Rekayasa Elektrika. Jurnal VOLUME 11 NOMOR 5 DESEMBER Potensi Energi Listrik pada Gas Buang Sepeda Motor

dokumen-dokumen yang mirip
PENGUJIAN THERMOELECTRIC GENERATOR (TEG) DENGAN SUMBER KALOR ELECTRIC HEATER 60 VOLT MENGGUNAKAN AIR PENDINGIN PADA TEMPERATUR LINGKUNGAN

Pemanfaatan Energi Panas Sebagai Pembangkit Listrik Alternatif Berskala Kecil Dengan Menggunakan Termoelektrik

BAB IV HASIL DAN ANALISA PENGUJIAN THERMOELECTRIC GENERATOR

UJI UNJUK KERJA PENDINGIN RUANGAN BERBASIS THERMOELECTRIC COOLING

Proceeding Seminar Nasional Thermofluid VI Yogyakarta, 29 April Universitas Indonesia, Kampus Baru UI Depok.

EXHAUST SYSTEM GENERATOR: KNALPOT PENGHASIL LISTRIK DENGAN PRINSIP TERMOELEKTRIK

PENGUKURAN DAN ANALISIS KARAKTERISTIK THERMOELECTRIC GENERATOR DALAM PEMANFAATAN ENERGI PANAS YANG TERBUANG

UJI UNJUK KERJA PENDINGIN RUANGAN BERBASIS THERMO ELECTRIC COOLING

BAB II DASAR THERMOELECTRIC GENERATOR

Heat Energy Harvesting untuk Sumber Listrik DC Skala Kecil

PROPOSAL PENELITIAN. Penghemat BBM Sepeda Motor Berbasis Termoelektrik. Disusun oleh : 1. Yuasti Hasna Fauziyah (37764)

ALAT PENDINGIN DAN PEMANAS PORTABLE MENGGUNAKAN MODUL TERMOELEKTRIK TEGANGAN INPUT 6 VOLT DENGAN TAMBAHAN HEAT PIPE SEBAGAI MEDIA PEMINDAH PANAS

Proceeding Seminar Nasional Tahunan Teknik Mesin XIV (SNTTM XIV) Banjarmasin, 7-8 Oktober 2015 Pengaruh Variasi Luas Heat Sink

PENGUJIAN THERMOELECTRIC GENERATOR SEBAGAI PEMBANGKIT LISTRIK DENGAN SISI DINGIN MENGGUNAKAN AIR BERTEMPERATUR 10 ºC

STUDI EKSPERIMENTAL TERMOELEKTRIK GENERATOR TIPE SP SA DAN TEC DENGAN VARIASI SERI DAN PARALEL PADA SUPRA X 125 CC

STUDI AWAL PEMANFAATAN THERMOELECTRIC MODULE SEBAGAI ALAT PEMANEN ENERGI

CHAPTER I PREFACE CHAPTER II BASE OF THEORY

POTENSI PEMANFAATAN SUMBER PANAS PADA COMBUSTION CHAMBER TURBIN GAS DENGAN MENGGUNAKAN TERMOELEKTRIK GENERATOR

BAB III PERANCANGAN DAN METODE PENELITIAN

JURNAL TEKNOLOGI INFORMASI & PENDIDIKAN ISSN : VOL. 6 NO. 1 Maret 2013

PENGUJIAN KINERJA COUPLE THERMOELEKTRIK SEBAGAI PENDINGIN PROSESOR

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB III PERANCANGAN SISTEM

Kajian awal analisis kalor buang kondensor pendingin ruangan sebagai sumber energi listrik alternatif

JURUSAN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS SEBELAS MARET SURAKARTA

BAB II LANDASAN TEORI

PENGEMBANGAN DAN OPTIMALISASI ELEMEN PELTIER SEBAGAI GENERATOR TERMAL MEMANFAATKAN ENERGI PANAS TERBUANG

RANCANG BANGUN ENERGI TERBARUKAN DENGAN MEMANFAATKAN ENERGI PANAS DARI KONDENSOR MESIN PENDINGIN

PEMANFAATAN TENAGA SURYA MENGGUNAKAN RANCANGAN PANEL SURYA BERBASIS TRANSISTOR 2N3055 DAN THERMOELECTRIC COOLER

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

ANALISIS HASIL PENGUJIAN EFEK SEEBECK TERMOELEKTRIK DENGAN SUMBER PANAS UBLIK DAN VARIASI PENDINGIN OLI, AIR ES, UDARA

PEMANFAATAN PANAS GAS BUANG MESIN DIESEL SEBAGAI ENERGI LISTRIK

JURNAL TEKNIK POMITS Vol. 1, No. 2, (2012) ISSN:

