Penerapan Aproksimasi Fejer dalam Membuktikan Teorema Weierstrass

dokumen-dokumen yang mirip
Penerapan Aproksimasi Fejer dalam Membuktikan Teorema Weierstrass

BAB IV DERET FOURIER

Prosiding Matematika ISSN:

SATUAN ACARA PERKULIAHAN MATA KULIAH KALKULUS LANJUT A (S1 / TEKNIK INFORMATIKA ) KODE / SKS KD

VARIABEL KOMPLEKS SUMANANG MUHTAR GOZALI KBK ALJABAR & ANALISIS

BAB I PENDAHULUAN Latar Belakang Masalah

Satuan Acara Perkuliahan SEKOLAH TINGGI ILMU STATISTIK. Jam pembelajaran per Pertemuan kelas 150 menit Pertemuan praktikum 0 menit Kegiatan lain

DERET FOURIER DAN APLIKASINYA DALAM FISIKA

FUNGSI KONTINU. sedemikian sehingga jika x adalah titik dari A (c), maka f (x) berada pada Vg (f (c)). (Lihat Gambar 5.1.1).

SATUAN ACARA PERKULIAHAN UNIVERSITAS GUNADARMA

II. LANDASAN TEORI ( ) =

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB 1 PENDAHULUAN 1.1. Latar Belakang Permasalahan

BAB III TRANSFORMASI MATRIKS DERET DIRICHLET HOLOMORFIK. A. Transformasi Matriks Mengawetkan Kekonvergenan

Sifat Barisan Subhimpunan Tutup di Ruang Metrik yang Completion-nya adalah Ruang Atsuji

BAB III FUNGSI TERUKUR LEBESGUE. Setelah dibahas mengenai ukuran Lebesgue dan beberapa sifatnya pada

PENGANTAR ANALISIS REAL

SILABUS MATAKULIAH TEORI INTEGRAL (MAA 525)

BAB II KAJIAN TEORI. pada penulisan bab III. Materi yang diuraikan berisi tentang definisi, teorema, dan

FUNGSI RASIONAL CHEBYSHEV DAN APLIKASINYA PADA APROKSIMASI FUNGSI

ANALISIS KEKONVERGENAN PADA BARISAN FUNGSI

LIMIT DAN KEKONTINUAN

RUANG LIPSCHITZ. Departemen Pendidikan Matematika FPMIPA UPI. *Surel: : (, ) Ϝ

5.1 Fungsi periodik, fungsi genap, fungsi ganjil

JURUSAN PENDIDIKAN MATEMATIKA

SYARAT DIRICHLET. 1, 1 < t < 0

MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016. Hendra Gunawan

BAB III INTEGRAL LEBESGUE. Pada bab sebelumnya telah disebutkan bahwa ruang dibangun oleh

ITERASI TIGA LANGKAH PADA PEMETAAN ASIMTOTIK NON- EKSPANSIF

BAB II KAJIAN TEORI. memahami sifat-sifat dari barisan fungsi. Pada bab ini akan diuraikan materimateri

Universitas Hasanuddin REMEZ ALGORITHM ANALYSIS IN DETERMINING THE BEST POLYNOMIAL APPROXIMATION THAT SATISFIES CHEBYCHEV THEOREM

PERBANDINGAN DAN KARAKTERISTIK BEBERAPA TES KONVERGENSI PADA DERET TAK HINGGA

BAB II LANDASAN TEORI. Pada Bab Landasan Teori ini akan dibahas mengenai definisi-definisi, dan

KEKUATAN KONVERGENSI DALAM PROBABILITAS DAN KONVERGENSI ALMOST SURELY

4. Deret Fourier pada Interval Sebarang dan Aplikasi

KEKONVERGENAN LEMAH PADA RUANG HILBERT

4. Deret Fourier pada Interval Sebarang dan Aplikasi

Pertemuan ke-10: UJI PERBANDINGAN, DERET BERGANTI TANDA, KEKONVERGENAN MUTLAK, UJI RASIO, DAN UJI AKAR

MA3231 Analisis Real

3 LIMIT DAN KEKONTINUAN

MA3231. Pengantar Analisis Real. Hendra Gunawan, Ph.D. Semester II, Tahun

METODE GARIS SINGGUNG DALAM MENENTUKAN HAMPIRAN INTEGRAL TENTU SUATU FUNGSI PADA SELANG TERTUTUP [, ]

