SEMINAR NASIONAL BASIC SCIENCE II

dokumen-dokumen yang mirip
SEMINAR NASIONAL BASIC SCIENCE II

GERAK HARMONIK SEDERHANA

ANALISIS SIMULASI GEJALA CHAOS PADA GERAK PENDULUM NONLINIER. Oleh: Supardi. Jurusan Pendidikan Fisika Universitas Negeri Yogyakarta

Karakteristik Gerak Harmonik Sederhana

KARAKTERISTIK GERAK HARMONIK SEDERHANA

FISIKA I. OSILASI Bagian-2 MODUL PERKULIAHAN. Modul ini menjelaskan osilasi pada partikel yang bergerak secara harmonik sederhana

GERAK OSILASI. Penuntun Praktikum Fisika Dasar : Perc.3

Hukum gravitasi yang ada di jagad raya ini dijelaskan oleh Newton dengan persamaan sebagai berikut :

SASARAN PEMBELAJARAN

Osilasi Harmonis Sederhana: Beban Massa pada Pegas

BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK

SEMINAR NASIONAL BASIC SCIENCE II

Referensi : Hirose, A Introduction to Wave Phenomena. John Wiley and Sons

PROJEK 2 PENCARIAN ENERGI TERIKAT SISTEM DI BAWAH PENGARUH POTENSIAL SUMUR BERHINGGA

menganalisis suatu gerak periodik tertentu

Teori & Soal GGB Getaran - Set 08

GERAK HARMONIK. Pembahasan Persamaan Gerak. untuk Osilator Harmonik Sederhana

Penggunaan Metode Numerik Untuk Mencari Nilai Percepatan Gravitasi

SEMINAR NASIONAL BASIC SCIENCE II

INTEGRASI NUMERIK DENGAN METODE KUADRATUR GAUSS-LEGENDRE MENGGUNAKAN PENDEKATAN INTERPOLASI HERMITE DAN POLINOMIAL LEGENDRE

JAWABAN ANALITIK SEBAGAI VALIDASI JAWABAN NUMERIK PADA MATA KULIAH FISIKA KOMPUTASI ABSTRAK

Mata Kuliah GELOMBANG OPTIK TOPIK I OSILASI. andhysetiawan

BAB III APLIKASI METODE EULER PADA KAJIAN TENTANG GERAK Tujuan Instruksional Setelah mempelajari bab ini pembaca diharapkan dapat: 1.

BAB I PENDAHULUAN. keadaan energi (energy state) dari sebuah sistem potensial sumur berhingga. Diantara

Catatan Kuliah FI1101 Fisika Dasar IA Pekan #8: Osilasi

SEMINAR NASIONAL BASIC SCIENCE II

PENDEKATAN NEAR MINIMAKS SEBAGAI PENDEKATAN FUNGSI. Lilik Prasetiyo Pratama

Materi Pendalaman 01:

LAPORAN PENELITIAN KAJIAN KOMPUTASI KUANTISASI SEMIKLASIK VIBRASI MOLEKULER SISTEM DIBAWAH PENGARUH POTENSIAL LENNARD-JONES (POTENSIAL 12-6)

KATA PENGANTAR. Semarang, 28 Mei Penyusun

Penerapan Integrasi Numerik pada Medan Magnet karena Arus Listrik

MODUL 5 BANDUL MATEMATIS DAN FISIS

dy dx B. Tujuan Adapun tujuan dari praktikum ini adalah

Studi Komputasi Gerak Bouncing Ball pada Vibrasi Permukaan Pantul

Satuan Pendidikan. : XI (sebelas) Program Keahlian

Komputasi Gerak Benda Jatuh Relativistik dengan Variasi Percepatan Gravitasi dan Gesekan Menggunakan Bahasa Reduce

ANALISIS KESTABILAN SISTEM GERAK PESAWAT TERBANG DENGAN MENGGUNAKAN METODE NILAI EIGEN DAN ROUTH - HURWITZ (*) ABSTRAK

RENCANA PELAKSANAAN PEMBELAJARAN

GETARAN DAN GELOMBANG

SEMINAR NASIONAL BASIC SCIENCE II

Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Binawidya Pekanbaru (28293), Indonesia.

