Aplikasi Micro-Genetic Algorithm ( -GA) untuk Penyelesaian Economic Dispatch pada Sistem Kelistrikan Jawa Bali 500 KV

dokumen-dokumen yang mirip
Aplikasi micro-genetic Algorithm ( -GA) untuk Penyelesaian Economic Dispatch pada Sistem Kelistrikan Jawa Bali 500 KV

OPTIMASI ECONOMIC DISPATCH PEMBANGKIT SISTEM 150 KV JAWA TIMUR MENGGUNAKAN METODE MERIT ORDER

BAB III 1 METODE PENELITIAN

Dynamic Economic Dispatch Menggunakan Pendekatan Penelusuran Ke Depan

OPTIMASI PENEMPATAN DAN KAPASITAS SVC DENGAN METODE ARTIFICIAL BEE COLONY ALGORITHM

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN

BAB III METODOLOGI PENELITIAN

Dynamic Optimal Power Flow dengan kurva biaya pembangkitan tidak mulus menggunakan Particle Swarm Optimization

IMPLEMENTASI ALGORITMA GENETIKA DENGAN TOURNAMENT SELECTION SEBAGAI SOLUSI ECONOMIC DISPATCH

Kata Kunci Operasi ekonomis, iterasi lambda, komputasi serial, komputasi paralel, core prosesor.

BAB III METODE PENELITIAN

EVALUASI KESTABILAN TEGANGAN SISTEM JAWA BALI 500KV MENGGUNAKAN METODE CONTINUATION POWER FLOW (CPF)

Kajian Potensi Kerugian Akibat Penggunaan BBM pada PLTG dan PLTGU di Sistem Jawa Bali

BAB IV STUDI ALIRAN DAYA

Optimisasi Operasi Sistem Tenaga Listrik dengan Konstrain Kapabilitas Operasi Generator dan Kestabilan Steady State Global

OPTIMISASI PENEMPATAN TURBIN ANGIN DI AREA LAHAN ANGIN

JURNAL TEKNIK ITS Vol. 5, No. 2, (2016) ISSN: ( Print)

Penentuan MVar Optimal SVC pada Sistem Transmisi Jawa Bali 500 kv Menggunakan Artificial Bee Colony Algorithm

Pendekatan Dengan Cuckoo Optimization Algorithm Untuk Solusi Permasalahan Economic Emission Dispatch

ECONOMIC DISPATCH MENGGUNAKAN IMPERIALIST COMPETITIVE ALGORITHM (ICA) PADA SISTEM KELISTRIKAN LOMBOK

Optimisasi Economic Dispatch Menggunakan Imperialist Competitive Algorithm (ICA) pada Sistem Tenaga Listrik

BAB I PENDAHULUAN. 1.1 Latar Belakang

Kata kunci: Penjadwalan Ekonomis, Fuzzy Logic, Algoritma Genetika

BAB I PENDAHULUAN. jumlah ketersediaan yang semakin menipis dan semakin mahal, membuat biaya

1 BAB I PENDAHULUAN. 1.1 Latar Belakang

LAMPIRAN A TABEL KONSTANTA UNTUK MOMEN DISTRIBUSI

JURNAL TEKNIK ITS Vol. 6, No. 1, (2017) ISSN: ( Print) B-34

PEMBUATAN APLIKASI UNTUK ANALISIS ECONOMIC DISPATCH STASIUN PEMBANGKIT TENAGA LISTRIK

PERHITUNGAN BIAYA SEWAJARINGAN TRANSMISI 500 KV JAWA- BALI DENGAN METODE MW-MILE BIALEK TRACING

JURNAL TEKNIK ITS Vol. 5, No. 2, (2016) ISSN: ( Print)

Aliran Daya Optimal dengan Batas Keamanan Sistem Menggunakan Bender Decomposition

Optimasi Kendali Distribusi Tegangan pada Sistem Tenaga Listrik dengan Pembangkit Tersebar

JURNAL TEKNIK ITS Vol. 5, No. 2, (2016) ISSN: ( Print)

IMPLEMENTASI METODA TAGUCHI UNTUK ECONOMIC DISPATCH PADA SISTEM IEEE 26 BUS

Evaluasi Kestabilan Tegangan Sistem Jawa Bali 500kV menggunakan Metode Continuation Power Flow (CPF)

I. PENDAHULUAN. dalam melakukan kehidupan sehari-hari. Besar kecilnya beban serta perubahannya

LEMBAR PENGESAHAN PERNYATAAN BEBAS PLAGIARISME KATA PENGANTAR UCAPAN TERIMA KASIH ABSTRAK DAFTAR ISI DAFTAR TABEL DAFTAR GAMBAR BAB I PENDAHULUAN

BAB III METODE PENELITIAN

Metoda Penelitian dengan Metoda Taguchi

BAB III METODE PENELITIAN

OPTIMASI RATING SVC DAN TCSC UNTUK MENGURANGI RUGI-RUGI DAYA PADA SISTEM 500 kv JAMALI MENGGUNAKAN METODE PARTICLE SWARM OPTIMIZATION (PSO)

PEMBUATAN APLIKASI UNTUK ANALISIS ECONOMIC DISPATCH STASIUN PEMBANGKIT TENAGA LISTRIK

OPTIMISASI PENGATURAN DAYA REAKTIF DAN TEGANGAN PADA SISTEM INTERKONEKSI JAWA-BALI 500 KV MENGGUNAKAN QUANTUM BEHAVED PARTICLE SWARM OPTIMIZATION

