Pengaplikasian Graf Planar pada Analisis Mesh

dokumen-dokumen yang mirip
Aplikasi Pewarnaan Graf untuk Sistem Penjadwalan On-Air Stasiun Radio

Penggunaan Pohon Biner Sebagai Struktur Data untuk Pencarian

Aplikasi Pewarnaan Graf Pada Pengaturan Warna Lampu Lalu Lintas

Aplikasi Pewarnaan Graph pada Pembuatan Jadwal

PENERAPAN GRAF DAN POHON DALAM SISTEM PERTANDINGAN OLAHRAGA

Algoritma Prim sebagai Maze Generation Algorithm

Penerapan Pewarnaan Graf dalam Alat Pemberi Isyarat Lalu Lintas

Penerapan Algoritma BFS & DFS untuk Routing PCB

Penerapan Algoritma Greedy untuk Memecahkan Masalah Pohon Merentang Minimum

Penerapan Sistem Persamaan Lanjar Pada Rangkaian Listrik

Aplikasi Teori Graf dalam Permainan Instant Insanity

APLIKASI PEWARNAAN GRAF PADA PENGATURAN LAMPU LALU LINTAS

Aplikasi Graf dalam Merancang Game Pong

BAB II LANDASAN TEORI

I. PENDAHULUAN. Gambar 1. Contoh-contoh graf

APLIKASI PEWARNAAN GRAPH PADA PEMBUATAN JADWAL

Aplikasi Graf Berarah Pada Item Dalam Game DOTA 2

BAB II LANDASAN TEORI

Dasar-Dasar Teori Graf. Sistem Informasi Universitas Gunadarma 2012/2013

Penerapan Graf pada PageRank

Aplikasi Pewarnaan Graf pada Penjadwalan Pertandingan Olahraga Sistem Setengah Kompetisi

Aplikasi Pohon dan Graf dalam Kaderisasi

Penerapan Graf pada Rasi Bintang dan Graf Bintang pada Navigasi Nelayan

MEMBANDINGKAN KEMANGKUSAN ALGORITMA PRIM DAN ALGORITMA KRUSKAL DALAM PEMECAHAN MASALAH POHON MERENTANG MINIMUM

Penerapan Pewarnaan Graf pada Permainan Real- Time Strategy

APLIKASI GRAF DALAM PEMBUATAN JALUR ANGKUTAN KOTA

Penerapan Pohon Keputusan pada Penerimaan Karyawan

Kasus Perempatan Jalan

Aplikasi Algoritma Prim dalam Penentuan Pohon Merentang Minimum untuk Jaringan Pipa PDAM Kota Tangerang

G r a f. Pendahuluan. Oleh: Panca Mudjirahardjo. Graf digunakan untuk merepresentasikan objek-objek diskrit dan hubungan antara objek-objek tersebut.

Graf digunakan untuk merepresentasikan objek-objek diskrit dan hubungan antara objek-objek tersebut. Demak Semarang. Kend al. Salatiga.

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI

Penerapan Travelling Salesman Problem dalam Penentuan Rute Pesawat

Aplikasi Graf dan Pohon Merentang untuk Pemilihan Kegiatan yang akan Dilakukan Seorang Individu

Aplikasi Aljabar Lanjar pada Teori Graf dalam Menentukan Dominasi Anggota UATM ITB

Menghitung Jumlah Graf Sederhana dengan Teorema Polya

Implementasi Teori Logika dan Graf dalam Menentukan Efisiensi Rangkaian Listrik

Aplikasi Graf dalam Pembuatan Game

Menentukan Arah Pukulan Terbaik dalam Pertandingan Bulutangkis Kategori Tunggal dengan Teori Graf Terbalik

Permodelan Pohon Merentang Minimum Dengan Menggunakan Algoritma Prim dan Algoritma Kruskal

Aplikasi Teori Graf dalam Penggunaan Cairan Pendingin pada Proses Manufaktur

Penggunaan Algoritma Dijkstra dalam Penentuan Lintasan Terpendek Graf

Graf Sosial Aplikasi Graf dalam Pemetaan Sosial

Aplikasi Pohon Merentang Minimum dalam Rute Jalur Kereta Api di Pulau Jawa

PERBANDINGAN ALGORTIMA PRIM DAN KRUSKAL DALAM MENENTUKAN POHON RENTANG MINIMUM

Pendeteksian Deadlock dengan Algoritma Runut-balik

Penerapan Algoritma Branch and Bound pada Penentuan Staffing Organisasi dan Kepanitiaan

