Pemanfaatan Energi Panas Sebagai Pembangkit Listrik Alternatif Berskala Kecil Dengan Menggunakan Termoelektrik

Ukuran: px
Mulai penontonan dengan halaman:

Download "Pemanfaatan Energi Panas Sebagai Pembangkit Listrik Alternatif Berskala Kecil Dengan Menggunakan Termoelektrik"

Transkripsi

1 Pemanfaatan Energi Panas Sebagai Pembangkit Listrik Alternatif Berskala Kecil Dengan Menggunakan Termoelektrik Muammar Khalid #1, Mahdi Syukri *2, Mansur Gapy #3 # Jurusan Teknik Elektro dan Komputer, Fakultas Teknik, Universitas Syiah Kuala Jl. Tgk. Syech Abdurrauf No. 7, Darussalam, Banda Aceh, 23111, Aceh, Indonesia 1 muammarkhalid2@gmail.com 2 mahdisyukri@yahoo.co.id 3 mansur.gapy@yahoo.com Abstrak Dengan semakin majunya perkembangan zaman membuat kebutuhan akan energi listrik kian meningkat. Berbagai usaha dilakukan untuk mencari sumber energi listrik baru, salah satunya dengan pembangkit energi listrik dengan kapasitas mikro yang memamfaatkan energi panas. Pemamfaatan energi panas sebagai pembangkit energi listrik dengan kapasitas mikro dapat dilakukan dengan menggunakan elemen termoelektrik. Penelitian ini bertujuan untuk mengetahui karakteristik serta unjuk kerja dari termoelektrik sebagai pembangkit energi listrik. Penelitian ini menggunakan termoelektrik tipe TEC dengan aluminium sebagai penerima panas dan heatsink sebagai media pendingin. Variasi penelitian meliputi antara lain rangkaian termoelektrik tanpa beban dan berbeban yang dirangkai seri. Sumber panas yang dipilih yaitu sinar matahari dan api. Hasil penelitian menunjukkan panas dari matahari dan api dapat menjadi sumber energi listrik dengan kapasitas mikro yang cukup potensial. 4 buah modul termoelektrik yang dirangkai secara seri menghasilkan tegangan sebesar 1.4 V ketika plat aluminium menyerap sinar matahari dengan beda temperatur antara sisi panas dan sisi dingin sebesar 31 K. Pada pengujian 4 buah modul termoelektrik yang dirangkai seri dengan beban 10 ohm, didapat efisiensi maksimal dari pembangkit yaitu 0.314% pada menit ke 60 sejak pemaparan sinar matahari dengan T sebesar 30 K. Pada pengujian dengan beban panas api, didapat efisiensi maksimal dari pembangkit yaitu 1% pada menit ke 6 sejak pemanasan dengan T sebesar 63.5 K. Dari hasil ini dapat disimpulkan, termoelektrik dapat menghasilkan listrik dengan memamfaatkan energi panas. Kata Kunci Thermoelectric, koefisien Seebeck, Perbedaan Temperatur, Energi Panas I. PENDAHULUAN Listrik bagi manusia di zaman modern merupakan kebutuhan besar yang tidak bisa dihindarkan. Setiap orang pasti membutuhkan listrik untuk melakukan kegiatan seharihari, tak terkecuali masyarakat Indonesia. Di Indonesia ada beberapa sumber energi yang dapat digunakan untuk membangkitkan listrik yang dibedakan menjadi dua jenis. Pertama, pembangkit listrik dengan kapasitas makro yang biasanya memamfaatkan air, uap, gas, dan nuklir. Kedua, pembangkit listrik dengan kapasitas mikro yang salah satunya adalah dengan memamfaatkan energi panas[1]. Energi panas tersebut antara lain berasal dari sinar matahari dan benda-benda yang melepaskan panas, seperti setrika, panas pembakaran dapur industri dan knalpot kendaraan bermotor. Jika ditinjau dari letak geografisnya, Indonesia terletak di garis khatulistiwa, sehingga mempunyai potensi sumber energi surya yang berlimpah. Dalam suatu penelitian disebutkan bahwa intensitas radiasi matahari rata-rata sekitar 4,8 kwh/m2 perhari diseluruh wilayah Indonesia[2]. Termoelektrik merupakan sebuah teknologi yang berfungsi untuk mengkonversi energi panas menjadi energi listrik secara lansung. Untuk menghasilkan listrik, material termoelektrik cukup diletakkan sedemikian rupa dalam sistem yang menghubungkan antara sumber sisi panas dan sisi dingin. Dari mekanisme ini dapat dihasilkan sejumlah arus listrik[5]. II. TINJAUAN PUSTAKA A. Termoelektrik Termoelektrik adalah proses konversi langsung dari suatu perbedaan suhu menjadi tegangan listrik atau sebaliknya. Sebuah perangkat modul termoelectrik menghasilkan tegangan ketika ada suhu yang berbeda di setiap sisi. Sebaliknya, bila termoelectrik diberi tegangan listrik, akan menciptakan perbedaan suhu. B.. Elemen Termoelektrik Elemen termoelektrik terdiri dari semikonduktor tipe N dan tipe P yang bagian atas dan bawah dilapisi dengan konduktor tembaga sebagai penghubung satu sama lain antara tipe N dan tipe P. Konduktor tembaga pada termoelektrik membantu perpindahan electron-elektron untuk dapat bergerak bebas. Apabila batang logam dipanaskan dan didinginkan pada dua kutub batang logam tersebut, electron pada sisi panas logam akan bergerak aktif dan memiliki kecepatan aliran yang lebih tinggi dibandingkan pada sisi bagian dingin logam. Vol.1 No kitektro

2 Bismuth Telluride Alloys Gambar. 1 Rangkaian Ekivalen Termoelektrik Seperti yang terlihat pada gambar diatas, sebuah termoelektrik diwakili oleh rangkaian thermo-listrik dimana generator (TEG) diletakkan diantara 2 reservoir suhu yaitu sisi panas (TH) dan sisi dingin (TC). Kedua suhu ini ( T) berpengaruh pada besaran energi panas (QH) yang diserap oleh termoelektrik serta besaran tegangan dan arus yang akan dihasilkan. Sebuah TEG dikarakteristikkan dengan adanya hambatan listrik isotermal (R), konduktansi termal (K) dan koefisien seebeck (S). C. Koefisien Seebeck Koefisien Seebeck menjelaskan bahwa pada saat thermocouple dipanaskan, kondisi semikonduktor yang terisi banyak elektron koefisien seebecknya bertanda negatif. Sedangkan semikonduktor yang kekurangan elektron koefisien seebecknya bertanda negatif. Sedangkan semikonduktor yang kekurangan elektron koefisien seebecknya bertanda positif. Jadi koefisien seebeck setiap logam ada yang bernilai positif dan ada yang bernilai negatif. Koefisien seebeck tergantung pada perbedaan suhu dan perbedaan tegangan yang dihasilkan tergantung dari nilai koefisien seebeck dan perbedaan temperatur. Perbedaan tegangan dinyatakan dalam persamaan : V = S x T (Thot Tcool) (1) Dimana : V = Tegangan S = Koefisien Seebeck T = Perbedaan antara suhu panas dan suhu dingin D. Termoelektrik Generator Thermoelectric power generating adalah suatu pembangkit listrik yang didasarkan pada efek Seebeck, yang pertama kali ditemukan pada tahun 1821 oleh Thomas Johann Seebeck. Aplikasi penggunaan termoelektrik Generator dapat digunakan secara luas terutama pada pembangkit-pembangkit yang membutuhkan energy panas sebagai sumber energy utama yang nantinya akan di konversikan menjadi energy listrik. Penggunaan termoelektrik generator ini juga cocok digunakan pada pabrik-pabrik yang memiliki buangan panas yang besar sehingga dapat dimamfaat sebagai pembangkit listrik. Secara umum material-material yang digunakan pada termoelektrik generator yaitu : Silicon Germanium Lead Telluride E. Spesifikasi Termoelektrik TEC Modul termoelektrik TEC yang dipergunakan dalam penelitian ini adalah modul termoelektrik jenis Termoelektrik Cooler dengan 127 pasang semikonduktor, skema modul termoelektrik dapat dilihat pada gambar. Berikut ini spesifikasi modul termoelektrik TEC : Ukuran sisi 40 mm x 40 mm dengan tebal 3.8 mm Perbedaan temperature sisi panas dengan sisi dingin maksimal ( Tmax) sebesar 66 o C Arus listrik maksimal yang mengalir (Imax) sebesar 6 Ampere Tegangan listrik maksimal yang diperbolehkan (Vmax) sebesar 14,4 volt Material keramik Electrical Insulator yang dipergunakan adalah Aluminia (Al2O3) Temperatur maksimal dalam penggunaanya sebesar 138 o C III. METODE PENELITIAN Dalam melakukan sebuah penelitian diperlukan adanya metode yang sistematis sehingga penelitian dapat berjalan sesuai dengan yang diharapkan. Penulis menggunakan metode seperti gambar berikut : Gambar. 2 Diagram Alir Penelitian Prosedur penelitian dilakukan dalam beberapa tahap diantaranya, studi literatur, memilih peralatan, mendesain prototipe pembangkit, perakitan prototipe dan dilakukan pengujian alat, pengujian awal dan pengujian sistem ke beban untuk mendapatkan hasil, dan penulisan laporan. Vol.1 No kitektro

