BAB I PENDAHULUAN. karena itu sangat di butuhkan pasokan energi listrik yang selalu dapat diandalkan.

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB I PENDAHULUAN. karena itu sangat di butuhkan pasokan energi listrik yang selalu dapat diandalkan."

Transkripsi

1 1 BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Saat ini, energi listrik telah menjadi kebutuhan dasar bagi umat manusia. Hampir semua aktivitas kehidupan sangat bergantung pada energi listrik. Oleh karena itu sangat di butuhkan pasokan energi listrik yang selalu dapat diandalkan. Pembangkit listrik merupakan garda terdepan dari sistem energi listrik yang harus berperan untuk menjamin ketersediaan dan keandalan energi listrik. Dalam merencankan suatu sistem penyediaan tenaga listrik. Lokasi fisik tenaga pusat tenaga listrik saluran transmisi dan gardu induk perlu di tentukan dengan tepat, agar dapat diperoleh sistem yang baik, ekonomis dan dapat diterima masyarakat. Performance suatu unit Pembangkit Listrik tidak lepas dari adanya pemeliharaan unit pembangkit yang baik pula, sehingga sedapat mungkin selama masa shut down maupun kondisi operasi. Faktor pemeliharaan alat dan fasilitas-fasilitas produksi merpakan bagian yang sama pentingnya dengan bagian lainnya yang terdapat dalam manajemen produksi. Kegiatan pemeliharaan ini tidak dapat diabaikan begitu saja karena sebagian besar pengolahan yang dilakukan pada proses produksi sebuah perusahaan pembangkit tenaga listrik juga menggunakan mesin. Pada kenyataannya masalah utama dalam pemabngkitan tenaga listrik adalah pada operasi serta kerusakan pada sistem instalasi yang menyebabkan pemutusan tenaga sehingga pasokan listik pun terputus. Bagian-bagian PLTU

2 2 yang memerlukan pemeliharaan secara periodik adalah bagian-bagian yang berhubungan dengan gas buang dan air pendingin, yaitu pipa-pipa air ketel uap dan pipa-pipa air pendingin. Pipa-pipa ini semua memerlukan pembersihan secara periodik. Pada siklus tertutup PLTU, dimana air laut yang telah diolah dan dimurnikan melalui proses pemurnian, kemudian dilakukan pemanasan hingga terbentuk uap yang pada dasarnya berfungsi sebagai penggerak turbin yang diteruskan ke generator sehingga menghasilkan arus listrik. Air yang dimurnikan itu akan diteruskan ke boiler, di dalam boiler ini perubahan air menjadi uap terjadi di dalam Boiler Pipa Air (Water Tube Boiler). Dan proses ini terjadi kembali secara berulang-ulang Melalui pelaksanaan pemeliharaan yang baik dan berkesinambungan peralatan perusahaan dapat dipergunakan sesuai dengan rencana, sehingga proses produksi dapat berjalan dengan lancar, dan kemungkinan kerusakan yang terjadi dapat dikurangi bahkan dihindari sama sekali. Perusahaan yang melakukan proses produksi tanpa memperhatikan kegiatan pemeliharaan berarti telah menghilangkan masa depan perusahaan itu sendiri, dalam jangka pendek memang seakan-akan perusahaan dapat menekan biaya produksi karena tidak perlu melakukan biaya perawatan yang cukup besar, akan tetapi, dalam jangka panjang perusahaan akan mengalami kesulitan dalam kegiatan proses produksinya karena alat dan mesin yang tidak terpelihara dengan baik akan mengalami banyak masalah seperti kerusakan, kemacetan, kebocoran, bahkan alat/mesin tidak dapat beroperasi sama sekali.

3 3 Mengingat pentingnya kegiatan pemeliharaan dalam suatu perusahaan untuk menunjang kelancaran produksi, maka penulis tertarik untuk mengadakan penulisan yang akan dituangkan kedalam Seminar dengan judul Pemeliharaan Boiler Pipa Air (Water Tube Boiler) 1.2. Tujuan Penulisan Tujuan dari penulisan ini adalah dapat mengetahui bagaimana cara pemeliharaan Boiler Pipa Air Manfaat Penulisan Dengan adanya penyusunan Seminar dengan judul Perawatan Boiler Pipa Air PLTU Diharapkan penulis dan para pendengar dapat memahami bagaimana cara pemeliharaan Boiler Pipa Air, PLTU Rumusan Masalah Untuk mencapai tujuan dan manfaat penulisan penelitian ini maka muncul pertanyaan yaitu: Bagaimana cara perawatan Boiler Pipa Air? Batasan Masalah Adapun batasan masalah dalam seminar ini hanya membahas pemeliharaan Boiler Pipa Air. Pada PLTU Sistematika penulisan Sistematika penulisan seminar ini dibagi adalah sebagai berikut:

4 4 BAB I PENDAHULUAN Bab ini memaparkan tentang latar belakang masalah, tujuan penulisan, manfaat penelitian, rumusan masalah dan sistematika penulisan. BAB II STUDI PUSTAKA Bab ini membahas tentang dasar-dasar teori yang mencakup tentang PLTU diantaranya: pengertian PLTU secara umum, komponen-komponen utama PLTU, cara kerja PLTU secara umum serta Pemeliharaan Boiler Pipa Air (Water Tube Boiler). Yang akan dibahas dalam penulisan seminar ini. BAB III METODOLOGI PENELITIAN Bab ini mambahas tentang cara-cara, metode-metode, teknik pengumpulan data, serta langkah-langkah yang digunakan untuk menyelesaikan seminar ini. BAB IV PEMELIHARAAN BOILER PIPA AIR Bab ini membahas mengenai pengolahan data serta analisa data yang telah ada. BAB V KESIMPULAN DAN SARAN Bab ini memuat kesimpulan dari masalah yang dibahas pada babbab sebelumnya.

5 5 BAB II TEORI DASAR PLTU 2.1. Pengertian PLTU Pembangkit listrik tenaga uap (PLTU) adalah pembangkit yang mengandalkan energi kinetik dari uap untuk menghasilkan energi listrik. Jenis pembangkit listrik tenaga termal yang banyak digunakan, karena efisiensinya tinggi sehingga menghasilkan energi listrik yang ekonomis. PLTU merupakan mesin konversi energi yang mengubah energi kimia dalam bahan bakar menjadi energi listrik. Proses konversi energi pada PLTU berlangsung melalui 3 tahapan, yaitu : Pertama, energi kimia dalam bahan bakar diubah menjadi energi panas dalam bentuk uap bertekanan dan temperatur tinggi. Kedua, energi panas (uap) diubah menjadi enegi mekanik dalam bentuk putaran. Ketiga, energi mekanik diubah menjadi energi listrik. Gambar 2.1 : Proses konversi energi pada PLTU

6 PRINSIP KERJA PLTU PLTU menggunakan fluid kerja air uap yang bersirkulasi secara tertutup. Siklus tertutup artinya menggunakan fluida yang sama secara berulang-ulang. Urutan sirkulasinya secara singkat adalah sebagai berikut : Pertama air diisikan ke Boiler hingga mengisi penuh seluruh luas permukaan pemindah panas. Didalam boiler air ini dipanaskan dengan gas hasil pembakaran bahan bakar dengan udara sehingga berubah menjadi uap. Kedua, uap hasil produksi boiler dengan tekanan dan temperatur tertentu diarahkan untuk memutar Turbin Uap sehingga menghasilkan daya mekanik berupa putaran. Ketiga, Generator yang dikopel langsung dengan turbin berputar menghasilkan energi listrik sebagai hasil dari perputaran medan magnet dalam kumparan, sehingga ketika turbin berputar dihasilkan energi listrik dari terminal output generator. Keempat, uap bekas keluar turbin masuk ke Kondensor untuk didinginkan dengan air pendingin agar berubah kembali menjadi air yang disebut air kondensat. Air kondensat hasil kondensasi uap kemudian digunakan lagi sebagai air pengisi boiler. Demikian siklus ini berlangsung terus menerus dan berulang-ulang.

7 7 Gambar 2.2. : Siklus fluida kerja sederhana pada PLTU Siklus kerja PLTU yang merupakan siklus tertutup (Closed Cycle) dapat digambarkan dengan diagram T - s (Temperatur - entropi). Siklus ini adalah penerapan siklus rankine ideal. Adapun urutan langkahnya adalah sebagai berikut Gambar 2.3. : Diagram T s, Siklus PLTU (Siklus Rankine)

8 8 Penjelasan Siklus : 1. a b : Air dipompa dari tekanan p2 menjadi p1. Langkah ini adalah langkah kompresi isentropis, dan proses ini terjadi pada pompa air pengisi. 2. b c : Air bertekanan ini dinaikkan temperaturnya hingga mencapai titik didih. Terjadi di LP heater, HP heater dan Economizer. 3. c d : Air berubah wujud menjadi uap jenuh. Langkah ini disebut vapourising (penguapan) dengan proses isobar isothermis, terjadi di boiler yaitu di wall tube (riser) dan steam drum. 4. d e : Uap dipanaskan lebih lanjut hingga uap mencapai temperatur kerjanya menjadi uap panas lanjut (superheated vapour). Langkah ini terjadi di superheater boiler dengan proses isobar. 5. e f : Uap melakukan kerja sehingga tekanan dan temperautrnya turun. Langkah ini adalah langkah ekspansi isentropis, dan terjadi didalam turbin. 6. f a : Pembuangan panas laten uap sehingga berubah menjadi air kondensat. Langkah ini adalah isobar isothermis, dan terjadi didalam kondensor. Gambar 2.4. : PLTU

9 KOMPONEN UTAMA PLTU PLTU merupakan mesin pembangkit thermal yang terdiri dari komponen utama bantu (sistem penunjang) serta sistem-sistem lainnya. Komponen utama terdiri dari Lima komponen yaitu: Boiler (Ketel Uap) Boiler adalah suatu perangat mesin yang berfungsi untuk merubah air menjadi uap. Proses perubahan air menjadi uap dilakukan dengan memanaskan air yang berada didalam pipa-pipa dengan panas hasil pembakaran bahan bakar. Proses pembakaran dilakukan secara kontinyu didalam ruang bakar dengan mengalirkan bahan bakar dan udara dari luar. Uap yang dihasilkan adalah uap superheat dengan tekanan dan temperatur yang tinggi. Jumlah produksi uap tergantung pada luas permukaan pemindah panas, laju aliran, dan panas pembakaran yang diberikan. Boiler yang konstruksinya terdiri dari pipa-pipa berisi air disebut water tube boiler (boiler pipa air). Dalam pengoperasiannya, boiler ditunjang oleh beberapa peralatan bantu seperti economizer, ruang bakar, dinding pipa, burner, steam drum, superheater dan cerobong.

