BAB 2 TINJAUAN PUSTAKA

dokumen-dokumen yang mirip
BAB 2 TINJAUAN PUSTAKA

BAB 1 PENDAHULUAN. Universitas Sumatera Utara

BAB 1 PENDAHULUAN. model gigitiruan dilakukan dengan cara menuangkan gips ke dalam cetakan rongga

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA

BAB 1 PENDAHULUAN. Universitas Sumatera Utara

TINJAUAN PUSTAKA. Model gigitiruan merupakan replika dari permukaan rongga mulut, yaitu

BAB 2 TINJAUAN PUSTAKA

I. PENDAHULUAN. A. Latar Belakang Masalah. dalam bidang kedokteran gigi semakin beragam dan pesat. Terdapat berbagai jenis

BAB 2 TINJAUAN PUSTAKA. dunia. Di alam gipsum merupakan massa yang padat dan biasanya berwarna abu-abu,

I. PENDAHULUAN. A. Latar Belakang

PEMURNIAN GARAM DAPUR MELALUI METODE KRISTALISASI AIR TUA DENGAN BAHAN PENGIKAT PENGOTOR NA 2 C 2 O 4 NAHCO 3 DAN NA 2 C 2 O 4 NA 2 CO 3

BAB 2 TINJAUAN PUSTAKA. berdasarkan pada cara bahan tersebut mengeras. Istilah ireversibel menunjukkan bahwa

BAB 2 TINJAUAN PUSTAKA

RANGKUMAN STUDI PENINGKATAN MUTU GARAM DENGAN PENCUCIAN

BAB 2 TINJAUAN PUSTAKA

Manipulasi Bahan Cetak Alginat

LAPORAN PRAKTIKUM ILMU MATERIAL I

BAB I PENDAHULUAN. Bab I Pendahuluan

PENGARUH METODE PENGERINGAN DENGAN TEMPERATUR RUANG DAN MICROWAVE

Rekristalisasi Garam Rakyat Untuk Meningkatkan Kualitas

PERCOBAAN VII PEMBUATAN KALIUM NITRAT

BAB 1 PENDAHULUAN. rumput laut tertentu yang bernama Brown Algae bisa menghasilkan suatu ekstrak lendir,

MENTERI PERINDUSTRIAN REPUBLIK INDONESIA PERATURAN MENTERI PERINDUSTRIAN REPUBLIK INDONESIA NOMOR: 42/M-IND/PER/11/2005 TENTANG PENGOLAHAN,

Pemurnian Garam Lokal Untuk Konsumsi Industri Syafruddin dan Munawar ABSTRAK

Analisis Mutu Garam Tradisional di Desa Siduwonge Kecamatan Randangan Kabupaten Pohuwato Provinsi Gorontalo

LAPORAN PRAKTIKUM ILMU MATERIAL I : SETTING TIME BAHAN CETAK ALGINAT BERDASARKAN VARIASI SUHU AIR (REVISI)

SIFAT KOLIGATIF LARUTAN

PENGARUH PENAMBAHAN LARUTAN GARAM DAPUR DAN NaCl 2% TERHADAP SETTING TIME DAN KEKUATAN KOMPRESI GIPS TIPE III SEBAGAI BAHAN MODEL KERJA GIGITIRUAN

LAPORAN PRAKTIKUM ILMU MATERIAL II

Prarancangan Pabrik Kalsium Klorida dari Kalsium Karbonat dan Asam Klorida Kapasitas Ton/Tahun BAB I PENDAHULUAN

1. Mahasiswa Jurusan Teknologi Hasil Perikanan 2. Tenaga Pengajar di jurusan Teknologi Hasil Perikanan Universitas Negeri Gorontalo

BAB I PENDAHULUAN Latar Belakang Pendirian Pabrik

BAB II TINJAUAN PUSTAKA. jaringan lunak dalam rongga mulut secara detail. Menurut Craig dkk (2004)

BAB 2 TINJAUAN PUSTAKA

WALIKOTA PASURUAN SALINAN PERATURAN DAERAH KOTA PASURUAN NOMOR 10 TAHUN 2013 TENTANG PENGENDALIAN DAN PENGAWASAN GARAM KONSUMSI BERIODIUM

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. Penelitian ini bertujuan untuk membuktikan pengaruh rasio w/p terhadap

PEMISAHAN CAMPURAN proses pemisahan

BAB 2 TINJAUAN PUSTAKA. lunak dan merupakan tempat melekatnya anasir gigitiruan. 1 Berbagai macam bahan

LAPORAN PRAKTIKUM ILMU MATERIAL I. : Recovery from Deformation Material Cetak Alginat

Revisi BAB I PENDAHULUAN

KULIAH TEKNOLOGI PENGOLAHAN PANGAN GULA, GARAM DAN ASAM. Disiapkan oleh: Siti Aminah

HUBUNGAN KANDUNGAN NATRIUM CHLORIDA (NaCl) DAN MAGNESIUM (Mg) DARI GARAM RAKYAT DI PULAU MADURA

BAB I PENDAHULUAN. cetak non elastik setelah mengeras akan bersifat kaku dan cenderung patah jika diberi