Validasi Teknik Video Tracking Pada Praktikum Bandul Matematis Untuk Mengukur Percepatan Gravitasi Bumi

MAKALAH. Makalah Diajukan untuk

II LANDASAN TEORI. Besaran merupakan frekuensi sudut, merupakan amplitudo, merupakan konstanta fase, dan, merupakan konstanta sembarang.

dibutuhkan untuk melakukan satu getaran adalah Selang waktu yang dibutuhkan untuk melakukan satu getaran adalah periode. Dengan demikian, secara

BAB IV DINAMIKA PARTIKEL. A. STANDAR KOMPETENSI : 3. Mendeskripsikan gejala alam dalam cakupan mekanika klasik sistem diskret (partikel).

DINAS PENDIDIKAN KOTA PADANG SMA NEGERI 10 PADANG GETARAN

HAND OUT FISIKA DASAR I/GELOMBANG/GERAK HARMONIK SEDERHANA

Oleh Dr. Fahrudin Nugroho Dr. Iman Santosa

MENGHITUNG VOLUME CADANGAN DENGAN CARA NUMERIK

SEMINAR NASIONAL BASIC SCIENCE II

BANK SOAL METODE KOMPUTASI

1/32 FISIKA DASAR (TEKNIK SIPIL) KINEMATIKA. menu. Mirza Satriawan. Physics Dept. Gadjah Mada University Bulaksumur, Yogyakarta

Perpaduan Metode Newton-Raphson Dan Metode Euler Untuk Menyelesaikan Persamaan Gerak Pada Osilator Magnetik

GERAK MELINGKAR BERATURAN

DINAMIKA. Massa adalah materi yang terkandung dalam suatu zat dan dapat dikatakan sebagai ukuran dari inersia(kelembaman).

GETARAN, GELOMBANG DAN BUNYI

RENCANA PELAKSANAAN PEMBELAJARAN (RPP) : 12 JP (6 x 90 menit)

Penyelesaian Numerik Model Ayunan Terpaksa Menggunakan Metode Exponential Time Differencing (ETD) dan Karakteristik Dinamika

BAB II - Keseimbangan di bawah Pengaruh Gaya-gaya yang Berpotongan

Penyelesaian Masalah Syarat Batas dalam Persamaan Diferensial Biasa Orde Dua dengan Menggunakan Algoritma Shooting Neural Networks

Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Binawidya Pekanbaru (28293), Indonesia.

Soal-Jawab Fisika Teori OSN 2013 Bandung, 4 September 2013

LAPORAN HASIL PRAKTIKUM FISIKA DASAR I

LAPORAN PRAKTIKUM GERAK PADA BIDANG MIRING. (Disusun Guna Memenuhi Salah Satu Tugas Fisika Dasar I) Dosen Pengampu : Drs.Suyoso, M.Si.

FISIKA. Kelas X GETARAN HARMONIS K-13. A. Getaran Harmonis Sederhana

Course Note Numerical Method : Interpolation

Getaran, Gelombang dan Bunyi

Bab III Elastisitas. Sumber : Fisika SMA/MA XI

HUKUM - HUKUM NEWTON TENTANG GERAK.

Jenis Gaya gaya gesek. Hukum I Newton. jenis gaya gesek. 1. Menganalisis gejala alam dan keteraturannya dalam cakupan mekanika benda titik.