Art Gallery Problem II. POLIGON DAN VISIBILITAS. A. Poligon I. PENDAHULUAN. B. Visibilitas

PEMAKAIAN GRAF UNTUK PENDETEKSIAN DAN PENCEGAHAN DEADLOCK PADA SISTEM OPERASI

Strategi Permainan Menggambar Tanpa Mengangkat Pena

Representasi Graf dalam Jejaring Sosial Facebook

Menyelesaikan Topological Sort Menggunakan Directed Acyclic Graph

Aplikasi Teori Graf dalam Permainan Kombinatorial

Aplikasi Graf dan Pohon Pada Permainan Kantai Collection

Aplikasi Teori Graf dalam Pencarian Jalan Tol Paling Efisien

PRAKTIKUM ELEKTRONIKA DASAR I (E3)

Perancangan Sistem Transportasi Kota Bandung dengan Menerapkan Konsep Sirkuit Hamilton dan Graf Berbobot

HAND OUT MATA KULIAH TEORI GRAF (MT 424) JILID SATU. Oleh: Kartika Yulianti, S.Pd., M.Si.

I. PENDAHULUAN II. DASAR TEORI. Penggunaan Teori Graf banyak memberikan solusi untuk menyelesaikan permasalahan yang terjadi di dalam masyarakat.

BAB 2 LANDASAN TEORI

Pengaplikasian Graf dalam Pendewasaan Diri

Aplikasi 4-Colour Theorem dalam Teorema Pewarnaan Graf untuk Mewarnai Sembarang Peta

Penerapan Pohon Keputusan pada Pemilihan Rencana Studi Mahasiswa Institut Teknologi Bandung

Pengembangan Teori Graf dan Algoritma Prim untuk Penentuan Rute Penerbangan Termurah pada Agen Penyusun Perjalanan Udara Daring

Representasi Hierarki Kebutuhan Maslow Menggunakan Teori Graf

Implementasi Graf dalam Penentuan Rute Terpendek pada Moving Object

Aplikasi Graf dalam Formasi dan Strategi Kesebelasan Sepakbola

Aplikasi Teori Graf Pada Knight s Tour

Graf. Matematika Diskrit. Materi ke-5

Graf dan Pengambilan Rencana Hidup

Aplikasi Shortest Path dengan Menggunakan Graf dalam Kehidupan Sehari-hari

Pemanfaatan Algoritma Sequential Search dalam Pewarnaan Graf untuk Alokasi Memori Komputer

PENERAPAN TEORI GRAF DALAM RENCANA TATA RUANG KOTA

Aplikasi Teori Graf pada State Diagram

Aplikasi Algoritma Dijkstra dalam Pencarian Lintasan Terpendek Graf

Penerapah Graf untuk Memecahkan Teka-Teki Menyeberangi Sungai

Aplikasi Graf dalam Struktur Molekul Kimia

Aplikasi Shortest Path dalam Strategy Game Mount & Blade: Warband

Pencarian Lintasan Terpendek Pada Aplikasi Navigasi Menggunakan Algoritma A*

Penerapan Pewarnaan Graf dalam Perancangan Lalu Lintas Udara

Aplikasi Graf pada Hand Gestures Recognition

Penerapan Sirkuit Hamilton dalam Perencanaan Lintasan Trem di ITB

I. PENDAHULUAN. Gambar 1: Graf sederhana (darkrabbitblog.blogspot.com )

Penggunaan Graf Semi-Hamilton untuk Memecahkan Puzzle The Hands of Time pada Permainan Final Fantasy XIII-2

APLIKASI POHON DALAM PENCARIAN CELAH KEAMANAN SUATU JARINGAN

Gambar 6. Graf lengkap K n

Penerapan Algoritma Prim dan Kruskal Acak dalam Pembuatan Labirin

BAB II TINJAUAN PUSTAKA

Bab 2 LANDASAN TEORI

Algoritma Penentuan Graf Bipartit

Graph. Politeknik Elektronika Negeri Surabaya

BAB II LANDASAN TEORI

Penerapan Algoritma BFS dan DFS dalam Mencari Solusi Permainan Rolling Block

Aplikasi Teori Graf dalam Algoritma Pengalihan Arus Lalu Lintas

Pengaplikasian Graf dan Algoritma Dijkstra dalam Masalah Penentuan Pengemudi Ojek Daring