SEMINAR NASIONAL ke 8 Tahun 2013 : Rekayasa Teknologi Industri dan Informasi

KONVERSI ENERGI PANAS PENGGERAK UTAMA KAPAL BERBASIS THERMOELECTRIC

BAB I PENDAHULUAN. 1.1 Latar Belakang

PEMANFAATAN MODUL TERMOELEKTRIK GENERATOR UNTUK MENGISI BATERAI PONSEL. oleh Daniel Adven Andriyanto NIM :

AGUS PUTRA PRASETYA

PENDINGIN TERMOELEKTRIK

Gambar 2.1 Sebuah modul termoelektrik yang dialiri arus DC. ( (2016). www. ferotec.com/technology/thermoelectric)

BAB I PENDAHULUAN. vital yang tidak dapat dilepaskan dari keperluan sehari-hari. Manusia hampir tidak

BAB I PENDAHULUAN. Pertumbuhan jumlah penduduk dan teknologi yang pesat, menjadikan

PEMANFAATAN PANAS PADA KOMPOR GAS LPG UNTUK PEMBANGKITAN ENERGI LISTRIK MENGGUNAKAN GENERATOR THERMOELEKTRIK

SEMINAR NASIONAL PENDIDIKAN 2016

BAB II LANDASAN TEORI

OPTIMASI TEMPERATUR DAN ARUS UNTUK MENGHASILKAN TEGANGAN 12 VOLT DC PADA THERMOELECTRIC GENERATOR MODEL SP SEBAGAI ACCUMULATOR CHARGER

POTENSI PEMBANGKIT DAYA TERMOELEKTRIK UNTUK KENDARAAN HIBRID

ANALISIS PEMANFAATAN DUA ELEMEN PELTIER PADA PENGONTROLAN TEMPERATUR AIR

ANALISA SISTEM PEMBANGKIT THERMOELEKTRIK DENGAN RANGKAIAN PARAREL PADA PEMANFAATAN

BAB II Dasar Teori BAB II DASAR TEORI

Analisis Elektromotansi Termal antara Pasangan Logam Aluminium, Nikrom dan Platina sebagai Termokopel

TUGAS AKHIR RANCANG BANGUN COOL BOX BERBASIS HYBRID TERMOELEKTRIK

KARAKTERISASI ELEMEN PELTIER TEC UNTUK KONVERSI ENERGI TERMAL MENJADI ENERGI LISTRIK SKRIPSI. Diajukan Oleh : BAGINDA HELBIN

BAB III PERANCANGAN MINI REFRIGERATOR THERMOELEKTRIK TENAGA SURYA. Pada perancangan ini akan di buat pendingin mini yang menggunakan sel

Rancang Bangun Pendingin Portable Dengan Menggunakan Konsumsi Daya Rendah

BAB I PENDAHULUAN. Sejalan dengan tingkat kehidupan dan perkembangan teknologi, kebutuhan

BAB I PENDAHULUAN 1.1 Latar Belakang

Perancangan Dan Pembuatan Kotak Pendingin Berbasis Termoelektrik Untuk Aplikasi Penyimpanan Vaksin Dan Obat-Obatan

PEMINAR PENELITIAN DAN PENGABDIAN PADA MASYARAKAT. Oleh: Ir. Harman, M.T.

PENGGUNAAN MODUL TERMOLEKTRIK UNTUK OPTIMASI ALAT ARAGOSE GEL ELEKTROFORESIS TUGAS AKHIR

PEMANFAATAN PANAS KNALPOT SEPEDA MOTOR MATIC 110 CC UNTUK PEMBANGKITAN LISTRIK MANDIRI DENGAN GENERATOR THERMOELEKTRIK

Termoelektrik (Energi Panas menjadi Listrik)

Sistem Kontrol Temperatur Air pada Proses Pemanasan dan Pendinginan dengan Pompa sebagai Pengoptimal

Rancang Bangun Sistem Penyejuk Udara Menggunakan Termoelektrik dan Humidifier

Gambar 1. : Struktur Modul Termoelektrik

BAB IV HASIL PENELITIAN DAN ANALISIS

ANALISA SISTEM PEMBANGKIT BERBASIS THERMOELEKTRIK DENGAN RANGKAIAN SERI PADA PEMANFAATAN PANAS BUANG MESIN TOYOTA TIPE 4K