LAPORAN PRAKTIKUM FISIKA (PERCEPATAN GRAVITASI) Diajukan untuk memenuhi salah satu tugas. Mata Kuliah : Fisika I OLEH : NAMA : SAIM HIDAYAT

Jika sebuah sistem berosilasi dengan simpangan maksimum (amplitudo) A, memiliki total energi sistem yang tetap yaitu

KOMPUTASI NUMERIK GERAK PROYEKTIL DUA DIMENSI MEMPERHITUNGKAN GAYA HAMBATAN UDARA DENGAN METODE RUNGE-KUTTA4 DAN DIVISUALISASIKAN DI GUI MATLAB

LAPORAN Pratikum Percepatan Gravitasi Bumi

SOAL SELEKSI OLIMPIADE SAINS TINGKAT KABUPATEN/KOTA 2015 CALON TIM OLIMPIADE FISIKA INDONESIA 2016

TINJAUAN KASUS PERSAMAAN GELOMBANG DIMENSI SATU DENGAN BERBAGAI NILAI AWAL DAN SYARAT BATAS

BAB II PERSAMAAN DIFERENSIAL BIASA

Uji Kompetensi Semester 1

PERBANDINGAN BEBERAPA METODE NUMERIK DALAM MENGHITUNG NILAI PI

Pengaruh Panjang Tali Pada Bandul Matematis Terhadap Hasil Perhitungan Percepatan Gravitasi Bumi ARTIKEL. Oleh: Yunus Erdamansyah NIM

Olimpiade Sains Nasional Eksperimen Fisika Tingkat Sekolah Menengah Atas Agustus 2008 Waktu: 4 jam

PENDAHULUAN METODE NUMERIK

BAB II LANDASAN TEORI

Wacana, Salatiga, Jawa Tengah. Salatiga, Jawa Tengah Abstrak

Gerak Harmonis. Sederhana SUB- BAB. A. Gaya Pemulih

BAB I PENDAHULUAN 1.1 Latar Belakang

DESKRIPSI PENGARUH PARAMETER TERHADAP KESTABILAN PERILAKU SISTEM BANDUL GANDA SEDERHANA

PERBANDINGAN METODE GAUSS-LEGENDRE, GAUSS-LOBATTO DAN GAUSS- KRONROD PADA INTEGRASI NUMERIK FUNGSI EKSPONENSIAL

PETUNJUK UMUM Pengerjaan Soal Tahap 1 Diponegoro Physics Competititon Tingkat SMA

Pendahuluan Metode Numerik Secara Umum

Antiremed Kelas 11 FISIKA

METODE NEWTON-COTES TERBUKA BERDASARKAN TURUNAN ABSTRACT

BAB 2 PDB Linier Order Satu 2

BAB I ARTI PENTING ANALISIS NUMERIK

Getaran osilasi teredam pada pendulum dengan magnet dan batang aluminium

Ilustrasi Persoalan Matematika

BANDUL SEDERHANA BANDUL SEDERHANA

SEMINAR NASIONAL BASIC SCIENCE II

Kinematika. Gerak Lurus Beraturan. Gerak Lurus Beraturan

Transkripsi:

ISBN : 978-60-975-0-5 PROSEDING SEMINAR NASIONAL BASIC SCIENCE II Konstribusi Sains Untuk Pengembangan Pendidikan, Biodiversitas dan Metigasi Bencana Pada Daerah Kepulauan SCIENTIFIC COMMITTEE: Prof. H.J. Sohilait, MS Prof. Dr. Th. Pentury, M.Si Dr. J.A. Rupilu, SU Drs. A. Bandjar, M.Sc Dr.Ir. Robert Hutagalung, M.Si FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS PATTIMURA AMBON, 010 i