Proses Pembuatan Biodiesel (Proses Trans-Esterifikasi)

LAPORAN LENGKAP PRAKTIKUM ANORGANIK PERCOBAAN 1 TOPIK : SINTESIS DAN KARAKTERISTIK NATRIUM TIOSULFAT

PERATURAN MENTERI PERINDUSTRIAN REPUBLIK INDONESIA NOMOR :42/M-IND/PER/11/2005 TENTANG PENGOLAHAN, PENGEMASAN DAN PELABELAN GARAM BERIODIUM

KIMIA. Sesi POLIMER. A. LOGAM ALKALI a. Keberadaan dan Kelimpahan Logam Alkali. b. Sifat-Sifat Umum Logam Alkali. c. Sifat Keperiodikan Logam Alkali

BAB I PENDAHULUAN. A. Latar Belakang. mulai menggunakan secara intensif bahan cetakan tersebut (Nallamuthu et al.,

Perubahan zat. Perubahan zat

PEMBUATAN GARAM MENGGUNAKAN KOLAM KEDAP AIR BERUKURAN SAMA

BAB 1 PENDAHULUAN. Universitas Sumatera Utara

PENGARUH KUALITAS BAHAN BAKU DAN F:S PADA PROSES PEMURNIAN GARAM DENGAN METODE HIDROEKSTRAKSI BATCH

Reaksi Dehidrasi: Pembuatan Sikloheksena. Oleh : Kelompok 3

BAB I I TINJAUAN PUSTAKA. direkatkan oleh bahan ikat. Beton dibentuk dari agregat campuran (halus dan

Macam-macam Titrasi Redoks dan Aplikasinya

1. Ciri-Ciri Reaksi Kimia

Hubungan koefisien dalam persamaan reaksi dengan hitungan

TELUR ASIN PENDAHULUAN

Pengeringan Untuk Pengawetan

BAB I PENDAHULUAN. tersebut adalah terjadinya infeksi silang yang bisa ditularkan terhadap pasien, dokter

STOKIOMETRI BAB. B. Konsep Mol 1. Hubungan Mol dengan Jumlah Partikel. Contoh: Jika Ar Ca = 40, Ar O = 16, Ar H = 1, tentukan Mr Ca(OH) 2!

BAB 1 PENDAHULUAN 1.1 Latar Belakang Universitas Sumatera Utara

PENGARUH TEMPERATUR PADA PROSES PEMBUATAN ASAM OKSALAT DARI AMPAS TEBU. Oleh : Dra. ZULTINIAR,MSi Nip : DIBIAYAI OLEH

BAB II TINJAUAN PUSTAKA

PERUBAHAN BERAT HASIL CETAKAN BAHAN CETAK ALGINAT TIPE NORMAL SETTING YANG BERBEDA PADA MENIT-MENIT AWAL IMBIBISI

LAPORAN PRAKTIKUM ILMU MATERIAL I : Recovery From Deformation Material Cetak Alginat

BAB V HASIL DAN PEMBAHASAN. A. Hasil Pengujian Agregat. Hasil pengujian agregat ditunjukkan dalam Tabel 5.1.

BAB I PENDAHULUAN. Telur adalah salah satu sumber protein yang dikonsumsi oleh sebagian besar

PERBANDINGAN PENGGUNAAN NAOH-NAH DENGAN NAOH-NA 2 SEBAGAI BAHAN PENGIKAT IMPURITIES PADA PEMURNIAN GARAM DAPUR

I PENDAHULUAN. Pemikiran,(6) Hipotesis Penelitian, dan (7) Tempat dan Waktu Penelitian.

BAB 1 PENDAHULUAN. cetakan negatif dari jaringan rongga mulut. Hasil cetakan digunakan untuk

LAPORAN PRAKTIKUM KIMIA ANORGANIK PERCOBAAN III (PEMURNIAN BAHAN MELALUI REKRISTALISASI)

LAPORAN PRAKTIKUM KIMIA FISIK VOLUM MOLAL PARSIAL. Nama : Ardian Lubis NIM : Kelompok : 6 Asisten : Yuda Anggi

merupakan campuran dari beragam senyawa kimia, beberapa terbuat dari sumbersumber alami dan kebanyakan dari bahan sintetis (BPOM RI, 2003).

BAB I PENDAHULUAN. mudah dalam proses pencampuran dan manipulasi, alat yang digunakan minimal,

Larutan dan Konsentrasi

BAB I PENDAHULUAN. produksi garam dapur, gula, sodium sulphat, urea, dan lain-lain. pada batas kristalisasi dan batas kelarutan teoritis.