10 10 Gambar 2.5 : Boiler a. Economizer Economizer atau pemanas awal berfungsi untuk memanaskan air pengisi ketel sebelum masuk ke boiler. Pemanasan awal ini perlu yaitu untuk meningkatkan efisiensi ketel dan juga agar tidak terjadi perbedaan temperatur yang besar di dalam boiler yang dapat mengakibatkan keretakan dinding boiler. Gambar 2.6 : Letak Economizer

11 11 b. Ruang Bakar (Furnace) Ruang bakar adalah bagian dari boiler yang dindingnya terdiri dari pipa-pipa air. Pada sisi bagian depan terdapat sembilan burner yang letaknya terdiri atas 3 tingkat tersusun secara mendatar. Gambar 2.7 : Ruang Bakar

12 12 c. Dinding Pipa (Wall Tube) Merupakan dinding di dalam ruang bakar yang berfungsi sebagai tempat penguapan air. Dinding ini berupa pipa-pipa yang berisi air yang berderet secara vertikal. Gambar 2.8 : Dinding Pipa (Wall Tube) d. Burner Merupakan peralatan pembakar yang bahan bakarnya terbagi menjadi bagian-bagian kecil sehingga memudahkan proses pembakaran dengan udara. Bahan bakar HSD (High Speed Diesel) dipergunakan untuk pembakaran awal. Sedangkan bahan bakar utamanya adalah residu. Penyalaan burner tergantung pada beban-beban unit. Burner Management System (BMS) adalah penyaluran konfigurasi penyalaan burner pada saat start up atau shut down dan load change. Jumlah

13 13 burner yang menyala atau mati tergantung pada beban generator yang sebanding dengan kapasitas bahan bakar untuk memproduksi uap pada boiler. Konfigurasinya diatur supaya pemanasan dalam ruang bakar merata dan efisien. Penyalaan boiler yang tidak seimbang dengan beban generator dapat mengakibatkan tidak stabilnya tekanan dan temperatur uap. Gambar 2.9 : Burner e. Steam drum Steam drum adlah alat pada boiler yang berfungsi untuk menampung feed water dalam pembuatan uap yang temperaturnya cukup tinggi dan berupa campuran air dan uap. Di dalam steam drum terdapat peralatan pemisah uap. Campuran feed water dan uap mengalir mengikuti bentuk separator sehingga uap air pada campuran akan jatuh dan masuk ke saluran primary dan secondary superheater. Uap yang telah dipisahkan oleh separator masuk ke covron dryes. Disini upa

14 14 mengalami pemisahan yang terakhir sehingga didapat uap jenuh. Air yang jatuh dialirkan ke bagian bawah dari drum secara gravitasi dan mengalir ke dalam tempat penampungan kemudian keluar melalui down corner dan uap jenuh akan kelua dari dry box. Gambar : Steam Drum Turbin Uap Turbin uap berfungsi untuk mengubah energi panas yang terkandung dalam uap menjadi gerakan memutar (putaran). uap dengan tekanan dan temperatur tinggi diarahkan untuk mendorong sudu-sudu turbin yang dipasang pada poros sehingga poros turbin berputar. Akibat melakukan kerja di turbin tekanan dan temperatur uap keluar turbin turun hingga menjadi uap basah. Uap ini kemudian dialirkan ke kondensor, sedangkan tenaga putar yang dihasilkan digunakan untuk memutar

15 15 generator. Saat ini hampir semua mesin turbin uap adalah dari jenis turbine condensing atau aup keluar turbin (exhaust steam) dialirkan ke kondensor. Gambar 2.11 : Trubin Uap Kondensor Kondensor adalah peralatan untuk merubah uap menjadi air. Proses perubahan nya dilakukan dengan cara mengalirkan uap kedalam suatu ruangan yang berisi pipa-pipa (tubes). Uap mengalir diluar pipa-pipa sedangkan air sebagai pendingin mengalir didalam pipa-pipa. Kondensor seperti ini disebut surface (tubes) condenser. Sebagai pendingin digunakan air sungai atau air laut. Laju perpindahan panas tergantung pada aliran air pendingin. Kebersihan pipa-pipa dan perbedaan temperatur antara uap dan air pendingin. Proses perubahan uap menjadi air terjadi pada tekanan dan temperatur jenuh, dalam hal ini kondensor berada pada kondisi vakum. Karena temperatur air pendingin sama dengan temperatur udara luar, maka

16 16 temperatur air kondensat nya maksimum mendekati tempearatur udara luar. Apabila laju perpindahan panas terganggu, maka akan berpengaruh terhadap tekanan dan temperatur Generator Gambar : Kondensor Generator adalah suatu perangkat yang berfungsi mengubah energi mekanik/gerak dalam bentuk putaran poros menjadi energi listrik, yang akan membangkitkan tegangan bolak-balik menurut prinsip dasar. Gambar : Generator

17 Deaerator Deaerator adalah salah satu jenis alat pemanas yang digunakan oleh banyak pembangkit listrik didunia. Deaerator berfungsi untuk menghilangkan oksigen dan gas-gas lainnya yang terkandung dalam feed water ( air boiler ). Serta fungsi lainnya sebagai Heater. Gambar : Deaerator 2.2. Jenis - Jenis Boiler Berbagai bentuk boiler telah berkembang mengikuti kemajuan teknologi dan evaluasi dari produk-produk boiler sebelumnya yang dipengaruhi oleh gas buas boiler yang mempengaruhi lingungan dan produk steam seperti apa yang akan dihasilkan. Berikut adalah beberapa macam klasifikasi Boiler :

18 Berdasarkan fluida yang mengalir dalam pipa a. Ketel pipa api (fire tube boiler) pada ketel pipa api seperti tampak pada gambar 1.2.1, gas panas melewati pipa-pipa dan air umpan ketel ada didalam shell untuk dirubah menjadi steam. Ketel pipa api biasanya digunakan untuk kapasitas steam yang relative kecil dengan tekanan steam rendah dan sedang. Sebagai pedoman, ketel pipa api kompetitif untuk kecepatan steam sampai kg/jam dengan tekanan sampai 18 kg.cm 2. ketel pipa api dapat menggunakan bahan bakar minyak, gas atau bahan bakar padat dalam operasi. Untuk alasan ekonomis, sebagian besar ketel pipa api dikonstruksi sebagai paket boiler (dirakit oleh pabrik) untuk semua bahan bakar. Gambar a Fire Tube Boiler

19 19 b. Ketel pipa air (water tube boiler) pada ketel pipa air seperti tampak pada Gambar 2.2.1b, air umpan boiler menaglir melalui pipa-pipa masuk kedalam drum. Air yang tersirkulasi dipanaskan oleh gas pembakaran membentuk steam pada daerah uap dalam drum. Ketel ini dipilih jika kebutuhan steam dan tekanan steam sangat tinggi seperti pada kasus ketel untuk pembangkit tenaga listrik. Gambar b : Water Tube Boiler

20 Berdasarkan Pada Poros Tutup Drum (Shell) a. Ketel tegak Ketel tegak seperti tampak pada Gambar 2.2.2a (vertical steam boiler) adapun contoh ketel tegak adalah ketel Cocharn, Ketel Clarkson dan lain-lainnya. Gambar 2.2.2a Ketel Tegas (UNEP)

21 21 b. Ketel mendatar (horizontal steam Boiler) Adapun yang termasuk jenis ketel ini adalah ketel Cornish, Lancashire (tampak pada Gambar 2.2.2b), Scotch dan lain-lain Boiler Limbah Panas Dimanapun tersedia limbah panas pada suhu sedang atau tinggi, boiler limbah panas dapat dipasang secara ekonomis. Jika kebutuhan steam lebih dari steam yang dihasilkan menggunakan gas buang panas, dapat digunakan burner tambahan yang menggunakan bahan bakar. Jika steam tidak langsung dapat langsung dapat digunakan, steam dapat dipakai untuk memproduksi daya listrik menggunakan generator turbin uap. Hal ini banyak

22 22 digunakan dalam pemanfaatan kembali panas dari gas buang dari turbin gas dan mesin diesel. Gambar : Boiler Limbah Panas Pemanas Fluida Termis Saat ini, pemanas fluida termis telah digunakan secara luas dalam berbagai penerapan untuk pemanasan proses tidak langsung. Dengan menggunakan fluida petroleum sebagai media perpindahan panas, pemanas tersebut memberikan suhu yang konstan. Sistem pembakaran terdiri dari sebuah fixed grate dengan susunan draft mekanis.

23 23 Pemanas fluida termis modern berbahan bakar minyak terdiri dari sebuah kumparan ganda, konstruksi tiga pass dan dipasang dengan sistim jet tekanan. Fluida termis, yang bertindak sebagai pembawa panas, dipanaskan dalam pemanas dan disirkulasikan melalui peralatan pengguna. Disini fluida memindahkan panas untuk proses melalui penukar panas, kemudian fluidanya memindahkan panas untuk proses melalui penukar panas, kemudian fluidanya dikembalikan ke pemanas. Aliran fluida termis pada ujung pemakai dikendalikan oleh katup pengendali yang dioperasikan secara pneumatis, berdasarkan suhu operasi. Pemanas operasi pada api yang tinggi atau rendah tergantung pada suhu minyak yang kembali yang bervariasi tergantung beban sistim. Faktor ekonomi keseluruhan dari pemanas fluida termis berbahan bakar batubara dengan kisaran efisiensi panas 55-65% merupakan yang paling nyaman digunakan dibandingkan dengan hampir kebanyakan boiler. Penggabungan peralatan pemanfaatan kembali panas dalam gabungan akan emepertinggi tingkat efisiensi termis selanjutnya. Keuntungan Pemanas Fluida Termis. Operasi sistim tertutup dengan kehilangan minimum dibanding dengan boiler steam. Operasi sistim tidak bertekanan bahkan untuk suhu sekitar C dibanding kebutuhan tekanan steam 40kg/cm 2 dalam sistim steam yang sejenis. Penyetelan kendali otomatis, yang memberikan fleksibilitas operasi.

