Bab III Metodologi Penelitian

dokumen-dokumen yang mirip
Bab IV Hasil dan Pembahasan

3 Percobaan. Peralatan yang digunakan untuk sintesis, karakterisasi, dan uji aktivitas katalis beserta spesifikasinya ditampilkan pada Tabel 3.1.

BAB IV HASIL DAN PEMBAHASAN

4 Hasil dan Pembahasan

BAB III RANCANGAN PENELITIAN

III. METODOLOGI PENELITIAN. analisis komposisi unsur (EDX) dilakukan di. Laboratorium Pusat Teknologi Bahan Industri Nuklir (PTBIN) Batan Serpong,

Bab II Tinjauan Pustaka

BAB IV METODOLOGI PENELITIAN

BAB III BAB III METODE PENELITIAN. Penelitian dilaksanakan pada bulan Februari sampai dengan September

BAB III METODOLOGI PENELITIAN

III. METODELOGI PENELITIAN. Penelitian ini dilakukan di Laboratorium Kimia Anorganik / Fisik Fakultas

BAB III METODE PENELITIAN

PEMBUATAN DAN UJI AKTIVITAS KATALIS Fe OKSIDA UNTUK REAKSI HTSC TESIS. FITRI RUMIANI NIM : Program Studi Teknik Kimia

Bab III Metodologi Penelitian

BAB V HASIL DAN PEMBAHASAN

BAB III METODOLOGI PENELITIAN. tahun 2011 di Laboratorium riset kimia makanan dan material untuk preparasi

BAB 3 METODE PENELITIAN. Neraca Digital AS 220/C/2 Radwag Furnace Control Indicator Universal

BAB V HASIL DAN PEMBAHASAN. Pada penelitian ini akan dibahas tentang sintesis katalis Pt/Zr-MMT dan

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN

3 Metodologi penelitian

III. METODE PENELITIAN. Penelitian ini dilakukan di Laboratorium Kimia Anorganik Fisik Universitas

BAB IV HASIL DAN PEMBAHASAN Hasil Preparasi Awal Bahan Dasar Karbon Aktif dari Tempurung Kelapa dan Batu Bara

3. Metodologi Penelitian

Gambar 7 Desain peralatan penelitian

BAB III METODE PENELITIAN

BAB IV HASIL DAN PEMBAHASAN. dihasilkan sebanyak 5 gram. Perbandingan ini dipilih karena peneliti ingin

BAB IV ANALISIS DAN PEMBAHASAN 4.2 DATA HASIL ARANG TEMPURUNG KELAPA SETELAH DILAKUKAN AKTIVASI

BAB III METODA PENELITIAN

BAB III METODE PENELITIAN. Jenis penelitian yang dilakukan adalah metode eksperimen

BAB III EKSPERIMEN. 1. Bahan dan Alat

III. METODE PENELITIAN. Penelitian telah dilaksanakan selama tiga bulan, yaitu pada bulan September 2012

BAB III METODE PENELITIAN

Metodologi Penelitian

BAB IV METODE PENELITIAN

BAB III ALAT, BAHAN, DAN CARA KERJA. Penelitian ini dilakukan di Laboratorium Kimia Farmasi Kuantitatif

BAB III METODE PENELITIAN

Deskripsi. SINTESIS SENYAWA Mg/Al HYDROTALCITE-LIKE DARI BRINE WATER UNTUK ADSORPSI LIMBAH CAIR

Pemanfaatan Bentonit Dan Karbon Sebagai Support Katalis NiO-MgO Pada Hidrogenasi Gliserol

3. Metodologi Penelitian

METODOLOGI A. BAHAN DAN ALAT 1. Bahan a. Bahan Baku b. Bahan kimia 2. Alat B. METODE PENELITIAN 1. Pembuatan Biodiesel

METODA GRAVIMETRI. Imam Santosa, MT.

BAB III METODOLOGI III.1

BAB III METODOLOGI PENELITIAN. Metode yang digunakan dalam penelitian ini adalah metoda eksperimen.