BAB II TINJAUAN PUSTAKA, LANDASAN TEORI, KERANGKA PEMIKIRAN, DAN HIPOTESIS PENELITIAN

BAB II TINJAUAN PUSTAKA

I PENDAHULUAN. hampir di seluruh wilayah di Indonesia. Kelapa termasuk dalam famili Palmae,

Bab VI Larutan Elektrolit dan Nonelektrolit

4. HASIL DAN PEMBAHASAN. kaca, dan air. Suhu merupakan faktor eksternal yang akan mempengaruhi

KIMIA TERAPAN (APPLIED CHEMISTRY) (PENDAHULUAN DAN PENGENALAN) Purwanti Widhy H, M.Pd Putri Anjarsari, S.Si.,M.Pd

PENGARUH PENGGUNAAN BEBERAPA JENIS AIR BERDASARKAN KESADAHANNYA TERHADAP WAKTU PENGERASAN AKHIR DENTAL STONE TIPE IV SKRIPSI SANI MA RIFAT J

BAB 5 KONSEP LARUTAN 1. KOMPOSISI LARUTAN 2. SIFAT-SIFAT ZAT TERLARUT 3. KESETIMBANGAN LARUTAN 4. SIFAT KOLIGATIF LARUTAN

SIFAT KOLIGATIF LARUTAN

LAPORAN PRAKTIKUM KIMIA ANORGANIK 1 PEMISAHAN KOMPONEN DARI CAMPURAN 11 NOVEMBER 2014 SEPTIA MARISA ABSTRAK

Deskripsi SEMEN CEPAT GEOPOLIMER DAN METODA PEMBUATANNYA

PERBANDINGAN PEMAKAIAN AIR KAPUR DAN AIR TAWAR SERTA PENGARUH PERENDAMAN AIR GARAM DAN AIR SULFAT TERHADAP DURABILITAS HIGH VOLUME FLY ASH CONCRETE

PENGARUH KONSENTRASI NaOH PADA PROSES PEMBUATAN ASAM OKSALAT DARI AMPAS TEBU

BAB II TINJAUAN PUSTAKA

HUKUM DASAR KIMIA. 2CUO. 28GRAM NITROGEN 52 GRAM MAGNESIUM NITRIDA 3 MG + N 2 MG 3 N 2

BAB I PENDAHULUAN A. LATAR BELAKANG. Prarancangan Pabrik Magnesium Oksid dari Bittern dan Batu Kapur dengan Kapasitas 40.

TEKNOLOGI PENGOLAH GARAM RAKYAT SEBAGAI SALAH SATU UPAYA PEMBERDAYAAN MASYARAKAT PESISIR INDONESIA

Perhatikan gambar diagram P-T berikut:

BAB 3 METODOLOGI PENELITIAN. 3.1 Jenis Penelitian Rancangan penelitian yang dilakukan merupakan penelitian eksperimental.

BAB I PENDAHULUAN A. Latar Belakang

Penentuan Kesadahan Dalam Air

BAB 2 TINJAUAN PUSTAKA

Transkripsi:

BAB 2 TINJAUAN PUSTAKA 2.1 Model Untuk Pembuatan Gigitiruan Model gigitiruan merupakan replika jaringan keras dan jaringan lunak rongga mulut pasien yang digunakan sebagai media untuk menentukan diagnosis, menjelaskan rencana perawatan dan proses perawatan kepada pasien, serta media pembuatan gigitiruan sehingga model gigitiruan merupakan media yang menghubungkan prosedur klinis yang dilakukan dokter gigi dan prosedur laboratoris yang dilakukan oleh dokter gigi atau laboran. 3 2.2 Jenis Model Untuk Pembuatan Gigitiruan 2.2.1 Model Studi Model studi merupakan replika jaringan rongga mulut pasien yang digunakan oleh dokter gigi untuk mengamati dan mempelajari keadaan rongga mulut pasien sehingga model studi harus dapat mencakup beberapa hal penting, yaitu: 2,3,19 a. Lokasi gigi, kontur, dan hubungan dataran oklusal b. Kontur linggir yang tersisa, ukuran, dan konsistensi mukosa c. Anatomi rongga mulut yang berguna untuk perluasan basis gigitiruan (vestibulum, trigonum retromolar, pterigomaxillary notch, palatum keras dan palatum lunak, dasar mulut, dan frenulum). Kegunaan model studi yaitu: 3,19 a. Memberikan gambaran keadaan jaringan keras dan lunak rongga mulut pasien dalam bentuk tiga dimensi. b. Media untuk mempelajari hubungan oklusal dari lengkung rahang pasien. c. Media untuk mempelajari ukuran gigi, posisi gigi, bentuk gigi, dan hubungan rahang pasien. d. Media untuk mempelajari jaringan keras dan jaringan lunak rongga mulut pasien dari pandangan lingual saat gigi oklusi.