24 24 Efisiensi termis yang baik karena tidak adanya kehilangan panas yang diakibatkan oleh blowdown, pembuangan kondensat dan flash steam. Gambar 2.20 : Pemanas Fluida Termis 2.3. Jenis Jenis Pemeliharaan Boiler Pemeliharaan adalah kombinasi dari berbagai kegiatan yang dilakukan untuk memlihara fasilitas-fasilitas dan peralatan mesin serta mengadakan perbaikkan atau penyesuian yang diperlukan agar terciptanya suatu keadaan operasi produksi yang memuaskan dan sesuai dengan yang direncanakan.

25 Pemeliharaan Preventive Pekerjaan pemeliharaan yang bertujuanuntuk mencegah terjadinya kerusakan, atau cara pemeliharaan yang direncanakan untuk pencegahan (preventive). Pemeliharaan preventive dimaksudkan juga untuk mengektifkan pekerjaan inspeksi, perbaikan kecil, pelumasan dan penyetelan sehingga peralatan atau mesin-mesin selama beroperasi dapat terhindar dari kerusakan. Pemeliharaan preventive dilaksanakan sejak awal sebelum terjadi kerusakan. Pemeliharaan ini penting diterapkan pada industri-industri yang proses produksinya kontinyu atau memakai sistem otomatis Pemeliharaan Corrective Pemeliharaan pekerjaan yang dilakukan untuk memperbaiki dan meningkatkan kondisi fasilitas sehingga mencapai standart yang diterima. Pemeliharaan corrective termasuk dalam cara pemeliharaan yang direncanakan untuk perbaikan. Dalam pemeliharaan corrective ini dapat mengadakan peningkatan-peningkatan sedemikian rupa, seperti melakukan perubahan atau modifikasi rancangan peralatan agar lebih baik. Menghilangkan problem yang merugikan untuk mencapai kondisi operasi yang lebih ekonomis.

26 Pemeliharaan Predictive Pemeliharaan predictive ini dilakukan untuk mengetahui terjadinya perubahan atau kelainan dalam kondisi fisik maupun fungsi dari sistem peralatan. Biasanya pemeliharaan predictive dilakukan dengan bantuan pancaindera atau dengan alat-alat monitor yang canggih. Teknik-teknik dan alat bantu yang dipakai dalam memonitor kondisi ini adalah untuk efisiensi kerja agar kelainan yang terjadi dapat diketahui dengan cepat dan tepat. Pemeliharaan dengan sistem monitoring sangat penting dilakukan untuk mendapatkan hasil yang realistis tanpa melakukan pembongkaran total untuk menganalisisnya pemeliharaan Breakdown Cara pemeliharaan yang direncanakan untuk memperbaiki kerusakan. Pekerjaan pemeliharaan ini dilakukan setelah terjadi kerusakan alat-alat dan tenaga kerjanya. Beberapa peralatan yang beroperasi pada unit tersendiri atau terpisah dari proses produksi, tidak akan langsung mempengaruhi seluruh proses produksi apabila terjadi kerusakan. Untuk peralatan tersebut tidak perlu diadakan pemeliharaan, karena biaya pemeliharaan lebih besar daripada biaya kerusakannya. Dalam kondisi khusus ini peralatan dibiarkan beroperasi sampai terjadi kerusakan, sehingga waktu untuk produksi tidak berkurang. Penerapan sistim pemeliharaan ini dilakukan pada mesin industri yang ringan, apabila terjadi kerusakan dapat diperbaiki dengan cepat.

27 27 BAB III METODOLOGI PENELITIAN 3.1. Metode Penelitian Data yang digunakan dalam penulisan ini berasal dari Internet, Referensi Buku dan Wawancara. Materi yang diambil adalah PEMELIHARAAN BOILER PIPA AIR (WATER TUBE BOILER) Metode Pengumpulan Data Untuk mendapatkan yang maksimal dari penulisan laporan ini, maka diperlukan data-data akurat sebagai landasan penulisan dan penyusunannya. Data-data tersebut diperoleh dengan metode sebagai berikut: Studi Literatur Mempelajari buku-buku atau sumber-sumber referensi lain yang berkaitan dengan permasalahan yang akan dibahas Teknik Pengolahan Data Pada pengolahan data ini, penulis menjabarkan tentang pengolahan data yang didapat oleh penulis sebagai bahan untuk penulisan seminar ini. Dimana penulis menjelaskan langkah-langkah pengolahan data sebagai berikut:

28 28 1. Pembahasan tentang Teori dasar PLTU, komponen utama serta cara kerjanya 2. Membahas tentang Pemeliharaan Boiler Pipa Air (Water Tube Boiler) langkah-langkah tersebut yang digunakan untuk melakukan analisa dalam penulisan seminar ini Teknik Analisis Data data yang di dapatkan dianalisa dengan mengkaji dan mempelajari literatur yang berkaitan dengan permasalahan, serta pengumpulan dat-data melalui bukubuku literatur atau buku petunjuk pengoperasian.

29 29 Mulai Survey Studi kasus Pengumpulan Data Pengkajian data Pengolahan data tidak Hasil ya Selesai Gambar 3.1. Diagram Alir Pemecahan Masalah

30 30 BAB IV ANALISIS DAN PEMBAHASAN 4.1. Cara Kerja Boiler Pipa Air (Water Tube Boiler) Boiler Pipa Air (Water Tube Boiler) merupakan tipe boiler yang pembakaran terjadi di luar pipa dimana api dari luar pipa memanaskan air di dalam pipa. Cara kerja tipe water tube boiler yaitu: proses pengapian terjadi diluar pipa, kemudian panas yang dihasilkan memanaskan pipa yang berisi air dan sebelumnya air tersebut dikondensasikan terlebih dahulu melalui economizer, kemudian steam yang dihasilkan terlebih dahulu dikumpulkan di dalam sebuah steam drum. Sampai tekanan dan temperatur sesuai, melalui tahap secondary superheater dan primary superheater baru steam dilepaskan ke pipa utama distribusi. Di dalam pipa air, air mengalir harus dikondisikan terhadap mineral atau kandungan lainnya yang larut di dalam air tersebut. Hal ini merupakan faktor utama yang harus diperhatikan terhadap tipe ini. Gambar 4.1. : Pipa Air

31 Masalah-Masalah Pada Water Tube Boiler Suatu boiler atau pembangkit uap yang dioperasikan tanpa kondisi air yang baik, cepat atau lambat akan menimbulkan masalah-masalah yang berkaitan dengan kinerja dan kualitas dari sistem pemabngkit. Banyak masalah-masalah yang ditimbulkan akibat dari kurangnya penanganan dan perhatian khusus terhadap penggunaan air umpan boiler. Akibat dari kurangnnya penanganan terhadap air umpan boiler akan menimbulkan masalah-masalah sebagai berikut : 1. Pembentukan kerak 2. Peristiwa korosi 3. Pembentukan deposit 4. Terjadinya terbawanya uap (steam carryover) Pembentukan Kerak Terbentuk kerak pada dinding boiler terjadi akibat adanya mineralmineral pembentukan kerak, misalnya ion-ion kesadahan seperti Ca 2+ dan Mg 2+ dan akibat pengaruh gas penguapan. Disamping itu pula dapat disebabkan oleh mekanisme pemekatan didalam boiler karena adanya pemanasan. Jenis-jenis kerak yang umum dalam boiler adalah kalsium sulfat, senyawa ailikat dan karbonat. Zat-zat dapat membentuk kerak yang keras dan padat sehingga bila lama penanggulangannya akan sulit sekali untuk dihilangkan. Silika diendapkan bersama dengan kalsium dan magnesium

32 32 sehingga kerak semakin keras dan semakin sulit untuk dihilangkan. (Gaffert,Gustaf A. 1974). Kerak yang menyelimuti permukaan boiler berpengaruh terhadap perpindahan panas permukaan dan menunjukan dua akibat utama yaitu berkurangnya panas yang dipindahkan dari dapur ke air yang mengakibatkan meningkatkan temperatur disekitar dapur, dan menurunya efisiensi boiler. Untuk mengurangi terjadinya pembentukan kerak pada boiler dapat dilakukan pencegahan-pencegahan sebagai berikut : - Mengurangi jumlah mineral dengan unit softtener - Melakukan blowown secara teratur jumlahnya - Memberikan bahan kimia anti kerak Zat terlarut dan tersuspensi yang terdapat pada semua air alami dapat dihilangkan/dikurangi pada proses pra-treatment (pengolahan awal) yang terbukti ekonomis. Penanggulangan kerak yang sudah ada dapat dilakukan dengan cara : - On-line cleaning yaitu pelunakan kerak-kerak lama dengan bahan kimia selama boiler beroperasi normal. - Off-line cleaning (acid cleaning) yaitu melarutkan kerak-kerak lama dengan asam-asam khusus tetapi Boiler harus berhenti beroperasi. - Mechanical cleaning : dengan sikat, pahat, scrub, dan lain-lain. (Gaffert,Gustaf A. 1974).