Perancangan Sistem Pendingin Air Menggunakan Elemen Peltier Berbasis Mikrokontroler ATmega8535

BAB III. METODE PENELITIAN

BAB III PERANCANGAN SISTEM

BAB I PENDAHULUAN. Energi listrik adalah energi yang mudah dikonversikan ke dalam bentuk

Tabel 4.1 Perbandingan desain

Sujawi Sholeh Sadiawan, Nova Risdiyanto Ismail, Agus suyatno, (2013), PROTON, Vol. 5 No 1 / Hal 44-48

BAB IV PENGUJIAN DAN ANALISIS

Penggunaan Modul Thermoelectric sebagai Elemen Pendingin Box Cooler

EFEKTIFITAS MODUL PELTIER TEC SEBAGAI GENERATOR DENGAN MEMANFAATKAN ENERGI PANAS DARI MODUL PELTIER TEC-12706

ANALISIS SIKLUS KOMBINASI TERHADAP PENINGKATAN EFFISIENSI PEMBANGKIT TENAGA

RANCANG BANGUN ALAT PENGONDISI TEMPERATUR AIR PADA BUDI DAYA UDANG CRYSTAL RED

TUGAS AKHIR MEMBUAT KULKAS KECIL PORTABLE MENGGUNAKAN PENDINGIN TERMOELEKTRIK

ANALISIS PERFORMANSI (COP) TERMOELECTRIC COOLER DENGAN PERANGKAIAN SERI DAN PARALEL

BAB I PENDAHULUAN. Perkembangan permintaan energi dalam kurun waktu menurut

BAB III METODE PENELITIAN. makanan menggunakan termoelektrik peltier TEC sebagai berikut :

Ditulis Guna Melengkapi Sebagian Syarat Untuk Mencapai Jenjang Sarjana Strata Satu (S1) Jakarta 2016

BAB IV HASIL DAN ANALISA

KOLABORASI KIPAS ANGIN DENGAN ELEMEN PELTIER UNTUK MENDAPATKAN UDARA SEJUK MENGGUNAKAN MIKROKONTROLLER Atmega8535 SKRIPSI MUHAMMAD ABRAL

BAB IV METODE PENGUJIAN CIGARETTE SMOKE FILTER

BAB II DASAR TEORI. Gambar 2.1 Komponen utama mobil hybrid Sumber:

BAB III PENGUJIAN ALAT THERMOELECTRIC GENERATOR

OLEH : DEDDY REZA DWI P DOSEN PEMBIMBING : IR. DENNY M. E. SOEDJONO,MT.

PENGARUH VARIASI ARAH PUTARAN FAN TERHADAP PENDINGINAN PADA PENDINGIN MINUMAN PORTABLE MENGGUNAKAN TERMOELEKTRIK KAPASITAS 4,7 LITER

BAB II DASAR TEORI Gambar 2.1. Diagram skematik termokopel Gambar 2.2. Pengukuran EMF

KINERJA GENSET TYPE EC 1500a MENGGUNAKAN BAHAN PREMIUM DAN LPG PENGARUHNYA TERHADAP TEGANGAN YANG DIHASILKAN

BAB I PENDAHULUAN. manusia dalam melakukan pekerjaan. Namun perkembangan teknologi tidak

Rancang Bangun Sistem Pegontrolan Temperatur dan Waktu untuk Proses Heat Treatmet

KARAKTERISASI TiO 2 (CuO) YANG DIBUAT DENGAN METODA KEADAAN PADAT (SOLID STATE REACTION) SEBAGAI SENSOR CO 2

DESAIN SEPEDA STATIS DAN GENERATOR MAGNET PERMANEN SEBAGAI PENGHASIL ENERGI LISTRIK TERBARUKAN

ANALISIS PERPINDAHAN PANAS PADA GAS TURBINE CLOSED COOLING WATER HEAT EXCHANGER DI SEKTOR PEMBANGKITAN PLTGU CILEGON

BAB II DASAR TEORI. Elektroforesis adalah pergerakan molekul-molekul kecil yang dibawa oleh

Transkripsi:

Jurnal Rekayasa Elektrika VOLUME 11 NOMOR 5 DESEMBER 2015 Potensi Energi Listrik pada Gas Buang Sepeda Motor Melda Latif, Nuri Hayati, dan Uyung Gatot S. Dinata 163-168 JRE Vol. 11 No. 5 Hal 157-188 Banda Aceh, Desember 2015 ISSN. 1412-4785 e-issn. 2252-620x

Jurnal Rekayasa Elektrika Vol. 11, No. 5, Desember 2015, hal. 163-168 163 Potensi Energi Listrik pada Gas Buang Sepeda Motor Melda Latif 1, Nuri Hayati 2, dan Uyung Gatot S. Dinata 1 1 Jurusan Teknik Elektro, Fakultas Teknik, Universitas Andalas 2 Jurusan Teknik Mesin, Fakultas Teknik, Universitas Andalas Kampus Limau Manis, Padang 25163 e-mail: melda_latif@ft.unand.ac.id Abstrak Sumber energi fosil semakin menipis akibat banyaknya kebutuhan yang menggunakan energi, terutama di sektor industri dan otomotif yang merupakan sektor pengguna energi terbanyak sekaligus sektor penghasil panas buang tertinggi. Hal tersebut menyebabkan banyaknya pengembangan sumber energi alternatif, terutama di bidang pemanfaatan energi panas. Penelitian ini memanfaatkan energi panas buang knalpot sepeda motor menjadi energi listrik dengan menggunakan Thermo Electric Generator (). Dengan menggunakan prinsip thermocouple yaitu adanya perbedaan suhu dari sisi panas dan sisi dingin, maka tegangan dapat dihasilkan. Pengujian dilakukan dengan tiga titik uji yaitu di kepala, badan dan mulut knalpot. Tegangan output maksimum yang dihasilkan di kepala knalpot lebih besar dibanding di badan dan mulut knalpot. Ini disebabkan karena perubahan suhu di kepala knalpot lebih besar dibanding posisi lain. Di kepala knalpot, tegangan output maksimum yang dihasilkan 1 modul, 2 modul dan 3 modul berturut-turut adalah 1,26 V, 2,27 V dan 3,43 V. Kata kunci: Thermo Electric Generator, Panas buang, knalpot sepeda motor Abstract The fossil energy sources dwindling due to the many needs, especially in industrial and automotive sectors which are the largest energy users and the highest waste heat-producing. This causes many alternative energy sources are developing, included thermal energy utilization. The research utilized waste heat energy from motorcycle exhaust pipe into electrical energy with using Thermo Electric Generator (). By using the thermocouple principle, difference of temperature between hot and cold side of resulted voltage. Three points of testing are on head, body and mouth of the exhaust pipe. The maximum output voltage is generated in the head is greater than the other positions. At the head of exhaust, the maximum output voltage which is generated by 1 modul, 2 modules and 3 modules of at each other is 1.26 V, 2.27 V and 3.43 V respectively. Keywords: Thermo Electric Generator, Waste heat, motorcycle exhaust pipe I. Pendahuluan Era globalisasi yang semakin dekat menyebabkan teknologi di dunia terkhususnya di Indonesia terus mengalami perkembangan dalam segala aspek. Terlihat dari munculnya berbagai industri berskala besar, dan terus berkembangnya sarana transportasi. Seiring dengan perkembangan tersebut, di sisi lain kebutuhan akan energi juga ikut meningkat. Tidak dapat kita pungkiri bahwa kita masih sangat tergantung dengan sumber energi fosil, dimana sektor industri dan otomotif merupakan pengguna energi terbanyak sekaligus sektor penghasil panas buang tertinggi dengan efisiensi kendaraan bermotor hanya berkisar 35-40% saja. Sisanya terbuang begitu saja ke lingkungan [1]. Saat ini para ahli sedang mengembangkan penggunaan panas buang sebagai pembangkit listrik alternatif yang dikenal dengan thermoelectric generator. Thermoelectric generator menggunakan prinsip thermoelectric yang memanfaatkan efek Seebeck. Efek Seebeck menggambarkan bahwa jika dua buah material logam yang tersambung berada di lingkungan dengan dua temperatur yang berbeda akan menimbulkan beda potensial. Konsep ini dapat diterapkan pada kendaraan bermotor dengan memanfaatkan panas yang terbuang dari knalpot. Walaupun termoelektrik generator hanya berkapasitas mikro, namun pemanfaatan yang maksimal dalam jangka panjang dapat membantu menghemat penggunaan listrik yang dihasilkan oleh pembangkit listrik berkapasitas makro. II. StudI PuStaka A. Prinsip Dasar Thermo Electric Generator Efek thermoelectric adalah konversi langsung dari perbedaan temperatur menjadi tegangan listrik dan sebaliknya. Efek thermoelectric ini meliputi tiga efek secara terpisah yaitu Seebeck Effect, Peltier Effect, dan Thomson Effect [2]. Menurut Seebeck, sebuah tegangan akan timbul dalam rangkaian dari dua material yang berbeda jika kedua simpangan dijaga pada temperatur yang berbeda. Dapat kita lihat pada Gambar 1. Arus mengalir ketika terbentuk rangkaian tertutup. ISSN. 1412-4785; e-issn. 2252-620X DOI: 10.17529/jre.v11i5.2957