TINJAUAN PUSTAKA. Ruang metrik merupakan ruang abstrak, yaitu ruang yang dibangun oleh

F. RANCANGAN KEGIATAN BELAJAR MENGAJAR

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

ABSTRAK 1 PENDAHULUAN

Integral Baire-1 Stieltjes, Henstock-Stieltjes dan Riemann-Stieltjes. The Stieltjes Integrals of Baire-1, Henstock and Riemann

SATUAN ACARA PERKULIAHAN ( SAP ) MATA KULIAH ANALISIS REAL I ( MT403) / 3 SKS KOSIM RUKMANA

3 LIMIT DAN KEKONTINUAN

Ayundyah Kesumawati. April 29, Prodi Statistika FMIPA-UII. Deret Tak Terhingga. Ayundyah. Barisan Tak Hingga. Deret Tak Terhingga

FUNGSI DELTA DIRAC. Marwan Wirianto 1) dan Wono Setya Budhi 2)

Muhafzan FUNGSI KONTINU. Muhafzan, Ph.D

TITIK TETAP NADLR FUNGSI MULTI NILAI KONTRAKTIF PADA RUANG METRIK ( ) Rinurwati Jurusan Matematika FMIPA-ITS Jl. Arif Rahman Hakim Surabaya 60111

TUJUAN INSTRUKSIONAL KHUSUS

II. TINJAUAN PUSTAKA. dan Integral Bawah Darboux, Integral Darboux, Teorema Bolzano Weierstrass,

, maka., maka 1 = 1 +1 <3 1 < = 10 3 =1

3 LIMIT DAN KEKONTINUAN

DEFINISI TIPE RIEMANN UNTUK INTEGRAL LEBESGUE 1. Drajad Maknawi 2 dan Muslich 3 Jurusan Matematika FMIPA UNS. Abstrak

Memahami definisi barisan tak hingga dan deret tak hingga, dan juga dapat menentukan

INTEGRAL RIEMANN BERNILAI BARISAN. (Skripsi) Oleh PURNOMO AJI

TINJAUAN SINGKAT KALKULUS

RPS MATA KULIAH KALKULUS 1B

KISI-KISI UN MATEMATIKA SMK 2015/2016

HUBUNGAN LIMIT FUNGSI DAN LIMIT BARISAN PADA TOPOLOGI REAL

RANCANGAN KEGIATAN PEMBELAJARAN MATA KULIAH MATEMATIKA LANJUT 203H1204. Dosen Pengampu Prof. Dr. Syamsuddin Toaha, M.Sc. Naimah Aris, S.Si, M.Math.

PENGANTAR MATEMATIKA TEKNIK 1. By : Suthami A

16. BARISAN FUNGSI Barisan Fungsi dan Kekonvergenan Titik Demi Titik

Kajian Fungsi Metrik Preserving

Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Binawidya Pekanbaru (28293), Indonesia.

BAB II LANDASAN TEORI

2 G R U P. 1 Struktur Aljabar Grup Aswad 2013 Blog: aswhat.wordpress.com

RENCANA PEMBELAJARAN SEMESTER(RPS) PROGRAM STUDI STATISTIKA

CARA LAIN PEMBUKTIAN TEOEMA ARZELA-ASCOLI DAN HUBUNGANNYA DENGAN EKSISTENSI PENYELESAIAN PERSAMAAN DIFERENSIAL (SUATU KAJIAN TEORITIS)

BAB II DASAR TEORI. Di dalam BAB II ini akan dibahas materi yang menjadi dasar teori pada

-LIMIT- -KONTINUITAS- -BARISAN- Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ

Ketunggalan titik Tetap Pemetaan Kondisi Tipe Kontraktif pada Ruang Banach

MA3231 Analisis Real

Solusi Problem Dirichlet pada Daerah Persegi dengan Metode Pemisahan Variabel

MODUL RESPONSI MAM 4222 KALKULUS IV

ANALISIS RIIL II (PAM 34 )