33 Peristiwa Korosi Korosi dapat disebabkan oleh oksigen dan karbon dioksida yang terdapat dalam uap yang terkondensasi (kombinasi udara dengan air panas, garam dan kontaminasi lain yang berpotensi untuk menghasilkan korosi). Korosi merupakan peristiwa logam kembali kebentuk asalnya di alam misalnya besi menjadi oksida besi, alumunium dan lain-lain. Peristiwa korosi dapat terjadi disebabkan oleh : - Gas-gas yang bersifat korosif seperti O2, CO2, H2S - Kerak dan deposit - Perbedaan logam (korosi galvanis) - ph yang terlalu rendah dan lain-lain jenis korosi yang dijumpai pada boiler dan sistem uap adalah general corrosion, pitting (terbentuknya lubang) dan embrittlement (peretakan baja). Adanya gas yang terlarut, oksigen dan karbon dioksida pada air umpan boiler adalah penyebab utama general corrosion dan pitting corrosion (tipe oksigen elektro kimia dan diferensial). Untuk mengurangi terjadinya peristiwa korosi dapat dilakukan pencegahan sebagai berikut : - mengurangi gas-gas yang bersifat korosif - mencegah terbentuknya kerak dan deposit dalam boiler - mencegah korosi galvanis - menggunakan zat yang dapat menghambat peristiwa korosif - mengatur ph dan alkalinitas air boiler dan lain-lain

34 Peristiwa Pembentukan Deposit Deposit merupakan peristiwa penggumpalan zat dalam air umpan boiler yang disebabkan oleh adanya zat padat tersuspensi misalnya oksida besi, oksida tembaga dan lain-lain. Peristiwa ini dapat juga disebabkan oleh kontaminasi uap dari produk hasil proses produksi. Sumber deposit didalam air seperti garam-garam yang terlarut dan zat-zat yang tersuspensi didalam air umpan boiler. Pemanasan dan dengan adanya zat tersuspensi dalam air pada boiler menyebabkan mengendapnya sejumlah muatan yang menurunkan daya kelarutan, jika temperatur dinaikkan. Hal ini menjelaskan mengapa kerak dan sludge (lumpur) terbentuk. Kerak merupakan bentuk deposit-deposit yang tetap berada pada permukaan boiler sedangkan sludge merupakan bentuk deposit-deposit yang tidak menetap atau deposit lunak (Milton, J.H. 1990) Pada ketel bertekanan tinggi, silika muda mengendap dengan uap dan dapat membentuk deposit yang menyulitkan pada daun turbin. Pencegahan - pencegahan yang dapat dilakukan untuk mengurangi terjadinya peristiwa deposit dapat dilakukan diantaranya : - Meminimalisasi masuknya mineral-mineral yang dapat menyebabkan deposit seperti oksida besi, oksida tembaga dan lain-lain - Mencegah korosi pada sistem kondensat dengan proses netralisasi (mengatur ph 8,2 9,2) dapat juga dilakukan dengan mencegah kebocoran udara pada sistem kondensat. - Mencegah kontaminasi uap selajutnya menggunakan bahan kimia untuk mendispersikan mineral-mineral penyebab deposit.

35 35 Penanggulangan terjadinya deposit yang telah ada dapat dilakukan dengan acid cleaning, online cleaning dan mechanical cleaning Kontaminasi Uap Ketika air boiler mengandung garam terlarut dan zat tersuspensi dengan konsentrasi yang tinggi, ada kecenderungan baginya untuk membentuk busa secara berlebihan sehingga dapat menyebabkan steam carryover zat-zat padat dan cairan pengotor kedalam uap. Steam carryover terjadi jika mineral-mineral dari boiler ikut keluar bersama dengan uap ke alat-alat seperti superheater, turbin dan lain-lain. Kontaminasi-kontaminasi ini dapat diendapkan kembali pada sistem uap atau zat-zat itu akan mengontaminasi proses atau material-material yang diperlukan steam. (Naibaho, P.M. 1996) Steam carryover dapat dihindari dengan menahan zat-zat padat terlarut pada air boiler dibawah tingkat tertentu melalui analisa sistematis dan kontrol pada pemberian zat-zat kimia dan blowdown. Carryover karbon dioksida dapat mengembalikan uap dan asam-asam terkondensasi Pemeliharaan Boiler Pipa Air (Water Tube Boiler) Kegiatan pemeliharaan ini sebelumnya telah direncanakan baik dari segi waktu, tipe pekerjaan, suku cadang maupun pendukung lainnya. Bisa dikatakan pemeliharaan ini ialah pemeliharaan Preventive untuk mengetahui berbagai jenis kerusakan yang terjadi ketika sedang beroperasi.

36 36 Gambar 4.2. : Pemeliharaan Pada Boiler Water Wall (Water Tube Boiler) a. Predictive Maintenance (Pemeliharaan Perkiraan) Kegiatan ini merupakan salah satu sistem pemeliharaan yang didasarkan pada kondisi alat (Condition Base), pengambilan data dilakukan secara periodik atau saat terjadi gejala penyimpangan pada alat. Pengambilan data dan dianalisis oleh bagian inspeksi teknik dengan menggunakan peralatan tertentu (alat ukur vibrasi, alat deteksi suara dan lain-lain) dan hasil analisa ini berupa rekomendasi yang ditunjukan pada dinas terkait. Sasaran dari Predictive Maintenance adalah untuk mengetahui gejala penyimpangan alat secara dini sehingga tidak terjadi mesin mati karena rusak (Breakdown) terutama pada alat-alat yang beroperasi secara single run yaitu alat-alat produksi yang penting dan jumlah mesinnya satu.

37 37 b. Routine Maintenance (Pemeliharaan Rutin) Kegiatan ini dilakukan terhadap peralatan opersional yang dilakukan setiap hari dengan tujuan untuk memonitor atau mengetahui kondisi alat, sehingga apabila ada gejala kerusakan atau penyimpangan dapat diketahui secara dini. c. Overhaul Kegiatan pemeliharaan ini dilakukan dengan cara memeriksa bagian internal dan mengganti part tertentu yang penting. Sasaran dari tindakan ini adalah mengembalikan kondisi alat ke keadaan semula. Tindakan pemeliharaan ini dilakukan berdasarkan waktu (Time Base). Jadi secara periodik alat dalam kondisi baik maupun tidak dimatikan untuk dilakukan Overhaul. Adapun kegiatan pemeliharaan yang dilakukan pada Water Tube Boiler (Boiler Pipa Air ) adalah : 1. Pemeliharaan Harian Visual Inspection Pemeriksaan Temperatur Pemeriksaan Pressure 2. Pemeliharaan Mingguan Visual Inspection Pemeriksaan Temperatur Pemeriksaan Pressure

38 38 Pemeriksaan peralatan dari ketidak normalan dan kondisi operasi sesuai dengan standart operasi 3. Pemeriksaan Bulanan Visual Inspection Pemeriksaan Temperatur Pemeriksaan Pressure Pemeriksaan peralatan dari ketidak normalan dan kondisi operasi sesuai dengan standart operasi dengan menggunakan peralatan yang sederhana saat operasi. Bagian pemeliharaan harus menentukan metode pemeriksaan dan urutan pelaksanaan pemeriksaan. Tujuan perusahaan menggunakan Preventive Maintenance agar terjamin hal-hal sebagai berikut : a) Keamanan Water Tube Boiler dan Operator b) Kelancaran proses produksi c) Kualitas produk 4.4. Faktor Pendukung Pemeliharaan Boiler Pipa Air Faktor-faktor yang mempengaruhi pemeliharaan strategi pemeliharaan adalah : a) Umur peralatan atau mesin produksi b) Tingkat kapasitas pemakaian mesin c) Kesiapan suku cadang d) Kemampuan tim pemeliharaan untuk bekerja cepat

39 Penanganan Kerusakan Selain dari proses perbaikan itu sendiri tim pemeliharaan mempunyai tugas mencari penebab yang sering terjadi pada mesin. Selain mendapat laporan kerusakan dari operator pada komponen mesin tim pemeliharaan juga menganalisa kerusakan-kerusakan pada komponen mesin. Faktor yang muncul dari analisa terhadap mesin antara lain : Jam operasi mesin Adanya kelainan yang secara visual bisa mempengaruhi produktivitas mesin Menurunnya performance mesin itu sendiri Penanganan kerusakan pada tube dilakukan dengan cara mengganti tube yang rusak tersebut dengan tube yang baru yang telah tersedia, biasanya kerusakan terjadi minimal 1 tahun untuk penggantian Water Tube Boiler Keuntungan dan Kerugian Menggunakan Boiler Pipa Air Adapun keuntungan menggunakan Water Tube Boiler adalah : Menghasilkan uap dengan tekanan lebih tinggi dari pada ketel pipa api. Untuk daya yang sama, menepati ruang/tempat yang lebih kecil daripada ketel pipa api. Laju aliran uap lebih tinggi. Komponen-komponen yang berbeda bisa diurai sehingga mudah untuk dipindahkan.

40 40 Permukaan pemanasan lebih efektif karena gas panas mengalir keatas pada arah tegak lurus. Pecah pada pipa air tidak menimbulkan kerusakan ke seluruh ketel. Adapun kerugian menggunakan Water Tube Boiler adalah : Air umpan mensyaratkan mempunyai kemurnian yang tinggi untuk mecegah endapan kerak di dalam pipa. Jika terbentuk kerak di dalam pipa bisa menimblkan panas yang berlebih dan pecah. Ketel pipa air memerlukan perhatian yang lebih hati-hati bagi penguapannya, karena itu akan menimbulkan biaya operasi yang lebih tinggi. Pembersihan pipa air tidak mudah dilakukan.

41 41 BAB V KESIMPULAN DAN SARAN 1.1. Kesimpulan Berdasarkan pembahasan materi Water Tube Boiler maka dapat diambil kesimpulan sebagai berikut : a. Proses Pelaksanaan Pemeliharaan Water Tube Boiler Pada pelaksanaan pemeliharaan yang dilaksanakan pada Water Tube Boiler juga diterapkan pada semua jenis mesin lain yang ada di perusahaan. Dalam hal ini perlu dipertimbangkan secara baik bentuk pemeliharaan yang akan diterapkan sehubungan dengan kebutuhan produksi, waktu, biaya, dan kondisi peralatan yang dikerjakan, maka diperlukan strategi pemeliharaan. Faktor faktor yang mempengaruhi pemilihan strategi pemeliharaan adalah: a) Umur peralatan atau mesin produksi b) Tingkat kapasitas pemakaian mesin c) Kesiapan suku cadang d) Kemampuan tim pemeliharaan untuk bekerja cepat b. Metode Pemeliharaan Water Tube Boiler Dalam hal ini pemeliharaan pada mesin Water Tube Boiler ataupun mesin mesin yang terdapat pada perusahaan dilaksanakan secara rutin adapun pelaporan kerusakan dari pihak operator yang selama 24 jam menjaga mesin beroperasi.

42 42 Pelaksanaan metode pemeliharaan ini perlu dipertimbangkan dengan pengaruhnya terkait produktivitas perusahaan, maka dalam pelaksanaan metode pemeliharaan harus mengkoordinasi pekerjaan pemeliharaan dengan kebutuhan produksi. Pemeliharaan yang dilakukan secara terjadwal lebih teratur dalam melakukan tindakan jika terjadi kerusakan dari pada pemeliharaan yang tidak terjadwal. Dalam hal ini tim pemeliharaan akan melaksanakan pemeliharaan terjadwal sesuai dengan daftar umur kerusakan pada komponen mesin. Dan dalam pelaksanaan pemeliharaan ini tim pemeliharaan akan membuat suatu riwayat perbaikan atau penggantian komponen komponen mesin jika memang sudah waktunya diganti Saran dihadapi, maka dapat diambil saran yang dapat dijadikan bahan pertimbangan bagi perusahaan agar dapat mencapai efisiensi dan efektifitas dalam melakukan kebijaksanaan pemeliharaan, yaitu dengan menggunakan pemeliharaan preventive yang dilakukan secara berkala dan terus menerus agar tidak terjadi hal yang tidak diinginkan, sedangkan secara teknis harus sesuai dengan procedure, Standart Opersional Prosedure yang digunakan oleh perusahaan, agar Water Tube Boiler tidak terjadi kerusakan/kebocoran.