e. Media untuk membandingkan keadaan rongga mulut pasien sebelum dilakukan perawatan dan setelah dilakukan perawatan. f. Media untuk menjelaskan keadaan pasien. g. Rekam medis legal mengenai keadaan lengkung rahang pasien untuk keperluan asuransi, gugatan hukum, dan forensik. Gips tipe II umumnya digunakan sebagai bahan membuat model studi. 2.2.2 Model Kerja Model kerja umumnya terbuat dari dental stone atau gips tipe III yang memiliki kekuatan yang cukup untuk menahan tekanan selama prosedur laboratoris karena digunakan sebagai media pembuatan gigitiruan. 3,7 2.3 Gips Gips merupakan mineral yang terdapat di alam yang digunakan sebagai bahan cetak sejak tahun 1844 dan sebagai bahan model sejak tahun 1756. 3 Alasan utama penggunaan gips pada bidang kedokteran gigi yaitu karena gips merupakan bahan yang mudah dimodifikasi secara kemis atau fisis untuk tujuan yang berbeda. Gips yang digunakan pada kedokteran gigi merupakan gips yang mengandung kalsium sulfat dihidrat (CaSO 4 H 2 O) kemudian dipanaskan pada temperatur 110 o -120 o C (230 o - 250 o F) untuk mengeluarkan air dari kristalisasi sehingga menghasilkan kalsium sulfat hemihidrat (CaSO 4 ½H 2 O) dalam bentuk bubuk, dan saat bubuk gips (kalsium sulfat hemihidrat) dicampur dengan air, terjadi reaksi balik secara kimia yaitu kalsium sulfat hemihidrat berubah kembali menjadi kalsium sulfat dihidrat. 3,5,20 Terdapat dua metode pengapuran gips, yaitu untuk menghasilkan α-hemihidrat dan β-hemihidrat. Pengapuran gips pada temperatur 125 o C akan menghasilkan kristal yang padat, kurang berporus, dan kristal dengan bentuk prismatik, yang disebut dengan α-kalsium sulfat hemihidrat yang digunakan sebagai bahan pembuatan model kerja. 2,3,5 Pengapuran gips pada temperatur 115 o C akan menghasilkan hemihidrat yang berporus, relatif kecil, dan kristal yang tidak teratur, disebut dengan β-kalsium sulfat hemihidrat yang digunakan sebagai bahan pembuatan model studi. 2,3,5

Gips diproduksi menjadi beberapa jenis, yaitu plaster, stone, high-strength stone, dan bahan tanam berdasarkan sifat fisiknya. Perbedaan utama pada sifat fisik gips yaitu tergantung pada variasi ukuran, bentuk, dan porositas bubuk gips yang dihasilkan dari proses pengapuran yang berbeda. 3 2.3.1 Tipe tipe Gips Berdasarkan spesifikasi ADA (American Dental Association) No. 25, gips dapat diklasifikasikan menjadi: 1. Tipe I (Impression Plaster) Digunakan untuk mencetak daerah edentulous dan perbaikan gigitiruan. Gips tipe ini memiliki konsistensi yang lebih kental sehingga gips sulit mengalir keluar dari sendok cetak saat dimasukkan kedalam mulut. 8 Plaster cetak jarang digunakan lagi sebagai bahan cetak dalam kedokteran gigi karena telah digantikan oleh bahan yang kurang kaku seperti hidrokoloid dan elastomer. 3,5 2. Tipe II (Model Plaster) Gips tipe II umunya digunakan sebagai bahan membuat model studi dan bahan tanam untuk mengisi kuvet dalam pembuatan gigitiruan. 3,5 Gips tipe II dihasilkan dari gips yang dipanaskan pada suhu 110ºC-120ºC sehingga menghasilkan senyawa β- hemihidrat yang porus, mempunyai bentuk yang sangat tidak teratur dan jarak antar partikel yang besar yang menyebabkan reaksi pengerasan memerlukan banyak air. 8 3. Tipe III (Dental Stone) Gips tipe III dihasilkan dari gips yang dipanaskan pada temperatur 125ºC dibawah tekanan atmosfer sehingga mengalami dehidrasi dan kandungan airnya akan berkurang, setelah melalui proses dehidrasi, maka akan dihasilkan senyawa α- hemihidrat yang lebih padat, bentuknya teratur, kurang porus, dan kristal dengan bentuk prismatik. Karakteristik yang dimiliki oleh α-hemihidrat menyebabkan gips ini membutuhkan jumlah air yang lebih sedikit dan memiliki kekuatan lebih besar dibandingkan dengan gips tipe II, sehingga gips tipe III sering digunakan sebagai bahan pembuatan model kerja. 2,3,5 Gips tipe III awalnya berwarna putih sehingga sulit dibedakan dengan gips tipe I dan II sehingga pabrik biasanya memberi warna

kekuningan atau warna kapur lainnya, namun perlu diketahui bahwa pemberian warna pada gips tidak menentukan kualitas gips. Berdasarkan spesifikasi ADA No.25, setting ekspansi gips tipe III setelah 2 jam pengerasan yaitu sebesar 0,00% - 0,20% dan besar rasio W/P, yaitu sebesar 28-30 ml air/100 gr gips. 3,5 4. Tipe IV (Dental Stone, High Strength) Gips tipe IV digunakan sebagai bahan pembuatan die stone, terdiri dari partikel α-hemihidrat jenis Densite yang berbentuk kuboidal serta daerah permukaan yang lebih kecil dibandingkan gips tipe III. Pada pencampuran gips tipe IV ini penggunaan air lebih sedikit dibandingkan dengan gips tipe III sehingga memiliki kekuatan dan kekerasan yang cukup untuk tahan terhadap daya abrasi saat penggunaan instrumen yang tajam serta memiliki setting ekspansi yang minimal. 3,5 5. Tipe V (Dental Stone, High Strength, High Expansion) Gips tipe V merupakan gips yang memiliki ekspansi yang lebih besar yaitu sekitar 0,1%-0,3%. 4 Ekspansi pengerasan pada gips tipe V ini ditingkatkan karena logam campur yang baru, seperti basis logam, memiliki pengerutan pengecoran yang lebih besar dibandingkan logam campur mulia konvensional sehingga dibutuhkan ekspansi yang lebih besar pada stone yang digunakan untuk die untuk mengimbangi pengerutan pemadatan logam campur. 3,5