3 Berikut adalah bahan-bahan yang digunakan dalam penelitian ini: TABLE I ALAT DAN BAHAN No Nama Bahan Jumlah 1 Thermoeletric 4 2 Heatsink 1 3 Thermal pasta 3 4 Thermometer infrared 1 5 Multimeter digital 2 6 Lilin 4 7 Plat aluminium Secukupnya 8 Air Secukupnya Gambar. 3 Model pembangkit termoelektrik panas matahari A. Perancangan Kolektor Panas Pada tahap ini peneliti merancang sebuah kolektor panas yang terbuat dari logam aluminium. Aluminium yang digunakan memiliki ketebalan 2 mm dengan ukuran 25 x 30 cm. Agar proses penyerapan panas menjadi lebih maksimal, maka plat aluminum tersebut di cat menjadi warna hitam. Fungsi dari plat aluminium ini adalah untuk menyerap panas matahari. B. Pemansangan Termoelektrik pada Heatsink Heatsink yang digunakan berjumlah 2 buah dengan ukuran masing-masing 10x20cm. Jumlah termoelektrik yang dipasangkan pada tiap heatsink adalah 4 modul. Bagian modul yang dipasangkan ke heatsink adalah bagian dingin dari modul termoelektrik yaitu bagian yang ditandai dengan sisi yang bertuliskan kode modul (dalam hal ini modul yang digunakan adalah TEC ). Modul direkatkan dengan menggunakan thermal pasta yang berguna agar proses pemindahan panas dari modul ke heatsink menjadi lebih maksimal.. C. Perangkaian Termoelektrik secara Seri Dalam penelitian ini, susunan termoelektrik disusun secara seri agar prototipe menghasilkan tegangan yang lebih besar. Gambar. 5 Skema rangkaian modul secara seri D. Pegujian Termoelektrik Adapun tahap pengujian prototipe termoelektrik dalam penelitian ini adalah : Pengujian 4 buah modul termoelektrik yang dirangkai seri. Pengujian 4 buah modul termoelektrik yang dibebani. Pengujian 4 buah modul termoelektrik yang dirangkai seri dengan sumber panas api. Gambar. 6 Skema Pengukuran Tegangan Gambar. 7 Skema Pengukuran Arus Gambar. 4 Heatsink dan Termoelektrik Gambar. 8 Ilustrasi Pengujian Vol.1 No kitektro

4 IV. HASIL DAN PEMBAHASAN Dalam Pengujian ini dilakukan untuk mengetahui output yang dihasilkan modul termoelektrik yang dirangkai seri baik ketika tidak berbeban maupun ketika modul diberi beban. A. Pengujian 4 modul termoelektrik yang dirangkai seri TABLE 2 DATA HASIL PENGUJIAN yang diterima dari matahari. Plat aluminum akan menyerap panas matahari secara perlahan-lahan sesuai keadaan cuaca pada saat pengujian dilakukan. Temperatur maksimum yang terukur pada plat aluminium saat pengujian berlangsung adalah K dengan tegangan maksimal 1.4 V pada menit ke 60. B. Pengujian 4 modul termoelektrik yang dibebani TABLE 3 DATA HASIL PENGUJIAN Gambar. 9 Grafik hubungan T dengan tegangan Pada grafik dan tabel diatas dapat dilihat bahwa pengaruh selisih suhu antar sisi panas dan dingin terhadap tegangan output adalah berbanding lurus dimana semakin besar T dari temperatur panas pada plat aluminium dengan temperatur dingin pada heatsink maka semakin besar pula tegangan yang dihasilkan pada pengujian modul termoelektrik ini. Hal ini sesuai dengan teori efek seebeck yang sudah disebutkan pada bab 2 dimana besarnya tegangan yang dihasilkan sebanding dengan gradien temperatur yang didapat. Dapat dilihat pada menit 0 dan perbedaan temperature antara sisi dingin dan panas masih belum besar, belum ada tegangan yang dihasilkan. Namun pada menit ke 10, tegangan mulai tercipta dengan T sebesar 19 K. Temperatur pada heatsink (sisi dingin) akan terjadi perubahan dikarenakan temperatur heatsink mendapat pengaruh dari lingkungan sekitar seperti angin, sehingga temperatur heatsink perlahan-lahan akan menyesuaikan dengan temperatur lingkungan sekitarnya. Temperatur pada plat aluminum akan terjadi perubahan sesuai dengan panas Gambar. 10 Grafik hubungan waktu dengan tegangan dan arus Gambar dan tabel diatas menunjukkan grafik hubungan antara waktu pemanasan dengan besarnya T yang dihasilkan. Dari grafik tersebut dapat diketahui bahwa semakin lama waktu pemanasan maka T yang didapat juga akan semakin besar. Dimana pada percobaan diatas, T terbesar yang didapatkan adalah pada menit ke 60 dengan besar T yaitu 31.5 K. Tentu saja teori ini bukanlah teori absolut, karena besarnya T yang didapat sangat terpengaruh kepada paparan sinar matahari (panas). Bisa saja paparan sinar matahari (panas) pada menit 40 lebih besar daripada menit ke 60, hanya saja pada percobaan diatas, kenaikan T cenderung semakin tinggi seiring lamanya waktu pemaparan sinar matahari (panas). Gambar 10 menunjukkan grafik hubungan antara T dan tegangan yang dihasilkan. Menurut gambar diatas dapat dilihat bahwa tegangan output akan semakin naik seiring dengan kenaikan T. Tegangan maksimum yang didapat dari susunan 4 modul termoelektrik pada saat kondisi berbeban resistor 10 ohm adalah 1.4 Volt dan 0.27 A dengan perbedaan temperatur 31.5 K. Output ini didapat pada saat pengukuran pukul WIB (menit ke 60) dimana intensitas panas matahari sedang sangat tinggi. Hasil Vol.1 No kitektro

5 pengukuran diatas sesuai dengan teori efek seebeck yaitu tegangan yang dihasilkan sebanding dengan gradien temperatur, semakin tinggi perbedaan temperatur ( T) yang didapat maka semakin tinggi pula tegangan dan arus yang dihasilkan. C. Pengujian 4 modul termoelektrik dengan panas api TABLE 6 DATA HASIL PENGUJIAN TABLE 4 DATA EFISIENSI Setelah didapat nilai koefisien seebeck, yaitu sebesar v/k maka dapat dicari besar tegangan yang dihasilkan. Untuk mengukur tegangan yang dihasilkan, maka digunakan persamaan (1) : V = S x T (T H T C) Untuk menghitung persentase galat hitung dan ukur tegangan termoelektrik, digunakan rumus menghitung galat : % galat = 100% Maka didapat galat tegangan ukur dan hitung yaitu : TABLE 5 DATA HASIL GALAT Pada table diatas dapat dilihat perbandingan antara tegangan ukur dengan tegangan hasil perhitungan pada setiap waktu. Tegangan yang dihasilkan semakin naik seiring lamanya waktu pemanasan. Besaran galat rata-rata yang dihasilkan yaitu 34.2 %. Galat yang didapat cukup besar, hal ini mungkin diakibatkan dari kurangnya tingkat presisi alat ukur yang digunakan. Gambar. 11 Grafik hubungan waktu dengan tegangan dan T Gambar dan tabel diatas menunjukkan grafik hubungan antara lamanya waktu pemanasan terhadap T dan tegangan yang dihasilkan. Seperti yang terlihat pada grafik diatas, tegangan mulai muncul ketika adanya perbedaan suhu ( T) pada menit ke-2 yaitu sebesar 58.1 K dengan tegangan yang dihasilkan yaitu 3.4 V. Kemudian tegangan output terus meningkat seiring dengan besarnya T yang terjadi hingga mengalami puncak pada menit ke-6 dengan besar T 63.5 K dan tegangan output 4.1 V. Pada pengukuran menit ke 8, T yang didapat menurun dikarenakan suhu pada sisi dingin (air dalam bejana aluminium) mengalami peningkatan suhu. Peningkatan suhu ini diakibatkan oleh adanya konduksi panas dari lilin ke air melalui aluminium. Akibat dari peningkatan suhu pada air mengakibatkan T yang dihasilkan akan semakin mengecil yang berpengaruh terhadap besarnya keluaran tegangan. Besaran arus yang dihasilkan juga mengikuti besarnya tegangan yang dihasilkan, dimana jika tegangannya semakin besar maka arusnya pun akan ikut besar. Sebaliknya jika tegangan mengecil, maka arus yang dihasilkan akan ikut mengecil. Vol.1 No kitektro