43 43 DAFTAR PUSTAKA Data seminar Muhammad Ridwan, angkatan 2011 (Pemeliharaan Fire Tube Boiler). - file:///d:/bab_ii.pdf

BAB III DASAR TEORI SISTEM PLTU

BAB III DASAR TEORI SISTEM PLTU BAB III DASAR TEORI SISTEM PLTU Sistem pembangkit listrik tenaga uap (Steam Power Plant) memakai siklus Rankine. PLTU Suralaya menggunakan siklus tertutup (closed cycle) dengan dasar siklus rankine dengan

Lebih terperinci

PENGOLAHAN AIR SUNGAI UNTUK BOILER

PENGOLAHAN AIR SUNGAI UNTUK BOILER PENGOLAHAN AIR SUNGAI UNTUK BOILER Oleh Denni Alfiansyah 1031210146-3A JURUSAN TEKNIK MESIN POLITEKNIK NEGERI MALANG MALANG 2012 PENGOLAHAN AIR SUNGAI UNTUK BOILER Air yang digunakan pada proses pengolahan

Lebih terperinci

BAB I PENDAHULUAN. Dunia industri dewasa ini mengalami perkembangan pesat. akhirnya akan mengakibatkan bertambahnya persaingan khususnya

BAB I PENDAHULUAN. Dunia industri dewasa ini mengalami perkembangan pesat. akhirnya akan mengakibatkan bertambahnya persaingan khususnya BAB I PENDAHULUAN I.1. Latar Belakang Masalah Dunia industri dewasa ini mengalami perkembangan pesat. Perkembangan itu ditandai dengan berkembangnya ilmu dan teknologi yang akhirnya akan mengakibatkan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Landasan Teori PLTGU atau combine cycle power plant (CCPP) adalah suatu unit pembangkit yang memanfaatkan siklus gabungan antara turbin uap dan turbin gas. Gagasan awal untuk

Lebih terperinci

II. LATAR BELAKANG PENGOLAHAN AIR

II. LATAR BELAKANG PENGOLAHAN AIR II. LATAR BELAKANG PENGOLAHAN AIR Air baku yang digunakan umumnya mengandung bermacam-macam senyawa pengotor seperti padatan tersuspensi, padatan terlarut, dan gas-gas. Penggunaan air tersebut secara langsung

Lebih terperinci

Prinsip kerja PLTG dapat dijelaskan melalui gambar dibawah ini : Gambar 1.1. Skema PLTG

Prinsip kerja PLTG dapat dijelaskan melalui gambar dibawah ini : Gambar 1.1. Skema PLTG 1. SIKLUS PLTGU 1.1. Siklus PLTG Prinsip kerja PLTG dapat dijelaskan melalui gambar dibawah ini : Gambar 1.1. Skema PLTG Proses yang terjadi pada PLTG adalah sebagai berikut : Pertama, turbin gas berfungsi

Lebih terperinci

BAB II LANDASAN TEORI. panas. Karena panas yang diperlukan untuk membuat uap air ini didapat dari hasil

BAB II LANDASAN TEORI. panas. Karena panas yang diperlukan untuk membuat uap air ini didapat dari hasil BAB II LANDASAN TEORI II.1 Teori Dasar Ketel Uap Ketel uap adalah pesawat atau bejana yang disusun untuk mengubah air menjadi uap dengan jalan pemanasan, dimana energi kimia diubah menjadi energi panas.

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pembangkit Listrik Tenaga Uap (PLTU) PLTU merupakan sistem pembangkit tenaga listrik dengan memanfaatkan energi panas bahan bakar untuk diubah menjadi energi listrik dengan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Teori Dasar Steam merupakan bagian penting dan tidak terpisahkan dari teknologi modern. Tanpa steam, maka industri makanan kita, tekstil, bahan kimia, bahan kedokteran,daya, pemanasan

Lebih terperinci

Gbr. 2.1 Pusat Listrik Tenaga Gas dan Uap (PLTGU)

Gbr. 2.1 Pusat Listrik Tenaga Gas dan Uap (PLTGU) BAB II TINJAUAN PUSTAKA 2.1 Pengertian HRSG HRSG (Heat Recovery Steam Generator) adalah ketel uap atau boiler yang memanfaatkan energi panas sisa gas buang satu unit turbin gas untuk memanaskan air dan

Lebih terperinci

BAB I PENDAHULUAN. uap dengan kapasitas dan tekanan tertentu dan terjadi pembakaran di

BAB I PENDAHULUAN. uap dengan kapasitas dan tekanan tertentu dan terjadi pembakaran di BAB I PENDAHULUAN 1.1 Pengertian Umum Ketel Uap Ketel uap adalah pesawat energi yang mengubah air menjadi uap dengan kapasitas dan tekanan tertentu dan terjadi pembakaran di dapur ketel uap. Komponen-komponen

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Turbin gas adalah suatu unit turbin dengan menggunakan gas sebagai fluida kerjanya. Sebenarnya turbin gas merupakan komponen dari suatu sistem pembangkit. Sistem turbin gas paling

Lebih terperinci

Dapat juga digunakan sebuah metode yang lebih sederhana: Persentase kehilangan panas yang disebabkan oleh gas kering cerobong

Dapat juga digunakan sebuah metode yang lebih sederhana: Persentase kehilangan panas yang disebabkan oleh gas kering cerobong MODUL 4 Dapat juga digunakan sebuah metode yang lebih sederhana: Persentase kehilangan panas yang disebabkan oleh gas kering cerobong Tahap 5: Menghitung efisiensi boiler dan rasio penguapan boiler 1 Efisiensi

Lebih terperinci

JURUSAN TEKNIK ELEKTRO KONSENTRASI TEKNIK ELEKTRONIKA FAKULTAS TEKNOLOGI INDUSTRI UNIVERSITAS GUNADARMA

JURUSAN TEKNIK ELEKTRO KONSENTRASI TEKNIK ELEKTRONIKA FAKULTAS TEKNOLOGI INDUSTRI UNIVERSITAS GUNADARMA ANALISA SISTEM KONTROL LEVEL DAN INSTRUMENTASI PADA HIGH PRESSURE HEATER PADA UNIT 1 4 DI PLTU UBP SURALAYA. Disusun Oleh : ANDREAS HAMONANGAN S (10411790) JURUSAN TEKNIK ELEKTRO KONSENTRASI TEKNIK ELEKTRONIKA

Lebih terperinci

PLTU (PEMBANGKIT LISTRIK TENAGA UAP)

PLTU (PEMBANGKIT LISTRIK TENAGA UAP) PLTU (PEMBANGKIT LISTRIK TENAGA UAP) I. PENDAHULUAN Pusat pembangkit listrik tenaga uap pada saat ini masih menjadi pilihan dalam konversi tenaga dengan skala besar dari bahan bakar konvensional menjadi

Lebih terperinci

BAB I PENDAHULUAN. Turbin uap berfungsi untuk mengubah energi panas yang terkandung. menghasilkan putaran (energi mekanik).

BAB I PENDAHULUAN. Turbin uap berfungsi untuk mengubah energi panas yang terkandung. menghasilkan putaran (energi mekanik). BAB I PENDAHULUAN 1.1 LATAR BELAKANG Turbin uap adalah suatu penggerak mula yang mengubah energi potensial menjadi energi kinetik dan energi kinetik ini selanjutnya diubah menjadi energi mekanik dalam

Lebih terperinci

Pengoperasian pltu. Simple, Inspiring, Performing,

Pengoperasian pltu. Simple, Inspiring, Performing, Pengoperasian pltu PERSIAPAN COLD START PLTU 1. SISTEM AUXILIARY STEAM (UAP BANTU) FUNGSI : a. Menyuplai uap ke sistem bahan bakar minyak pada igniter untuk mengabutkan bahan bakar minyak (Atomizing sistem).

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah. PLTU adalah jenis pembangkit listrik tenaga termal yang banyak digunakan

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah. PLTU adalah jenis pembangkit listrik tenaga termal yang banyak digunakan BAB I PENDAHULUAN 1.1 Latar Belakang Masalah PLTU adalah jenis pembangkit listrik tenaga termal yang banyak digunakan karena efisiensinya tinggi sehingga menghasilkan energi listrik yang ekonomis. PLTU

Lebih terperinci

BAB II TINJAUAN PUSTAKA. tenaga listrik adalah Boiler (Steam Generator) atau yang biasanya disebut ketel

BAB II TINJAUAN PUSTAKA. tenaga listrik adalah Boiler (Steam Generator) atau yang biasanya disebut ketel BAB II TINJAUAN PUSTAKA 2.1 Boiler Salah satu peralatan yang sangat penting di dalam suatu pembangkit tenaga listrik adalah Boiler (Steam Generator) atau yang biasanya disebut ketel uap. Alat ini merupakan

Lebih terperinci

KONVERSI ENERGI PANAS BUMI HASBULLAH, MT

KONVERSI ENERGI PANAS BUMI HASBULLAH, MT KONVERSI ENERGI PANAS BUMI HASBULLAH, MT TEKNIK ELEKTRO FPTK UPI, 2009 POTENSI ENERGI PANAS BUMI Indonesia dilewati 20% panjang dari sabuk api "ring of fire 50.000 MW potensi panas bumi dunia, 27.000 MW

Lebih terperinci

BAB III TEORI DASAR KONDENSOR

BAB III TEORI DASAR KONDENSOR BAB III TEORI DASAR KONDENSOR 3.1. Kondensor PT. Krakatau Daya Listrik merupakan salah satu anak perusahaan dari PT. Krakatau Steel yang berfungsi sebagai penyuplai aliran listrik bagi PT. Krakatau Steel

Lebih terperinci

TUGAS I MENGHITUNG KAPASITAS BOILER

TUGAS I MENGHITUNG KAPASITAS BOILER TUGAS I MENGHITUNG KAPASITAS BOILER Oleh : Mohammad Choirul Anam 4213 105 021 Jurusan Teknik Sistem Perkapalan Fakultas Teknologi Kelautan Institut Teknologi Sepuluh Nopember 2014 BOILER 1. Dasar Teori

Lebih terperinci

BAB I PENDAHULUAN BAB I PENDAHULUAN

BAB I PENDAHULUAN BAB I PENDAHULUAN BAB I PENDAHULUAN 1.1 Latar Belakang Energi listrik merupakan salah satu kebutuhan pokok yang sangat penting dalam kehidupan manusia saat ini, hampir semua aktifitas manusia berhubungan dengan energi listrik.