Implementasi Algoritma Genetika dalam Pembuatan Jadwal Kuliah

OPTIMISASI BIAYA PEMBANGKITANPADA SISTEM 500 KV JAWA-BALI MENGGUNAKAN METODE ANT COLONY OPTIMIZATION (ACO)

BAB III PERANCANGAN. Gambar 3.1 di bawah ini mengilustrasikan jalur pada TSP kurva terbuka jika jumlah node ada 10:

Penempatan Dan Penentuan Kapasitas Optimal Distributed Generator (DG) Menggunakan Artificial Bee Colony (ABC)

PERHITUNGAN CCT (CRITICAL CLEARING TIME) UNTUK ANALISIS KESTABILAN TRANSIENT PADA SISTEM KELISTRIKAN 500KV JAWA-BALI

JURNAL TEKNIK ITS Vol. 5, No. 2, (2016) ISSN: ( Print)

2015 APLIKASI ALGORITMA SIMULATED ANNEALING PADA SISTEM KOORDINASI PEMBANGKITAN UNIT THERMAL

Optimisasi Injeksi Daya Aktif dan Reaktif Dalam Penempatan Distributed Generator (DG) Menggunakan Fuzzy - Particle Swarm Optimization (FPSO)

BAB 2 LANDASAN TEORI

Peningkatan Kualitas Jaringan Distribusi Tegangan Menengah Dengan Optimasi Konfigurasi

PENERAPAN ALGORITMA GENETIKA PADA PERSOALAN PEDAGANG KELILING (TSP)

PENERAPAN ALGORITMA GENETIKA PADA PERENCANAAN LINTASAN KENDARAAN Achmad Hidayatno Darjat Hendry H L T

Peramalan Kebutuhan Beban Sistem Tenaga Listrik Menggunakan Algoritma Genetika

Dynamic Economic Dispatch Mempertimbangkan Prohibited Operating Zones Menggunakan Algoritma Improved Artificial Bee Colony

OPTIMASI PENEMPATAN PEMBANGKIT TERDISTRIBUSI PADA IEEE 30 BUS SYSTEM MENGGUNAKAN ALGORITMA GENETIKA

KNAPSACK PROBLEM DENGAN ALGORITMA GENETIKA

OPTIMAL ECONOMIC DISPATCH USING ARTIFICIAL IMMUNE SYSTEM (AIS) VIA CLONAL SELECTION ALGORITHM (CSA)

Dynamic Optimal Power Flow Arus Searah Menggunakan Qudratic Programming

Pendekatan Algoritma Genetika pada Peminimalan Fungsi Ackley menggunakan Representasi Biner

JURNAL TEKNIK ITS Vol. 5, No. 2, (2016) ISSN: ( Print)

SIMULASI OPTIMASI DAYA REAKTIF DAN TEGANGAN PADA SISTEM JAMALI 500 kv MENGGUNAKAN METODE PARTICLE SWARM OPTIMIZATION

OPTIMASI PENJADWALAN CERDAS MENGGUNAKAN ALGORITMA MEMETIKA

Denny Hermawanto

Optimalisasi Penjadwalan Pembangkit Listrik di Sistem Sorong

Penempatan Dan Penentuan Kapasitas Optimal Distributed Generator (DG) Menggunakan Artificial Bee Colony (ABC)

Genetic Algorithme. Perbedaan GA

PENENTUAN SLACK BUS PADA JARINGAN TENAGA LISTRIK SUMBAGUT 150 KV MENGGUNAKAN METODE ARTIFICIAL BEE COLONY

BAB III PEMBAHASAN. menggunakan model Fuzzy Mean Absolute Deviation (FMAD) dan penyelesaian

Bab II Konsep Algoritma Genetik

Perancangan Filter Harmonisa Pasif untuk Sistem Distribusi Radial Tidak Seimbang

OPTIMASI PENEMPATAN KAPASITOR PADA SALURAN DISTRIBUSI 20 kv DENGAN MENGGUNAKAN METODE KOMBINASI FUZZY DAN ALGORITMA GENETIKA

1 BAB I PENDAHULUAN. waktu. Semakin hari kebutuhan listrik akan semakin bertambah. Sistem tenaga listrik

PELATIHAN FEED FORWARD NEURAL NETWORK MENGGUNAKAN ALGORITMA GENETIKA DENGAN METODE SELEKSI TURNAMEN UNTUK DATA TIME SERIES

Tabel 3.5 Kapasitas Aliran Air Q rata-rata setiap hari dari jam 00 sampai dengan jam05[pdam].

BAB 1 PENDAHULUAN 1.1 Latar Belakang

Kajian Potensi Kerugian Akibat Penggunaan BBM pada PLTG dan PLTGU di Sistem Jawa Bali

PENJADWALAN OPERASIONAL PEMBANGKIT BERBASIS ALGORITMA GENETIK PADA SISTEM PEMBANGKIT SUMATERA BAGIAN TENGAH

ALOKASI PEMBEBANAN UNIT PEMBANGKIT TERMAL DENGAN MEMPERHITUNGKAN RUGI-RUGI SALURAN TRANSMISI DENGAN ALGORITMA GENETIKA PADA SISTEM KELISTRIKAN BALI

SIMULASI OPTIMASI PENEMPATAN KAPASITOR MENGGUNAKAN LOGIKA FUZZY DAN ALGORITMA GENETIKA PADA SISTEM TEGANGAN MENENGAH REGION JAWA BARAT

BAB II TINJAUAN PUSTAKA

Studi Pengaruh Penggunaan TCSC dan SVC terhadap Biaya Operasi Tahunan di Sistem Jawa Bali 500 kv