ZAHRA NURI NADA YUDHO JATI PRASETYO

BAB III METODOLOGI PENELITIAN. Metode penelitian yang digunakan pada penelitian ini adalah

BAB III METODOLOGI PENELITIAN

PRINSIP DAN TEKNIK PENGGUNAAN GAS SORPTION ANALYZER (GSA) Oleh: Sudarlin, M.Si Jurusan Kimia UIN Sunan Kalijaga 2012

BAB III METODE PENELITIAN. Pada penelitian ini digunakan berbagai jenis alat antara lain berbagai

METODE PENELITIAN. Waktu pelaksanaan penelitian dilakukan pada bulan Juli-Desember 2012 bertempat di

III. METODE PENELITIAN. Penelitian ini dilaksanakan selama tiga bulan, yaitu pada bulan Januari 2012

Sintesis Nanopartikel ZnO dengan Metode Kopresipitasi

BAB III METODE PENELITIAN

METODELOGI PENELITIAN. Penelitian ini akan dilakukan di Laboratorium Kimia Anorganik-Fisik Universitas

KONVERSI KATALITIK GLYCEROL MENJADI ACETOL (HYDROXI-2 PROPANON) Pembimbing : Prof. Dr. Ir. Suprapto, DEA

Bab III Metodologi. III.1 Alat dan Bahan. III.1.1 Alat-alat

Bab III Metodologi Penelitian

BAB III METODE PENELITIAN

HASIL DAN PEMBAHASAN

IV. HASIL DAN PEMBAHASAN. sol-gel, dan mempelajari aktivitas katalitik Fe 3 O 4 untuk reaksi konversi gas

3 METODOLOGI PENELITIAN

Bahan yang digunakan pada penelitian ini adalah Minyak goreng bekas

3 Metodologi Penelitian

BAB III METODOLOGI PENELITIAN. Metode yang digunakan dalam penelitian ini adalah dengan metode eksperimen.

3 Metodologi Penelitian

Oleh : ENDAH DAHYANINGSIH RAHMASARI IBRAHIM DOSEN PEMBIMBING Prof. Dr. Ir. Achmad Roesyadi, DEA NIP

Bab III Metodologi Penelitian

BAB III METODE PENELITIAN

ILMU KIMIA ANALIT. Dr. Ir. Dwiyati Pujimulyani, MP

BAB III METODOLOGI PENELITIAN

BAB V HASIL DAN PEMBAHASAN. cahaya matahari.fenol bersifat asam, keasaman fenol ini disebabkan adanya pengaruh

III. METODE PENELITIAN. Penelitian ini dilakukan pada bulan Februari - Mei 2015 di Laboratorium Kimia

BAB V HASIL DAN PEMBAHASAN. karakterisasi luas permukaan fotokatalis menggunakan SAA (Surface Area

III. METODELOGI PENELITIAN. Penelitian ini dilakukan di Laboratorium Kimia Anorganik/fisik Fakultas

Bab 3 Metodologi Penelitian

Kelompok B Pembimbing

Lampiran 1. Prosedur kerja analisa bahan organik total (TOM) (SNI )

III. METODOLOGI PENELITIAN. Penelitian ini dilakukan pada bulan Mei-Juli 2013 di Laboratorium Kimia

3 Percobaan. Untuk menentukan berat jenis zeolit digunakan larutan benzena (C 6 H 6 ).

BAB III METODE PENELITIAN

HASIL DAN PEMBAHASAN. didalamnya dilakukan karakterisasi XRD. 20%, 30%, 40%, dan 50%. Kemudian larutan yang dihasilkan diendapkan

LOGO. Stoikiometri. Tim Dosen Pengampu MK. Kimia Dasar

BAB II TINJAUAN PUSTAKA

Pengaruh Kadar Logam Ni dan Al Terhadap Karakteristik Katalis Ni-Al- MCM-41 Serta Aktivitasnya Pada Reaksi Siklisasi Sitronelal