Lebih terperinci

MODUL V-C PEMBANGKIT LISTRIK TENAGA GAS UAP (PLTGU)

MODUL V-C PEMBANGKIT LISTRIK TENAGA GAS UAP (PLTGU) MODUL V-C PEMBANGKIT LISTRIK TENAGA GAS UAP (PLTGU) DEFINISI PLTGU PLTGU merupakan pembangkit listrik yang memanfaatkan tenaga gas dan uap. Jadi disini sudah jelas ada dua mode pembangkitan. yaitu pembangkitan

Lebih terperinci

IV. HASIL DAN PEMBAHASAN

IV. HASIL DAN PEMBAHASAN IV. HASIL DAN PEMBAHASAN Pembangkit Listrik Tenaga Uap (PLTU) Energi Alamraya Semesta adalah PLTU yang menggunakan batubara sebagai bahan bakar. Batubara yang digunakan adalah batubara jenis bituminus

Lebih terperinci

BAB I PENDAHULUAN. kemampuan yang memadai untuk melayani proses yang berlangsung di dalamnya.

BAB I PENDAHULUAN. kemampuan yang memadai untuk melayani proses yang berlangsung di dalamnya. BAB I PENDAHULUAN 1.1. Latar Belakang Zaman sekarang ini merupakan era industri yang memerlukan suatu daya dan kemampuan yang memadai untuk melayani proses yang berlangsung di dalamnya. Industri dan perusahaan

Lebih terperinci

BAB II TINJAUAN PUSTAKA. listrik dimana generator atau pembangkit digerakkan oleh turbin dengan

BAB II TINJAUAN PUSTAKA. listrik dimana generator atau pembangkit digerakkan oleh turbin dengan BAB II TINJAUAN PUSTAKA 2.1 Defenisi Sistem Pembangkit Listrik Tenaga Uap Pembangkit listrik tenaga uap adalah sistem yang dapat membangkitkan tenaga listrik dimana generator atau pembangkit digerakkan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1.1 Boiler. Pada bab ini dijelaskan mengenai gambaran tentang boiler secara umum serta fungsi komponen - komponen utama dan fungsi komponen - komponen pendukung bahan boiler.boiler

Lebih terperinci

I. Pendahuluan. A. Latar Belakang. B. Rumusan Masalah. C. Tujuan

I. Pendahuluan. A. Latar Belakang. B. Rumusan Masalah. C. Tujuan I. Pendahuluan A. Latar Belakang Dalam dunia industri terdapat bermacam-macam alat ataupun proses kimiawi yang terjadi. Dan begitu pula pada hasil produk yang keluar yang berada di sela-sela kebutuhan

Lebih terperinci

SESSION 12 POWER PLANT OPERATION

SESSION 12 POWER PLANT OPERATION SESSION 12 POWER PLANT OPERATION OUTLINE 1. Perencanaan Operasi Pembangkit 2. Manajemen Operasi Pembangkit 3. Tanggung Jawab Operator 4. Proses Operasi Pembangkit 1. PERENCANAAN OPERASI PEMBANGKIT Perkiraan

Lebih terperinci

BAB I PENDAHULUAN. BAB I Pendahuluan

BAB I PENDAHULUAN. BAB I Pendahuluan BAB I PENDAHULUAN 1.1 LATAR BELAKANG PLTU adalah suatu pembangkit listrik dimana energi listrik dihasilkan oleh generator yang diputar oleh turbin uap yang memanfaatkan tekanan uap hasil dari penguapan

Lebih terperinci

MAKALAH PEMBANGKIT LISTRIK TENAGA GAS (PLTG)

MAKALAH PEMBANGKIT LISTRIK TENAGA GAS (PLTG) MAKALAH PEMBANGKIT LISTRIK TENAGA GAS (PLTG) Di Susun Oleh: 1. VENDRO HARI SANDI 2013110057 2. YOFANDI AGUNG YULIO 2013110052 3. RANDA MARDEL YUSRA 2013110061 4. RAHMAT SURYADI 2013110063 5. SYAFLIWANUR

Lebih terperinci

STEAM TURBINE. POWER PLANT 2 X 15 MW PT. Kawasan Industri Dumai

STEAM TURBINE. POWER PLANT 2 X 15 MW PT. Kawasan Industri Dumai STEAM TURBINE POWER PLANT 2 X 15 MW PT. Kawasan Industri Dumai PENDAHULUAN Asal kata turbin: turbinis (bahasa Latin) : vortex, whirling Claude Burdin, 1828, dalam kompetisi teknik tentang sumber daya air

Lebih terperinci

BAB 1 PENDAHULUAN 1.1. Latar Belakang

BAB 1 PENDAHULUAN 1.1. Latar Belakang BAB 1 PENDAHULUAN 1.1. Latar Belakang Pabrik Kelapa Sawit (PKS) merupakan sebuah unit produksi yang memelukan sumber energi yang besar untuk menggerakkan mesin-mesin serta peralatan lain yang memerlukan

Lebih terperinci

BAB III LANDASAN TEORI

BAB III LANDASAN TEORI BAB III LANDASAN TEORI 3.1 Sistem kerja PLTU Sistem PLTU merupakan sistem pembangkit energi listrik yang memiliki empat komponen utama, yaitu : ketel, turbin, kondensor dan pompa. Ketel berfungsi sebagai

Lebih terperinci

PENGOPERASIAN BOILER SEBAGAI PENYEDIA ENERGI PENGUAPAN PADA PENGOLAHAN LIMBAH RADIOAKTIF CAIR DALAM EVAPORATOR TAHUN 2012

PENGOPERASIAN BOILER SEBAGAI PENYEDIA ENERGI PENGUAPAN PADA PENGOLAHAN LIMBAH RADIOAKTIF CAIR DALAM EVAPORATOR TAHUN 2012 Hasil Penelitian dan Kegiatan PTLR Tahun 202 ISSN 0852-2979 PENGOPERASIAN BOILER SEBAGAI PENYEDIA ENERGI PENGUAPAN PADA PENGOLAHAN LIMBAH RADIOAKTIF CAIR DALAM EVAPORATOR TAHUN 202 Heri Witono, Ahmad Nurjana

Lebih terperinci

BAB I PENDAHULUAN. mendirikan beberapa pembangkit listrik, terutama pembangkit listrik dengan

BAB I PENDAHULUAN. mendirikan beberapa pembangkit listrik, terutama pembangkit listrik dengan BAB I PENDAHULUAN 1.1 Latar Belakang Seiring dengan kebutuhan energi listrik pada zaman globalisasi ini, Indonesia melaksanakan program percepatan pembangkitan listrik sebesar 10.000 MW dengan mendirikan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Dasar Termodinamika 2.1.1 Siklus Termodinamika Siklus termodinamika adalah serangkaian proses termodinamika mentransfer panas dan kerja dalam berbagai keadaan tekanan, temperatur,

Lebih terperinci

BAB II STUDI LITERATUR

BAB II STUDI LITERATUR BAB II STUDI LITERATUR 2.1 Kebutuhan Air Tawar Siklus PLTU membutuhkan air tawar sebagai bahan baku. Hal ini dikarenakan peralatan PLTU sangat rentan terhadap karat. Akan tetapi, semakin besar kapasitas

Lebih terperinci

1. Bagian Utama Boiler

1. Bagian Utama Boiler 1. Bagian Utama Boiler Boiler atau ketel uap terdiri dari berbagai komponen yang membentuk satu kesatuan sehingga dapat menjalankan operasinya, diantaranya: 1. Furnace Komponen ini merupakan tempat pembakaran

Lebih terperinci

BAB II TEORI PENDUKUNG

BAB II TEORI PENDUKUNG BAB II TEORI PENDUKUNG II. 1. Umum Energi mekanik merupakan salah satu bentuk energi yang dapat dirubah menjadi energi panas dan juga energi listrik dengan perubahan efisiensi yang tinggi. Pada dasarnya

Lebih terperinci

BAB VI PERAWATAN DI INDUSTRI

BAB VI PERAWATAN DI INDUSTRI BAB VI PERAWATAN DI INDUSTRI Tenaga kerja, material dan perawatan adalah bagian dari industri yang membutuhkan biaya cukup besar. Setiap mesin akan membutuhkan perawatan dan perbaikan meskipun telah dirancang

Lebih terperinci

Apa itu PLTU? Pembangkit listrik tenaga uap (PLTU) adalah pembangkit yang mengandalkan energi kinetik dari uap untuk menghasilkan energi listrik.

Apa itu PLTU? Pembangkit listrik tenaga uap (PLTU) adalah pembangkit yang mengandalkan energi kinetik dari uap untuk menghasilkan energi listrik. Apa itu PLTU? Pembangkit listrik tenaga uap (PLTU) adalah pembangkit yang mengandalkan energi kinetik dari uap untuk menghasilkan energi listrik. Bentuk utama dari pembangkit listrik jenis ini adalah Generator

Lebih terperinci

BAB I PENDAHULUAN. Gambar 1.1. Potensi dan kapasitas terpasang PLTP di Indonesia [1]

BAB I PENDAHULUAN. Gambar 1.1. Potensi dan kapasitas terpasang PLTP di Indonesia [1] BAB I PENDAHULUAN I.1. Latar Belakang Dewasa ini kelangkaan sumber energi fosil telah menjadi isu utama. Kebutuhan energi tersebut setiap hari terus meningkat. Maka dari itu, energi yang tersedia di bumi

Lebih terperinci

MAKALAH. SMK Negeri 5 Balikpapan SISTEM PENDINGIN PADA SUATU ENGINE. Disusun Oleh : 1. ADITYA YUSTI P. 2.AGUG SETYAWAN 3.AHMAD FAKHRUDDIN N.