PENGEMBANGAN KURVA P-V UNTUK GI 500 kv DALAM RANGKA MENGANTISIPASI VOLTAGE COLLAPSE. Rusda Basofi

Rekonfigurasi Jaring Distribusi untuk Meminimalkan Kerugian Daya menggunakan Particle Swarm Optimization

ANALISA ALIRAN DAYA OPTIMAL PADA SISTEM KELISTRIKAN BALI

ALGORITMA GENETIKA PADA PEMROGRAMAN LINEAR DAN NONLINEAR

Studi Perbaikan Stabilitas Tegangan Kurva P-V pada Sistem Jawa-Bali 500kV dengan Pemasangan Kapasitor Bank Menggunakan Teori Sensitivitas

Optimisasi Dynamic Economic Dispatch Menggunakan Algoritma Artificial Bee Colony

BAB III PEMBAHASAN. harga minyak mentah di Indonesia dari bulan Januari 2007 sampai Juni 2017.

Lingkup Metode Optimasi

Jurnal Ilmiah Komputer dan Informatika (KOMPUTA) 45 Edisi... Volume..., Bulan 20.. ISSN :

APLIKASI ALGORITMA GENETIKA DALAM PENENTUAN DOSEN PEMBIMBING SEMINAR HASIL PENELITIAN DAN DOSEN PENGUJI SKRIPSI

BAB III METODOLOGI PENELITIAN

PENERAPAN ALGORITMA GENETIKA PADA PENYELESAIAN TRAVELLING SALESMAN PROBLEM (TSP)

Optimisasi Kontroler PID dan Dual Input Power System Stabilizer (DIPSS) pada Single Machine Infinite Bus (SMIB) menggunakan Firefly Algorithm (FA)

ABSTRAK. Universitas Kristen Maranatha

OPTIMAL ECONOMIC DISPATCH USING ARTIFICIAL IMMUNE SYSTEM (AIS) VIA CLONAL SELECTION ALGORITHM (CSA)

Transkripsi:

Aplikasi Micro-Genetic Algorithm ( -GA) untuk Penyelesaian Economic Dispatch pada Sistem Kelistrikan Jawa Bali 500 KV Amir Amruddin, Imam Robandi, Heri Suryoatmojo Jurusan Teknik Elektro-FTI-ITS Abstrak : Economic Dispatch (ED) adalah suatu permasalahan untuk mengoptimalkan besarnya pembangkitan sehingga bisa memenuhi kebutuhan beban dengan biaya seminimal mungkin dalam suatu operasi sistem tenaga listrik. Para peneliti umumnya menggunakan metode konvensional seperti Lagrange dan metode teknologi Artificial Intelligence seperti Particle Swarm Optimization (PSO), Genetic Algorithm (GA), untuk menyelesaikan permasalahan economic dispatch. Seiring dengan berkembangnya teknologi Artificial Intelligence (AI), telah ditemukan sebuah metode baru yang dapat menyelesaikan permasalahan optimisasi yaitu micro-genetic Algorithm (µ-ga). Dalam penelitian ini, metode µ-ga diaplikasikan untuk menyelesaikan permasalahan Economic Dispatch dengan mempehitungkan rugi transmisi pada sistem tenaga listrik IEEE 6 bus dan sistem Jawa-Bali 500 kv, selanjutnya dibandingkan dengan metode Lagrange dan GA. Hasil simulasi menunjukkan metode µ-ga memberikan solusi lebih baik dalam menyelesaikan permasalahan Economic Dispatch. Pada system tenaga listrik 6 bus, µ-ga dapat menghemat biaya pembangkitan sebesar 55,49 $/jam dibandingkan dengan Lagrange, dan 35,74 $/jam dibandingkan dengan metode GA. Pada sistem kelistrikan Jawa Bali 500 kv, µ-ga dapat menghemat biaya pembangkitan sebesar Rp. 1.164,76 juta/jam dibandingkan dengan lagrange, dan Rp. 130,18 juta/jam dibandingkan dengan metode GA. Kata kunci : micro-genetic Algorithm (µ-ga), Economic Dispatch (ED), Sistem Tenaga Listrik Jawa-Bali 500 kv S I. PENDAHULUAN istem tenaga listrik modern dipresentasikan oleh sebuah sistem interkoneksi yang sangat tergantung pada kontrol untuk memanfaatkan sumber daya yang ada secara optimal. Sumber energi yang dapat diperbaharui serta ekonomi energi listrik adalah faktor penentu perkembangan industri yang bisa meningkatkan standar hidup masyarakat. Sejak revolusi industri, kebutuhan energi listrik meningkat tajam [1]. Bertambahnya kebutuhan tenaga listrik sejalan dengan bertambahnya populasi penduduk dan peningkatan pembangunan infrastruktur. Akan tetapi peningkatan kebutuhan tenaga listrik tidak bisa secara langsung diatasi melalui penambahan jumlah pembangkit listrik (power plant). Oleh karena itu, para produsen tenaga listrik harus mengelola pembangkitannya dengan bijak supaya semua beban masih bisa terpenuhi dan para produsen tenaga listrik tidak mengalami kerugian karena biaya operasional yang sangat besar []. Economic Dispatch (ED) adalah suatu permasalahan bagaimana cara mengoptimalkan besarnya pembangkitan sehingga bisa memenuhi kebutuhan beban dengan biaya seminimal mungkin dalam suatu operasi sistem tenaga listrik []. Para peneliti umumnya menggunakan metode konvensional seperti Lagrange dan metode teknologi Artificial Intelligence seperti Particle Swarm Optimization (PSO), Genetic Algorithm (GA), untuk menyelesaikan permasalahan economic dispatch. Seiring dengan berkembangnya teknologi Artificial Intelligence (AI), telah ditemukan sebuah metode baru yang dapat menyelesaikan permasalahan optimisasi ED yaitu micro-genetic Algorithm (µ-ga). II. DASAR TEORI A. Economic Dispatch (ED) Pengoptimalan permasalahan ED pada umumnya menggunakan komputer untuk melakukan kalkulasi biaya yang lebih murah, kebutuhan bahan bakar (fuel), ketersediaan bahan bakar, dan sebagainya. Parameterparameter tersebut sangat penting untuk melakukan perencanaan jangka panjang dari sistem, penentuan porsi biaya bahan bakar dan manajemen operasi pada pembangkit [4]. Pada pembangkitan energi listrik, terdapat tiga komponen biaya utama yaitu biaya pembangunan fasilitas, biaya kepemilikan dan biaya operasi. Biaya operasi adalah biaya yang memiliki bagian yang paling dominan pada sistem operasi tenaga listrik. Pada optimisasi permasalahan ED, yang dilakukan adalah optimisasi dari segi biaya bahan bakar pembangkitan a- tau fuel cost yang memiliki karakteristik tidak linear. Bentuk typical dari persamaan cost function pembangkit adalah persamaan polynomial orde dua dan direpresentasikan sebagai berikut : Fi ( Pi ) ai bi Pi ci Pi (1) dengan, F i = Besar biaya pembangkitan pada pembangkit ke-i (Rp) P i = Daya output dari pembangkit ke-i Variabel a, b, dan c adalah koefisien biaya operasi produksi dari suatu pembangkit. Koefisisien c juga merepresentasikan biaya operasi pembangkit ketika tidak memproduksi energi listrik. Persamaan (1) menunjukkan bahwa hubungan antara daya yang dibangkitkan dari generator tidak liniar terhadap biaya pembangkitanya. Kombinasi daya output yang dibangkitkan oleh tiap-tiap generator pada sistem harus memenuhi kebutuhan daya dari sistem tenaga listrik (equality constraint) dan memenuhi batas minimum serta maksimum dari daya yang dapat dibangkitkan oleh generator (inequality constraint) [10]. Karena rumitnya permasalahan ini, maka 1