Juli 010 ISBN: 978-60-975-0-5 PERBANDINGAN PERIODE EKSAK DENGAN PERIODE PENDEKATAN PADA GERAK HARMONIK SEDERHANA Grace Loupatty Jurusan Fisika, FMIPA Universitas Pattimura, Ambon ABSTRACT The solution of the equation was done to seek the motion of a simple pendulum. The period of a simple harmonic motion is created to integral formed with exact periode. Which the integral has lower point and upper point. The methode of Quadrature Gauss-Legendre is used to resolve the first elliptic integration, from the Legendre polynomial. When the value of θ is small, so the exact periode value is equivalent with approximate periode Keywords : exact periode, Quadrature Gauss-Legendre,Legendre polynomial. PENDAHULUAN Permasalahan klasik integrasi numerik adalah seperti yang diformulasikan sebagai suatu fungsi kontinu f(x), a x b untuk mendapat koefisien { w k }dan nodes { x k }, dengan interval 1 k n, sehingga formula quadraturnya [Arhami,M dan Desiani,A.,005] b n f ( x) dx wk f ( xk ) (1.1) a 1 Untuk rerata jarak nodes {x k }, hasil rumus quadratur disebut dengan formula Newton-Cotes. Jika koefisien { w k } diasumsikan semua sama, maka formula quadratur disebut sebagai formula Chebishev quadratur. Jika keduanya adalah koefisien { w k }dan nodes {x k }, yang dihitung dengan persyaratan formula diatas eksak untuk polynomial pada derajat tertinggi, maka formula yang dihasilkan dinamakan Gauss-quadratur. Formula Gauss quadratur ini dengan syarat bahwa formula tersebut eksak untuk derajat paling tinggi, diberikan oleh: b a n p( x) f ( x) dx w f ( x ) (1.) k1 k k PROSEDING Hal. 30

Juli 010 ISBN: 978-60-975-0-5 dimana p(x) menyatakan fungsi bobot. Tipe memilih fungsi bobot p(x) =1 beserta dengan interval integrasi (a,b) [-1,1], dikenal dengan nama bobot formula Gauss. Semua positif dan simpul-simpulnya merupakan akar dari golongan polynomial yang orthogonal, yang masingmasing diketahui fungsi bobot p(x) nya. Sebuah bandul matematis bermassa m, digantungkan pada seutas tali dengan massa diabaikan dan memiliki panjang tali l dibawah pngaruh medan gravitasi bumi g akan memiliki persamaan gerak yang bisa dinyatakan dalam bentuk persamaan diferensial, sehingga bias diselesaikan dengan menggunakan metode numerik. Untuk penelitian ini digunakan metode quadratur Gauss-Legendre. A. Metode Quadratur Gauss-Legendre Metode Quadratur Gauss-Legendre merupakan metode integrasi numerik dengan menggunakan titik-titik Legendre (akar dari polynomial Legendre). Ditinjau suatu integral yang memiliki batas dari x = a sampai x= b: b I f ( x) dx a (.1) Gauss Quadratur memiliki interval [-1,1], sehingga bentuk integralnya adalah b a N b a f ( y) w( y) dy wi f ( yi ) (.) i1 dengan N adalah jumlah titik-titik Gauss, y i adalah titik-titik Gauss b a b a yi xi (.3) yang terkait dengan polynomial orthogonal Legendre: (n+ 1)Pn 1(x) xn+ 1)xP n(x)+npn 1(x)= 0;P 0(x)= 1,P(x)=x 1 (.4) bobot (w i adalah weights) w i (1 x ) [ p' ( x )] (.5) i n i Nilai x i merupakan nilai-nilai akar ke-i dari polinomial Legendre. PROSEDING Hal. 31

