tetap dalam moda laut ke moda laut. Pemecah gelombang merupakan pelindung utama bagi pelabuhan buatan. Tujuan utama mengembangkan pemecah gelombang adalah melindungi daerah

pedalaman perairan pelabuhan, yaitu memperkecil tinggi gelombang laut, sehingga kapal dapat berlabuh dengan tenang guna dapat melakukan bongkar muat. Untuk memperkecil gelombang pada perairan dalam, tergantung pada tinggi gelombang (H), lebar muara (b), lebar perairan pelabuhan (B) dan panjang perairan pelabuhan (L), mengikuti rumus empiris Thomas Stevenson. B L b Hdl = tinggi gelombang pada perairan pelabuhan Hlr = Tinggi gelombang laut b = Lebar muara B = Lebar perairan pelabuhan L = Panjang perairan Gambar 2. Bentuk umum lingkungan pelabuhan dengan lindungan pemecah geolmbang 4. Perencanaan Breakwater Analisa yang harus dilakukan dalam perencanaan breakwater adalah : a) Analisa Hs, tinggi gelombang signifikan. Pada keadaan dilapangan, kita memerlukan data angin perjam yang diukur oleh BMG (Badan Meteorologi dan Geofisika). Data tersebut kemudian dicari tinggi gelombang signifikan dengan metode hindcasting. Maka, dari data angin perjam tersebut didapat tinggi gelombang setiap 1 jam dalam 10 tahun. Untuk mendesain sebuah pelabuhan diperlukan 1 besar tinggi gelombang Hs dan Ts yang besarnya tergantung periode ulang yang direncanakan sehingga terdapat tinggi gelombang dan periodenya. b) Menentukan tinggi elevasi SWL, HHWL, MHWL/HWS, MLWL/LWS, LLWL. Sebelumnya kita harus meramalkan tinggi muka air akibat pasang surut berdasarkan pengukuran muka air selama 15 hari atau 30 hari setiap jamnya atau data dari dihidros dengan metode least square. Dengan demikian kita bisa mendapatkan tinggi muka laut selama 18,6 tahun. Dari

data tersebut dicari nilai SWL, HHWL, MHWL/HWS, MLWL/LWS, LLWL. c) Analisa Refraksi dan Difraksi Analisa ini adalah proses pencarian bentuk breakwater sehingga tinggi gelombang yang disyaratkan untuk keperluan bongkar muat atau hal-hal lainnya dapat terpenuhi. Dalam menganlisa refraksi dan difraksi kita perlu memasukkan beberapa data sebagai dasar perhitungan seperti : 1. Tinggi gelombang signifikan. Didapat dari merata-ratakan 1/3 data terbesar dari tinggi gelombang yang didapat dari hindcasting dari setiap arah angin datang. 2. Kedalaman kolam rencana dilihat dari besar kapal terbesar yang dilayani dalam pelabuhan. 3. Topografi peta barimetri sebagai denah awal. 5. Konstruksi Turap Struktur turap (sheet pile) sering dipakai dalam pekerjaan-pekerjaan sementara, seperti tebing galian dan bendungan elak. Kecuali itu, turap banyak digunakan untuk struktur penahan tanah pada pelabuhan-pelabuhan, pemakaian turap antara lain dimaksudkan untuk mencegah kelongsoran tanah disekitar galian maupun untuk mencegah rembesan air. TURAP BETON Turap beton banyak dipakai untuk pekerjaan dinding penahan tanah, yang permanent atau struktur permanent seperti quaywalls, revetments, breakwater, reclamation walls, dan struktur lain yang sulit digunakan dengan turap baja. Keunggulan turap beton adalah bebas perawatan (free maintenance), mempunyai bending momen yang tinggi, kedap air dan harga material yang lebih murah dibandingkan dengan turap baja.