permasalahan ED hanya bisa dilakukan dengan metode iterasi. dengan P Gi adalah besar daya yang dibangkitkan generator ke-i atau disebut dengan inequality constraint. P P P (4) i d L i i i i i i i Min F ( P ) Min ( a b P c P ) P min P P Gi G Gi max Dengan, P d = Daya permintaan konsumen P L = Rugi transmisi yang terjadi pada jaring transmisi persamaan (4) dikenal dengan sebutan equality constaint. Rugi Rugi Transmisi Pada penelitian ini analisa aliran daya menggunakan metode Newton Rapshon karena keunggulanya dibandingkan metode-metode lainya [7, 11]. Pada pemasalahan ED, penyelesaian analisis aliran daya diperlukan untuk mencari rugi-rugi daya pada sistem tenaga listrik. B. Micro Genetic Algorithm (µ-ga) µ-ga pada dasarnya adalah metode pencarian berbasis konsep seleksi dan genetika alami [6]. µ-ga mempunyai kemampuan untuk menyelesaikan permasalahan fungsi biaya yang bersifat non-smooth, non-continous, dan nondiferensial yang tidak bisa diselesaikan secara optimal dengan metode Lagrange. Micro Genetic Algorithm (µ-ga) dikenalkan oleh Krishnakumar [7], µ-ga mengunakan populasi yang relatif lebih kecil dibandingkan dengan GA biasa yang dikembangkan oleh Goldberg [6]. Dengan populasi yang sedikit, maka menghasilkan waktu komputasi yang lebih cepat. µ-ga juga menggunakan proses elitism, dan pengecekan konvergensi dengan reinisialisasi untuk menghasilkan solusi yang optimal [13]. µ-ga memunculkan populasi secara acak, untuk setiap iterasi atau generasi µ-ga melakukan 5 operasi dasar antara lain : evaluasi fungsi fitness, seleksi turnamen, pindah silang, elitism, dan cek konvergensi dengan reinisialisasi () (3) pada mating pool. kemudian seleksi dilakukan lagi hingga terbentuk total N populasi orang tua untuk reproduksi [8]. Pindah Silang Pindah silang memungkinkan penggabungan informasi genetik antara dua individu orang tua untuk menghasilkan individu baru. Elitism Seleksi turnament dan pindah silang tidak dapat menjamin individu baru yang muncul akan sesuai akan lebih baik daripada individu orang tua. Untuk mengatasi hal tersebut dan menjamin individu terbaik akan bertahan sampai generasi terakhir, maka digunakanlah metode elitism. Cek konvergensi dan Reinisialisasi Metode µ-ga dikatakan telah mencapai nilai konvergen jika bit kromosom pada populasi memiliki kesamaan paling tidak 95% dibandingkan dengan kromosom terbaik [14]. Inisialisasi kembali dilakukan untuk mencari nilai output dari permaslahan ED. Nilai output berupa daya output tiap generator, total daya dan rugi daya transmisi. III. PENERAPAN MICRO GENETIC ALGORITHM (µ-ga) UNTUK ECONOMIC DISPATCH PADA SISTEM KELISTRIKAN JAWA BALI 500 KV A. Pemodelan Sistem Tenaga Listrik 6 Bus Data sistem tenaga listrik IEEE 6 Bus diambil dari buku Power System Analysis karangan Hadi Saadat, Single line diagram sistem tenaga listrik IEEE 6 Bus ditunjukkan pada Gambar 1. 6 18 5 1 6 7 8 4 3 13 Evaluasi Fungsi Fitness Pada masalah optimasi, jika solusi yang dicari adalah memaksimalkan suatu fungsi h (dikenal sebagai masalah maksimasi), maka nilai fitness yang digunakan adalah nilai fungsi dari h tersebut, yaitu f = h (dengan f adalah fungsi fitness). Tetapi apabila masalah yang ingin dicari solusinya dalah fungsi minimal maka fungsi fitness yang digunakan adalah f = 1/h, yang berarti semakin kecil nilai h maka semakin besar nilai dari f, dan jika nilai h = 0 maka fungsi f akan mencapai tidak terhingga. Untuk mengatasi problem ini maka nilai h perlu ditambahkan nilai atau bilangan yang dianggap kecil sehingga nilai fitness menjadi. f = (1/(h+a)), dengan a merupakan bilangan yang memiliki nilai kecil dan bervariasi sesuai dengan masalah yang akan diselesaikan. Seleksi Turnamen Tahapan seleksi turnamen dilakukan sebagai berikut, N/ group individu dipilih secara acak dari total N populasi tanpa penggantian, kemudian group tersebut masuk ke dalam turnamen. Individu dengan fitness lebih tinggi dibandingkan dengan yang lain, maka akan menjadi N/ populasi orangtua 11 5 3 9 19 1 17 Gambar 1. Single line diagram sistem 6 bus 4 Sistem ini menggunakan base daya sebesar 100 MVA dan terdiri dari 6 bus daya, didalamnya terdapat 6 unit pembangkit, unit pembangkit 1 sebagai slack bus, sedangkan unit pembangkit, 3, 4, 5, dan 6 berperan sebagai bus generator [3]. Batasan daya tiap pembangkit sebagai berikut: Pembangkit 1 : 100 P 1 500 Pembangkit : 50 P 00 Pembangkit 3 : 80 P 3 300 1 0 10 14 15 16