164 Jurnal Rekayasa Elektrika Vol. 11, No. 5, Desember 2015 (a) Gambar 1. Ilustrasi rangkaian thermoelektrik [3] Energi listrik yang dihasillkan dari Gambar 1 adalah perbedaaan energi panas dan dingin dengan persamaan W e = Q H -Q L. Aliran daya thermoelektrik merupakan suatu aliran daya panas tertutup yang bekerja seperti aliran fluida, sehingga efisiensi thermal dari thermoelektrik bergantung di antara temperatur tinggi atau temperatur panas (T H ) dan temperaur rendah atau temperature dingin (T L ). Persamaan 1 adalah persamaan tegangan yang dihasilkan oleh rangkaian thermoelektrik. Koefisien Seebeck untuk logam relatif kecil, sehingga untuk perkembangan manufacture, bahan logam digantikan dengan bahan semikonduktor. Contoh bahan semikonduktor adalah germanium-silikon yang mempunyai koefisien 830 µv/k, lebih besar dari logam besi yang hanya mempunyai koefisien 60,6 µv/k. T2 T1 [ α α ] V = ( T ) ( T ) dt. (1) B Efek Peltier menjelaskan perbedaan temperatur yang dihasilkan oleh tegangan dan merupakan kebalikan dari efek Seebeck [4]. Sedangkan berdasarkan efek Thomson, pada banyak material, koefisien Seebeck yang dihasilkan tidak konstan terhadap temperatur. Oleh karena itu kita dapat mengasosiasikan gradien dari temperatur sebagai gradien dari koefisien Seebeck [2] Pembangkitan energi listrik dengan memanfaatkan efek thermoelektrik dikenal dengan nama Thermoelectric Generator. Thermoelectric Generator menggunakan prinsip dasar efek Seebeck. Dengan memanfaatkan efek tersebut, potensi panas yang terbuang di bumi ini dapat dimanfaaatkan dengan lebih maksimal. Struktur dari modul thermoelectric generator dapat dilihat pada Gambar 2(a) dan Gambar 2(b) [5]. A (b) Gambar 2. Diagram skematik Thermoelectric Generator [4] akan dengan cepat menuju kepala pipa knalpot yang kemudian akan menuju ke dalam muffler/knalpot. Di dalam knalpot ini, gas buang kembali berekspansi seiring dengan menjalarnya gelombang tekanan tersebut ke seluruh bagian dalam knalpot sesuai rancangannya dan berakhir di mulut knalpot. Pada keseluruhan knalpot terdapat pebedaan temperatur di sepanjang saluran pembuangan. Ini disebabkan karena perbedaan luas penampang knalpot, permukaan knalpot, dan bahan pembentuk knalpot seperti dapat dilihat pada Gambar 3.. III. Metode Metode penelitian yang dilakukan adalah dengan melakukan pengujian di laboratorium dengan menggunakan sepeda motor statis yang dihidupkan dengan putaran mesin konstan sebesar 3000 rpm. Pada penelitian ini ada tiga hal penting yang perlu diperhatikan, yaitu bagian thermo electric generator, bagian pendingin dan bagian pemanas. Thermoelectric generator yang digunakan pada penelitian ini adalah tipe 127-40A ditunjukkan pada Gambar 4.. B. Sistem Pembuangan Panas Pada Sepeda Motor Knalpot merupakan saluran pembuangan gas sisa pembakaran yang digunakan kendaraan bermotor. Gas buang yang berasal dari pembakaran dalam motor bakar Gambar 3. Gambaran umum knalpot sepeda motor [6]