MAKALAH. SMK Negeri 5 Balikpapan SISTEM PENDINGIN PADA SUATU ENGINE. Disusun Oleh : 1. ADITYA YUSTI P. 2.AGUG SETYAWAN 3.AHMAD FAKHRUDDIN N. MAKALAH SISTEM PENDINGIN PADA SUATU ENGINE Disusun Oleh : 1. ADITYA YUSTI P. 2.AGUG SETYAWAN 3.AHMAD FAKHRUDDIN N. Kelas : XI. OTOMOTIF Tahun Ajaran : 2013/2014 SMK Negeri 5 Balikpapan Pendahuluan Kerja

Lebih terperinci

PERHITUNGAN EFISIENSI BOILER

PERHITUNGAN EFISIENSI BOILER 1 of 10 12/22/2013 8:36 AM PERHITUNGAN EFISIENSI BOILER PERHITUNGAN EFISIENSI BOILER Efisiensi adalah suatu tingkatan kemampuan kerja dari suatu alat. Sedangkan efisiensi pada boiler adalah prestasi kerja

Lebih terperinci

Steam Power Plant. Siklus Uap Proses Pada PLTU Komponen PLTU Kelebihan dan Kekurangan PLTU

Steam Power Plant. Siklus Uap Proses Pada PLTU Komponen PLTU Kelebihan dan Kekurangan PLTU Steam Power Plant Siklus Uap Proses Pada PLTU Komponen PLTU Kelebihan dan Kekurangan PLTU Siklus dasar yang digunakan pada Steam Power Plant adalah siklus Rankine, dengan komponen utama boiler, turbin

Lebih terperinci

ELEKTROKIMIA DAN KOROSI (Continued) Ramadoni Syahputra

ELEKTROKIMIA DAN KOROSI (Continued) Ramadoni Syahputra ELEKTROKIMIA DAN KOROSI (Continued) Ramadoni Syahputra 3.3 KOROSI Korosi dapat didefinisikan sebagai perusakan secara bertahap atau kehancuran atau memburuknya suatu logam yang disebabkan oleh reaksi kimia

Lebih terperinci

MAKALAH PEMBANGKIT LISRIK TENAGA UAP

MAKALAH PEMBANGKIT LISRIK TENAGA UAP MAKALAH PEMBANGKIT LISRIK TENAGA UAP Oleh IRHAS MUFTI FIRDAUS 321 11 030 YULIA REZKY SAFITRI 321 11 078 HARDIANA 321 11 046 MUH SYIFAI PIRMAN 321 11 034 PROGRAM STUDI TEKNIK LISTRIK JURUSAN TEKNIK ELEKTRO

Lebih terperinci

PENGARUH PERUBAHAN BEBAN TERHADAP SISTEM UAP EKSTRAKSI PADA DEAERATOR PLTU TANJUNG JATI B UNIT 2

PENGARUH PERUBAHAN BEBAN TERHADAP SISTEM UAP EKSTRAKSI PADA DEAERATOR PLTU TANJUNG JATI B UNIT 2 EKSERGI Jurnal Teknik Energi Vol 10 No. 3 September 2; 94-98 PENGARUH PERUBAHAN BEBAN TERHADAP SISTEM UAP EKSTRAKSI PADA DEAERATOR PLTU TANJUNG JATI B UNIT 2 Jev N. Hilga, Sunarwo, M. Denny S, Rudy Haryanto

Lebih terperinci

ANALISA PERFORMANSI TURBIN UAP KAPASITAS 60 MW DI PLTU PEMBANGKITAN LISTRIK SEKTOR BELAWAN

ANALISA PERFORMANSI TURBIN UAP KAPASITAS 60 MW DI PLTU PEMBANGKITAN LISTRIK SEKTOR BELAWAN ANALISA PERFORMANSI TURBIN UAP KAPASITAS 60 MW DI PLTU PEMBANGKITAN LISTRIK SEKTOR BELAWAN LAPORAN TUGAS AKHIR Diajukan untuk Memenuhi Sebagian Persyaratan dalam Menyelesaikan Program Pendidikan Diploma

Lebih terperinci

BAB 1 PENDAHULUAN. generator. Steam yang dibangkitkan ini berasal dari perubahan fase air

BAB 1 PENDAHULUAN. generator. Steam yang dibangkitkan ini berasal dari perubahan fase air BAB 1 PENDAHULUAN 1.1 Latar Belakang Pembangkit Listrik Tenaga Uap (PLTU) adalah pembangkit listrik yang memanfaatkan energi panas dari uap kering (steam) untuk memutar turbin sehingga dapat digunakan

Lebih terperinci

BAB II TINJAUAN PUSTAKA. relatif antara putaran rotor dengan medan putar (rotating magnetic field) yang dihasilkan

BAB II TINJAUAN PUSTAKA. relatif antara putaran rotor dengan medan putar (rotating magnetic field) yang dihasilkan BAB II TINJAUAN PUSTAKA 2.1. Motor Induksi 3 Fasa Motor induksi 3 fasa adalah mesin yang mengubah energi listrik arus bolak-balik (AC) 3 fasa menjadi energi mekanis berupa putaran. Motor induksi merupakan

Lebih terperinci

BAB II PESAWAT PENGUBAH PANAS (HEAT EXCHANGER )

BAB II PESAWAT PENGUBAH PANAS (HEAT EXCHANGER ) BAB II PESAWAT PENGUBAH PANAS (HEAT EXCHANGER ) Pesawat pengubah panas adalah pesawat pesawat yang bekerja atas dasar perpindahan panas dan satu zatke zat yang lain. A. Dapat digolongkan menurut : 1. Pendinginan

Lebih terperinci

BAB II. Prinsip Kerja Mesin Pendingin

BAB II. Prinsip Kerja Mesin Pendingin BAB II Prinsip Kerja Mesin Pendingin A. Sistem Pendinginan Absorbsi Sejarah mesin pendingin absorbsi dimulai pada abad ke-19 mendahului jenis kompresi uap dan telah mengalami masa kejayaannya sendiri.

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang PT. Indonesia Power UP. Suralaya merupakan perusahaan Pembangkit Listrik Tenaga Uap (PLTU) yang menggunakan batubara sejak tahun 1984 sebagai bahan bakar utama pembangkitan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II PENDAHULUAN BAB II LANDASAN TEORI 2.1 Motor Bakar Bensin Motor bakar bensin adalah mesin untuk membangkitkan tenaga. Motor bakar bensin berfungsi untuk mengubah energi kimia yang diperoleh dari

Lebih terperinci

PEMELIHARAAN BOILER FEED WATER PUMP ( PLTU ) UNIT 3 & 4 GRESIK

PEMELIHARAAN BOILER FEED WATER PUMP ( PLTU ) UNIT 3 & 4 GRESIK PEMELIHARAAN BOILER FEED WATER PUMP ( PLTU ) UNIT 3 & 4 GRESIK Studi kasus di : Pembangkit Listrik Tenaga Uap PT.PJB UP Gresik Oleh : Farizal Alfian, NIM 2008040003 Jurusan Teknik Mesin Fakultas Teknik

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Pembangkit Listrik Tenaga Uap Pembangkit Listrik Tenaga Uap (PLTU) merupakan mesin konversi energi yang merubah energi kimia dalam bahan bakar batubara menjadi energi listrik.

Lebih terperinci

Efisiensi PLTU batubara

Efisiensi PLTU batubara Efisiensi PLTU batubara Ariesma Julianto 105100200111051 Vagga Satria Rizky 105100207111003 Sumber energi di Indonesia ditandai dengan keterbatasan cadangan minyak bumi, cadangan gas alam yang mencukupi

Lebih terperinci

BAB I PENDAHULUAN I-1

BAB I PENDAHULUAN I-1 BAB I PENDAHULUAN Dalam bab ini akan diuraikan mengenai latar belakang masalah dari penelitian, perumusan masalah yang diangkat dalam penelitian ini, tujuan dan manfaat dari penelitian yang dilakukan,

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Siklus PLTU Sistem pembangkit listrik tenaga uap (Steam Power Plant) memakai siklus Rankine. PLTU Suralaya menggunakan siklus tertutup (closed cycle) dengan dasar siklus rankine

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Pengertian Desalinasi Desalinasi merupakan suatu proses menghilangkan kadar garam berlebih dalam air untuk mendapatkan air yang dapat dikonsumsi binatang, tanaman dan manusia.

Lebih terperinci

BAB I PENDAHULUAN. listrik. Adapun pembangkit listrik yang umumnya digunakan di Indonesia yaitu

BAB I PENDAHULUAN. listrik. Adapun pembangkit listrik yang umumnya digunakan di Indonesia yaitu BAB I PENDAHULUAN 1.1 LATAR BELAKANG Bertambahnya perindustrian di Indonesia menyebabkan peningkatan kebutuhan listrik. Untuk mengatasi hal tersebut maka saat ini pemerintah berupaya untuk meningkatkan

Lebih terperinci

BAB II MESIN PENDINGIN. temperaturnya lebih tinggi. Didalan sistem pendinginan dalam menjaga temperatur

BAB II MESIN PENDINGIN. temperaturnya lebih tinggi. Didalan sistem pendinginan dalam menjaga temperatur BAB II MESIN PENDINGIN 2.1. Pengertian Mesin Pendingin Mesin Pendingin adalah suatu peralatan yang digunakan untuk mendinginkan air, atau peralatan yang berfungsi untuk memindahkan panas dari suatu tempat

Lebih terperinci

PENGARUH SUHU DAN TEKANAN TERHADAP PENINGKATAN EFISIENSI THERMAL SIKLUS RANKINE PADA PEMBANGKIT DAYA TENAGA UAP. Oleh ( ) TEKNIK MESIN UNILA

PENGARUH SUHU DAN TEKANAN TERHADAP PENINGKATAN EFISIENSI THERMAL SIKLUS RANKINE PADA PEMBANGKIT DAYA TENAGA UAP. Oleh ( ) TEKNIK MESIN UNILA 1 PENGARUH SUHU DAN TEKANAN TERHADAP PENINGKATAN EFISIENSI THERMAL SIKLUS RANKINE PADA PEMBANGKIT DAYA TENAGA UAP Oleh BAYU AGUNG PERMANA JASIRON NENI SUSANTI (0615021007) TEKNIK MESIN UNILA (0715021012)

Lebih terperinci

BAB I PENDAHULUAN. PLTU 3 Jawa Timur Tanjung Awar-Awar Tuban menggunakan heat. exchanger tipe Plate Heat Exchanger (PHE).