PEMBUKTIAN RUMUS BENTUK TUTUP BEDA MUNDUR BERDASARKAN DERET TAYLOR

SATUAN ACARA PERKULIAHAN PROGRAM KOMPETENSI GANDA DEPAG S1 KEDUA PROGRAM STUDI PENDIDIKAN MATEMATIKA

MENENTUKAN PERPANGKATAN MATRIKS TANPA MENGGUNAKAN EIGENVALUE

SILABUS MATAKULIAH. Revisi : 4 Tanggal Berlaku : 04 September 2015

BAB I PENDAHULUAN. Integral Lebesgue merupakan suatu perluasan dari integral Riemann.

III. HASIL DAN PEMBAHASAN

BAB V KEKONVERGENAN BARISAN PADA DAN KETERKAITAN DENGAN. Pada subbab 4.1 telah dibahas beberapa sifat dasar yang berlaku pada koleksi

PEMBUKTIAN BENTUK TUTUP RUMUS BEDA MAJU BERDASARKAN DERET TAYLOR

48. Mata Pelajaran Matematika untuk Sekolah Menengah Atas Luar Biasa Tunalaras (SMALB E) A. Latar Belakang

KEKONVERGENAN BARISAN DI RUANG HILBERT PADA PEMETAAN TIPE-NONSPREADING DAN NONEXPANSIVE

3. Kekonvergenan Deret Fourier

22. MATEMATIKA SMA/MA (PROGRAM IPA)

Definisi 4.1 Fungsi f dikatakan kontinu di titik a (continuous at a) jika dan hanya jika ketiga syarat berikut dipenuhi: (1) f(a) ada,

Pembagi Bersama Terbesar Matriks Polinomial

BAB 4 KEKONSISTENAN PENDUGA DARI FUNGSI SEBARAN DAN FUNGSI KEPEKATAN WAKTU TUNGGU DARI PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT

UJI KONVERGENSI. Januari Tim Dosen Kalkulus 2 TPB ITK

METODE ITERASI BARU BERTIPE SECANT DENGAN KEKONVERGENAN SUPER-LINEAR. Rino Martino 1 ABSTRACT

SATUAN ACARA PERKULIAHAN UNIVERSITAS GUNADARMA

RENCANA PROGRAM KEGIATAN PEMBELAJARAN SEMESTER (RPKPS) MATEMATIKA TEKNIK

Bil Riil. Bil Irasional. Bil Bulat - Bil Bulat 0 Bil Bulat + maka bentuk umum bilangan kompleks adalah

Transkripsi:

Jurnal Matematika, Statistika & Komputasi 1 Penerapan Aproksimasi Fejer dalam Membuktikan Teorema Weierstrass Islamiyah Abbas 1, Naimah Aris 2, Jusmawati M 3. Abstrak Dalam skripsi ini dibahas pembuktian teorema aproksimasi Weierstrass dengan menggunakan teorema Fejer. Teorema aproksimasi Weierstrass menyatakan bahwa suatu fungsi yang kontinu pada suatu interval tutup dapat dihampiri oleh suatu polinomial. Oleh Fejer, teorema ini dibuktikan dengan menunjukkan bahwa suatu fungsi yang kontinu pada interval tutup [ dengan dapat dihampiri oleh suatu polinomial rata-rata dan ditunjukkan bahwa konvergen seragam pada [. Kata Kunci : teorema aproksimasi Weierstrass, teorema Fejer. Abstract This thesis discussed about proving by Weierstrass approximation theorem by using Fejer theorem. The approximation theorem states that a continuous function on a closed interval can be approached by a polynomial. By Fejer, this theorem is proved by showing that a continuous function on a closed interval [ with can be approached by a polynomial average then is proved that converges uniformly on [. Keywords: Weierstrass approximation theorem, Fejer theorem. 1. Pendahuluan Dalam aplikasi-aplikasi matematika, umumnya menggunakan fungsi-fungsi yang jauh lebih rumit dari fungsi standar. Beberapa dari fungsi-fungsi tersebut tidak dapat diekspresikan dalam bentuk standar, dan beberapa lagi hanya diketahui secara implisit atau melalui grafiknya. Untuk kasus-kasus seperti itu digunakan suatu pendekatan/aproksimasi terhadap fungsi tersebut. Salah satu bentuk aproksimasi diberikan oleh Karl Wilhelm Theodor Weierstrass (1885) yang dikenal teorema Weierstrass yang menyatakan bahwa suatu fungsi yang kontinu pada suatu interval tutup dapat dihampiri oleh polinomial. Pembuktian teorema aproksimasi Weierstrass yang paling terkenal adalah pendekatan konstruktif melalui polinomial Bernstein oleh Sergei Bernstein pada tahun 1911 yaitu, jika adalah sebuah fungsi kontinu bernilai real pada, -, maka barisan polinomial Bernstein. / untuk setiap konvergen seragam ke. Pembuktian teorema aproksimasi Weierstrass juga dilakukan oleh Fejer dan Marshall Stone. Dalam tulisan ini, pembahasan difokuskan pada pembuktian teorema Weierstrass dengan menggunakan teorema Fejer. Permasalahan yang akan dibahas dibatasi pada fungsi trigonometri yang kontinu dan terbatas pada interval [ dimana fungsi-fungsinya bernilai real yang terdefinisi pada semua domain dan periodik dengan periode serta terintegralkan Riemann pada [. 1 Mahasiswa Prodi Matematika,Jurusan Matematika,,email: islam_miyah@yahoo.co.id 2 Dosen Prodi Matematika, Jurusan Matematika,, email: newima@gmail.com 3 Dosen Prodi Matematika, Jurusan Matematika,, email: jusmawati@gmail.com