III. METODE PENELITIAN. Penelitian ini dilakukan pada bulan Februari hingga Mei 2012 di Laboratorium. Fisika Material, Laboratorium Kimia Bio Massa,

BAB III METODE PENELITIAN

III. METODELOGI PENELITIAN. Penelitian ini telah dilakukan di Laboratorium Biomassa Terpadu Universitas

BAB III RANCANGAN PENELITIAN

BAB III METODE PENELITIAN. Penelitian ini akan dilakukan pada bulan Januari Februari 2014.

dengan panjang a. Ukuran kristal dapat ditentukan dengan menggunakan Persamaan Debye Scherrer. Dilanjutkan dengan sintering pada suhu

BAB III METODOLOGI PENELITIAN

BAB IV DATA DAN PEMBAHASAN

BAB II TINJAUAN PUSTAKA

IV. HASIL DAN PEMBAHASAN

BAB III METODE PENELITIAN. Kegiatan penelitian ini dilaksanakan selama 6 bulan, dimulai dari bulan

PASI NA R SI NO L SI IK LI A KA

III. METODOLOGI PENELITIAN. Penelitian ini dilakukan di Laboratorium Kimia Anorganik Fakultas Matematika

HASIL DAN PEMBAHASAN. standar, dilanjutkan pengukuran kadar Pb dalam contoh sebelum dan setelah koagulasi (SNI ).

III. METODELOGI PENELITIAN. Penelitian ini dilakukan pada bulan Mei sampai Agustus 2013 di Laboratorium

Lampiran 1. Prosedur Analisis Karakteristik Pati Sagu. Kadar Abu (%) = (C A) x 100 % B

Transkripsi:

Bab III Metodologi Penelitian III.1 Pembuatan Katalis HTSC Proses pembuatan katalis HTSC menggunakan metoda kopresipitasi. Katalis yang dihasilkan selanjutnya dikarakterisasi dan diuji aktivitasnya. III.1.1 Bahan dan Peralatan Bahan dan peralatan yang digunakan dibagi menjadi dua kelompok, yaitu bahan dan peralatan yang akan digunakan pada proses pembuatan katalis serta uji aktivitas. III.1.1.1 Bahan Bahan yang digunakan pada proses pembuatan katalis adalah sebagai berikut : Fe(NO 3 ) 3.9H 2 O dan Cr(NO 3 ) 3.9H 2 O yang berfungsi sebagai komponen utama pada pembuatan katalis berbasis Fe oksida, Na 2 CO 3 yang berfungsi sebagai precipitating agent, dan aquadest yang berfungsi sebagai pelarut. Bahan yang digunakan pada uji aktivitas katalis adalah sebagai berikut : gas H 2 yang berfungsi sebagai gas pereduksi, gas CO yang berfungsi sebagai reaktan, gas N 2 yang berfungsi sebagai gas inert, dan aquadest yang berfungsi sebagai reaktan. III.1.1.2 Peralatan Peralatan yang digunakan pada proses pembuatan katalis, antara lain : magnetic stirer yang berfungsi sebagai pengaduk, furnace yang berfungsi sebagai pengering dalam proses kalsinasi, kertas saring yang berfungsi sebagai media penyaring, penyaring Butchner yang berfungsi sebagai alat penyaring, pengaduk gelas yang berfungsi sebagai pengaduk dalam pelarutan zat, kertas ph yang berfungsi sebagai indikator tingkat keasaman, III-1 xlviii

pipet tetes yang berfungsi untuk mengambil larutan yang akan digunakan, cawan porselen yang berfungsi sebagai wadah untuk mengeringkan sampel, water bath yang berfungsi sebagai pemanas, gelas kimia 400 ml dan 1000 ml yang berfungsi sebagai wadah aquadest, termometer yang berfungsi sebagai pengukur temperatur reaksi pengendapan, piknometer 25 ml yang berfungsi sebagai pengukur densitas aquadest, dan penggerus porselen yang berfungsi sebagai penggerus katalis high temperature shift conversion. Peralatan yang digunakan pada uji aktivitas katalis adalah sebagai berikut : termokopel yang berfungsi sebagai pengukur temperatur dalam reaktor, reaktor berfungsi sebagai wadah reaksi pergeseran CO, dan syringe pump yang berfungsi sebagai injektor dan pengatur laju aquadest ke dalam reaktor. Rangkaian peralatan untuk uji aktivitas katalis HTSC dapat dilihat pada gambar III.1 berikut ini. Gambar III.1 Rangkaian peralatan uji aktivitas katalis pada reaksi pergeseran CO menjadi CO 2 dan H 2 (Kholisoh, 2003). xlix III-2