Aplikasi Graf pada Fitur Friend Suggestion di Media Sosial

Pengaplikasian Pohon dalam Silsilah Keluarga

BAB III HUKUM HUKUM RANGKAIAN

Penerapan Graf Dalam File Sharing Menggunakan BitTorrent

Transkripsi:

Pengaplikasian Graf Planar pada Analisis Mesh Farid Firdaus - 13511091 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia faridfirdaus17@gmail.com Abstrak Makalah ini akan membahas tentang kegunaan dan pemanfaatan dari teori graf yang telah dipelajari pada mata kuliah Struktur Diskrit. Penulis akan membatasi ruang lingkup permasalahan yaitu graf yang akan dibahas adalah tentang graf planar dan pemanfaatannya pada bidang elektro tepatnya dalam analisis mesh. Analisis ini hanya dapat bekerja pada kondisi tertentu. kondisi-kondisi inilah yang akan dibahas dalam makalah ini. Kata Kunci Analisis Mesh, Graf Planar, Resistansi, Tegangan I. PENDAHULUAN Graf adalah salah satu teori dasar yang sangat penting dalam berbagai disiplin ilmu. Graf sendiri tercatat pertama kali pada tahun 1736. Di kota Koningsberg terdapat sungai yang bercabang menjadi dua buah anak sungai. Untuk menghubungkan transportasi antar sungai, terdapat 7 buah jembatan. Masalah jembatan Koningsberg yaitu : apakah mungkin melalui seluruh jembatan tepat satu kali dari satu titik dan kembali ke titik semula? Masalah ini tidak dapat dipecahkan kecuali dengan cara coba-coba. Hingga akhirnya seorang matematikawan Swiss bernama L.Euler dapat menjelaskan jawaban akan masalah ini secara matematis menggunakan graf. Jawaban yang dikemukakan adalah tidak mungkin untuk melewati ketujuh jembatan tepat satu kali sesuai dengan syarat pada masalah jembataan Koningsberg, jika derajat setiap simpul tidak seluruhnya genap. Gambar 1.1 Penggambaran Masalah Jembatan Koningsberg sebagai Graf Pemanfaatan teori graf tidak hanya untuk masalah tekateki diatas.ada banyak hal yang dapat disederhanakan dengan menggunakan teori graf. Berikut adalah beberapa contoh pemanfaatan graf: 1. Graf berarah digunakan dalam representasi struktur data pohon. 2. Graf berbobot dapat digunakan untuk memutuskan suatu masalah yang membutuhkan bobot terkecil 3. Arus Mesh pada rangkaian elektronik sederhana hanya dapat digunakan jika rangkaian berupa graf planar. II. TEORI DASAR 2.1 Definisi Graf Secara matematis, graf di definisikan sebagai berikut Graf G didefinisikan sebagai pasangan himpunan (V, E), ditulis dengan notasi G = (V, E), yang dalam hal ini V adalah himpunan tidak-kosong dari simpul-simpul (vertices dan nodes) dan E adalah himpunan sisi (edges atau arcs) yang menghubungkan sepasang simpul Definisi diatas menyatakan V tidak boleh kosong, sedangkan E boleh kosong. Untuk graf yang memiliki 1 simpul tanpa sisi disbut graf trivial. 2.2 Jenis-Jenis Graf Graf dapat dikelompokkan menjadi beberapa bagian kategori (jenis) bergantung pada sudut pandang pengelompokannya. Pengelompokan graf dapat dipandang berdasarkan pada ada tidaknya sisi ganda tatau sisi kalang, berdasarkan jumlah simpul, atau bedasarkan orientasi arah pada sisi. Berdasarkan ada tidaknya gelang atau sisi ganda pada suatu graf, maka secara umum graf pada digolongkan menjadi dua jenis.: 2.2.3 Graf sederhana Graf yang tidak mengandung gelang maupun sisiganda dinamakan graf sederhana. Pada graf sederhana, sisi adalah pasangan tak-terurut. Graf sederhana juga dapat didefinisikan sebagai G=(V, E) terdiri dari himpunan tidak kosong simpul-simpul dan E adalah himpunan pasangan tak-terurut yang berbeda yang disebut sisi.