Jenis-jenis Turap Beton 1. Berombak dengan jenis lembaran tiang pancang beton pratekan. Tabel 1. Corrugated Concrete Sheet Pile (CCSP) Tipe Panjang Ketebalan Dinding Crack Moment Berat (m) (mm) (t.m) (kg/m ) W-325-A-1000 8-13 110 11,4 330 W-325-B-1000 8-14 110 13,3 330 W-350-A-1000 9-15 120 15,6 367 W-350-B-1000 10-15 120 17,0 367 W-400-A-1000 10-16 120 20,1 400 W-400-B-1000 11-16 120 23,4 400 W-450-A-1000 11-17 120 26,9 454 W-450-B-1000 12-17 120 30,7 454 W-500-A-1000 12-17 120 35,2 460 W-500-B-1000 13-18 120 40,4 460 W-600-A-1000 14-20 120 50,6 525 W-600-B-1000 15-21 120 59,6 525 SUMBER : JIS A 5326-1983 Prestressed Concrete Sheet Pile Codes 2. Rata dengan jenis lembaran tiang pancang beton. Tabel 2. Flat Prestressed Concrete Sheet Pile (FPC) Tipe Panjang Ketebalan Dinding Crack Moment Berat (m) (mm) (t.m) (kg/m ) FPC-220-A-500 6-14 220 3,32 275 FPC-220-B-500 6-14 220 3,70 275 FPC-220-C-500 6-14 220 4,05 275 FPC-220-D-500 6-14 220 4,39 275 FPC-220-E-500 6-14 220 4,71 275 FPC-220-F-500 6-14 220 5,22 275 FPC-220-G-500 6-14 220 5,97 275

FPC-320-A-500 6-14 320 6,05 400 FPC-320-B-500 6-14 320 6,65 400 FPC-320-C-500 6-14 320 7,24 400 FPC-320-D-500 6-14 320 7,81 400 FPC-320-E-500 6-14 320 8,37 400 FPC-320-F-500 6-14 320 8,91 400 FPC-320-G-500 6-14 320 9,43 400 FPC-320-H-500 6-14 320 9,94 400 FPC-320-I-500 6-14 320 10,43 400 FPC-320-J-500 6-14 320 10,91 400 FPC-320-K-500 6-14 320 11,37 400 FPC-320-L-500 6-14 320 11,81 400 FPC-320-M-500 6-14 320 12,24 400 FPC-320-N-500 6-14 320 13,88 400 SUMBER : JIS A 5326-1983 Prestressed Concrete Sheet Pile 3. Rata dengan jenis lembaran tiang pancang beton bertulang. Tabel 3. Flat Reinforced Concrete Sheet Pile (FRC) Tipe Panjang Ketebalan Dinding Crack Moment Berat (m) (mm) (t.m) (kg/m ) FRC-220-A-500 4-10 220 1,45 275 FRC-220-B-500 6-14 220 1,70 275 FRC-320-A-500 4-12 320 3,22 400 FRC-320-A-500 6-14 320 3,61 400 SUMBER : JIS 5325-1981 Reinforced Concrete Sheet Pile

METODOLOGI Dalam penulisan tugas akhir ini melakukan pengkajian permasalahan breakwater yang sudah ada di Muara Baru Jakarta Utara dengan melakukan survey lokasi ditambah kajian pustaka untuk metode dan data yang diperlukan, kemudian melakukan perencanaan konstruksi breakwater meliputi: a. Spesifikasi kondisi perencanaan. b. Ukuran penampang breakwater. c. Ukuran batu/tipe dan persyaratan lapisan bawah. d. Ujung struktur dan penapis atau lapisan dasar. e. Melakukan analisa penurunan fondasi serta daya dukung dan stabilitasnya Dimensi Breakwater Ok Daya Dukung q u = c 1 x N m + D f x γ Tidak Ok Tidak Penurunan Ok Stabilitas Penurunan : Mr 1,25 Md Tidak Ok Hasil Akhir Gambar 3. Diagram Alir Stabilitas Penurunan

A Specify the analysis type Define soil properties Generate finite element View the node numbers B Specify boundary conditions Verify the problem C Solving the problem Start solving Finishing solve D Gambar 4. Diagram Alir Stabilitas Penurunan Dengan Menggunakan SIGMA/W

ANALISIS DATA Perencanaan breakwater merupakan perencanaan dalam pelabuhan yang digunakan untuk menghitung breakwater yang sesuai dengan stabilitas keamanan sehingga kegiatan yang dilakukan dalam pelabuhan tidak terganggu. Tabel 4. Keadaan Klimatologi DKI Jakarta Tahun 1990 CLIMATOLOGY/Climate Bulan Curah Tekanan Kelembab Arah Kec. Penyinaran Penguapan Awan Radiasi Temperatur Hujan Atmosfir -an Angin Angin (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) Januari 425,8 1.009,78 56 W 1,7 16 * 93 * 26,1 Februari 98,0 1.011,07 82 N 1,3 38 * 84 * 27,3 Maret 103,4 1.010,98 80 W 2,0 41 * 85 * 27,5 April 134,9 1.008,90 77 N 1,9 66 * 81 * 28,5 Mei 63,3 1.008,83 75 E 1,8 59 * 79 * 28,3 Juni 95,7 1.010,03 73 E 1,8 45 * 81 * 27,9 Juli 31,9 1.010,57 71 E 2,1 65 * 81 * 27,6 Agustus 303,8 1.010,95 76 N 1,7 54 * 84 * 27,2 September 5,4 1.010,99 68 N 2,2 81 * 73 * 28,1 Oktober 62,6 1.010,32 68 N 2,1 78 * 63 * 28,4 November 49,1 1.010,23 71 N 1,8 60 * 82 * 28,3 Desember 225,5 1.010,10 80 W 1,8 28 * 91 * 26,7 Keterangan : *) = Data tidak tersedia SUMBER : Pusat Meteorologi dan Geofisika Analisa Gelombang 1. Tinggi Gelombang H s 0,0016xU g 2 A x g x F U 2 A eff 1 2 H s 2 0,0016 x8,14 9,8 x 9,8 x 53929 2 8,45 1 2 H s 1, 91m