Tabel 1. Tipe-tipe Gips 4,5 Jenis gips Rasio W:P Setting time 2-Hr setting expansion (%) 1-Hr compressive strength (min) Min Max (MPa) (psi) I. Plaster, 0.40 0.75 4±1 0.00 0.15 4.0 580 impression II. Plaster, model 0.45 0.50 12±4 0.00 0.30 3.0 1300 III. Dental stone 0.28 0.30 12±4 0.00 0.20 20.7 3000 IV. Dental stone, 0.22 0.24 12±4 0.00 0.10 34.5 5000 high strengths V. Dental stone, high strength, high expansion 0.18 0.22 12±4 0.10 0.30 48.3 7000 2.3.2. Karakteristik Gips Karakteristik gips meliputi: a. Kekuatan kompresi Kekuatan gips umumnya dinyatakan dengan istilah kekuatan kompresi, yang diartikan sebagai kemampuan gips untuk menahan tekanan hingga fraktur. 5 Kekuatan gips dipengaruhi oleh bentuk kristal, porositas kristal, dan rasio W/P. 3 Peningkatan porositas pada partikel mengakibatkan penggunaan air menjadi lebih banyak untuk mengubah hemihidrat menjadi dihidrat sehingga produk gips yang dihasilkan akan semakin lemah kekuatannya. 3,5 b. Setting time Waktu pengerasan gips dapat dikelompokkan menjadi dua, yaitu initial setting time dan final setting time. Initial setting time merupakan interval antara waktu pencampuran gips dan waktu ketika adonan tidak dapat lagi dituangkan ke dalam master mold sehingga initial setting time identik dengan waktu kerja dari gips. Secara klinis, initial setting time dapat diamati saat adonan sudah kehilangan kilapnya, hal

ini terjadi karena reaksi kimia dari hemihidrat yang bergabung dengan air menyebabkan partikel hemihidrat menarik permukaan air. Initial setting time berkisar diantara 8 16 menit dari waktu pencampuran air dan bubuk gips sesuai dengan spesifikasi ADA No. 25. Final setting time dapat didefinisikan sebagai waktu konversi hemihidrat menjadi dihidrat secara sempurna atau secara klinis produk gips dapat dikeluarkan dari master mold dan dapat dimanipulasi tanpa terjadi distorsi atau fraktur. 2,3 c. Setting ekspansi Selama proses pengerasan gips, seluruh tipe gips secara alamiah akan mengalami ekspansi, namun hal ini harus dihindari semaksimal mungkin dalam pembuatan model karena dapat mempengaruhi perubahan dimensi model gips. Cara yang paling efektif dalam mengontrol setting ekspansi adalah dengan penambahan bahan kimia, ekspansi dapat dikurangi dengan menambahkan K 2 SO 4, NaCl atau boraks. Menurut Noort (2007) penambahan NaCl mempunyai pengaruh menurunkan setting ekspansi dengan menyediakan lokasi tambahan untuk pertumbuhan kristal. 20 d. Perubahan dimensi Perubahan dimensi pada gips merupakan hasil dari proses ekspansi selama pengerasan gips yang disebabkan oleh hasil dari pertumbuhan kristal gips yang saling mendorong keluar. 20,21 Gips mengalami ekspansi selama proses pengerasannya, hal ini dapat diartikan bahwa model akan berukuran sedikit lebih besar dari hasil cetakan dan hal ini mempengaruhi perubahan dimensi dari model gips. 2.4 Perubahan Dimensi Gips perubahan dimensi model gips merupakan perubahan ukuran pada model gips selama proses pengerasannya, biasanya dinyatakan sebagai persentase dari panjang semula atau volume. 2 Ekspansi massa gips dapat dideteksi selama perubahan dari partikel hemihidrat menjadi partikel dihidrat. Perubahan dimensi dipengaruhi oleh setting ekspansi dan ekspansi higroskopis. Setting ekspansi dapat dijelaskan berdasarkan mekanisme kristalisasi yang digambarkan sebagai suatu pertumbuhan kristal kristal dihidrat dari nukleus yang saling berikatan satu dengan yang lainnya.