Juli 010 ISBN: 978-60-975-0-5 B. Bandul Sederhana Bandul sederhana (Simple Pendulum) adalah benda ideal yang terdiri dari sebuah titik massa, yang digantungkan pada tali ringan yang tidak dapat mulur. Jika bandul ditarik ke samping dari posisi seimbangnya dan dilepaskan, maka bandul akan berayun dalam bidang vertikal karena pengaruh gravitasi. Geraknya merupakan gerak osilasi dan periodik [Halliday,D.,dan Resnick,R., 1997]. Sebuah bandul yang panjangnya l dengan massa partikelnya m, membentuk sudut θ dengan vertikal. Gaya yang bekerja pada m adalah mg, yaitu gaya gravitasi, dan T, tegangan tali. Jika mg diuraikan atas komponen radial, dengan besar mg cos θ dan komponen tangensial, dengan besar mg sinθ. Komponen radial dari gaya tersebut memberi sumbangan pada gaya sentripetal yang dibutuhkan agar benda tetap bergerak pada busur lingkaran. Komponen tangensialnya bertindak sebagai gaya pemulih yang bekerja pada m untuk mengembalikannya ke titik seimbang. Jadi gaya pemulihnya adalah [Halliday,D.,dan Resnick,R., 1997] F=-mgsinθ (.6) d x Persamaan ini dapat dinyatakan sebagai persamaan gerak m mg sin (.7) dt dengan x=lθ dimana sudut θ dinyatakan dalam radian maka persamaan gerak disajikan oleh persamaan diferensial dalam bentuk d g sin (.8) dt l Pada sembarang θ, persamaan tersebut sulit untuk diselesaikan secara analitik. Namun pada simpangan kecil sedemikian hingga sin θ tan θ θ. Persamaan (.8) didekati dengan persamaan d g dt l (.9) PROSEDING Hal. 3

Juli 010 ISBN: 978-60-975-0-5 Jika t = 0 bandul disimpangkan sejauh θ 0 dari titik setimbang maka penyelesaian persamaan (.9) berbentuk g ( t) 0 cos t (.10) l Dari penyelesaian tersebut mudah ditunjukkan bahwa periode ayunan (T) diberikan oleh kaitan l T pendeka tan g (.11) Penyelesaian eksak pada sembarang θ dapat dilakukan secara komputasi dengan mengubah persamaan (.8) ke bentuk integral dan kemudian menghitung bentuk integral tersebut secara numerik. Hal ini dapat diperoleh dengan mengikuti langkah seperti yang dilakukan De Vries yaitu dengan mengalikan kedua ruas persamaan (.8) dengan dθ/dt mengintegralkannya pada syarat awal dθ/dt=0 saat t = 0 sehingga diperoleh dan kemudian d dt g l cos cos 0 (.1) Mengingat periode T adalah waktu yang ditempuh bandul untuk bergerak sejauh empat kali θ 0 maka persamaan tersebut dapat dinyatakan sebagai 0 l d T 4 (.13) g cos cos 0 0 Untuk perhitungan secara numerik akan lebih menguntungkan jika persamaan diatas diubah ke bentuk integral yang memiliki batas bawah dan batas atas yang ajeg dalam bentuk T eksak 4 l g / 0 d 1 k sin (.14) sin dengan k mak (.15) [De Vries, 1994] Integral dari perbandingan kedua periode ( T eksak / T pendekatan ) inilah yang akan dihitung secara numerik untuk berbagai θ mak (amplitudo) dalam interval [0,π/]. PROSEDING Hal. 33

Juli 010 ISBN: 978-60-975-0-5 Penelitian ini bertujuan untuk melihat perbandingan nilai periode eksak dan periode pendekatan pada bandul sederhana dan menyelesaikan bentuk integrasi eliptik bentuk pertama, dari akar-akar polynomial Legendre. METODE PENELITIAN Integral dari perbandingan kedua periode ( T eksak / T pendekatan ) yang akan dihitung secara numerik untuk berbagai θ mak (amplitudo) dalam interval [0,π/]. Dengan metode Quadratur Gauss-Legendre, integrasi eliptik bentuk pertama, / d I, dapat diselesaikan dengan menggunakan persamaan (.) (.5). 0 1 k sin A. Algoritma Algoritma metode Quadrature Gauss-Legendre untuk mencari akar polynomial Legendre dan fungsi bobotnya adalah sebagai berikut: ( b a) ( b a) Diberikan: x m ; x1 Untuk i-0,1,...,(n+1)/hingga terpenuhi, do; 1 i 4 z cos 1 n p 1 :=1.0, p :=0.0 untuk j = 1,...,n, do: p 3 := p ; p := p 1 p 1 := ((j 1) z p (j 1) p 3 ) / j pp = n( z p 1 - p ) / ( z 1) z 1 = z z = z 1 - p 1 / pp if z - z 1 > eps x i = ( x m x 1 ) / z x n+1-i = x m + x l z PROSEDING Hal. 34