Jurnal Matematika, Statistika & Komputasi 2 2. Tinjauan Pustaka Terkait dengan permasalahan yang akan diselesaikan, kajian pustaka yang penting untuk dipahami adalah teori mengenai Fungsi, Barisan, Limit dan Kontinuitas, Integral Riemann, Deret, dan Deret Fourier. 2.1 Fungsi Definisi 2.1 Misalkan dan adalah dua himpunan. Fungsi dari ke merupakan subhimpunan dari sedemikian sehingga untuk setiap terdapat tunggal sedemikian sehingga. 2.2 Barisan Definisi 2.2 Barisan bilangan real adalah suatu fungsi yang didefinisikan pada himpunan bilangan asli dengan range himpunan bilangan real. 2.3 Limit dan Kontinuitas Teorema 2.1 Misalkan. Suatu bilangan adalah titik kluster dari jika dan hanya jika terdapat barisan di sedemikian sehingga Definisi 2.3 Misalkan dan, adalah titik kluster dari. Suatu bilangan real dikatakan limit dari pada titik, jika untuk setiap, terdapat sedemikian sehingga jika maka. Definisi 2.4 Misalkan dan. Fungsi dikatakan kontinu di jika sedemikian sehingga jika maka. 2.4 Integral Riemann Definisi 2.5 Fungsi, - disebut terintegralkan Riemann di, - jika terdapat bilangan sehingga terdapat di, - sedemikian sehingga jika adalah partisi bertanda dari, - dengan, maka Teorema 2.2 Jika * + adalah barisan fungsi yang terintegral Riemann dan * + konvergen seragam ke, maka terintegral Riemann. 2.5 Deret Misalkan adalah barisan di, maka deret yang dibangun oleh barisan adalah barisan yang didefinisikan oleh:

Jurnal Matematika, Statistika & Komputasi 3 Teorema 2.3 Misalkan positif dan monoton turun pada * +. Deret konvergen jika dan hanya jika integral tak wajar ada. Dalam hal konvergen, jumlah parsial dan jumlah memenuhi 2.6 Deret Fourier Definisi 2.6 Misal [, deret Fourier dari diberikan oleh Dengan koefisien-koefisien Fourier berikut Definisi 2.7 Misalkan, ). Perluasan periodik (dengan periode ) dari ke diperoleh dengan mendefinisikan, dimana sedemikian sehingga, ). Definisi 2.8 Misalkan, -. Deret sinus Fourier dari diberikan oleh Dimana adalah koefisien sinus Fourier dari. Dengan cara yang sama, deret cosinus Fourier dari, - diberikan oleh Dimana adalah koefisien cosinus Fourier dari. Teorema 2.4 Misalkan * + dan * + adalah barisan dari bilangan real yang memenuhi a) Jumlahan parsial membentuk barisan terbatas, b), dan c), maka konvergen. Teorema 2.5 Misalkan * + adalah barisan dari bilangan real yang memenuhi dan Maka a) konvergen untuk setiap, dan b) konvergen untuk setiap, kecuali pada,. Definisi 2.9 Deret yang berbentuk dimana dan adalah bilangan real disebut deret trigonometri.