6 TABLE 7 DATA EFISIENSI berbanding lurus dengan kenaikan T. Jika T turun, maka efisiensi juga akan ikut turun. Begitu juga sebaliknya. Efisiensi terbesar yang dihasilkan terdapat pada menit ke-6 dimana T pada saat itu adalah sebesar 63.5 K dengan besar efisiensi 1 %. V. KESIMPULAN Setelah didapat nilai koefisien seebeck, yaitu sebesar v/k maka dapat dicari besar tegangan yang dihasilkan. TABLE 8 DATA HASIL GALAT Pada pengujian 4 buah modul termoelektrik yang dirangkai secara seri tanpa beban didapatkan hasil tegangan maksimal 1.4 V pada saat T 31 K. Keadaan cuaca yang tidak menentu menjadi penghambat dalam penelitian ini dikarenakan modul termoelektrik tidak mendapatkan panas secara konstan dan maksimal. Pada pengujian 4 buah modul termoelektrik yang dirangkai seri dengan beban 10 ohm, didapat efisiensi maksimal dari pembangkit yaitu 0.314% pada menit ke 60 dengan T sebesar 31.5 K. Pada pengujian 4 buah modul termoelektrik yang dirangkai seri dengan sumber panas api didapat efisiensi maksimal dari pembangkit yaitu 1 % pada menit ke-6 dengan T sebesar 63.5 K. Sedangkan pada menit ke 8 mulai terjadi penurunan T yang diakibatkan oleh peningkatan suhu yang terjadi dibagian pendingin (air) sehingga mengakibatkan tegangan dan arus yang dihasilkan juga ikut turun. Dari keseluruhan percobaan dapat kita lihat bahwa tegangan yang dihasilkan berbanding lurus dengan besarnya T. Hal ini sesuai dengan karakteristik termoelektrik berdasarkan teori dasar Seebeck dimana tegangan yang dihasilkan sebanding dengan gradien temperatur yang didapat. UCAPAN TERIMA KASIH Gambar. 12 Grafik hubungan T (K) dengan efisiensi pembangkit Seperti yang terlihat pada gambar dan table diatas menunjukkan bahwa kenaikan efisiensi pembangkit REFERENSI [1] Adhi Gunawan. "Penggunaan Energi Panas pada Aspal Jalan Raya Sebagai Energi Alternatif" Fakultas Teknik - Universitas Syiah Kuala, Juli [2] Irawan Rahardjo, Ira Fitriana, "Analisis Potensi Pembangkit Listrik Tenaga Surya di Indonesia". FPMIPA UPI JICA Bandung, [3] Nandy Putra*), Raldi Artono Koestoer, M. Adhitya, Ardia Roekettino, dan Bayu Trianto, "Potensi Pembangkit Daya Termoelektrik Untuk Kendaraan Hibrid". UI Depok 16424, Indonesia, [4] Yani Sanwaty. "Prototipe Generator Solar Thermoelektrik Memamfaatkan Energi Thermal Matahari". Fakultas Sains dan MIPA - Universitas Kristen Satya Wacana, Salatiga, Puji syukur penulis ucapkan kepada Allah SWT. Ucapan terimakasih banyak kepada orang tua penulis yang telah memberi dukungan dan motivasi. Kemudian terimakasih kepada dosen pembimbing 1, Bapak Mahdi Syukri, S.T.,M.T dan pembimbing 2 Bapak Ir. Mansur Gapy, M.T yang telah membimbing dan membantu dalam penyempurnaan karya ilmiah ini. [5] Zuryati Djafar*), Nandy Putra, R.A. Koesteor, "Kajian Eksperimental Pengembangan Generator Termoelektrik Sebagai Sumber Listrik", UI Depok 16424, Indonesia, [6] [Diakses : 9 Agustus 2016] [7] [Diakses : 20 September 2016] [8] Adrian Eoekettino, "Perancangan Awal dan Manufaktur Thermoelektric Generator Menggunakan Dua Belas Modul Thermoelectric Untuk Aplikasi Kedaraan Hibrid". Fakultas Teknik - Universitas Indonesia. Juli 2008 [9] [Diakses : 14 Juli 2016] [10] [Diakses : 25 September 2016] Vol.1 No kitektro

Gambar 1. : Struktur Modul Termoelektrik

Gambar 1. : Struktur Modul Termoelektrik dengan mengkonversi energi panas, maka diperlukan kolektor atau pengumpul energi dari radiasi matahari. Melalui berbagai studi literatur maka pada penelitian ini dipilih bahan aspal sebagai kolektor radiasi

Lebih terperinci

PENGUJIAN KINERJA COUPLE THERMOELEKTRIK SEBAGAI PENDINGIN PROSESOR

PENGUJIAN KINERJA COUPLE THERMOELEKTRIK SEBAGAI PENDINGIN PROSESOR PENGUJIAN KINERJA COUPLE THERMOELEKTRIK SEBAGAI PENDINGIN PROSESOR Ardhi Kamal Haq 1*, Juhri Hendrawan 1, Ahmad Hasan Asyari 1, 1 Program Studi Fisika, Fakultas MIPA, Universitas Gadjah Mada Sekip Utara,

Lebih terperinci

EXHAUST SYSTEM GENERATOR: KNALPOT PENGHASIL LISTRIK DENGAN PRINSIP TERMOELEKTRIK

EXHAUST SYSTEM GENERATOR: KNALPOT PENGHASIL LISTRIK DENGAN PRINSIP TERMOELEKTRIK EXHAUST SYSTEM GENERATOR: KNALPOT PENGHASIL LISTRIK DENGAN PRINSIP TERMOELEKTRIK Jurusan Mesin, Fakultas Teknik, Universitas Negeri Semarang Abstrak. Penelitian ini bertujuan untuk mengetahui besarnya

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Pada bab ini akan dibahas mengenai teori teori yang mendasari perancangan dan peralisasian pemanfaatkan modul termoelektrik generator untuk mengisi baterai ponsel. Teori teori yang

Lebih terperinci

BAB III PERANCANGAN MINI REFRIGERATOR THERMOELEKTRIK TENAGA SURYA. Pada perancangan ini akan di buat pendingin mini yang menggunakan sel

BAB III PERANCANGAN MINI REFRIGERATOR THERMOELEKTRIK TENAGA SURYA. Pada perancangan ini akan di buat pendingin mini yang menggunakan sel BAB III PERANCANGAN MINI REFRIGERATOR THERMOELEKTRIK TENAGA SURYA 3.1 Tujuan Perancangan Pada perancangan ini akan di buat pendingin mini yang menggunakan sel surya sebagai energy tenaga surya. Untuk mempermudah

Lebih terperinci

STUDI AWAL PEMANFAATAN THERMOELECTRIC MODULE SEBAGAI ALAT PEMANEN ENERGI

STUDI AWAL PEMANFAATAN THERMOELECTRIC MODULE SEBAGAI ALAT PEMANEN ENERGI STUDI AWAL PEMANFAATAN THERMOELECTRIC MODULE SEBAGAI ALAT PEMANEN ENERGI Oleh : La Ode Torega Palinta (2108100524) Dosen Pembimbing : Dr.Eng Harus L.G, ST, M.Eng PROGRAM SARJANA JURUSAN TEKNIK MESIN FAKULTAS

Lebih terperinci

BAB III PERANCANGAN SISTEM

BAB III PERANCANGAN SISTEM BAB III PERANCANGAN SISTEM Bab ini akan menjelaskan mengenai perancangan serta realisasi alat pengisi baterai menggunakan modul termoelektrik generator. Perancangan secara keseluruhan terbagi menjadi perancangan

Lebih terperinci

PENGUKURAN DAN ANALISIS KARAKTERISTIK THERMOELECTRIC GENERATOR DALAM PEMANFAATAN ENERGI PANAS YANG TERBUANG

PENGUKURAN DAN ANALISIS KARAKTERISTIK THERMOELECTRIC GENERATOR DALAM PEMANFAATAN ENERGI PANAS YANG TERBUANG PENGUKURAN DAN ANALISIS KARAKTERISTIK THERMOELECTRIC GENERATOR DALAM PEMANFAATAN ENERGI PANAS YANG TERBUANG oleh Soelistio Permadi Widjaja NIM : 612007043 Skripsi Untuk melengkapi salah satu syarat memperoleh

Lebih terperinci

BAB I PENDAHULUAN. vital yang tidak dapat dilepaskan dari keperluan sehari-hari. Manusia hampir tidak

BAB I PENDAHULUAN. vital yang tidak dapat dilepaskan dari keperluan sehari-hari. Manusia hampir tidak BAB I PENDAHULUAN 1.1 Latar Belakang Energi listrik merupakan salah satu kebutuhan manusia yang sangat penting dan vital yang tidak dapat dilepaskan dari keperluan sehari-hari. Manusia hampir tidak dapat

Lebih terperinci

BAB IV HASIL DAN ANALISA PENGUJIAN THERMOELECTRIC GENERATOR

BAB IV HASIL DAN ANALISA PENGUJIAN THERMOELECTRIC GENERATOR BAB IV HASIL DAN ANALISA PENGUJIAN THERMOELECTRIC GENERATOR 4.1 HASIL DAN ANALISA PENGUJIAN Pengujian yang dilakukan menghasilkan data-data berupa waktu, arus ouput, tegangan output, daya output, temperature

Lebih terperinci

PENGUJIAN THERMOELECTRIC GENERATOR (TEG) DENGAN SUMBER KALOR ELECTRIC HEATER 60 VOLT MENGGUNAKAN AIR PENDINGIN PADA TEMPERATUR LINGKUNGAN

PENGUJIAN THERMOELECTRIC GENERATOR (TEG) DENGAN SUMBER KALOR ELECTRIC HEATER 60 VOLT MENGGUNAKAN AIR PENDINGIN PADA TEMPERATUR LINGKUNGAN PENGUJIAN THERMOELECTRIC GENERATOR (TEG) DENGAN SUMBER KALOR ELECTRIC HEATER 6 VOLT MENGGUNAKAN AIR PENDINGIN PADA TEMPERATUR LINGKUNGAN Nugrah Suryanto 1, Azridjal Aziz 2, Rahmat Iman Mainil 3 Laboratorium

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Sejarah Termoelektrik Fenomena termoelektrik pertama kali ditemukan tahun 1821 oleh ilmuwan Jerman, Thomas Johann Seebeck. Ia menghubungkan tembaga dan besi dalam sebuah rangkaian.