Kristal gips yang terbentuk selama proses pengerasan yaitu berbentuk sperulitik, kristal ini saling menimpa satu sama lain dan mencoba untuk mendorong kristal yang lain agar terpisah sehingga terjadi ekspansi selama proses pengerasan yang dapat menyebabkan perubahan dimensi pada gips. 20 Dimensi merupakan parameter atau pengukuran yang dibutuhkan untuk mendefenisikan sifat-sifat suatu objek, yaitu ukuran seperti panjang, lebar, dan tinggi, serta bentuk. Perubahan dimensi dapat diukur secara volumetrik dan linear yang biasanya dinyatakan dalam presentase panjang atau volume akhir dibandingkan dengan panjang atau volume-volume dari suatu objek. Perubahan dimensi linear lebih mudah dan sederhana untuk diukur dibandingkan dengan perubahan dimensi volumetrik. 2 Pengukuran perubahan dimensi menggunakan travelling microscope. Setiap sampel dilakukan tiga pengukuran, yaitu pengukuran panjang garis cd-c d pada garis A, pengukuran panjang garis cd-c d pada garis B, dan pengukuran panjang garis cdc d pada garis C. Gambar 1. Garis pada ruled block Hasil pengukuran dijumlahkan kemudian didapatkan rata-ratanya. Hasil ratarata dari setiap sampel dimasukkan ke dalam rumus, yaitu: 2 l 1 l 0 x 100 = % l0

dimana: l 1 = rata-rata panjang garis pada setiap sampel (mm) l 0 = panjang garis pada stainless steel die (mm) 2.5 Faktor yang Mempengaruhi Perubahan Dimensi Gips Tipe III 2.5.1 Suhu Ruangan dan Suhu Air Perubahan suhu ruangan dan suhu air dapat memberikan pengaruh pada gips selama proses pengerasan. Peningkatan suhu ruangan dan suhu air dapat menyebabkan pergerakan ion kalsium dan ion sulfat meningkat sehingga setting time menjadi lebih singkat. Peningkatan suhu ruangan yang berawal 20ºC menjadi 37ºC dapat meningkatkan kecepatan reaksi pengerasan sehingga setting time menjadi lebih singkat dan setting ekspansi menjadi lebih besar, tetapi suhu yang meningkat diatas 37ºC menyebabkan setting time menjadi lebih lama, serta setting ekspansi menjadi lebih kecil. Peningkatan suhu air (tidak melebihi 37.5ºC) yang digunakan sebagai campuran gips dapat mempersingkat setting time, tetapi jika suhu air diatas 37.5ºC dapat memberikan efek retarder pada pengerasan gips. 2,3,5 2.5.2 Rasio W/P Rasio W/P merupakan faktor penting dalam mempengaruhi sifat fisik dan sifat kimia dari produk akhir gips, misalnya semakin besar rasio W/P maka setting ekspansi menjadi lebih kecil karena semakin meningkat rasio W/P maka semakin sedikit nukleus kristalisasi per unit volum yang ada dan karena dapat dianggap bahwa ruangan antar nukleus lebih besar pada keadaan tersebut, maka pertumbuhan interaksi kristal-kristal dihidrat akan semakin sedikit, demikian juga dorongan keluar. 3,5 Sebaliknya, penurunan rasio W/P dapat menyebabkan setting ekspansi menjadi lebih besar karena kandungan air menjadi lebih sedikit sehingga jarak antar kristal menjadi lebih dekat, dan hal tersebut menyebabkan dorongan antar kristal menjadi lebih besar. 3,5 Oleh karena itu rasio air dan bubuk perlu diperhatikan sesuai dengan aturan pabrik, contohnya rasio W/P untuk gips tipe III yaitu 28-30 ml air/100 gr gips. 5

2.5.3 Waktu dan Kecepatan Pengadukan Metode pengadukan yang tepat adalah dengan penyediaan air yang sudah diukur terlebih dahulu kemudian diikuti dengan penambahan bubuk yang telah ditimbang secara bertahap. Adonan gips diaduk selama kurang lebih 15 detik dengan kecepatan pengadukan 120 rpm menggunakan spatula dan diikuti dengan pengadukan mekanik selama 20-30 detik dengan kecepatan 450 rpm menggunakan mixer. 4,5,22 Sebagian kristal gips terbentuk langsung ketika gips berkontak dengan air. Begitu pengadukan dimulai, pembentukan kristal ini meningkat. Pada saat yang sama, kristal-kristal tersebut diputuskan oleh spatula dan didistribusikan merata dalam adukan dengan hasil pembentukan lebih banyak nukleus kristalisasi. Dalam jangka limitnya, semakin lama pengadukan maka akan meningkatkan jumlah nukleus kristalisasi dari partikel dihidrat. Akibatnya, jalinan ikatan kristalin yang terbentuk akan semakin banyak, pertumbuhan internal dan dorongan keluar dari kristal-kristal dihidrat meningkat. Hal inilah yang menyebabkan setting ekspansi gipsum meningkat sejalan dengan semakin lamanya waktu pengadukan. 3,5 2.5.4 Retarder Retarder merupakan suatu bahan kimia yang ditambahkan pada gips dan berguna untuk memperlambat setting time. Beberapa contoh retarder adalah NaCl > 20%, natrium sulfat > 3,4%, asetat, boraks, dll. 5,23 Menurut Noort (2007) dan Manappallil (2008) penambahan retarder seperti boraks dapat mengurangi ekspansi dengan mengubah bentuk kristal dihidrat. Kristal akan menjadi pendek dan datar dan mencegah pertumbuhan lebih lanjut sehingga dapat mengurangi ekspansi gips. 13,20 2.5.5 Akselerator Akselerator merupakan bahan kimia yang dapat mempercepat setting time. Penambahan akselerator membuat dihidrat kurang larut dibandingkan hemihidrat yang menyebabkan reaksi pengerasan bergerak menuju dihidrat sehingga reaksi pengerasan menjadi lebih cepat. 2 Penambahan bahan akselerator juga mempunyai pengaruh untuk menurunkan nilai setting ekspansi dengan cara mengubah bentuk