Jurnal Matematika, Statistika & Komputasi 4 Teorema 2.6 Jika deret trigonometri konvergen seragam pada [, maka deret tersebut adalah deret Fourier dari fungsi bernilai real yang kontinu pada [. Teorema 2.7 Misalkan, - untuk setiap, dan misalkan bahwa barisan * + konvergen seragam ke pada, -. Maka, - dan Teorema 2.8 Jika periodik dengan periode dan terintegralkan Riemann pada, -, maka terintegralkan Riemann pada, - untuk setiap, dan Definisi 2.10 Barisan * + dari fungsi non negatif yang terintegralkan Riemann pada, - yang memenuhi ) dan ) * + disebut identitas aproksimasi pada, -. Teorema 2.9 Misalkan * + sifat aproksimasi pada, -, dan misalkan fungsi periodik pada periode 2 bernilai real yang terbatas di dengan, -. Untuk,, didefinisikan Jika kontinu di, maka Selanjutnya, jika kontinu pada, -, maka seragam pada. 3. Hasil dan Pembahasan Aproksimasi Weierstrass adalah suatu bentuk aproksimasi terhadap suatu fungsi kontinu pada suatu interval tutup oleh suatu fungsi polinomial. Teorema 3.1 Jika, - kontinu, maka untuk setiap, terdapat polinomial, sedemikian sehingga, - Pada teorema yang diberikan oleh Fejer, diberikan secara eksplisit versi trigonometri dari teorema Weierstrass. Fungsi-fungsi yang memegang peranan penting dalam pembuktian teorema Fejer adalah fungsi yang dikenal sebagai Kernel Fejer yang merupakan suatu fungsi yang dibangun dari Dirichlet Kernel. Misalkan adalah suatu fungsi bernilai real yang terdefinisi pada [ dan diperluas pada domain dimana periodik dengan periode. Selanjutnya diasumsikan bahwa, -. Teorema 3.2 Misalkan, -. Maka untuk setiap dan, dimana adalah Dirichlet kernel diberikan oleh

Jurnal Matematika, Statistika & Komputasi 5 { Bukti : Berdasarkan definisi koefisien-koefisien Fourier dan, diperoleh [ Misalkan, maka dengan menggunakan persamaan (3.1), diperoleh [ Selanjutnya, sisa mengambil fungsi. - Untuk,, diperoleh - Untuk, dengan identitas dari Teorema 2.5, diperoleh Selanjutnya akan ditunjukkan bahwa jika, - maka barisan * + akan konvergen ke suatu fungsi pada, -. Untuk membuktikan kekonvergenan dalam ratarata dari deret Fourier, didefinisikan rata-rata aritmetika dari jumlahan parsial. Untuk setiap, diberikan Teorema 3.3 Jika limit dari * + ada, maka Bukti : Misalkan barisan * + konvergen ke, sehingga Selanjutnya, terdapat bilangan asli sedemikian sehingga untuk setiap, Persamaan (3.2) dapat dituliskan Misalkan. Dengan manipulasi aljabar, persamaan (3.3) dapat dituliskan

Jurnal Matematika, Statistika & Komputasi 6 Dengan mengaplikasikan ketidaksamaan segitiga pada kedua penjumlahan dan karena, maka penjumlahan sisi kanan lebih kecil dari. Sehingga diperoleh karena konstan dan misalkan semakin besar hingga penjumlahan sisi kiri lebih kecil dari, diperoleh untuk setiap. Jadi, konvergen ke. Lemma 3.1 Untuk, misalkan Maka ) dan ), -, - Teorema 3.4 Misalkan, -. Maka untuk setiap dan, dimana adalah kernel Fejer, diberikan oleh [ Bukti Dengan Teorema 3.2, { dimana adalah Dirichlet Kernel. Oleh karena itu, dimana