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Sejarah dan Pengenalan Fenomena termoelektrik pertama kali ditemukan tahun 1821 oleh seorang ilmuwan Jerman, Thomas Johann Seebeck. Ia menghubungkan tembaga dan besi dalam sebuah

Lebih terperinci

POTENSI PEMANFAATAN SUMBER PANAS PADA COMBUSTION CHAMBER TURBIN GAS DENGAN MENGGUNAKAN TERMOELEKTRIK GENERATOR

POTENSI PEMANFAATAN SUMBER PANAS PADA COMBUSTION CHAMBER TURBIN GAS DENGAN MENGGUNAKAN TERMOELEKTRIK GENERATOR Seminar Nasional Cendekiawan ke 3 Tahun 2017 ISSN (P) : 2460-8696 Buku 2 ISSN (E) : 2540-7589 POTENSI PEMANFAATAN SUMBER PANAS PADA COMBUSTION CHAMBER TURBIN GAS DENGAN MENGGUNAKAN TERMOELEKTRIK GENERATOR

Lebih terperinci

Rekayasa Elektrika. Jurnal VOLUME 11 NOMOR 5 DESEMBER Potensi Energi Listrik pada Gas Buang Sepeda Motor

Rekayasa Elektrika. Jurnal VOLUME 11 NOMOR 5 DESEMBER Potensi Energi Listrik pada Gas Buang Sepeda Motor Jurnal Rekayasa Elektrika VOLUME 11 NOMOR 5 DESEMBER 2015 Potensi Energi Listrik pada Gas Buang Sepeda Motor Melda Latif, Nuri Hayati, dan Uyung Gatot S. Dinata 163-168 JRE Vol. 11 No. 5 Hal 157-188 Banda

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang 1 BAB I PENDAHULUAN 1.1 Latar Belakang Energi panas merupakan energi yang dapat dengan mudah dijumpai dalam kehidupan sehari hari, mulai dari panas yang disediakan oleh alam yaitu dari panas matahari.

Lebih terperinci

Gambar 2.1 Sebuah modul termoelektrik yang dialiri arus DC. ( https://ferotec.com. (2016). www. ferotec.com/technology/thermoelectric)

Gambar 2.1 Sebuah modul termoelektrik yang dialiri arus DC. ( https://ferotec.com. (2016). www. ferotec.com/technology/thermoelectric) BAB II. TINJAUAN PUSTAKA Modul termoelektrik adalah sebuah pendingin termoelektrik atau sebagai sebuah pompa panas tanpa menggunakan komponen bergerak (Ge dkk, 2015, Kaushik dkk, 2016). Sistem pendingin

Lebih terperinci

BAB II DASAR THERMOELECTRIC GENERATOR

BAB II DASAR THERMOELECTRIC GENERATOR BAB II DASAR THERMOELECTRIC GENERATOR 2. 1. Konsep Thermoelectric Modul thermoelectric yaitu alat yang mengubah energi panas dari gradien temperatur menjadi energi listrik atau sebaliknya dari energi listrik

Lebih terperinci

BAB IV HASIL PENELITIAN DAN ANALISIS

BAB IV HASIL PENELITIAN DAN ANALISIS BAB IV HASIL PENELITIAN DAN ANALISIS Pengujian yang telah dilakukan memperoleh data data seperti waktu, arus keluaran, tegangan keluaran, daya keluaran, temperatur pada sisi panas thermoelectric generator

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Pada bab ini akan dibahas secara singkat mengenai teori dasar yang digunakan dalam merealisasikan suatu alat yang memanfaatkan energi terbuang dari panas setrika listrik untuk disimpan

Lebih terperinci

BAB I PENDAHULUAN. Sejalan dengan tingkat kehidupan dan perkembangan teknologi, kebutuhan

BAB I PENDAHULUAN. Sejalan dengan tingkat kehidupan dan perkembangan teknologi, kebutuhan BAB I PENDAHULUAN 1.1. Latar Belakang Sejalan dengan tingkat kehidupan dan perkembangan teknologi, kebutuhan terhadap penyediaan energi listrik terus mengalami peningkatan. Peningkatan konsumsi energi

Lebih terperinci

TUGAS AKHIR RANCANG BANGUN COOL BOX BERBASIS HYBRID TERMOELEKTRIK

TUGAS AKHIR RANCANG BANGUN COOL BOX BERBASIS HYBRID TERMOELEKTRIK TUGAS AKHIR RANCANG BANGUN COOL BOX BERBASIS HYBRID TERMOELEKTRIK Diajukan guna melengkapi sebagian syarat dalam mencapai gelar Sarjana Strata Satu (S1) Disusun Oleh Nama : Daniel Sidabutar NIM : 41313110087

Lebih terperinci

BAB I PENDAHULUAN. Pertumbuhan jumlah penduduk dan teknologi yang pesat, menjadikan

BAB I PENDAHULUAN. Pertumbuhan jumlah penduduk dan teknologi yang pesat, menjadikan BAB I PENDAHULUAN 1.1 Latar Belakang Pertumbuhan jumlah penduduk dan teknologi yang pesat, menjadikan kebutuhan energi listrik semakin besar. Namun, energi listrik yang diproduksi masih belum memenuhi

Lebih terperinci

BAB III PERANCANGAN DAN METODE PENELITIAN

BAB III PERANCANGAN DAN METODE PENELITIAN BAB III PERANCANGAN DAN METODE PENELITIAN 3. 1. Perancangan Modul Percobaan Ada tiga hal penting yang harus diperhatikan saat merancang percobaan untuk melakukan pengujian terhadap thermoelectric generator

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang 1.1 Latar Belakang BAB 1 PENDAHULUAN Fenomena termoelektrik menunjukan adanya hubungan antara perbedaan temperatur (temperature gradient) pada kedua ujung suatu konduktor atau semikonduktor dan munculnya

Lebih terperinci

SEMINAR NASIONAL PENDIDIKAN 2016

SEMINAR NASIONAL PENDIDIKAN 2016 ANALISIS PENERAPAN AUTO BUCK/BOOST PADA GENERATOR TERMOELEKTRIK SEBAGAI PEMBANGKIT LISTRIK ALTERNATIF Mohamad Choirul Anwar Jurusan Teknik Elektro, Fakultas Teknik, Universitas Jember e-mail: 21choirul@gmail.com

Lebih terperinci

PENGUJIAN THERMOELECTRIC GENERATOR SEBAGAI PEMBANGKIT LISTRIK DENGAN SISI DINGIN MENGGUNAKAN AIR BERTEMPERATUR 10 ºC

PENGUJIAN THERMOELECTRIC GENERATOR SEBAGAI PEMBANGKIT LISTRIK DENGAN SISI DINGIN MENGGUNAKAN AIR BERTEMPERATUR 10 ºC PENGUJIAN THERMOELECTRIC GENERATOR SEBAGAI PEMBANGKIT LISTRIK DENGAN SISI DINGIN MENGGUNAKAN AIR BERTEMPERATUR 1 ºC Gontor Andrapica 1, Rahmat Iman Mainil 1 dan Azridjal Aziz 1 1 Laboratorium Rekayasa

Lebih terperinci

UJI UNJUK KERJA PENDINGIN RUANGAN BERBASIS THERMOELECTRIC COOLING

UJI UNJUK KERJA PENDINGIN RUANGAN BERBASIS THERMOELECTRIC COOLING UJI UNJUK KERJA PENDINGIN RUANGAN BERBASIS THERMOELECTRIC COOLING Lukman Nulhakim Program Studi Teknik Mesin Politeknik Enjinering Indorama Email: lukman.mesin@gmail.com ABSTRAK Thermoelectric cooling

Lebih terperinci

BAB II Dasar Teori BAB II DASAR TEORI

BAB II Dasar Teori BAB II DASAR TEORI II DSR TEORI 2. Termoelektrik Fenomena termoelektrik pertama kali ditemukan tahun 82 oleh ilmuwan Jerman, Thomas Johann Seebeck. Ia menghubungkan tembaga dan besi dalam sebuah rangkaian. Di antara kedua

Lebih terperinci

Tabel 4.1 Perbandingan desain

Tabel 4.1 Perbandingan desain BAB IV. HASIL DAN PEMBAHASAN 4.1 Pemilihan Desain Perbandingan desain dapat dilihat pada Tabel 4.1 dan desain rancangan dapat dilihat pada Gambar 4.1. Tabel 4.1 Perbandingan desain Desain Q m P Panjang

Lebih terperinci

Proceeding Seminar Nasional Tahunan Teknik Mesin XIV (SNTTM XIV) Banjarmasin, 7-8 Oktober 2015 Pengaruh Variasi Luas Heat Sink

Proceeding Seminar Nasional Tahunan Teknik Mesin XIV (SNTTM XIV) Banjarmasin, 7-8 Oktober 2015 Pengaruh Variasi Luas Heat Sink Pengaruh Variasi Luas Heat Sink Terhadap Densitas Energi dan Tegangan Listrik Thermoelektrik Purnami1 *, Widya Wijayanti1 dan Sidiq Darmawan1 1 Jurusan Teknik Mesin Fakultas Teknik Universitas Brawijaya

Lebih terperinci

CHAPTER I PREFACE CHAPTER II BASE OF THEORY

CHAPTER I PREFACE CHAPTER II BASE OF THEORY CHAPTER I PREFACE 1.1 Historical- Background Pada 1.2 Problem Identification 1.3 Objective 2.1 Historical of Thermoelectric CHAPTER II BASE OF THEORY Termoelektrik ditemukan pertama kali pada tahun 1821,