kristal dihidrat yang terbentuk. Beberapa contoh akselerator, yaitu NaCl 2%, Na2SO4 3,4%, K 2 SO 4 dengan konsentrasi di atas 2%. 2,3,5 Menurut Anusavice (2003) setting ekspansi gips dapat dikurangi dengan penambahan NaCl. 5 Menurut Soratur (2002) penambahan bahan kimia seperti kalium sulfat dapat mengurangi ekspansi dengan membawa perubahan dalam bentuk kristal kristal dihidrat. Kristal akan menjadi lebih pendek, tipis, dan datar dan juga dengan menyebabkan tingkat awal kristalisasi begitu cepat sehingga ekspansi berkurang. 13 Berdasarkan penelitian yang dilakukan oleh Kumar (2012), kelompok gips yang direndam dengan slurry water memiliki nilai perubahan dimensi yang paling kecil dibandingkan dengan kelompok lain, yaitu gips yang direndam dengan 0,525% sodium hypochlorite dan 2% glutaradehyde. Berdasarkan hasil penelitian yang dilakukan Langgeng (2013) psada pemakaian slurry water, air bersih dan aquadestilata menunjukkan pada kelompok dengan pemakaian slurry water memiliki nilai perubahan dimensi paling besar dan perubahan dimensi paling kecil terdapat pada kelompok gips dengan penambahan aquadestilata. 33 2.6 Natrium Klorida (NaCl) Sebagai komponen utama pada garam dapur, NaCl banyak digunakan oleh masyarakat dalam pengolahan makanan dan bahan baku dalam berbagai industri kimia. NaCl adalah garam yang berbentuk kristal atau bubuk berwarna putih yang paling berperan penting dalam salinitas laut dan dalam cairan ekstraseluler dari banyak organisme multiseluler. 25 Beberapa sifat garam adalah dapat berbentuk kristal atau bubuk putih dengan system isomeric berbentuk kubus, larut dalam air, tidak berbau dan mempunyai sifat higroskopik sehingga mampu menyerap air pada kelembaban 75%. Garam mengandung dua zat kimia, yakni natrium dan klorida yang keduanya merupakan zat yang sangat dibutuhkan tubuh. Natrium sangat berguna untuk nutrisi bagi sel tubuh dan mengatur tekanan darah dan membantu sistem saraf, sedangkan klorida merupakan zat yang membantu pembentukan asam di lambung yang berguna untuk membunuh bakteri sekaligus membantu proses pencernaan makanan. 26 NaCl murni dalam sediaan farmasi merupakan kristal yang berbentuk

heksahedral, berwarna putih dan memiliki rasa asin. Kemurnian yang dipersyaratkan dalam Farmakope Indonesia edisi III tahun 1979 minimal sebesar 99,5%. 17 Tabel 2. NaCl 33 Natrium klorida Rumus molekul Massa molar Penampilan NaCl 58.44 gr/mol Tidak berwarna/berbentuk kristal putih Densitas 2.16 gr/cm 3 Titik leleh 801 C (1074 K) Titik didih 1465 C (1738 K) Kelarutan dalam air 35.9 gr/100 ml (25 C) 2.6.1 NaCl 2% Penggunaan NaCl sebagai akselerator membawa dampak yang signifikan dalam pembuatan model gigitiruan, hal ini dikarenakan NaCl dapat menyebabkan penurunan setting time. NaCl selain merupakan bahan kimia yang dapat mempercepat initial setting time dan final setting time hingga 50% juga mempunyai pengaruh terhadap setting ekspansi dan perubahan dimensi gips. Menurut Anusavice (2003), Noort (2007) dan Bonsor (2013) penambahan NaCl memiliki pengaruh dalam

mengurangi setting ekspansi dengan menyediakan lokasi tambahan untuk pembentukan kristal sehingga mengurangi interaksi kristal untuk saling mendorong terpisah. 5,20,34 NaCl 2% didefenisikan sebagai 2 gr NaCl/100 ml air. Secara umum, NaCl bertindak sebagai aselerator pada konsentrasi 1 sampai 10% namun konsentrasi NaCl yang paling umum digunakan dan memberikan setting time tercepat, yaitu 210 detik adalah 2%. 14 2.6.2 Garam Dapur Jenis NaCl yang beredar di pasaran saat ini ada beberapa macam, diantaranya adalah garam murni keluaran pabrikan yang dibuat untuk kebutuhan bahan kimia, laboratorium kesehatan, dan industri. Jenis garam NaCl lainnya adalah garam dapur yang sudah dikenal masyarakat luas sebagai bumbu dapur dan pengawet. 17 Selain itu garam dapur merupakan salah satu kebutuhan yang merupakan pelengkap dari kebutuhan pangan dan merupakan sumber elektrolit bagi tubuh manusia dan mempunyai kegunaan utama sebagai pencegah gejala kekurangan iodium yang dapat mengakibatkan beberapa penyakit seperti gondok, masalah kelenjar tiroid, dan penurunan mental. 26 Menurut Standar Nasional Indonesia nomor 01-3556-2000 garam beriodium adalah garam dapur yang mengandung komponen utama NaCl 94,7%, air maksimal 7% dan kalium iodat (KIO 3 ) 30mg/kg, serta senyawa-senyawa lain seperti timbal (Pb), tembaga (Cu), raksa (Hg), dan arsen (As) dalam jumlah yang sangat kecil. 28,29 Pembuatan garam dapat dilakukan dengan beberapa kategori berdasarkan perbedaan kandungan NaCl nya sebagai unsur utama garam. Jenis garam dapat dibagi dalam beberapa kategori seperti; kategori baik sekali, baik dan sedang. Dikatakan baik sekali jika mengandung kadar NaCl >95%, baik jika kadar NaCl 90-95%, dan sedang jika kadar NaCl antara 80-90% tetapi yang diutamakan adalah yang kandungan garamnya di atas 95%. 27 Pembuatan garam dapur dapat dilakukan melalui proses multiple-effect evaporation, oven pan evaporation, dan evaporasi matahari. proses pembuatan garam yang penguapannya di proses dengan menggunakan tenaga matahari (solar evaporation) merupakan proses paling tradisional dan dinilai masih