Pembangkit 4 : 50 P 4 150 Pembangkit 5 : 50 P 5 00 Pembangkit 6 : 50 P 6 10 Unit-unit pembangkit tersebut memiliki fungsi biaya pembangkitan sebagai berikut: C 1 = 0,0070 P 1 + 7 P 1 + 40 C = 0,0095 P + 10 P 1 + 00 C 3 = 0,0090 P 3 + 8,5 P 3 + 0 C 4 = 0,0090 P 4 + 11 P 4 + 00 C 5 = 0,0080 P 5 + 10,5 P 5 + 0 C 6 = 0,0075 P 6 + 1 P 6 + 190 B. Pemodelan Sistem Kelistrikan 500 kv Jawa Bali Pada sistem kelistrikan 500 kv Jawa Bali digunakan base daya sebesar 1000 MVA dan base tegangan sebesar 500 kv. Sistem ini terdiri dari 5 buah bus dengan 1 buah slack bus, 7 buah generator bus, dan 17 buah load bus. Single line diagram sistem kelistrikan 500 kv Jawa Bali ditunjukkan pada Gambar. Sedangkan bus-bus yang ada diklasifikasikan sebagai berikut: Slack bus : Suralaya Bus generator : Muara Tawar, Cirata, Saguling, Tanjung Jati, Gresik, Paiton dan Grati. Bus beban : Cilegon, Kembangan, Gandul, Cibinong, Cawang, Bekasi, Cibatu, Bandung Selatan, Mandiracan, Ungaran, Surabaya Barat, Depok, Tasikmalaya, Pedan, Kediri, Ngimbang, dan Balaraja 11 10 5 Cirata Ngimbang 5 Cibinong 1 3 Bekasi 7 Surabaya Barat Grati Cilegon 4 Cibatu Bandung Selatan 16 14 9 Gandul 6 Ungaran Cawang 13 1 Mandiracan Tanjung jati 15 17 4 Gresik Suralaya Kembangan 8 Balaraja 3 Muaratawar 19 0 Kediri 1 18 Depok Pedan Paiton Data beban dan pembangkitan diambil dari data PT PLN (Persero) P3B Jawa Bali pada tanggal 19 April 011. Total beban sistem pada pukul 18.30 sebesar 1091,5 MW. Unit-unit pembangkit yang terhubung ke sistem transmisi Jawa Bali 500 kv memiliki batasan daya pembangkitan minimal dan maksimal sebagai berikut: Suralaya : 1.703 P 1 3.87 Muaratawar : 1.191 P 8.115 Cirata : 500 P 10 1.000 Saguling : 350 P 11 698 Tanjung Jati : 840 P 15 1.31 Gresik : 38 P 17 1050 Paiton : 1.664 P 340 Grati : 150 P 3 87 Dengan fungsi biaya masing-masing unit pembangkit pada sistem ini adalah sebagai berikut: Suralaya = -6,99 P 1 + 385454,41P 1 + 51900,4 Muaratawar = 137,94P 8-873046,08 P 8 +5375795990 Cirata = 6000 P 10 Saguling = 550 P 11 Tanjung Jati = 10.114P 15 + 84810.35P 15 +185715.74 Gresik = -6.3P 17 + 10164.6 P 17 + 6477009 Paiton = 5.19P + 37370.67P + 80765.38 Grati = -100.79P 3 + 176981.41P 3 +9938756.61 C. Penerapan µ-ga pada Sistem Tenaga Listrik IEEE-6 Bus dan Sistem Kelistrikan Jawa Bali 500 kv Gambar 3 menunjukkan flowchart penyelesaian Economic dispatch sistem kelistrikan Jawa Bali 500 kv, dan sistem tenaga IEEE-6 bus menggunakan program µ-ga. Setelah data sistem kelistrikan 6 bus dan Jawa Bali 500 kv dan data parameter untuk µ-ga dimasukkan, maka dibangkitkan sebuah populasi yang berisi sejumlah kromosom secara random. Setiap kromosom berisi sejumlah gen, masukan untuk fungsi ini adalah UkPop = 50, dan JumGen = 80. Data parameter µ-ga bisa dilihat pada Tabel 1. TABEL 1. DATA PARAMETER µ-ga Sistem tenaga Sistem kelistrikan Parameter µ-ga listrik IEEE-6 Jawa-Bali 500kV bus Nvar (Jumlah veriabel) 8 6 Nbit (Jumlah bit) 10 10 JumGen (Jumlah gen) 80 60 UkPop (kromosom) 50 50 Psilang (skala pindah silang) 0,5 0,5 Pmut (skala mutasi) 0 0 MaxG (jumlah generasi) 50 50 Ntour (skala turnamen) Basemva (daya base) 1000 100 Accuracy (akurasi) 0,0001 0,0001 Kromosom yang terbangkitkan kemudian dikodekan dengan binary encoding, secara matematis ditunjukkan sebagai berikut: ( ra r ) b 1 N x r N ( g g... g ) (5) b i 1 N i1 Dengan r b adalah daya minimum tiap generator, r a adalah daya maksimum tiap generator, g adalah nilai bilangan biner pada masing-masing kromosom. Nilai x adalah nilai real dari besarnya daya aktif pada sistem. Gambar. Single line diagram sistem 6 bus 3