Lebih terperinci

KONVERSI ENERGI PANAS PENGGERAK UTAMA KAPAL BERBASIS THERMOELECTRIC

KONVERSI ENERGI PANAS PENGGERAK UTAMA KAPAL BERBASIS THERMOELECTRIC Jurnal Riset dan Teknologi Kelautan (JRTK) Volume 13, Nomor 1, Januari - Juni 2015 KONVERSI ENERGI PANAS PENGGERAK UTAMA KAPAL BERBASIS THERMOELECTRIC Baharuddin Staf Pengajar Program Studi Teknik Sistem

Lebih terperinci

STUDI EKSPERIMENTAL TERMOELEKTRIK GENERATOR TIPE SP SA DAN TEC DENGAN VARIASI SERI DAN PARALEL PADA SUPRA X 125 CC

STUDI EKSPERIMENTAL TERMOELEKTRIK GENERATOR TIPE SP SA DAN TEC DENGAN VARIASI SERI DAN PARALEL PADA SUPRA X 125 CC STUDI EKSPERIMENTAL TERMOELEKTRIK GENERATOR TIPE SP 1848 27145 SA DAN TEC1-12706 DENGAN VARIASI SERI DAN PARALEL PADA SUPRA X 125 CC Disusun sebagai salah satu syarat menyelesaikan Program Studi Strata

Lebih terperinci

TUGAS AKHIR MEMBUAT KULKAS KECIL PORTABLE MENGGUNAKAN PENDINGIN TERMOELEKTRIK

TUGAS AKHIR MEMBUAT KULKAS KECIL PORTABLE MENGGUNAKAN PENDINGIN TERMOELEKTRIK TUGAS AKHIR MEMBUAT KULKAS KECIL PORTABLE MENGGUNAKAN PENDINGIN TERMOELEKTRIK Diajukan guna melengkapi sebagian syarat dalam mencapai gelar Sarjana Strata Satu (S1) Disusun Oleh : Nama : Bayu Widodo NIM

Lebih terperinci

AGUS PUTRA PRASETYA

AGUS PUTRA PRASETYA KAJI EKSPERIMENTAL PERPINDAHAN PANAS KONVEKSI PADA HEATSINK DENGAN SISTEM CASCADE THERMOELEKTRIK TEC 12706 AGUS PUTRA PRASETYA 2108030028 PROGRAM STUDI DIII TEKNIK MESIN FAKULTAS TEKNOLOGI INDUSTRI INSTITUT

Lebih terperinci

Heat Energy Harvesting untuk Sumber Listrik DC Skala Kecil

Heat Energy Harvesting untuk Sumber Listrik DC Skala Kecil Jurnal Integrasi Vol. 9 No. 1, April 2017, 80-83 e-issn: 2548-9828 Article History Received March, 2017 Accepted April, 2017 Heat Energy Harvesting untuk Sumber Listrik DC Skala Kecil Arif Febriansyah

Lebih terperinci

PEMANFAATAN TENAGA SURYA MENGGUNAKAN RANCANGAN PANEL SURYA BERBASIS TRANSISTOR 2N3055 DAN THERMOELECTRIC COOLER

PEMANFAATAN TENAGA SURYA MENGGUNAKAN RANCANGAN PANEL SURYA BERBASIS TRANSISTOR 2N3055 DAN THERMOELECTRIC COOLER ISSN 1412 3762 http://jurnal.upi.edu/electrans ELECTRANS, VOL.12, NO.2, SEPTEMBER 2013, 89-96 PEMANFAATAN TENAGA SURYA MENGGUNAKAN RANCANGAN PANEL SURYA BERBASIS TRANSISTOR 2N3055 DAN THERMOELECTRIC COOLER

Lebih terperinci

BAB II DASAR TEORI Sejarah Singkat Termoelektrik. mempunyai peranan penting dalam aplikasi praktik.

BAB II DASAR TEORI Sejarah Singkat Termoelektrik. mempunyai peranan penting dalam aplikasi praktik. BAB II DASAR TEORI 2.1 Termoelektrik 2.1.1 Sejarah Singkat Termoelektrik Efek termoelektrik merupakan subjek paling penting dalam ilmu fisika di bidang benda padat. Efek utama yang digunakan adalah efek

Lebih terperinci

PEMANFAATAN PANAS GAS BUANG MESIN DIESEL SEBAGAI ENERGI LISTRIK

PEMANFAATAN PANAS GAS BUANG MESIN DIESEL SEBAGAI ENERGI LISTRIK Jurnal Riset dan Teknologi Kelautan (JRTK) Volume 14, Nomor 1, Januari - Juni 2016 PEMANFAATAN PANAS GAS BUANG MESIN DIESEL SEBAGAI ENERGI LISTRIK Sherly Klara Dosen Program Studi Teknik Sistem Perkapalan

Lebih terperinci

BAB I PENDAHULUAN 1.2. Latar Belakang Permasalahan

BAB I PENDAHULUAN 1.2. Latar Belakang Permasalahan BAB I PENDAHULUAN 1.1. Tujuan Memanfaatkan energi panas yang terbuang dari setrika listrik untuk diubah menjadi energi listrik yang kemudian akan disimpan ke dalam baterai kering. 1.2. Latar Belakang Permasalahan

Lebih terperinci

BAB I PENDAHULUAN C = (1) Panas jenis adalah kapasitas panas bahan tiap satuan massanya, yaitu : c = (2)

BAB I PENDAHULUAN C = (1) Panas jenis adalah kapasitas panas bahan tiap satuan massanya, yaitu : c = (2) 1 2 BAB I PENDAHULUAN 1.1 Tujuan Tujuan dari praktikum ini yaitu; Mengamati dan memahami proses perubahan energi listrik menjadi kalor. Menghitung faktor konversi energi listrik menjadi kalor. 1.2 Dasar

Lebih terperinci

RANCANG BANGUN PROTOTIPE KULKAS MINI THERMOELEKTRIK

RANCANG BANGUN PROTOTIPE KULKAS MINI THERMOELEKTRIK RANCANG BANGUN PROTOTIPE KULKAS MINI THERMOELEKTRIK Iwan Sumirat 1, Romanto 2 1 Dosen Tetap Program Studi Teknik Elektro Fakultas Teknik Universitas Ibn Khaldun Bogor, Jl. KH Sholeh Iskandar km 2, Bogor,

Lebih terperinci

PEMANFAATAN MODUL TERMOELEKTRIK GENERATOR UNTUK MENGISI BATERAI PONSEL. oleh Daniel Adven Andriyanto NIM :

PEMANFAATAN MODUL TERMOELEKTRIK GENERATOR UNTUK MENGISI BATERAI PONSEL. oleh Daniel Adven Andriyanto NIM : PEMANFAATAN MODUL TERMOELEKTRIK GENERATOR UNTUK MENGISI BATERAI PONSEL oleh Daniel Adven Andriyanto NIM : 612008012 Skripsi Untuk melengkapi salah satu syarat memperoleh Gelar Sarjana Teknik Program Studi

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN. 1. Temperatur udara masuk kolektor (T in ). T in = 30 O C. 2. Temperatur udara keluar kolektor (T out ). T out = 70 O C.

BAB IV HASIL DAN PEMBAHASAN. 1. Temperatur udara masuk kolektor (T in ). T in = 30 O C. 2. Temperatur udara keluar kolektor (T out ). T out = 70 O C. BAB IV HASIL DAN PEMBAHASAN 4.1 Spesifikasi Alat Pengering Surya Berdasarkan hasil perhitungan yang dilakukan pada perancangan dan pembuatan alat pengering surya (solar dryer) adalah : Desain Termal 1.

Lebih terperinci

Gambar 11 Sistem kalibrasi dengan satu sensor.

Gambar 11 Sistem kalibrasi dengan satu sensor. 7 Gambar Sistem kalibrasi dengan satu sensor. Besarnya debit aliran diukur dengan menggunakan wadah ukur. Wadah ukur tersebut di tempatkan pada tempat keluarnya aliran yang kemudian diukur volumenya terhadap

Lebih terperinci

Kajian awal analisis kalor buang kondensor pendingin ruangan sebagai sumber energi listrik alternatif

Kajian awal analisis kalor buang kondensor pendingin ruangan sebagai sumber energi listrik alternatif Jurnal Energi dan Manufaktur Vol. 9 No. 2, Oktober 2016 (154-160) http://ojs.unud.ac.id/index.php/jem ISSN: 2302-5255 (p) ISSN: 2541-5328 (e) Kajian awal analisis kalor buang kondensor pendingin ruangan

Lebih terperinci

Termoelektrik (Energi Panas menjadi Listrik)

Termoelektrik (Energi Panas menjadi Listrik) Termoelektrik (Energi Panas menjadi Listrik) 1. Pengertian Termoelektrik Prinsip kerja dari Termoelektrik adalah dengan berdasarkan Efek Seebeck yaitu jika 2 buah logam yang berbeda disambungkan salah

Lebih terperinci

STUDI EKSPERIMENTAL PENGARUH SUDUT KEMIRINGAN TERHADAP PERPINDAHAN KALOR PADA MODUL PHOTOVOLTAIC UNTUK MENINGKATKAN DAYA KELUARAN