2. Periode Gelombang T P 0,2857 xu g A x g x F U 2 A eff 1 3 T P 0,2857 x8,14 9,8 x53929 x 2 9,8 8,45 1 3 T P 4,29detik LWS=0 E r1 r2 ht h Bt W W/10 Wt W/200 hi W50 Gambar 5. Rencana Breakwater Tabel 5. Dimensi Penampang Breakwater Dimensi Kepala Badan h 7,5 m 4,5 m ht 4,7 m 3,1 m hi 2,8 m 1,4 m Bt 1,37 m 1,21 m Dt 1,06 m 0,94 m r1 0,91 m 0,80 m r2 0,42 m 0,37 m E 5,3 m 4,05 m W 0,22 ton 0,15 ton W/10 22 kg 15 kg

W/200 Pasir Pasir W/50 0,48 ton 0,57 ton Wt 8,07 kg 9,78 kg SUMBER : Hasil Perhitungan Penurunan Tekanan pada dasar pondasi akibat beban bangunan q = 13,5 t/m 2. Data masing-masing tanah adalah sebagai berikut : Tabel 6. Data Tanah Jenis Tanah γ d (t/m 3 ) γ sat (t/m 3 ) C c e o Lempung 1 82 1,51 - - Lempung 2-1,52 0,46 1,41 SUMBER : Data Tanah Pelabuhan Perikanan Samudera Nizam Zachman Muka Tanah q = 13,5 t/m 2 Muka Air Tanah 5 m Lempung 1 γ d = 82 t/m 3 A γ sat = 1,51 t/m 3 7 m B Lempung 2 γ sat = 1,52 t/m 2 Cc = 0,46 e o = 1,41 6 m 6 m C Gambar 6. Analisis Penurunan S C 1 c H e o log p o p o p

Tabel 7. Perhitungan Settlement Jenis Tanah q (t/m 3 ) I Δ P (t/m 2 ) S (m) Lapisan 1 13,5 0,23 12,42 0,012 Lapisan 2 13,5 0,14 7,67 0,0065 Lapisan 3 13,5 0,09 5,18 0,0022 SUMBER : Hasil Perhitungan Gambar 7. Nodal Displacement SIGMA/W Perbandingan Hasil Penurunan Manual dengan Program Tabel 8. Perbandingan Hasil Penurunan Manual dengan Program Metode Manual Program Penurunan 0,0207 m 0,036 m Sumber : Hasil Perhitungan

KESIMPULAN DAN SARAN Kesimpulan Setelah menyelesaikan tugas akhir ini, penulis menarik kesimpulan bahwa : 1. Breakwater direncanakan dengan menggunakan bentuk rubble mounds dengan modifikasi penambahan back fill dan turap beton gunanya untuk kapal menyandar. 2. Dari hasil perhitungan dimensi breakwater tingginya 7,5 m dan lebarnya 5,3 m. 3. Penurunan lapisan lempung yang dihasilkan dengan perhitungan secara manual sebesar 0,0207m sedangkan perhitungan penurunan dengan menggunakan program SIGMA/W sebesar 0,036 m. 4. Turap yang dipakai tipe Corrugated Concrete Sheet Pile (CCSP) W-600-A-100 yang memiliki panjang tiang dibutuhkan 21 m. Saran Saran yang dapat penulis sampaikan antara lain : 1. Untuk mencegah korosi diperlukan proteksi katodik. 2. Pemancangan turap beton didasar laut harus dilakukan dengan hati-hati, agar pada saat pemancangan tidak terjadi keretakan yang dapat menyebabkan air masuk sehingga mengurangi kekuatan beton tersebut