Gambar 2.1 Graf Sederhana 2.2.4 Graf tak-sederhana Graf yang mengandung sisi gandaa atau gelang dinamakan graf tak-sederhana. ada dua macam graf takgraf ganda dan sederhana, yaitu graf tak-sederhana yaitu graf semu. Graf ganda adalah graf yang mengandung sisi ganda. Sisi ini dapat berjumlah dua atau lebih, asal memiliki kedua simpul yang sama. Gambar 2.4 Graf tak-berarah 2.2.6 Graf berarah Pada graf berarah, setiap sisinya diberikan arah. Akibatnya, untuk setiap sisi terdapat simpul asal dan simpul tujuan, sehingga (u,v) (v,u). Kedua contoh graf dibawah adalah contoh sebuah graf berarah. Graf ini digunakan untuk merepresentasikan struktur data pohon Gambar 2.2 Graf Gandaa Graf semu adalah graf yang mengandung gelang (loop). Gelang sendiri adalah suatu sisii yang dimana kedua simpulnya adalah simpul yang sama.. Gambar 2.5 Graf Berarah 2.3 Graf Planar Sebuah graf G = (V,E) disebut graf planar apabila graf tersebut dapat digambarkan dalam sebuah bidang datar tanpa ada sisi yang saling berpotongan (kecuali sisi berpotongan pada sebuah simpul) Gambar 2.3 Graf Semu Berdasarkan orientasi arah pada sisi,, maka secara umum, graf dapat dibedakan menjadi 2 jenis: 2.2.5 Grah tak-berarah Pada graf tak berarah, sisinya tak memiliki arah, oleh karena itu, penulisan (u,v) dan (v,u) akan menghasilkan sisi yang sama. Gambar 2.6 Graf Planar Untuk membuktikan apakah sebuah graf G adalah graf planar, dapat digunakan teorema kuratowski. Teorema ini mengatakan graf G bersifat planar jika dan hanya jika ia tidak mengandung subgraf yang samaa dengan salah satu graf kuratoski atau homomorfis dengan salah satunya. Sifat dari graf kuratowski adalah : 1. graf kuratowski adalah graf teratur 2. graf kuratowsk adalah graf non-planar 3. penghapusan sisi atau simpul dari graf kuratowski menyebabkan graf menjadi planar 4. K 5 adalah graf non-planar dengan jumah simpul minimum, K 3,3 adalah graf non-planar dengan jumlah sisi minimum