Melda Latif dkk.: Potensi Energi Listrik Pada Gas Buang Sepeda Motor 165 Gambar 4. 127-40A Tabel 1. Spesifikasi 127-40A P N Couples 127 I max (A) 10 V max (V) 15,2 Q c max DT=0 (W) 94,2 DTmax Qc = 0 (C) Th = 27 C Dimensions (mm) L W H 67 40 40 3,3 R ( W) 1,16 Gambar 6. Skema knalpot sepeda motor sisi dingin 127-40A. Heatsink terbuat dari aluminium dan skemanya dapat dilihat pada Gambar 5. Sumber energi panas berasal dari panas buang knalpot sepeda motor. Pengujian dilakukan di tiga titik yaitu pada kepala knalpot, badan knalpot, dan mulut knalpot. Gambar 7 memperlihatkan cara penempatan satu modul dan heatsink di 3 titik pengujjian. Satu sisi ditempatkan di heatsink dan sisi yang lain di bagian panas knalpot. Jenis semikonduktor yang digunakan pada 127-40A adalah Bismuth (Bi) dan Telurium (Te) atau biasa disebut Bismuth Telluride. Spesifikasi 127-40A dapat dilihat pada Tabel 1. Sistem pendinginan yang digunakan adalah heatsink. Penggunaan heatsink bertujuan untuk menyerap panas dari Gambar 5. Skema Heatsink (a). Tampak samping; (b). Tampak atas (c). Tampak depan Gambar 7. Tiga titik pengujian, a. di kepala knalpot; b. di badan knalpot; c. di mulut knalpot.

166 Jurnal Rekayasa Elektrika Vol. 11, No. 5, Desember 2015 Gambar 8. Diaram pengujian dan pengukuran satu modul. Diagram pemasangan alat pada pengujian untuk satu modul dapat dilihat pada Gambar 8. Pengukuran yang dilakukan pada 127-40A ada dua macam yaitu pengukuran tegangan dan pengukuran temperatur. Cara pengukuran tegangan pada 127-40A dilakukan pada saat modul tersebut mendapatkan panas dari knalpot menggunakan multimeter. Pengukuran temperatur dilakukan pada sisi panas dan sisi dingin 127-40A. Pengukuran tidak dapat dilakukan pada sisi panas dan sisi dingin 127-40A karena akan menimbulkan rongga yang membuat proses perambatan panas kurang maksimal, sehingga pengukuran sisi panas dilakukan pada permukaan sumber panas dan sisi dingin dilakukan pada permukaan heatsink. Pengujian dilakukan selama 20 menit, dengan pencatatan data setiap 2 menit, dimana kondisi putaran motor dijaga konstan sebesar 3000 rpm. Untuk mengetahui tegangan ouput, pengujian ini menggunakan 1 sampai 3 modul. Untuk modul yang lebih dari satu, maka modul-modul tersebut dihubung secara seri, dimana nilai total tegangan output berdasarkan hukum Kirchoff yaitu tegangan ouput sama dengan penjumlahan tegangan seri dari setiap modul. IV. Hasil dan Pembahasan Pengujian dilakukan berdasarkan posisi titik uji dan variasi jumlah modul selama 20 menit. Kondisi sepeda motor adalah statis dan pengujian dilakukan saat putaran motor sudah stabil yaitu sebesar 3000 rpm. Semakin bertambah waktu, maka panas yang dihasikan pada sepeda motor juga akan semakin bertambah. A. Titik Uji di Kepala Knalpot Tabel 2 memperlihatkan perubahan suhu dan tegangan output menggunakan 1, 2 dan 3 modul di kepala knalpot sepeda motor. Perubahan suhu dari sisi panas dan dingin pada 1, 2 dan 3 mengalami kenaikan pada 5 menit pertama, yaitu dari 2 o, 2 0, dan 1 o sampai mencapai nilai maksimum 35 o, 36 o dan 37 o C. Kenaikan perubahan suhu, menyebakan tegangan output yang dihasilkan juga mengalami kenaikan 1,26 V untuk satu modul ; 2,27 V untuk dua modul dan 3,43 V untuk tiga modul. Bila dikaitkan dengan hukum Kirchoff, terlihat bahwa nilai tegangan output tiga modul mendekati penjumlahan tegangan dari 3 tegangan output satu modul. Waktu setelah 5-20 menit, T mengalami penurunan secara bertahap namun tidak signifikan, hingga T bernilai 29 o untuk 1 modul, 27 o untuk 2 modul dan 29 o untuk 3 modul dengan masing-masing tegangan 0,56 V, 1,152 V dan 1,719 V. Ini akan terus mengalami penurunan sampai batas maksimum heatsink dapat melepaskan panas. B. Titik Uji di Badan Knalpot. Tabel 3 memperlihatkan data uji di badan knalpot untuk 1 modul, 2 modul dan 3 modul. Dengan bertambahnya waktu, perubahan suhu di antara sisi panas dan sisi dingin bertambah naik, sehingga tegangan output yang dihasilkan juga semakin naik. Tabel 2. Data uji menggunakan 1-3 modul di kepala knalpot t (mnt) 1 DT ( o C) 2 3 4 V (Volt) 5 6 0 2 2 1 0.002 0.005 0.008 1 10 9 9 0.31 0.67 0.785 2 19 20 22 0.9 1.63 2.42 3 24 27 28 1.05 1.997 3.081 4 28 30 31 1.1 2.066 3.153 5 35 36 37 1.26 2.27 3.43 6 34 35 35 1.12 1.97 3.184 7 34 34 34 0.9 1.752 2.882 8 34 33 34 0.84 1.621 2.6 9 33 33 33 0.73 1.501 2.306 10 33 32 33 0.71 1.412 2.16 11 33 32 33 0.69 1.329 2.005 12 32 31 32 0.687 1.216 1.877 13 32 31 32 0.671 1.214 1.828 14 31 31 31 0.66 1.208 1.784 15 31 30 31 0.61 1.204 1.763 16 31 30 31 0.59 1.202 1.743 17 30 29 31 0.577 1.184 1.731 18 30 28 30 0.575 1.152 1.725 19 30 27 30 0.568 1.157 1.721 20 29 27 29 0.56 1.152 1.719