STUDI EKSPERIMENTAL PENGARUH SUDUT KEMIRINGAN TERHADAP PERPINDAHAN KALOR PADA MODUL PHOTOVOLTAIC UNTUK MENINGKATKAN DAYA KELUARAN Studi Eksperimental Pengaruh Sudut Kemiringan... (Nabilah dkk.) STUDI EKSPERIMENTAL PENGARUH SUDUT KEMIRINGAN TERHADAP PERPINDAHAN KALOR PADA MODUL PHOTOVOLTAIC UNTUK MENINGKATKAN DAYA KELUARAN Inas Nabilah

Lebih terperinci

BAB IV PENGUJIAN DAN ANALISIS

BAB IV PENGUJIAN DAN ANALISIS BAB IV PENGUJIAN DAN ANALISIS Pada bab ini akan dibahas mengenai pengujian alat serta analisis dari hasil pengujian. Tujuan dilakukan pengujian adalah mengetahui sejauh mana kinerja dari hasil perancangan

Lebih terperinci

RANCANG BANGUN ENERGI TERBARUKAN DENGAN MEMANFAATKAN ENERGI PANAS DARI KONDENSOR MESIN PENDINGIN

RANCANG BANGUN ENERGI TERBARUKAN DENGAN MEMANFAATKAN ENERGI PANAS DARI KONDENSOR MESIN PENDINGIN RANCANG BANGUN ENERGI TERBARUKAN DENGAN MEMANFAATKAN ENERGI PANAS DARI KONDENSOR MESIN PENDINGIN Muhammad Gilang Satria* Prodi Teknik Mesin, Fakultas Teknik, Universitas Pancasila* Abstrak Teknologi termoelektrik

Lebih terperinci

BAB III. METODE PENELITIAN

BAB III. METODE PENELITIAN BAB III. METODE PENELITIAN 3.1 Lokasi dan Waktu Penelitian Penelitian ini dilaksanakan di Laboratorium Rekayasa Termal Jurusan Teknik Mesin, Fakultas Teknik, Universitas Riau (Juni Oktober 2016). 3.2 Jenis

Lebih terperinci

Rudi Susanto

Rudi Susanto LISTIK DINAMIS udi Susanto http://rudist.wordpress.com 1 Tujuan Instruksional Dapat menentukan arus listrik, hambatan listrik, energi listrik, daya listrik serta dapat menggunakan hukum Ohm dan aturan

Lebih terperinci

OLEH : DEDDY REZA DWI P DOSEN PEMBIMBING : IR. DENNY M. E. SOEDJONO,MT.

OLEH : DEDDY REZA DWI P DOSEN PEMBIMBING : IR. DENNY M. E. SOEDJONO,MT. PERHITUGAN HEAT RATE HEATSINK PADA SISI PANAS THERMOELEKTRIK TEC 12706 PADA DAYA 22,4 WATT OLEH : DEDDY REZA DWI P 2107030033 DOSEN PEMBIMBING : IR. DENNY M. E. SOEDJONO,MT. ALUR PRESENTASI Dasar Teori

Lebih terperinci

Proceeding Seminar Nasional Thermofluid VI Yogyakarta, 29 April Universitas Indonesia, Kampus Baru UI Depok.

Proceeding Seminar Nasional Thermofluid VI Yogyakarta, 29 April Universitas Indonesia, Kampus Baru UI Depok. Aplikasi Heat Pipe pada Thermoelectric Generator (Application of Heat Pipe on Thermoelectric Generator) Rio Wirawan 1, M. Hadi Kusuma 1,2, Ranggi Sahmura 1, Wayan Nata Septiadi 1,3, Nandy Putra 1 1 Applied

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN 3.1. Diagram Alir Penelitian Pada peneliatian ini langkah-langkah yang dilakukan mengacu pada diagram alir di bawah ini: Mulai Persiapan Alat dan Bahan Menentukan Sudut Deklinasi,

Lebih terperinci

PENGARUH SERAPAN SINAR MATAHARI OLEH KACA FILM TERHADAP DAYA KELUARAN PLAT SEL SURYA

PENGARUH SERAPAN SINAR MATAHARI OLEH KACA FILM TERHADAP DAYA KELUARAN PLAT SEL SURYA PENGARUH SERAPAN SINAR MATAHARI OLEH KACA FILM TERHADAP DAYA KELUARAN PLAT SEL SURYA Ricko Mahindra*, Awitdrus, Usman Malik Jurusan Fisika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau

Lebih terperinci

BAB III PERANCANGAN SISTEM

BAB III PERANCANGAN SISTEM BAB III PERANCANGAN SISTEM Pada bab ini akan dibahas mengenai perancangan dan realisasi sistem yang dibuat. Blok diagram alat yang dibuat secara keseluruhan ditunjukkan oleh Gambar 3.1. Setrika Kolektor

Lebih terperinci

ALAT PENDINGIN DAN PEMANAS PORTABLE MENGGUNAKAN MODUL TERMOELEKTRIK TEGANGAN INPUT 6 VOLT DENGAN TAMBAHAN HEAT PIPE SEBAGAI MEDIA PEMINDAH PANAS

ALAT PENDINGIN DAN PEMANAS PORTABLE MENGGUNAKAN MODUL TERMOELEKTRIK TEGANGAN INPUT 6 VOLT DENGAN TAMBAHAN HEAT PIPE SEBAGAI MEDIA PEMINDAH PANAS ALAT PENDINGIN DAN PEMANAS PORTABLE MENGGUNAKAN MODUL TERMOELEKTRIK TEGANGAN INPUT 6 VOLT DENGAN TAMBAHAN HEAT PIPE SEBAGAI MEDIA PEMINDAH PANAS Hendra Abdul Aziz 1, Rahmat Iman Mainil 2, dan Azridjal

Lebih terperinci

BAB IV. HASIL PENGUJIAN dan PENGOLAHAN DATA

BAB IV. HASIL PENGUJIAN dan PENGOLAHAN DATA BAB IV HASIL PENGUJIAN dan PENGOLAHAN DATA Data hasil pengukuran temperatur pada alat pemanas air dengan menggabungkan ke-8 buah kolektor plat datar dengan 2 buah kolektor parabolic dengan judul Analisa

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN. 4.1 Deskripsi Alat Pengering Yang Digunakan Deskripsi alat pengering yang digunakan dalam penelitian ini adalah :

BAB IV HASIL DAN PEMBAHASAN. 4.1 Deskripsi Alat Pengering Yang Digunakan Deskripsi alat pengering yang digunakan dalam penelitian ini adalah : BAB IV HASIL DAN PEMBAHASAN 4.1 Deskripsi Alat Pengering Yang Digunakan Deskripsi alat pengering yang digunakan dalam penelitian ini adalah : Desain Termal 1. Temperatur udara masuk kolektor (T in ). T

Lebih terperinci

BAB IV HASIL DAN ANALISIS Perancangan Sistem Pembangkit Listrik Sepeda Hybrid Berbasis Tenaga Pedal dan Tenaga Surya

BAB IV HASIL DAN ANALISIS Perancangan Sistem Pembangkit Listrik Sepeda Hybrid Berbasis Tenaga Pedal dan Tenaga Surya BAB IV HASIL DAN ANALISIS 4.1. Perancangan Sistem Pembangkit Listrik Sepeda Hybrid Berbasis Tenaga Pedal dan Tenaga Surya 4.1.1. Analisis Radiasi Matahari Analisis dilakukan dengan menggunakan data yang

Lebih terperinci

BAB IV PENGUJIAN DAN ANALISIS

BAB IV PENGUJIAN DAN ANALISIS BAB IV PENGUJIAN DAN ANALISIS Bab ini akan membahas pengujian serta analisis masing- masing modul dari sistem yang dirancang. Tujuan dilakukannya pengujian ini adalah untuk mengetahui apakah sistem yang

Lebih terperinci

UJI UNJUK KERJA PENDINGIN RUANGAN BERBASIS THERMO ELECTRIC COOLING

UJI UNJUK KERJA PENDINGIN RUANGAN BERBASIS THERMO ELECTRIC COOLING UJI UNJUK KERJA PENDINGIN RUANGAN BERBASIS THERMO ELECTRIC COOLING Lukman Nulhakim Program Studi Teknik Mesin Politeknik Enjinering Indorama Email: lukman.mesin@gmail.com ABSTRAK Thermo electric cooling

Lebih terperinci

Rancang Bangun Sistem Penyejuk Udara Menggunakan Termoelektrik dan Humidifier

Rancang Bangun Sistem Penyejuk Udara Menggunakan Termoelektrik dan Humidifier Rancang Bangun Sistem Penyejuk Udara Menggunakan Termoelektrik dan Humidifier Irnanda Priyadi #1, Khairul Amri Rosa #2, Rian Novriansyah #3 #1,2,3 Program Studi Teknik Elektro, Universitas Bengkulu Jalan

Lebih terperinci

PANEN ENERGI LISTRIK DIANTARA SUNGAI DAN MATAHARI: GAGASAN PEMANFAATAN THERMOELEKTRIK DI KALIMANTAN BARAT

PANEN ENERGI LISTRIK DIANTARA SUNGAI DAN MATAHARI: GAGASAN PEMANFAATAN THERMOELEKTRIK DI KALIMANTAN BARAT PANEN ENERGI LISTRIK DIANTARA SUNGAI DAN MATAHARI: GAGASAN PEMANFAATAN THERMOELEKTRIK DI KALIMANTAN BARAT Supri, Pratiwi Oktaviani, Andreas Setiawan Program Studi Pendidikan Fisika, Fakultas Sains dan