Gambar III.1 menunjukkan rangkaian peralatan uji aktivitas katalis pada reaksi pergeseran CO menjadi CO 2 dan H 2. Sistem reaksi terdiri dari reaktor, tabung gas N 2, CO, dan H 2, syringe pump, pemanas, termokopel, dan kondensor. Tabung gas N 2, CO, dan H 2 dilengkapi dengan sebuah keran (needle valve) dan flowmeter gelembung sabun untuk mengatur dan menunjukkan pembacaan laju alir gas. Reaktor yang digunakan berupa reaktor fixed bed yang terbuat dari tabung gelas pyrex dengan panjang 62 cm dan diameter dalam 1,4 cm. Reaktor diletakkan secara konsentris terhadap furnace. Unggun yang digunakan berupa 0,5 gr katalis HTSC diletakkan secara merata di atas glass wool. Selanjutnya air diinjeksikan melalui syringe pump ke dalam reaktor. Temperatur pemanas air masuk diset 120 o C untuk memanaskan air menjadi kukus dan memanaskan gas masuk yang nantinya dipergunakan sebagai reaktan. Temperatur di dalam reaktor diukur dengan menggunakan termokopel. Termokopel ini dilengkapi dengan display untuk mengetahui pembacaan temperatur dalam reaktor. kukus sisa reaktan selanjutnya dikondensasikan dengan menggunakan kondensor hingga menjadi kondensat. Laju alir gas keluaran selanjutnya dibaca melalui flowmeter dengan gelembung sabun pada bagian keluaran. l III-3

III.1.2 Metode Pembuatan Katalis Prosedur pembuatan katalis HTSC terdiri dari beberapa tahapan, yaitu : tahap presipitasi, tahap pencucian dan penyaringan, tahap pengeringan, serta tahap kalsinasi. Secara umum, tahap tahap pembuatan katalis dapat digambarkan pada diagram alir yang ditunjukkan pada gambar III.2 dan III.3 berikut ini. Aquadest 157,3 ml Pemanasan T = 60 o C t = 45 menit Fe(NO 3) 3.9H 2O Cr(NO 3) 3.9H 2O Aquadest 52,16 ml Pemanasan T = 60 o C t = 45 menit Na 2 CO 3 13 gr Presipitasi CO 2 Pengadukan Pengukuran ph = 7 8,5 Fe(OH) 3 dan Cr(OH) 3 Gambar III.2 Diagram alir proses pembuatan katalis HTSC bagian I li III-4

Fe(OH) 3 dan Cr(OH) 3 Penyaringan I Fe(OH) 3 dan Cr(OH) 3 hasil penyaringan I Aquadest 25 o C 1 liter Pencucian I Penyaringan II Fe(OH) 3 dan Cr(OH) 3 hasil penyaringan II Aquadest 50 o C 1 liter Pencucian II Penyaringan III Fe(OH) 3 dan Cr(OH) 3 hasil penyaringan III Pengeringan T = 105 o C t = 18 jam Kalsinasi T = 300 o C t = 6 jam Fe 2 O 3 dan Cr 2 O 3 Gambar III.3 Diagram alir proses pembuatan katalis HTSC bagian II lii III-5