Jurnal Matematika, Statistika & Komputasi 7 Jika,, maka, dan jadi Jika,, maka Dengan sifat, -, ( ) Oleh karena itu, untuk, [ Teorema 3.5 a) periodik pada periode dengan. b) untuk setiap. c). d) Untuk, seragam untuk setiap,. Bukti : a) Diketahui [. Karena ( ) dan subtitusikan hasil ini ke diperoleh [ [

Jurnal Matematika, Statistika & Komputasi 8 Selanjutnya, [ [ diperoleh. Oleh karena itu, periodik dengan periode. b) Karena [ untuk, maka untuk semua nilai. c) Karena, diperoleh d) Karena. /. / untuk semua dan dan ( ) diperoleh ( ) [ untuk semua nilai, dan. Untuk setiap, dimana, diperoleh Karena sehingga Oleh karena itu, secara seragam pada. Teorema 3.6 Jika adalah fungsi bernilai real pada [ dengan, maka seragam pada [. Bukti : Diketahui adalah fungsi yang bernilai real pada yang periodik dengan periode, dari Teorema 3.4, Dengan mengubah variabel diperoleh

Jurnal Matematika, Statistika & Komputasi 9 Karena fungsi yang memetakan periodik dengan periode, diperoleh Selanjutnya, karena kontinu pada [ dengan, maka diperoleh seragam pada [. Akan ditunjukkan bahwa teorema aproksimasi Weierstrass versi trigonometri dapat dibuktikan dengan menggunakan teorema Fejer sebagai berikut Teorema 3.7 Misalkan kontinu pada [ dengan. Untuk setiap, terdapat polinomial trigonometri sedemikian sehingga untuk setiap [. Bukti : Misalkan kontinu pada [ dengan. Diketahui bahwa adalah rata-rata jumlahan parsial dari deret trigonometri dan deret tersebut juga merupakan fungsi polinomial trigonometri, dimana sehingga. Dari teorema Fejer diperoleh konvergen seragam pada [, yang berarti konvergen seragam ke. Berdasarkan definisi konvergen seragam, diperoleh untuk setiap. 4. Penutup Berdasarkan hasil yang diperoleh dapat disimpulkan bahwa teorema aproksimasi Weierstrass dapat dibuktikan dengan teorema Fejer, yaitu Misalkan kontinu pada [ dengan. Untuk setiap, terdapat polinomial trigonometri (yang diperoleh dari teorema Fejer) dan

Jurnal Matematika, Statistika & Komputasi 10 seragam pada [, sedemikian sehingga untuk setiap [. Selain itu juga pembuktian teorema aproksimasi Weierstrass yang dilakukan oleh ilmuwan lainnya, misalnya oleh marshall Stone atau yang lainnya dapat dikaji ulang. Daftar Pustaka [1 Manfred Stoll, 1997, Introduction to Real Analysis, Addison-Wesley, Amerika Serikat. [2 Robert G. Bartle and Donald R. Sherbert, 2000, Introduction to Real Analysis third edition, John Wiley & Sons, New York. [3 Robert Wrede dan Murray R. Spiegel, 2007, Schaum s Outlines Teori dan Soal-soal Kalkulus Lanjut, Erlangga, Jakarta. [4 William Ted Martin, E. H. Spanier, G. Springer and P. J. Davis, 1976, Principles of Mathematical Analysis third edition, McGraw-Hill, Inc., New York. [5 http://www.ias.ac.in/resonance/april2011/p341-355.pdf diakses pada tanggal 20 September 2011. [6 http://elearning.gunadarma.ac.id/docmodul/matematika_lanjut/bab10-deret fourier.pdf diakses pada tanggal 12 Maret 2012. [7 http://dspace.mit.edu/bitstream/handle/1721.1/78574/18100cspring2006/ contents/projects/ricketson.pdf diakses pada tanggal 4 September 2012. [8 http://emis.matem.unam.mx/journals/dm/v16-1/art14.pdf diakses pada tanggal 4 April 2013.