2.4 Rangkaian Elektronik Gambar 2.7 Graf K 5 Gambar 2.8 Graf K 3,3 Dalam ilmu keelektronikaan, terdapat 3 hukum yang sangat dasar dalam perancangan rangkaian elektrik sederhana, yaitu hukum arus kirchoff, hukum tegangan kirchoff dan hukum ohm. Hukum ohm sendiri berbunyi bahwa arus listrik yang melewati sebuah resistor akan selalu berbanding lurus dengan beda potensial yang dikenai pada kedua ujung resistor. Secara matematis, hukum tersebut dapat dituliskan sebagai berikut V = I. R Contoh sederhana dalam penggunaan hukum ini adalah menghitung nilai arus yang melewati sebuah resistor dengan besaran 5 Ω yang memiliki beda potensial 5 V. Dengan menggunakan rumus diatas, didapatkan besaran nilai arus yang akan melewati resistor adalah sebesar 1 A Hukum kedua yang mendasari dalam perancangan rangkaian elektronik adalah hukum arus kirchoff. Hukum ini mengatakan untuk satu simpul, jumlah arus yang masuk dan arus yang keluar adalah sama.. Secara umum dapat dituliskan sebagai berikut I = 0 Hukum yang terakhir adalah hukum tegangan kirchoff. Hukum ini mengatakan untuk suatu rangkaian tertutup, jumlah penurunan tegangan adalah 0. Secara matematis dituliskan sebagai berikut V = 0 Ketiga hukum ini yang selalu digunakan untuk menghitung ketiga parameter yaitu tegangan (V), arus (I), dan resistansi (R) pada suatu rangkaian elektronik sederhana. III. PEMBAHASAN 3.1 Analisis Mesh Analisis Mesh adalah salah satu metoda analisis yang digunakan untuk menghitung arus listrik pada seluruh sisi suatu rangkaian sederhana dengan cepat. Analisis ini hanya dapat digunakan untuk rangkaian yang bersifat planar. Secara umum, langkah yang dilakukan dalam melakukan analisis mesh adalah sebagai berikut. 1. Menentukan nilai arus mesh i 1, i 2,.., i n, dengan n adalah jumlah area yang terbentuk pada graf 2. Menerapkan hukum tegangann kirchoff pada tiap- tiap tegangan tiap area, dengan mengekspresikan dengan menggunakan hukum ohm. 3. Selesaikan persamaan yang telah dibuat untuk menentukan nilai arus mesh 4. Nilai arus sebenarnya padaa suatu sisi adalah penjumlahan aljabar dari arus mesh yang terdapat pada sisi tersebut (disesuaikan dengan arah arus yang akan dihitung) ). Sebelum memulai analisis, terlebih ditentukan apakah rangkaian yang akan dianalisis adalah rangkaian yang planar. Rangkaian dapat dianalogikan sebagai sebuah graf. Contoh sebuah rangkaian yang planar adalah gambar rangkaian dibawah ini. Gambar 3.1 Rangkaian Planar Pada rangkaian diatas, dapat disederhanakan terlebih dahulu. Jika diperhatikan, pada sisi (e,f) tidak terdapat komponen, maka beda tegangannya adalah nol, sehingga simpul e dan simpul f dapat disatukan. Begitu pula dengan simpul e dan simpul d. Makaa simpul e, f dan d dapat digabungkan menjadi satu simpul e. Pada rangkaian diatas, terdapat 2 buah area, sehingga terdapat 2 buah arus mesh yang disimbolkan dengan i 1 dan i 2. Misalkan untuk setiap variabel diatas bernilai sebagai berikut: V 1 = 3 V, V 2 = 5 V, R 1 = 3 Ω, R 2 = 3 Ω, R 3 = 3 Ω, Untuk analisis kali ini, akan dihitung berapa nilai arus I 3 yang melewati resistor R 3. Dengan menggunakan hukum tegangan kirchoff ( V = 0), maka arus melewati

simpul a, b, e dan kembali lagi ke simpul a dapat dibentuk persamaan berikut I 1.R 1 + I 3.R 3 V 1 = 0 (..1) karena nilai I 1 akan sama dengan nilai i 1, dan I 3 setara dengan nilai (i 1 i 2 ), maka persamaan diatas setelah berubah menjadi i 1.R 1 + i 1.R 3 i 2.R 3 V 1 = 0 i 1 (R 1 +R 3 ) i 2.R 3 = V 1 masukkan nilai yang telah diketahui, maka persamaan 6i 1 3i 2 = 3V (..2) lakukan hal yang sama pada area kedua dengan I 3 = (i 2 - i 1 ),, maka didapatkan persamaan yaitu I 2.R 2 - I 3.R 3 + V 2 = 0 i 2.R 2 - i 1.R 3 + i 2.R 3 + V 2 = 0 i 2 (R 2 +R 3 ) i 1.R 3 = -V 2 masukkan nilai yang telah diketahui, maka didapatkan 6i 2 3i 1 = 5V (..3) Persamaan (..2) dan persamaan (..3) dapat diselesaikan menggunakan metode eliminasi, sehingga didapatkan nilai i 1 adalah 0,78 A sedangkan nilai i 2 adalah 0,56 A. Dengan nilai I 3 = i 1 i 2, maka nilai arus I 3 adalah 0,22 A. Dapat dilihat dari contoh diatas, semakin banyak area yang terbentuk, akan semakin banyak pula persamaan yang akan terbentuk nantinya. Analisis mesh ini akan semakin efektif apabila yang sunber yang terdapat dalam rangkaian adalah sumber arus. Hal ini dikarenakan nilai arus mesh yang berhubungan langsung dengan Gamber 3.3 Graf Planar 3 Dimensi Untuk menyelesaikan suatu rangkaian non-planar, diperlukan analisis lain, yaitu analisis nodal yang tidak akan dibahas dalam makalah ini. Hal yang terpenting dalam menyelesaikan perhitungan dengan menggunakan analisis mesh adalah menentukan apakah rangkaian tersebut adalah rangkaian yang planar atau tidak. Untuk kasus khusus seperti sisi yang terbuka, maka area tersebut tidak perlu menggunakan analisis mesh dikarenakan pada sisi yang terbuka, tidak ada arus listrik yang mengalir. Analisis mesh ini hanya dapat digunakan untuk rangkaian yang memiliki minimal satu buah loop tertutup. Dalam menganalogikan suatu rangkaian kedalam bentuk graf, maka tiap sisi pada graf mewakili satu buah komponen (resister ataupun sumber, baik sumber arus maupun sumber tegangan). Untuk tiap ujung komponen, dimisalkan sebagai satu simpul. Pada gambar 3.1, dapat dianalogikan sebagai graf berarah (arah pada graf disesuaikan dengan arah arus listrik) berikut a b c 3.2 Kaitan Analisis Mesh dengan Graf Planar Seperti yang telah dijelaskan sebelumnya, analisis mesh hanya dapat digunakan untuk rangkaian yang bersifat planar. Jika rangkaian tidak bersifat planar, maka akan terbentuk rangkaian yang memiliki bentuk 3 dimensi.untuk daerah bentuk 3 dimensi yang tidak memiliki sisi yang menyilang antar bidang, dapat digambarkan secara planar, yaitu dengan membuka jarring-jaring bidang 3 dimensi tersebut, maka akan terbentuk sejumlah n area, dimana n adalah jumlah sisi pada bidang 3 dimensi tersebut. Akan terjadi kesulitan saat akan menentukan area yang akan menjadi suatu mesh, apabila terdapat sisi yang saling menyilang antara bidang yang berhadapan. Hal ini akan semakin menyulitkan perhitungan karena dalam menyusun persamaan akan menjadi semakin sulit. Gambar 3.2 Graf Planar Berarah Rangkaian Elektronik e Gambar 3.3 Rangkaian Non-Planar