III.1.2.1 Tahap Presipitasi Tujuan proses presipitasi adalah untuk mengendapkan larutan yang diperoleh dari pencampuran larutan I ke larutan II hingga menghasilkan presipitat. Presipitat yang diinginkan adalah presipitat dengan ukuran partikel yang kecil dengan luas permukaan yang besar. Urutan proses presipitasi yang dijelaskan adalah proses pembuatan katalis HTSC ITB 3. Proses presipitasi ini diawali dengan membuat dua macam larutan, yaitu larutan I dan II. Larutan I dibuat dengan melarutkan ferri nitrat [Fe{NO 3 } 3.9H 2 O] 27,25 gr dan kromium nitrat [Cr{NO 3 } 3.9H 2 O] 2,7 gr dalam 157,3 ml aquadest dan dipanaskan pada temperatur 60 o C selama 45 menit. Dasar pemilihan garam nitrat karena lebih mudah terdekomposisi dengan pemanasan menjadi oksidanya, lebih mudah dihilangkan dengan pencucian, dan tidak meracuni katalis (Szabo, 1976). Larutan presipitator (larutan II) dibuat dengan melarutkan Na 2 CO 3 sebanyak 13 gr dalam 52,16 ml aquadest pada temperatur 60 o C selama 45 menit. Pemanasan pada saat pelarutan bertujuan untuk meningkatkan laju pelarutan. Selanjutnya larutan I dituang ke dalam larutan II dengan perlahan - lahan. Pencampuran dilakukan pada temperatur 60 o C dan ph akhir pencampuran yang mendekati netral (ph = 7-8,5) sambil terus diaduk hingga karbon dioksida yang terlarut dapat terlepas. Karbon dioksida terlarut ini dapat dilihat dengan adanya buih didalam suspensi (Jennings, 1981). Reaksi yang terjadi pada tahap presipitasi adalah sebagai berikut : Na 2 CO 3 2Na + 2- + CO 3...(3.1) CO 2-3 + H 2 O - HCO 3 + OH -...(3.2) 6Na + + 3HCO - 3 + 3OH - + 2Fe(NO 3 ) 3 2Fe(OH) 3 + 6NaNO 3 + 3CO 2...(3.3) 6Na + + 3HCO - 3 + 3OH - + 2Cr(NO 3 ) 3 2Cr(OH) 3 + 6NaNO 3 + 3CO 2...(3.4) III.1.2.2 Tahap Pencucian dan Penyaringan Suspensi yang terbentuk selanjutnya dicuci sebanyak 2 kali dengan tujuan untuk memperoleh presipitat yang lebih murni dan bebas dari sisa karbonat. Pencucian dilakukan dengan menggunakan aquadest temperatur 25 o C dan aquadest temperatur 50 o C. Pencucian dengan menggunakan aquadest 50 o C ini liii III-6

bertujuan untuk menghilangkan impuritis yang akan mempengaruhi kemurnian presipitat, meningkatkan laju penyaringan, dan sebagai pengganti proses aging. Perbaikan kemurnian ini menyebabkan impuritis yang terperangkap dapat dilepaskan dan kembali ke larutan. Presipitat yang telah murni ditandai dengan ph air pencucian = 7. Presipitat selanjutnya disaring secepatnya dengan menggunakan penyaring butchner dan media penyaring berupa kertas saring. Penyaringan presipitat harus dilakukan secepat mungkin dengan tujuan untuk menghindari terperangkapnya ion nitrat dalam pori katalis dan mengakibatkan luas permukaan katalis menjadi lebih kecil. Selain itu penyaringan presipitat sebaiknya dilakukan pada keadaan panas agar impuritis lebih mudah larut sehingga dapat dihilangkan dari presipitat, dan laju penyaringan menjadi semakin cepat (Hobart, 1940). III.1.2.3 Tahap Pengeringan Pengeringan bertujuan untuk menghilangkan kandungan air dalam katalis (Richardson, 1989). Temperatur yang disarankan pada proses pengeringan ini yaitu 105 o C selama 18 jam (Satterfield, 1979). Hasil yang diperoleh berupa padatan kering yang selanjutnya akan dikalsinasi di dalam furnace. III.1.2.4 Tahap Kalsinasi Proses kalsinasi bertujuan untuk menghilangkan sisa molekul air dan bahan bahan yang tidak diinginkan dalam katalis. Selain itu kalsinasi juga digunakan untuk mendekomposisikan Fe(OH) 3 menjadi Fe 2 O 3 dan untuk meningkatkan ketahanan mekanik katalis terhadap perubahan temperatur (Satterfield, 1989). Temperatur yang disarankan pada proses kalsinasi adalah 400-1000 o C selama 6 jam (Neel, 1979). liv III-7