total biaya pembangkitan ($/jam) Start Nvar=8 (Data sistem kelistrikan JawaBali) Nvar=6 (IEE 6 bus) Nbit=10 JumGen=Nbit*Nvar UkPop=6 Psilang=0.5 MaxG=50 Inisialisasi Populasi, N kromosom Dikodekan kromosom [x1,x.xn] xn= jumgen Perhitungan rugi-rugi daya Evaluasi Individu Fitness=1/(totalcost+BilKecil) Jumlah kromosom = UkPop? Elitisme Seleksi Turnament Pindah silang baru = Maksimum? Perhitungan rugi-rugi daya, daya pembangkitan dan biaya pembangkitan End Ya Gambar 3. Flowchart µ-ga Ya Tidak Tidak Perhitungan rugi-rugi transmisi dilakukan dengan metode aliran daya Newton Rapshon. Setelah didapat rugi transmisi, maka dilakukan evaluasi fitness pada tiap kromosom. Pada µ-ga individu yang memiliki fitness besar, maka individu tersebut akan lebih bertahan dibandingkan dengan individu dengan nilai fitness lebih kecil. Sehingga fungsi fitness yang digunakan adalah, f = 1 (h+a) (6) fitness tertinggi tersebut tidak hilang selama evolusi, maka perlu dibuat satu atau beberapa duplikatnya. Pada program µ-ga, individu dengan nilai fitness terpilih akan disimpan dalam memori BestX dalam populasi TemPopulasi. Kemudian Linear fitness rangking akan melakukan penskalaan nilai fitness ke dalam ranking sehingga diperoleh nilai-nilai fitness baru yang berada dalam rentang MaxF dan MinF, MaxF berarti nilai fitness terbesar dan MinF berarti nilai fitness terkecil. Kemudian Seleksi turnamen dilakukan hingga terbentuk total N populasi orang tua untuk reproduksi. Setelah dilakukan seleksi, maka kromosom orang tua akan terpilih untuk dilakukan operasi pindah silang. Pindah silang dilakukan berdasarkan skala pindah silang yaitu Psilang sebesar 0,5, hal ini berarti rata-rata 50% kromosom orang tua akan dilakukan pindah silang. Satu bilangan integer dalam range [1 (JumGen-1)] dibangkitkan untuk menentukan dimana letak bit yang akan dilakukan pindah silang. Letak bit ini di sebut dengan titik potong. Pada Penelitian ini iterasi akan dilakukan hingga mencapai 50 generasi (MaxG=50). Berdasarkan percobaan, konvergensi telah tercapai pada generasi sebelum generasi ke-50. Jadi, ketika µ-ga sudah mencapai 50 generasi maka nilai optimal sudah bersifat konvergen. Kemudian reinisialisasi dilakukan untuk mendapatkan nilai output dari permasalahan ED, nilai output yang didapat antara lain, total daya terbangkit, total rugi-rugi transmisi, total biaya pembangkitan dan waktu iterasi. IV. HASIL SIMULASI DAN ANALISIS A. Simulasi Pada Sistem Tenaga Listrik 6 Bus Menggunakan Metode Lagrange, GA dan µ-ga Simulasi pada sistem 6 bus ini dilakukan dengan ketentuan beban sistem sebesar 163 MW dengan Slack bus adalah bus 1. Simulasi dengan menggunakan metode Lagrange menghasilkan daya pembangkitan total sebesar 1.75,8 MW, rugi-rugi daya sebesar 1,8 MW dengan biaya pembangkitan sebesar 15.447,96 $/jam. Secara detail hasil simulasi ditunjukkan oleh Tabel. Simulasi dilakukan selama 50 generasi. Hasil simulasi ED menggunakan metode GA pada sistem 6 bus ditunjukkan pada Tabel. Berdasarkan hasil simulasi dapat diketahui daya total pembangkitan sebesar 17,35 MW, rugi-rugi daya sebesar 9,35 MW, sedangkan biaya pembangkitan sebesar 15.48,1 $/jam. Grafik konvergensi GA ditunjukkan pada Gambar 4.1, dari grafik diketahui nilai optimal biaya pembangkitan mulai mengalami konvergensi pada generasi ke-.6. 1.55 x 104 1.55 1.548 1.546 1.544 1.54 biaya minimum Nilai h pada persamaan (6) adalah nilai total biaya pembangkitan, sedangkan a adalah bilangan yang memiliki nilai kecil untuk menghindari nilai fitness (f) tak hingga, jika nilai h bernilai 0. Untuk menjaga agar individu bernilai 4 1.54 0 10 0 30 40 50 Gambar 4. Grafik optimisasi sistem 6 bus oleh Genetic Algorithm (GA)