Melda Latif dkk.: Potensi Energi Listrik Pada Gas Buang Sepeda Motor 167 Tabel 3. Data uji menggunakan 1-3 modul di badan knalpot Tabel 4. Data uji menggunakan 1-3 modul di mulut knalpot t (mnt) 1 DT ( o C) 2 3 4 V (Volt) 5 6 0 1 1 1 0.01 0.02 0.028 1 4 5 3 0.055 0.11 0.17 2 7 8 5 0.117 0.19 0.289 3 9 10 7 0.15 0.23 0.38 4 12 12 9 0.17 0.287 0.477 5 14 14 11 0.188 0.325 0.549 6 16 16 16 0.191 0.372 0.572 7 18 17 17 0.201 0.391 0.601 8 20 18 17 0.232 0.42 0.637 9 20 18 18 0.251 0.48 0.712 10 21 19 18 0.258 0.511 0.767 11 21 19 19 0.266 0.551 0.797 12 22 20 19 0.288 0.582 0.807 13 22 20 20 0.301 0.601 0.822 14 23 20 20 0.322 0.623 0.831 15 23 21 21 0.335 0.654 0.852 16 24 22 21 0.347 0.697 0.864 17 24 22 22 0.349 0.724 0.871 18 25 23 23 0.353 0.738 0.883 19 26 24 23 0.358 0.755 0.895 20 27 25 25 0.361 0.768 0.923 t (mnt) 1 DT ( o C) 2 3 4 V (Volt) 5 6 0 2 2 2 0.01 0.02 0.02 1 4 3 4 0.037 0.084 0.128 2 5 5 7 0.082 0.16 0.245 3 8 9 11 0.118 0.211 0.358 4 10 12 13 0.148 0.284 0.446 5 12 12 14 0.151 0.324 0.502 6 12 13 14 0.162 0.354 0.562 7 13 14 16 0.175 0.374 0.591 8 15 14 17 0.192 0.391 0.612 9 16 15 19 0.215 0.417 0.705 10 16 16 20 0.235 0.474 0.752 11 17 17 20 0.256 0.513 0.77 12 18 17 21 0.28 0.528 0.793 13 18 18 21 0.3 0.533 0.804 14 19 19 22 0.31 0.538 0.807 15 19 20 22 0.328 0.54 0.81 16 20 20 23 0.332 0.545 0.815 17 22 21 24 0.341 0.548 0.821 18 23 21 24 0.348 0.55 0.824 19 23 22 25 0.351 0.58 0.829 20 24 23 25 0.357 0.6 0.831 Kanaikan perubahan suhu adalah 1 o setiap kenaikan 1 menit waktu. Tegangan ouput maksimum yang dihasilkan untuk tiga modul (0,923 V) hampir sama nilainya dengan tiga kali tegangan output maksimum di satu (0,361 V). Ini sesuai dengan hokum Kirchoff. C. Titik Uji di Mulut Knalpot. Data uji perubahan suhu dan tegangan output yang dihasilkan oleh 1 modul, 2 modul dan 3 modul di mulut knalpot dapat dilihat di Tabel 4. Perubahan suhu di sisi panas dan sisi dingin di titik uji mulut knalpot mengalami kenaikan seiring kenaikan waktu. Dengan naiknya perubahan suhu, maka tegangan output yang dihasilkan juga meningkat. Di posisi ini, tegangan output maksimum untuk 3 modul adalah 0.831 V, untuk dua modul 0,6 V dan untuk satu modul adalah 0,357 V. Ini sesuai dengan hukum Kirchoff. V. Kesimpulan Sesuai dengan Efek Seebeck, maka dapat disimpulkan bahwa tegangan output yang dihasilkan oleh yang ditempatkan di kepala knalpot lebih besar dibandingkan di badan knalpot dan mulut knalpot. Ini disebabkan karena perubahan suhu sisi panas dan dingin DT di posisi kepala knalpot lebih besar dibanding posisi lain dan ini hanya terjadi selama 5 menit pertama, karena aliran panas akan terus bergerak ke badan dan mulut knalpot, sehingga bertambahnya waktu, maka perubahan suhu di posisi kepala knalpot tidak naik secara signifikan. Di kepala knalpot, tegangan output maksimum yang dihasilkan 1 modul, 2 modul dan 3 modul berturut-turut adalah 1,26 V, 2,27 V dan 3,43 V. Tegangan output maksimum menggunakan 3 modul, nilainya sama dengan 3 kali tegangan output 1 modul. Ini sesuai dengan hukum Kirchoff. Karena bentuk knalpot adalah silendris, sedangkan bentuk adalah flat, maka hanya 1/3 badan yang bisa tersambung ke knalpot, sehingga pemafaatan belum optimal. Untuk penelitian berikutnya, sebaiknya dicari sumber panas yang berbentuk sesuai dengan bentuk. Supaya tegangan output yang dihasilkan semakin optimal, maka beberapa dapat disusun secara seri, sampai semua sumber panas dapat terhubung ke beberapa tersebut. Ucapan Terima Kasih Penelitian ini dibiayai dari dana penelitian fakultas Teknik Universitas Andalas dengan nomor kontrak 002/ UN.16.09.D/PL/2015.