Reaksi yang terjadi pada tahap kalsinasi : 2Fe(OH) 3 Fe 2 O 3 + 3H 2 O...(3.5) 2Cr(OH) 3 Cr 2 O 3 + 3H 2 O...(3.6) Selanjutnya katalis dibentuk sesuai dengan bentuk dan geometri partikel yang diinginkan. Katalis ini dinamakan katalis HTSC ITB. Biasanya katalis ini dihaluskan hingga memiliki bentuk akhir berupa serbuk (padatan halus) (Jennings, 1984). Katalis komersial yang dijadikan perbandingan juga dihaluskan hingga memiliki bentuk seperti katalis HTSC ITB. Kedua katalis ini kemudian dikarakterisasi dan diuji aktivitasnya. III.1.3 Karakterisasi Katalis Sifat fisiko kimia katalis yang akan dikarakterisasi adalah : (1). Luas permukaan spesifik katalis yang akan ditentukan dengan metode BET (Brunaeur Emmett Teller). (2). Struktur kristal katalis dianalisis dengan metode XRD. III.1.3.1 Prosedur Analisa Luas Permukaan Spesifik dengan Metode BET Luas permukaan spesifik dapat dianalisa dengan menggunakan metode Brunauer Emett Teller (BET). Metode ini didasarkan pada pengukuran volum gas nitrogen yang teradsorp oleh sampel katalis pada berbagai kondisi tekanan rendah. Beda tekanan yang disebabkan oleh penyerapan permukaan katalis terhadap sejumlah volum gas nitrogen dalam peralatan pengujian diukur dan digunakan untuk menghitung luas permukaan BET. Alat yang dipergunakan untuk metode BET ini adalah NOVA 1000 Gas Sorption Analyzer yang terdapat di Laboratorium Analisis dan Instrumentasi Program Studi Teknik Kimia ITB. lv III-8

Prinsip kerja BET, yaitu : 1. sampel dimasukkan ke dalam wadah sampel; 2. outgassing dilakukan pada temperatur 250 o C; 3. sampel didinginkan dengan menggunakan nitrogen cair; 4. menghitung luas permukaan dengan menggunakan persamaan 3.7. Vm 1 =.(3.7) S + I dimana : Vm = Volume monolayer sampel katalis S = Slope dari grafik P/P0 vs P/[V(P0-P)] I = Intersep dari grafik P/P0 vs P/[V(P0-P)] Untuk mencari luas permukaan katalis, maka dapat menggunakan persamaan (3.8). Sa Vm x N A x Sa N2 = (3.8) V STP dimana : Vm = Volume monolayer sampel katalis N A = Bilangan Avogadro = 6,02 x 10 23 Sa N 2 = Luas permukaan 1 molekul gas N 2 = 16,2 x 10-20 m 2 V STP = Volume gas pada keadaan STP = 22,4 liter Untuk mencari luas permukaan spesifik katalis (Sg) dapat dilihat pada persamaan (3.9): Sa Sg = (3.9) m dimana : Sg = Luas permukaan spesifik katalis (m 2 /g) Sa = Luas permukaan katalis (m 2 ) m = Berat sampel (g) lvi III-9