Lebih terperinci

PLAGIAT MERUPAKAN TINDAKAN TIDAK TERPUJI

PLAGIAT MERUPAKAN TINDAKAN TIDAK TERPUJI GENERATOR TERMOELEKTRIK YANG TERSUSUN DARI RANGKAIAN SERI DELAPAN ELEMEN TERMOELEKTRIK UNTUK CHARGER HANDPHONE TUGAS AKHIR Diajukan untuk Memenuhi Salah Satu Syarat Memperoleh Gelar Sarjana Teknik Mesin

Lebih terperinci

POTENSI PEMBANGKIT DAYA TERMOELEKTRIK UNTUK KENDARAAN HIBRID

POTENSI PEMBANGKIT DAYA TERMOELEKTRIK UNTUK KENDARAAN HIBRID MAKARA, TEKNOLOGI, VOL. 13, NO. 2, NOVEMBER 2009: 53-58 POTENSI PEMBANGKIT DAYA TERMOELEKTRIK UNTUK KENDARAAN HIBRID Nandy Putra *), Raldi Artono Koestoer, M. Adhitya, Ardian Roekettino, dan Bayu Trianto

Lebih terperinci

BAB III METODE PENELITIAN. makanan menggunakan termoelektrik peltier TEC sebagai berikut :

BAB III METODE PENELITIAN. makanan menggunakan termoelektrik peltier TEC sebagai berikut : BAB III METODE PENELITIAN 3.1. Tempat dan Waktu Pelaksanaan Waktu dan tempat pelaksanaan pembuatan mesin pendingin minuman dan makanan menggunakan termoelektrik peltier TEC1-12706 sebagai berikut : 1.

Lebih terperinci

PENGARUH FILTER WARNA KUNING TERHADAP EFESIENSI SEL SURYA ABSTRAK

PENGARUH FILTER WARNA KUNING TERHADAP EFESIENSI SEL SURYA ABSTRAK PENGARUH FILTER WARNA KUNING TERHADAP EFESIENSI SEL SURYA ABSTRAK Penelitian ini bertujuan untuk mengetahui pengaruh filter warna kuning terhadap efesiensi Sel surya. Dalam penelitian ini menggunakan metode

Lebih terperinci

PENDINGIN TERMOELEKTRIK

PENDINGIN TERMOELEKTRIK BAB II DASAR TEORI 2.1 PENDINGIN TERMOELEKTRIK Dua logam yang berbeda disambungkan dan kedua ujung logam tersebut dijaga pada temperatur yang berbeda, maka akan ada lima fenomena yang terjadi, yaitu fenomena

Lebih terperinci

STUDI KELAYAKAN PENGGUNAAN SEL SILIKON SEBAGAI PENGUBAH ENERGI MATAHARI MENJADI ENERGI LISTRIK

STUDI KELAYAKAN PENGGUNAAN SEL SILIKON SEBAGAI PENGUBAH ENERGI MATAHARI MENJADI ENERGI LISTRIK STUDI KELAYAKAN PENGGUNAAN SEL SILIKON SEBAGAI PENGUBAH ENERGI MATAHARI MENJADI ENERGI LISTRIK Walfred Tambuhan, Maksi Ginting, Minarni Jurusan Fisika FMIPA Universitas Riau walfred_tambunan yahoo.com

Lebih terperinci

Laporan Tugas Akhir BAB I PENDAHULUAN

Laporan Tugas Akhir BAB I PENDAHULUAN BAB I PENDAHULUAN 1.1 Latar Belakang Belakangan ini terus dilakukan beberapa usaha penghematan energi fosil dengan pengembangan energi alternatif yang ramah lingkungan. Salah satunya yaitu dengan pemanfaatan

Lebih terperinci

Ditulis Guna Melengkapi Sebagian Syarat Untuk Mencapai Jenjang Sarjana Strata Satu (S1) Jakarta 2016

Ditulis Guna Melengkapi Sebagian Syarat Untuk Mencapai Jenjang Sarjana Strata Satu (S1) Jakarta 2016 UNIVERSITAS GUNADARMA FAKULTAS TEKNOLOGI INDUSTRI ANALISIS SISTEM KERJA PENDINGIN DAN PEMANAS THERMOELECTRIC DENGAN GENERATOR TENAGA SURYA PORTABLE Nama Disusun Oleh : : Deka Maulana N P M : 21412808 Jurusan

Lebih terperinci

Harvesting Energy Panas Matahari Menggunakan Thermoelectric Dan Photovoltaic

Harvesting Energy Panas Matahari Menggunakan Thermoelectric Dan Photovoltaic Prosiding Seminar Nasional Fisika dan Pendidikan Fisika (SNFPF) Ke-6 2015 63 Harvesting Energy Panas Matahari Menggunakan Thermoelectric Dan Photovoltaic Desy Ermia Putri 1, Dewanto Harjunowibowo 2, Ahmad

Lebih terperinci

STUDI KELAYAKAN PENGGUNAAN SEL SILIKON SEBAGAI PENGUBAH ENERGI MATAHARI MENJADI ENERGI LISTRIK

STUDI KELAYAKAN PENGGUNAAN SEL SILIKON SEBAGAI PENGUBAH ENERGI MATAHARI MENJADI ENERGI LISTRIK STUDI KELAYAKAN PENGGUNAAN SEL SILIKON SEBAGAI PENGUBAH ENERGI MATAHARI MENJADI ENERGI LISTRIK Walfred Tambuhan, Magsi Ginting, Minarni, Purnama Jurusan Fisika FMIPA Universitas Riau walfred_tambunan yahoo.com

Lebih terperinci

STUDI EKSPERIMENTAL PENGARUH PERUBAHAN DEBIT ALIRAN PADA EFISIENSI TERMAL SOLAR WATER HEATER DENGAN PENAMBAHAN FINNED TUBE

STUDI EKSPERIMENTAL PENGARUH PERUBAHAN DEBIT ALIRAN PADA EFISIENSI TERMAL SOLAR WATER HEATER DENGAN PENAMBAHAN FINNED TUBE Studi Eksperimental Pengaruh Perubahan Debit Aliran... (Kristian dkk.) STUDI EKSPERIMENTAL PENGARUH PERUBAHAN DEBIT ALIRAN PADA EFISIENSI TERMAL SOLAR WATER HEATER DENGAN PENAMBAHAN FINNED TUBE Rio Adi

Lebih terperinci

Studi Eksperimental Efektivitas Penambahan Annular Fins Pada Kolektor Surya Pemanas Air dengan Satu dan Dua Kaca Penutup

Studi Eksperimental Efektivitas Penambahan Annular Fins Pada Kolektor Surya Pemanas Air dengan Satu dan Dua Kaca Penutup JURNAL TEKNIK POMITS Vol. 3, No. 2, (2014) ISSN: 2301-9271 1 Studi Eksperimental Efektivitas Penambahan Annular Fins Pada Kolektor Surya Pemanas Air dengan Satu dan Dua Kaca Penutup Edo Wirapraja, Bambang

Lebih terperinci

DAN TEGANGAN LISTRIK

DAN TEGANGAN LISTRIK 1 ARUS DAN TEGANGAN LISTRIK 1.1 Pengertian Arus Listrik (Electrical Current) Kita semua tentu paham bahwa arus listrik terjadi karena adanya aliran elektron dimana setiap elektron mempunyai muatan yang

Lebih terperinci

STUDI KELAYAKAN PENGGUNAAN SEL SILIKON SEBAGAI PENGUBAH ENERGI MATAHARI MENJADI ENERGI LISTRIK

STUDI KELAYAKAN PENGGUNAAN SEL SILIKON SEBAGAI PENGUBAH ENERGI MATAHARI MENJADI ENERGI LISTRIK 92 dari pelat kaca dan tertutup dari pelat kaca. Untuk dioda silikon yang sambungannya paralel terbuka dari pelat kaca besarnya adalah 352 x 10-4 Joule pada temperatur pengamatan 39 o C, sedangkan yang

Lebih terperinci

BAB IV PERHITUNGAN DAN PENGUJIAN PANEL SURYA

BAB IV PERHITUNGAN DAN PENGUJIAN PANEL SURYA 61 BAB IV PERHITUNGAN DAN PENGUJIAN PANEL SURYA Sebuah sel PV terhubung dengan sel lain membentuk sebuah modul PV dan beberapa modul PV digabungkan membentuk sebuah satu kesatuan (array) PV, seperti terlihat

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Pendingin merupakan suatu kebutuhan bagi manusia,sebagai pendingin ruangan, penggunaan AC (AirConditioner) mulai meningkat secara signifikan. Ini merupakan salah satu

Lebih terperinci

I. PENDAHULUAN. Pengembangan energi ini di beberapa negara sudah dilakukan sejak lama.

I. PENDAHULUAN. Pengembangan energi ini di beberapa negara sudah dilakukan sejak lama. I. PENDAHULUAN A. Latar Belakang Seiring perkembangan zaman, ketergantungan manusia terhadap energi sangat tinggi. Sementara itu, ketersediaan sumber energi tak terbaharui (bahan bakar fosil) semakin menipis

Lebih terperinci

Tujuan Instruksional

Tujuan Instruksional Arus Listrik 1 Tujuan Instruksional Dapat menentukan arus listrik, hambatan listrik, energi listrik, daya listrik serta dapat menggunakan hukum Ohm dan aturan Kirchhoff pada analisa rangkaian listrik.