tepat untuk diterapkan pada perkembangan teknologi dan ekonomi di Indonesia pada waktu sekarang. 15 Evaporasi matahari (solar evaporation) dimulai dengan mengumpulkan air laut ke suatu kolam seperti tambak di tepi pantai kemudian dengan bantuan sinar matahari, air laut diuapkan hingga kristal NaCl-nya tertinggal di tambak. Kemudian para petani garam mengumpulkan kristal kristal tersebut untuk dicuci ulang agar bersih, lalu dijemur kembali. Proses pencucian pada garam dapur ini dilakukan berulang kali hingga kotorannya benar-benar hilang dan menghasilkan butiranbutiran kecil garam. 16 Garam yang dihasilkan dari proses penguapan air laut dengan tenaga matahari ini sangat bergantung pada luas areanya dengan kondisi air laut yang rata-rata mengandung garam sekitar 3,7%. Garam terdiri dari senyawa kimia dengan bagian terbesar terdiri dari natrium klorida (NaCl) dengan pengotor terdiri dari kalsium sulfat (CaSO 4 ), Magnesium sulfat (MgSO 4 ), Magnesium klorida (MgCl 2 ), dan lain-lain. Apabila air laut diuapkan maka akan dihasilkan kristal garam, yang biasa disebut garam krosok. Untuk meningkatkan kualitas garam dapur dapat dilakukan dengan cara kristalisasi bertingkat, rekristalisasi, dan pencucian garam. Cara lain untuk meningkatkan kualitas garam adalah pemurnian dengan penambahan bahan pengikat pengotor. Tanpa adanya proses pemurnian maka garam dapur yang dihasilkan melalui penguapan air laut masih bercampur dengan senyawa lain yang terlarut. 28 Proses pengolahan garam pada industri kecil dan menengah umumnya menggunakan proses pencucian dan pengeringan. Pencucian garam dilakukan dengan memakai larutan jenuh garam (brine) yang digunakan berulang kali, tujuannya untuk menghilangkan kotoran dari permukaan garam, sedangkan proses pengeringan bertujuan untuk mengurangi kadar air. 30 Proses pencucian dan pengeringan yang dilakukan di industri garam yang ada di Indonesia saat ini ternyata belum cukup mampu menghasilkan garam dengan kualitas yang baik sehingga stabilitas iodiumnya rendah. Hal ini disebabkan pencucian dan pengeringan yang dilakukan hanya bertujuan meningkatkan tampilan fisik garam, belum sampai pada cara menghilangkan zat pengotor higroskopis (senyawa Ca dan Mg) dan zat-zat pereduksi

pada garam. Sehingga berdasarkan survei yang telah dilakukan, lebih dari 50% produk garam konsumsi yang dihasilkan industri garam memiliki stabilitas iodium yang rendah. 30

2.8 Kerangka konsep Model Kerja Akselerator Garam NaCl 2% Garam Dapur 2% Sebagai katalis inti kristalisasi Kandungan NaCl murni (100% NaCl) Terdapat kandungan H 2 O (minimal 94,7% NaCl) Kandungan air tidak bertambah saat dicampur dengan gips Kandungan air lebih banyak saat dicampur dengan gips Kristal dihidrat saling berdekatan Jarak antara kristal dihidrat menjadi lebih besar Terjadi dorongan antar kristal Dorongan antar kristal berkurang Dorongan dan tekanan menghasilkan ekspansi masa keseluruhan Ekspansi tidak terlalu besar Penambahan NaCl 2% dapat mengurangi setting ekspansi

2.9 Hipotesis Penelitian Berdasarkan rumusan di atas maka dapat disusun hipotesis penelitian, yaitu : 1. Ada pengaruh penambahan NaCl 2% dan garam dapur 2% terhadap perubahan dimensi gips tipe III. 2. Ada perbedaan pengaruh penambahan NaCl 2% dan garam dapur 2% terhadap perubahan dimensi gips tipe III.