III.1.3.2 Analisa Struktur Bahan Kristal dengan Metode XRD Struktur bahan kristal katalis HTSC dapat dianalisa dengan menggunakan metode XRD. Identifikasi campuran bahan dalam katalis ini dapat diketahui dengan menggunakan pola referensi. Selain itu pola XRD juga memegang peranan penting dalam pengenalan struktur kristal tertentu dalam katalis kompleks (Satterfield, 1991). Prinsip kerja XRD, yaitu : 1. membenturkan sinar x pada bahan material yang akan dianalisa; 2. mengukur intensitas cahaya yang direfleksikan; 3. intensitas berkas cahaya yang direfleksikan membentuk sudut antara permukaan sampel, refleksi berkas cahaya, dan jarak antar bidang kristal sampel. Hal ini dapat dilihat pada persamaan 3.10 berikut ini. 2 d sin q = n λ..(3.10) dimana : d = jarak antar bidang kristal sampel q = sudut yang terbentuk antara permukaan sampel dan refleksi berkas cahaya n = orde λ = panjang gelombang 4. membandingkan hasil pengukuran penyebaran berkas cahaya terhadap pola referensi (Mijiritskii, 1973). lvii III-10

Difraktogram standar Fe 2 O 3, dan Fe 3 O 4 berdasarkan database PCPDFWIN dapat dilihat pada gambar III.4 dan III.5 berikut ini. Gambar III.4 Difraktogram standar Fe 2 O 3 pada PDF 73-2234 Gambar III.5 Difraktogram standar Fe 3 O 4 pada PDF 79-0416 lviii III-11

III.2 Uji Aktivitas Uji aktivitas katalis ini dimaksudkan untuk menghitung konversi. Aktivitas katalis HTSC diuji dengan menyelenggarakan reaksi pergeseran CO menjadi CO 2 dan H 2 pada skala laboratorium yang memiliki kondisi operasi yang dapat dilihat pada tabel III.1 berikut ini. Tabel III.1 Kondisi operasi uji aktivitas katalis pada skala laboratorium No. Kondisi Operasi Nilai Satuan 1. Tekanan 1 atm 2. Temperatur 370 3. Volume Hourly Space Velocity (VHSV) 22234 Jam -1 4. Rasio kukus terhadap gas umpan 0,87 5. Komposisi gas CO dalam umpan 12,5 %-v o C Kondisi operasi pada proses pembuatan katalis HTSC komersial adalah sebagai berikut : Tekanan Temperatur : 3 MPa : 370-400 o C VHSV : 9000-19000 Jam -1 Rasio kukus terhadap gas umpan : 0,6 Komposisi gas CO dalam umpan (Twigg, 1989) : 12,9%-v Uji aktivitas katalis yang dilakukan pada reaksi pergeseran CO menjadi CO 2 dan H 2 terdiri dari proses aktivasi, dan reaksi. III.2.1 Aktivasi Tujuan proses aktivasi adalah untuk mengaktifkan katalis HTSC yang berbentuk haematit (Fe 2 O 3 ) menjadi magnetit (Fe 3 O 4 ) sebelum digunakan. Proses reduksi dilakukan secara bertahap. Temperatur reduksi awal yang digunakan yaitu 250 o C selama 1 jam, dan 350 o C selama 1 jam. Temperatur lix III-12

unggun katalis dinaikkan dari 250 o C sampai 350 o C dengan laju pemanasan 100 o C/jam. Pada temperatur reduksi ini digunakan H 2 :N 2 = 1:1. Temperatur reduksi selanjutnya dinaikkan hingga 400 o C selama 2 jam dengan tujuan untuk menghasilkan proses reduksi yang sempurna (Twigg, 1989). Temperatur unggun katalis dinaikkan dari 350 o C sampai 400 o C dengan laju pemanasan 100 o C/jam. Pada temperatur reduksi ini digunakan H 2 dengan konsentrasi 2 kali lebih banyak dari konsentrasi N 2 untuk meningkatkan laju aktivasi katalis. Kurva reduksi dapat dilihat pada gambar III.6 berikut ini. KURVA REDUKSI TEMPERATUR (oc) 450 400 350 300 250 200 150 100 50 0 0 1 2 3 4 5 6 JAM KE Gambar III.6 Kurva proses reduksi katalis HTSC ITB Pada proses reduksi dilakukan pengecekan terhadap kehadiran oksigen pada aliran masuk dan keluar reaktor dengan menggunakan GC. Kehadiran oksigen saat reaksi tidak inginkan karena menyebabkan terjadinya reaksi oksidasi yang dapat dilihat pada persamaan 3.11 berikut ini (Twigg, 1989). 2Fe 3 O 4 + ½ O 2 à 3Fe 2 O 3 H = -464,6 kj/mol...(3.11) Reaksi oksidasi akan menyebabkan Fe 3 O 4 yang aktif menjadi Fe 2 O 3 yang tidak aktif. lx III-13