Juli 010 ISBN: 978-60-975-0-5 w i = x i / ((1- z ) pp ) w n+1-i = w i B. Listing Program Program Gauss_Legendre_Quadrature INTEGER NPOINT REAL X1, X PARAMETER (NPOINT=10) INTEGER I,j,t_d REAL fungsi, xx, x(npoint), w(npoint), t_rad, integer,phi,k,yy - Input nilai awal (x1) dan nilai akhir (x) - Menghitung abscissas x(i), weight w(i) - Subroutin dari formula Gaussian - Menentukan akar-akar ke-i dengan menggunakan metode Newton - Loop untuk relasi rekursi untuk mendapatkan polinomial Legendre yang dihitung pada x (i) HASIL DAN PEMBAHASAN Data yang diperoleh untuk perbandingan periode T (eksak) dengan T (pendekatan) terhadap sudut θ maksimum adalah pada tabel 1. Tabel 1. Perbandingan Periode terhadap sudut θ Sudut (derajat) Perbandingan Periode Sudut (derajat) Perbandingan Periode 5 1.00041 50 1.0494 10 1.00166 55 1.0538 15 1.00373 60 1.0689 0 1.00666 65 1.07454 5 1.01044 70 1.08739 30 1.01509 75 1.1015 35 1.0064 80 1.11697 40 1.0711 85 1.13388 45 1.03453 90 1.1535 Dari data tersebut dibuat grafik perbandingan T eksak / T pendekatan dan θ maks. Berdasarkan hasil dan grafik diatas, tampak ketika 0 < θ maks < 10 0 maka T eksak / pendekatan ajeg dan bernilai satu (sebanding). Namun ketika θ maks diperbesar lagi maka perbandingan periode menjadi gayut terhadap simpangan maksimum ( amplitudo ). Koreksi T PROSEDING Hal. 35

Juli 010 ISBN: 978-60-975-0-5 inilah yang tidak tampak pada persamaan gerak bandul didekati dengan anggapan terjadi simpangan kecil. Perioda 1. 1.15 1.1 1.05 1 0.95 0 0 40 60 80 100 SUDUT Perbandingan Periode Gambar 1. Grafik Peride T (eksak) / T (pendekatan ) versus θ maks. Dengan Metode Numerik Biasa ( metode Simpson), parameter w i ditentukan sejak awal dan parameter f i. Tetapi dengan Metode Quadratur Numerik, w i dihitung, begitu juga f i dihitung. Dengan demikian menggunakan Metode Quadratur Numerik menjadi lebih rumit (kompleks) tetapi hasilnya mempunyai deviasi yang kecil dan memiliki ketelitian yang tinggi. KESIMPULAN Berdasarkan uraian yang dikemukakan sebelumnya, maka dapat diambil kesimpulan sebagai berikut: 1. Dengan menggunakan Quadratur Gauss-Legendre, dapat diselesaikan bentuk integrasi eliptik bentuk pertama, dari akar-akar polynomial Legendre.. Untuk 0 < θ maks < 10 0, T eksak / T pendekatan nilainya mendekati satu, artinya pada pengambilan θ yang cukup kecil, nilai periode eksak sebanding dengan periode pendekatan. PROSEDING Hal. 36

Juli 010 ISBN: 978-60-975-0-5 DAFTAR PUSTAKA Arhami, M., dan A.Desiani, 005, Pemrograman Matlab, Penerbit Andi Yogyakarta. De Vries, P.L.,1994, A First Course Computational Physics, John Wiley & Sons. Halliday,D dan R.Resnick, 1997, Fisika I, Penerbit Erlangga, Jakarta. Koonin, S.E. dan D. C.Meredith, 1990, Computational Physics ; Fortran Version, Addison- Wesley Publ.Co PROSEDING Hal. 37