Untuk rangkaian diatas, pada sisi yang memiliki resistansi 13 Ω, adalah sisi yang menghubungkan antara sisi balok yang saling berhadapan, sehingga apabila digambarkan bidang tersebut dibuka, maka rangkaian tidak dapat digambarkan secara planar. IV. KESIMPULAN Dari pembahasan diatas, dapat disimpulkan, aplikasi graf planar dalam analisis mesh sangat penting. Analisis ini hanya dapat dilakukan untuk rangkaian yang dapat digambarkan secara planar. Untuk rangkaian yang takplanar, memerlukan analisis lain yang menjadikan perhitungannya menjadi lebih mudah. Untuk keplanaran suatu rangkaian, dapat dilakukan dengan menggambarkannya dalam bentuk graf, lalu diuji dengan menggunakan graf kuratowski. Pada rangkaian tak-planar, persamaan akan menjadi sangat rumit karena penentuan mesh akan menjadi tak mungkin untuk dilakukan. Untuk rangkaian jenis ini, digunakan analisis nodal untuk menentukan parameter yang diinginkan DAFTAR PUSTAKA [1] http://physics.weber.edu/carroll/honors/konigsberg.htm, diakses pukul 19.27, 16 Desember 2012 [2] http://dc400.4shared.com/doc/efpmueqn/preview.html, diakses pukul 20.38, 16 Desember 2012 [3] http://cophy-wiki.informatik.uni-koeln.de/index.php/graph, diakses pukul 20.49, 16 Desember 2012 [4] http://dc169.4shared.com/img/yuunrtn0/preview.html, diakses pukul 20.53, 16 Desember 2012 [5] http://elektronika-dasar.com/teori-elektronika/hukum-kirchhoff/, diakses pukul 22.09, 16 Desember 2012 [6] http://hmmusu.blogspot.com/2011/03/graf-planar.html, diakses, pukul 9.47, 17 Desember 2012 [7] Munir, Rinaldi, Matematika Diskrit, Informatika, Bandung, 2010 [8] Alexander, Charles, Matthew N.O Sadiku, Fundamentals of Electric Circuit, Third Edition PERNYATAAN Dengan ini saya menyatakan bahwa makalah yang saya tulis ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan dari makalah orang lain, dan bukan plagiasi. Bandung, 17 Desember 2012 Farid Firdaus - 13511091