168 Jurnal Rekayasa Elektrika Vol. 11, No. 5, Desember 2015 Referensi [1] E.F. Thacher, B.T. Helenbrook M.A Karri, Exhaust energy conversion by thermoelectric generator. Two case studies, Elsevier. November 2010. [2] http://en.wikipedia.org/wiki/thermoelectric_effect. Diakses pada April 2015. [3] Yunus A Cengel at all, Thermodynamics, An engineering Approach, fifth edition, McGraw-Hill, 2006 [4] http://www.efunda.com/designstandards/sensors/thermocouples/ thmcple_theory.cfm. Diakses pada April 2015. [5] Ismail, Basel I. Wael H. Ahmed. Thermoelectric Power Generation Using Waste-Heat Energy as Alternative Green Technology. Recent Patents on Electrical Engineering. 2009. [6] Putra, Martinus. Efek Perubahan Aliran Gas Buang dalam Knalpot untuk Diterapkan pada Mesin Kapal Klotok 10 HP. Universitas Indonesia. Depok. [7] Wong, Kin Yip. Thermoelectric Materials and Devices recovery Waste Heat from Vehicles. Department of Physics and Material Science City University of Hong Kong. Maret 2011. [8] Hendricks, Terry dan William T.Choate. Engineering Scoping Study of Thermoelectric Generator System for Industrial Waste Heat Recovery. Industrial Technologies Program U.S. Departement of Energy. November 2006.

Penerbit: Jurusan Teknik Elektro, Fakultas Teknik, Universitas Syiah Kuala Jl. Tgk. Syech Abdurrauf No. 7, Banda Aceh 23111 website: http://jurnal.unsyiah.ac.id/jre email: rekayasa.elektrika@unsyiah.net Telp/Fax: (0651) 7554336