III.2.2 Reaksi Pergeseran CO Menjadi CO 2 dan H 2 Reaktan yang masuk ke dalam reaktor terdiri dari gas N 2 dengan laju alir 85,71 ml/menit yang berfungsi sebagai gas inert dan gas CO. Gas CO dialirkan dari tabung CO dengan laju alir sekitar 13,33 ml/menit. Selanjutnya air diinjeksikan ke dalam reaktor dengan menggunakan pompa suntikan umpan (syringe pump). Laju alir air yang masuk ke reaktor yaitu 0,06 ml/menit. Air yang diinjeksikan dan gas dipanaskan terlebih dahulu sebelum masuk ke dalam reaktor dengan menggunakan temperatur pemanasan 120 o C. Tujuan pemanasan ini adalah untuk memanaskan gas dan seluruh air yang diinjeksikan sehingga menghasilkan kukus. Reaksi dilangsungkan pada temperatur 370 o C. Pembentukan embun menandai bahwa aliran air dari syringe pump telah terjadi. Hadirnya air dan gas CO memungkinkan terjadinya reaksi pergeseran CO menjadi CO 2 dan H 2. Selanjutnya sampel diambil pada aliran masuk dan keluar sebanyak 0,2 ml setelah 30 menit dari pembentukan embun di bawah reaktor untuk melakukan analisa kromatografi. Hal ini dilakukan terus hingga tercapai kondisi steady state (tunak), yakni suatu kondisi dimana konversi relatif konstan terhadap waktu reaksi. Stabilitas katalis diperiksa dengan menyelenggarakan reaksi pergeseran CO menjadi CO 2 dan H 2 selama 10 jam. Konversi CO selama waktu tersebut diperiksa secara berkala (sekali dalam 1 jam). III.2.3 Evaluasi dan Analisis Evaluasi dan analisis gas gas yang masuk dan keluar dari reaktor dilakukan tiap 1 jam dengan menggunakan peralatan GC-8AIT dari Schimadzu yang terdapat pada Laboratorium Teknik Reaksi Kimia dan Katalisis, Program Studi Teknik Kimia, ITB. Kondisi pengoperasian GC-8AIT dapat dilihat pada tabel III.2 berikut ini. lxi III-14

Tabel III.2 Kondisi pengoperasian GC 8AIT dari Schimadzu (Kholisoh, 2003) No. Kondisi Operasi Nilai Satuan 1. Temperatur kolom Molsieve 5A 50 2. Temperatur injektor/detektor 70 3. Arus listrik detektor 70 ma o C o C Selain kondisi pengoperasian, variabel yang harus diketahui pada penggunaan GC adalah waktu retensi. Waktu retensi adalah waktu yang dibutuhkan sampel dari saat injeksi hingga terdeteksi oleh detektor. Data waktu retensi untuk gas H 2, N 2, dan CO standar dapat dilihat pada tabel III.3 berikut ini. Tabel III.3 Waktu Retensi (t R ) gas H 2, N 2, dan CO Gas t R [menit] H 2 5,04-6,07 N 2 2,21-2,84 CO 0,94-1,96 III.2.4 Perhitungan Perhitungan yang dilakukan pada uji aktivitas katalis berupa perhitungan besarnya konversi reaksi yang didasarkan pada hasil analisis GC. Cara menghitung konversi reaksi dapat dilihat pada persamaan 3.12 berikut ini. XCO area CO area CO - area N 2 area N masuk 2 keluar = x 100 %... (3.12) area CO area N 2 masuk lxii III-15