Lebih terperinci

SISTEM PEMANFAATAN ENERGI SURYA UNTUK PEMANAS AIR DENGAN MENGGUNAKAN KOLEKTOR PALUNGAN. Fatmawati, Maksi Ginting, Walfred Tambunan

SISTEM PEMANFAATAN ENERGI SURYA UNTUK PEMANAS AIR DENGAN MENGGUNAKAN KOLEKTOR PALUNGAN. Fatmawati, Maksi Ginting, Walfred Tambunan SISTEM PEMANFAATAN ENERGI SURYA UNTUK PEMANAS AIR DENGAN MENGGUNAKAN KOLEKTOR PALUNGAN Fatmawati, Maksi Ginting, Walfred Tambunan Mahasiswa Program S1 Fisika Bidang Fisika Energi Jurusan Fisika Fakultas

Lebih terperinci

PENGEMBANGAN DAN OPTIMALISASI ELEMEN PELTIER SEBAGAI GENERATOR TERMAL MEMANFAATKAN ENERGI PANAS TERBUANG

PENGEMBANGAN DAN OPTIMALISASI ELEMEN PELTIER SEBAGAI GENERATOR TERMAL MEMANFAATKAN ENERGI PANAS TERBUANG PENGEMBANGAN DAN OPTIMALISASI ELEMEN PELTIER SEBAGAI GENERATOR TERMAL MEMANFAATKAN ENERGI PANAS TERBUANG Walfred Tambunan, Lazuardi Umar, Dara Fuji Jurusan Fisika FMIPA Universitas Riau Pekanbaru email:darafuji93@gmail.com

Lebih terperinci

JURUSAN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS SEBELAS MARET SURAKARTA

JURUSAN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS SEBELAS MARET SURAKARTA SIMULASI PENGARUH DESAIN GEOMETRI COUPLE MODULE THERMOELECTRIC GENERATOR TERHADAP DAYA KELUARAN DAN TEGANGAN LISTRIK YANG DIHASILKAN DENGAN MENGGUNAKAN SOFTWARE ANSYS APDL SKRIPSI Diajukan sebagai salah

Lebih terperinci

PROPOSAL PENELITIAN. Penghemat BBM Sepeda Motor Berbasis Termoelektrik. Disusun oleh : 1. Yuasti Hasna Fauziyah (37764)

PROPOSAL PENELITIAN. Penghemat BBM Sepeda Motor Berbasis Termoelektrik. Disusun oleh : 1. Yuasti Hasna Fauziyah (37764) PROPOSAL PENELITIAN Penghemat BBM Sepeda Motor Berbasis Termoelektrik Disusun oleh : 1. Yuasti Hasna Fauziyah (37764) Jurusan Teknik Fisika Fakultas Teknik Universitas Gadjah Mada 2014 A. LATAR BELAKANG

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Dalam tinjauan pustaka, akan dibahas mengenai pendingin termoelektrik, energi surya, beban pendingin, dan perpindahan kalor yang mendukung penulisan skripsi ini. 2.1 Pendingin Termoelektrik

Lebih terperinci

BAB III METODE PENELITIAN (BAHAN DAN METODE) keperluan. Prinsip kerja kolektor pemanas udara yaitu : pelat absorber menyerap

BAB III METODE PENELITIAN (BAHAN DAN METODE) keperluan. Prinsip kerja kolektor pemanas udara yaitu : pelat absorber menyerap BAB III METODE PENELITIAN (BAHAN DAN METODE) Pemanfaatan energi surya memakai teknologi kolektor adalah usaha yang paling banyak dilakukan. Kolektor berfungsi sebagai pengkonversi energi surya untuk menaikan

Lebih terperinci

Rancang Bangun Pendingin Portable Dengan Menggunakan Konsumsi Daya Rendah

Rancang Bangun Pendingin Portable Dengan Menggunakan Konsumsi Daya Rendah Rancang Bangun Pendingin Portable Dengan Menggunakan Konsumsi Daya Rendah Nurul Iman¹, Heri Haryanto² 1,2 Jurusan Teknik Elektro, Universitas Sultan Ageng Tirtayasa Jln. Jenderal Sudirman Km 3 Cilegon-

Lebih terperinci

PENERANGAN JALAN UMUM MENGGUNAKAN PHOTOVOLTAIC ( PV)

PENERANGAN JALAN UMUM MENGGUNAKAN PHOTOVOLTAIC ( PV) PENERANGAN JALAN UMUM MENGGUNAKAN PHOTOVOLTAIC ( PV) Muamar Mahasiswa Program Studi D3 Jurusan Teknik Elektro Politeknik Negeri Bengkalis E-mail : - Jefri Lianda Dosen Jurusan Teknik Elektro Jurusan Teknik

Lebih terperinci

Gambar 1.1 Grafik Produksi Minyak Bumi Indonesia Tahun dan Prediksi Untuk Tahun

Gambar 1.1 Grafik Produksi Minyak Bumi Indonesia Tahun dan Prediksi Untuk Tahun BAB 1 PENDAHULUAN 1.1 Latar Belakang Eksploitasi energi skala besar berakibat menurunnya ketersediaan bahan bakar fosil seperti minyak bumi dan gas alam. Bahan bakar fosil merupakan energi non-konveksional

Lebih terperinci

Analisis Performa Modul Solar Cell Dengan Penambahan Reflector Cermin Datar

Analisis Performa Modul Solar Cell Dengan Penambahan Reflector Cermin Datar Analisis Performa Modul Solar Cell Dengan Penambahan Reflector Cermin Datar Made Sucipta1,a*, Faizal Ahmad2,b dan Ketut Astawa3,c 1,2,3 Program Studi Teknik Mesin, Fakultas Teknik, Universitas Udayana,

Lebih terperinci

Static Line Rating untuk Integrasi PLTB di Jaringan Tegangan Menengah : Studi Kasus Master Plan Pembangkit Hibrid di Krueng Raya

Static Line Rating untuk Integrasi PLTB di Jaringan Tegangan Menengah : Studi Kasus Master Plan Pembangkit Hibrid di Krueng Raya Static Line Rating untuk Integrasi PLTB di Jaringan Tegangan Menengah : Studi Kasus Master Plan Pembangkit Hibrid di Krueng Raya Idraki Sariyan #1, Hafidh Hasan #2, Syahrizal Syahrizal #3 # Jurusan Teknik

Lebih terperinci

III. METODOLOGI PENELITIAN. Penelitian ini dilaksanakan di Bengkel Pertanian Jurusan Teknik Pertanian

III. METODOLOGI PENELITIAN. Penelitian ini dilaksanakan di Bengkel Pertanian Jurusan Teknik Pertanian 21 III. METODOLOGI PENELITIAN 3.1. Waktu dan Tempat Penelitian Penelitian ini dilaksanakan di Bengkel Pertanian Jurusan Teknik Pertanian Fakultas Pertanian Universitas Lampung pada bulan Desember 2012

Lebih terperinci

Tugas akhir BAB III METODE PENELETIAN. alat destilasi tersebut banyak atau sedikit, maka diujilah dengan penyerap

Tugas akhir BAB III METODE PENELETIAN. alat destilasi tersebut banyak atau sedikit, maka diujilah dengan penyerap BAB III METODE PENELETIAN Metode yang digunakan dalam pengujian ini dalah pengujian eksperimental terhadap alat destilasi surya dengan memvariasikan plat penyerap dengan bahan dasar plastik yang bertujuan

Lebih terperinci

Studi Eksperimental Efektivitas Penambahan Annular Fins pada Kolektor Surya Pemanas Air dengan Satu dan Dua Kaca Penutup

Studi Eksperimental Efektivitas Penambahan Annular Fins pada Kolektor Surya Pemanas Air dengan Satu dan Dua Kaca Penutup JURNAL TEKNIK POMITS Vol. 3, No. 2, (2014) ISSN: 2337-3539 (2301-9271 Print) B-204 Studi Eksperimental Efektivitas Penambahan Annular Fins pada Kolektor Surya Pemanas Air dengan Satu dan Dua Kaca Penutup

Lebih terperinci

III. METODELOGI PENELITIAN. Penelitian dilaksanakan pada Mei hingga Juli 2012, dan Maret 2013 di

III. METODELOGI PENELITIAN. Penelitian dilaksanakan pada Mei hingga Juli 2012, dan Maret 2013 di 22 III. METODELOGI PENELITIAN 3.1. Waktu dan Tempat Pelaksanaan Penelitian dilaksanakan pada Mei hingga Juli 2012, dan 20 22 Maret 2013 di Laboratorium dan Perbengkelan Teknik Pertanian, Fakultas Pertanian,

Lebih terperinci

Jurusan Teknik Elektro, Universitas Diponegoro Semarang Jl. Prof. Sudharto, SH, Kampus UNDIP Tembalang, Semarang 50275, Indonesia

Jurusan Teknik Elektro, Universitas Diponegoro Semarang Jl. Prof. Sudharto, SH, Kampus UNDIP Tembalang, Semarang 50275, Indonesia DIPO PV COOLER, PENGGUNAAN SISTEM PENDINGIN TEMPERATUR HEATSINK FAN PADA PANEL SEL SURYA (PHOTOVOLTAIC) SEBAGAI PENIINGKATAN KERJA ENERGI LISTRIK BARU TERBARUKAN Adhi Warsito *), Erwin Adriono, M.Yudi

Lebih terperinci