Total biaya pembangkitan (Rp/jam) total biaya pembangkitan ($/jam) Total biaya pembangkitan (Rp/jam) Sedangkan simulasi ED menggunakan metode µ-ga pada sistem 6 bus ditunjukkan pada Tabel Berdasarkan hasil simulasi dapat diketahui daya total pembangkitan sebesar 1.71.66 MW, rugi-rugi daya sebesar 8.66 MW, sedangkan biaya pembangkitan optimal sebesar 1539,47 $/jam. Dari Gambar 5, diketahui nilai optimal biaya pembangkitan mulai mengalami konvergensi pada generasi ke-10. Berdasarkan Tabel, metode µ-ga memberikan solusi ED lebih optimal dibandingkan dengan metode Lagrange dan GA Gambar 5. Grafik optimisasi sistem 6 bus oleh micro-genetic Algorithm (µ-ga) TABEL PERBANDINGAN HASIL SIMULASI ED PADA SISTEM TENAGA LISTRIK 6 BUS MENGGUNAKAN METODE LAGRANGE, GA DAN µ-ga No 1.5435 x 104 1.543 1.545 1.54 1.5415 1.541 1.5405 1.54 1.5395 Pembangkit Lagrange GA µ-ga Daya Aktif biaya minimum 1.539 0 10 0 30 40 50 1 P1 444,45 44,88 447,51 P 173,15 174,07 174,37 3 P3 63,9 47,79 73,79 4 P4 138,87 140,7 17,93 5 P5 165,76 187,70 174,07 6 P6 86,69 79,19 73,99 Total daya 1.75,8 17,35 171,66 Rugi-rugi daya 1,8 9,35 8,66 Total biaya* 15.447,96 1548.1 1539,47 Probabilitas pindah silang 0,5 0,5 Jumlah populasi 50 50 Maksimum generasi 50 50 *(juta rupiah/jam) B. Simulasi ED Pada Sistem Kelistrikan Jawa Bali 500 kv pada Sistem Kelistrikan Jawa Bali 500 kv Menggunakan Metode Lagrange, GA dan µ-ga Simulasi ED dengan menggunakan metode Lagrange menghasilkan daya pembangkitan total sebesar 1.861 MW, dengan biaya pembangkitan sebesar Rp. 7.841,51 juta/jam. Hasil simulasi ditunjukkan pada Tabel 3. Pada Tabel 3, Berdasarkan hasil simulasi dengan GA, dapat diketahui daya total pembangkitan daya sebesar 11033,64 MW, rugi-rugi daya sebesar 11,1 MW, sedangkan biaya pembangkitan optimal sebesar Rp. 6.806,93 juta /jam. Grafik konvergensi GA ditujukkan pada Gambar 6. 7.4 x 109 7.3 7. 7.1 7 6.9 6.8 0 5 10 15 0 5 30 35 40 45 50 Gambar 6. Grafik optimisasi ED pada sistem Jawa Bali 500 kv dengan metode GA Hasil simulasi ED menggunakan metode µ-ga dapat diketahui daya total pembangkitan sebesar 11040,54 MW, rugi-rugi daya sebesar 18,0 MW, sedangkan biaya pembangkitan optimal sebesar Rp 6.676,75 juta/jam. Grafik konvergensi µ-ga ditunjukkan pada Gambar 7. 7. x 109 7.1 7 6.9 6.8 6.7 Gambar 7. Grafik optimisasi ED pada sistem Jawa Bali 500 kv dengan metode µ-ga Berdasarkan Tabel 3, dapat disimpulkan bahwa metode µ-ga menghasilkan biaya paling minimum dibandingkan dengan metode Lagrange dan GA. TABEL 3 PERBANDINGAN HASIL SIMULASI ED PADA SISTEM KELISTRIKAN JAWA BALI 500 KV MENGGUNAKAN METODE LAGRANGE, GA DAN µ-ga. Lagrange GA µ-ga No Pembangkit 1 Suralaya 3.87 3008,56 630,9 Muaratawar.115 109,59 113,0 3 Cirata 1.000 933,59 998,54 4 Saguling 698 698 695,8 5 Tanjung Jati 1.31 1045,74 130,06 6 Gresik 1.050 78,54 38,80 7 Paiton 3.40 756,73 893,71 8 Grati 150 0,89 150,66 Total daya 1.861 11033,64 11040,54 Rugi-rugi daya biaya minimum biayai minimum 6.6 0 10 0 30 40 50 1.948,48 11,1 18,0 Total biaya* 7.841,51 6.806,93 6.676,75 Probabilitas pindah silang 0,5 0,5 Jumlah populasi 50 50 Maksimum generasi 50 50 *(juta rupiah/jam) 5

V. KESIMPULAN Dari hasil simulasi dan analisis optimisasi permasalahan Economic Dispatch (ED) menggunakan metode micro-genetic Algorithm (µ-ga) diperoleh kesimpulan sebagai berikut : 1. Pada sistem tenaga listrik 6 bus, metode µ-ga mampu menemukan solusi optimal dari permasalahan ED dengan penghematan biaya sebesar 35,74 $/jam atau 0,3 % dibandingkan metode GA, dan penghematan biaya sebesar 55,49 $/jam atau 0,35 % dibandingkan dengan metode Lagrange.. Pada sistem kelistrikan Jawa Bali 500 kv, Metode µ- GA mampu menemukan solusi optimal dari permasalahan ED dengan penghematan biaya sebesar Rp. 130,18 juta/jam atau 1,91 % dibandingkan dengan metode GA, dan penghematan biaya pembangkitan sebesar Rp. 1.164,76 juta/jam atau 14,85 % dibandingkan metode Lagrange. 3. Dari hasil Simulasi ED dengan menggunakan metode µ-ga, GA dan Lagrange, dapat disimpulkan metode µ- GA menghasilkan nilai yang lebih optimal dibandingkan dengan metode GA dan Lagrange. VI. SARAN 1. Ada kemungkinan biaya pembangkitan yang paling minimum diperoleh dengan kondisi rugi transmisi yang dihasilkan semakin besar. Untuk penelitian pemberian kompensasi pada rugi transmisi agar diperoleh biaya pembangkitan minimum disarankan untuk melakukan dispatch sebelum menentukan besar jaring transmisi yang akan dikompensasi sehingga diperoleh hasil yang paling optimal.. Metode micro-genetic Algorithm (µ-ga) yang digunakan untuk optimisasi Economic Dispatch pada sistem kelistrikan Jawa Bali 500 kv dapat dikembangkan dan digabung dengan metode optimisasi yang lain, seperti, Particel Swarm Optimization (PSO), Fuzzy Logic, dll DAFTAR PUSTAKA [1] Robandi, Imam, Desain Sistem Tenaga Modern, Penerbit ANDI, Yogyakarta, Bab. 1, 006 [] Amir Amruddin, M Yusuf Wibisono, As adi, dan Imam Robandi, Modified Neural Network Based Economic Dispatch with Application to Coordination of Java-Bali Inteconnection. nd APTECS, Surabaya, 010 [3] Saadat, Hadi, Power System Analysis nd Edition, McGrowHill. Ch.1, 1999 [4] Allen J.W. dan Bruce F.W., Power Generation, Operation and Control, John Willey & Sons Inc, America, 1996. [5] Ni Ketut A., Optimasi Operasi Pembangkit Sistem Tenaga Menggunakan Algoritma Genetika, Tesis Jurusan Teknik Elektro FTI-ITS, Surabaya, 005. [6] D.E Goldberg, Genetic Algorithm (GA) in Serch, Optimation and Mechine Learning, Addition-wesley Publishing Compani,Inc.,1989 [7] Krisnakumar K. Micro-Genetic Algorithm for Stationary and non Stationary Function Optimization. SPIE Intelligent Control and Adaptive System.,Philadelphia, P. 89-96, 1989 [8] Goldberg DE, Deb K. A., Comparative Analysis of Selection Schemes used in Genetic Algorithm. Foundations of Genetic Algorithms, pp. 69-93, 1991 [9] Jizhong Zhu, Optimization of Power System Operation, IEEE press series on Power Engineering, OPSO, John Willey & Sons Inc, America, 009 [10] Andi Syarifudin, Adi Soeprijianto, Ontoseno Penangsang, Economic Dispatch on Thermal Power Plant at South Sulawesi Power System using Improved Particle Swarm Optimization Proceeding of Seminar Nasional Pascasarjana VIII ITS Vol. 1, 008. [11] H. Saadat, Power System Analysis, McGraw Hill, Singapore, 004. [1] Suyanto, Algoritma Genetika dalam MATLAB, 005, ANDI Yogyakarta [13] W.Ongkasul, Micro Genetic Algorithm Based On Migration And Merit Order Loading Solutiob To The Contrained Economic Dispatch Problems, Elsevier, pp 3-4, Thailand, 5 February 001 [14] G.A. Bakarie, Genetic Algorithm Based Economic Dispatch with Application to Coordination of Nigerian Thermal Power Plants, IEEE, pp -3, Nigeria, 005 DAFTAR RIWAYAT HIDUP Amir Amruddin, lahir di Probolinggo 1 Januari 1989. Penulis memulai jenjang pendidikan di sekolah dasar SDN 1 Bucor Kulon Probolinggo, setelah lulus SD tahun 001 penulis melanjutkan ke SMP 1 Paiton, lulus SMP pada tahun 004, penulis kemudian melanjutkan ke SMAN 1 Kraksaan. Setelah lulus SMA pada tahun 007 Penulis melanjutkan studi S1 di Institut Teknologi Sepuluh Nopember (ITS) Surabaya jurusan Teknik Elektro dengan konsentrasi di bidang studi Teknik Sistem Tenaga. Selama masa studi di S1 (strata satu), penulis aktif dalam berbagai kegiatan, diantaranya Taekwondo, bakti sosial. Penulis juga aktif dalam kegiatan organisasi diantaranya, Kalam Himatektro, JMMI ITS serta member lab PSOC (Power System Operation dan Control). Penulis bisa dihubungi melalui alamat email: amiramruddin@ymail.com 6