BAB I PENDAHULUAN. PLTU 3 Jawa Timur Tanjung Awar-Awar Tuban menggunakan heat. exchanger tipe Plate Heat Exchanger (PHE). BAB I PENDAHULUAN 1.1 Latar Belakang Heat Exchanger adalah alat penukar kalor yang berfungsi untuk mengubah temperatur dan fasa suatu jenis fluida. Proses tersebut terjadi dengan memanfaatkan proses perpindahan

Lebih terperinci

BAB I PENDAHULUAN. Dalam proses PLTU dibutuhkan fresh water yang di dapat dari proses

BAB I PENDAHULUAN. Dalam proses PLTU dibutuhkan fresh water yang di dapat dari proses BAB I PENDAHULUAN 1.1. Latar Belakang Pada Pembangkit Listrik Tenaga Uap, untuk menghasilkan uap dibutuhkan air yang dipanaskan secara bertahap melalui beberapa heater sebelum masuk ke boiler untuk dipanaskan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Pengertian Umum Mesin pendingin atau kondensor adalah suatu alat yang digunakan untuk memindahkan panas dari dalam ruangan ke luar ruangan. Adapun sistem mesin pendingin yang

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA. pembakaran bahan bakar (sumber panas lainnya) sehingga terjadi perpindahan panas

BAB 2 TINJAUAN PUSTAKA. pembakaran bahan bakar (sumber panas lainnya) sehingga terjadi perpindahan panas BAB 2 TINJAUAN PUSTAKA 2.1. Pengenalan Boiler Boiler merupakan suatu peralatan yang digunakan untuk menghasilkan steam (uap) dalam berbagai keperluan. Air di dalam boiler dipanaskan oleh panas dari hasil

Lebih terperinci

BAB 1 PENDAHULUAN 1.1 Latar Belakang

BAB 1 PENDAHULUAN 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Kebutuhan manusia akan tenaga listrik terus meningkat. Tenaga listrik digunakan pada berbagai lini kehidupan seperti rumah tangga, perkantoran, industri baik home industry,

Lebih terperinci

SKRIPSI / TUGAS AKHIR

SKRIPSI / TUGAS AKHIR SKRIPSI / TUGAS AKHIR ANALISIS PEMANFAATAN GAS BUANG DARI TURBIN UAP PLTGU 143 MW UNTUK PROSES DESALINASI ALBERT BATISTA TARIGAN (20406065) JURUSAN TEKNIK MESIN PENDAHULUAN Desalinasi adalah proses pemisahan

Lebih terperinci

ANALISA BAHAN BAKAR KETEL UAP PIPA AIR KAPASITAS 20 TON UAP/JAM PADA PTPN II PKS PAGAR MERBAU

ANALISA BAHAN BAKAR KETEL UAP PIPA AIR KAPASITAS 20 TON UAP/JAM PADA PTPN II PKS PAGAR MERBAU ANALISA BAHAN BAKAR KETEL UAP PIPA AIR KAPASITAS 20 TON UAP/JAM PADA PTPN II PKS PAGAR MERBAU LAPORAN TUGAS AKHIR Diajukan Untuk Memenuhi Sebagian Persyaratan dalam Menyelesaikan Program Pendidikan Diploma

Lebih terperinci

ANALISA HEAT RATE DENGAN VARIASI BEBAN PADA PLTU PAITON BARU (UNIT 9)

ANALISA HEAT RATE DENGAN VARIASI BEBAN PADA PLTU PAITON BARU (UNIT 9) EKSERGI Jurnal Teknik Energi Vol 10 No. 1 Januari 2014; 23-28 ANALISA HEAT RATE DENGAN VARIASI BEBAN PADA PLTU PAITON BARU (UNIT 9) Agus Hendroyono Sahid, Dwiana Hendrawati Program Studi Teknik Konversi

Lebih terperinci

BAB 3 STUDI KASUS 3.1 DEFINISI BOILER

BAB 3 STUDI KASUS 3.1 DEFINISI BOILER BAB 3 STUDI KASUS 3.1 DEFINISI BOILER Boiler atau ketel uap adalah suatu perangkat mesin yang berfungsi untuk merubah fasa air menjadi uap. Proses perubahan air menjadi uap terjadi dengan memanaskan air

Lebih terperinci

PENCEGAHAN KERAK DAN KOROSI PADA AIR ISIAN KETEL UAP. Rusnoto. Abstrak

PENCEGAHAN KERAK DAN KOROSI PADA AIR ISIAN KETEL UAP. Rusnoto. Abstrak PENCEGAHAN KERAK DAN KOROSI PADA AIR ISIAN KETEL UAP Rusnoto Abstrak Ketel uap adalah suatu pesawat yang fungsinya mengubah air menjadi uap dengan proses pemanasan melalui pembakaran bahan bakar di dalam

Lebih terperinci

BAB I PENDAHULUAN A. Latar Belakang Masalah B. Rumusan Masalah C. Tujuan

BAB I PENDAHULUAN A. Latar Belakang Masalah B. Rumusan Masalah C. Tujuan BAB I PENDAHULUAN A. Latar Belakang Masalah Di era globalisasi sekarang ini perubahan terjadi di berbagai bidang antara lain bidang politik, ekonomi, sosial, budaya, stranspotasi, telekomunikasi termasuk

Lebih terperinci

GLOSSARY STANDAR KOMPETENSI TENAGA TEKNIK KETENAGALISTRIKAN BIDANG JASA PENDIDIKAN DAN PELATIHAN TENAGA LISTRIK

GLOSSARY STANDAR KOMPETENSI TENAGA TEKNIK KETENAGALISTRIKAN BIDANG JASA PENDIDIKAN DAN PELATIHAN TENAGA LISTRIK GLOSSARY GLOSSARY STANDAR KOMPETENSI TENAGA TEKNIK KETENAGALISTRIKAN BIDANG JASA PENDIDIKAN DAN PELATIHAN TENAGA LISTRIK Ash Handling Adalah penanganan bahan sisa pembakaran dan terutama abu dasar yang

Lebih terperinci

BAB I PENDAHULUAN. untuk meningkatkan efisiensi boiler. Rotary Air Preheater, lazim digunakan untuk

BAB I PENDAHULUAN. untuk meningkatkan efisiensi boiler. Rotary Air Preheater, lazim digunakan untuk BAB I PENDAHULUAN 1.1 Latar Belakang Pembangkit listrik tenaga batu bara membutuhkan pemanasan awal untuk udara pembakaran pada boiler sekarang ini menjadi suatu keharusan sebagai usaha untuk meningkatkan

Lebih terperinci

DESAIN DAN ANALISIS ALAT PENUKAR KALOR TIPE CES

DESAIN DAN ANALISIS ALAT PENUKAR KALOR TIPE CES DESAIN DAN ANALISIS ALAT PENUKAR KALOR TIPE CES Tugas Akhir Diajukan Untuk Memenuhi Tugas dan Syarat-Syarat Guna Memperoleh Gelar Sarjana Teknik Jurusan Teknik Mesin Fakultas Teknik Universitas Muhammadiyah

Lebih terperinci

ANALISIS PERHITUNGAN DAYA TURBIN YANG DIHASILKAN DAN EFISIENSI TURBIN UAP PADA UNIT 1 DAN UNIT 2 DI PT. INDONESIA POWER UBOH UJP BANTEN 3 LONTAR

ANALISIS PERHITUNGAN DAYA TURBIN YANG DIHASILKAN DAN EFISIENSI TURBIN UAP PADA UNIT 1 DAN UNIT 2 DI PT. INDONESIA POWER UBOH UJP BANTEN 3 LONTAR ANALISIS PERHITUNGAN DAYA TURBIN YANG DIHASILKAN DAN EFISIENSI TURBIN UAP PADA UNIT 1 DAN UNIT 2 DI PT. INDONESIA POWER UBOH UJP BANTEN 3 LONTAR Jamaludin, Iwan Kurniawan Program Studi Teknik mesin, Fakultas

Lebih terperinci

Pratama Akbar Jurusan Teknik Sistem Perkapalan FTK ITS

Pratama Akbar Jurusan Teknik Sistem Perkapalan FTK ITS Pratama Akbar 4206 100 001 Jurusan Teknik Sistem Perkapalan FTK ITS PT. Indonesia Power sebagai salah satu pembangkit listrik di Indonesia Rencana untuk membangun PLTD Tenaga Power Plant: MAN 3 x 18.900

Lebih terperinci

BAB III APLIKASI TERMODINAMIKA PADA PEMBANGKIT LISTRIK TENAGA PANAS BUMI

BAB III APLIKASI TERMODINAMIKA PADA PEMBANGKIT LISTRIK TENAGA PANAS BUMI BAB III APLIKASI TERMODINAMIKA PADA PEMBANGKIT LISTRIK TENAGA PANAS BUMI Pembangkit Listrik Tenaga Panas Bumi (PLTP) pada prinsipnya sama seperti Pembangkit Listrik Tenaga Uap (PLTU), hanya pada PLTU uap

Lebih terperinci

BAB I PENDAHULUAN. juga dapat digunakan untuk pemanas. menghasilkan uap. Dimana bahan bakar yang digunakan berupa

BAB I PENDAHULUAN. juga dapat digunakan untuk pemanas. menghasilkan uap. Dimana bahan bakar yang digunakan berupa BAB I PENDAHULUAN 1.1. Latar Belakang Ketel uap merupakan suatu pesawat tenaga yang banyak digunakan dan dianggap layak dalam dunia industri di negara indonesia. Dimana ketel biasanya digunakan untuk penggerak

Lebih terperinci

BAB I Pendahuluan BAB I PENDAHULUAN

BAB I Pendahuluan BAB I PENDAHULUAN BAB I PENDAHULUAN 1.1 Latar Belakang Seiring dengan meningkatnya jumlah penduduk dunia, kebutuhan manusia yang harus dipenuhi secara global juga meningkat termasuk kebutuhan akan energi. Kemajuan dibidang

Lebih terperinci

BAB III TURBIN UAP PADA PLTU

BAB III TURBIN UAP PADA PLTU BAB III TURBIN UAP PADA PLTU 3.1 Turbin Uap Siklus Renkine setelah diciptakan langsung diterima sebagai standar untuk pembangkit daya yang menggunakan uap (steam ). Siklus Renkine nyata yang digunakan

Lebih terperinci

TURBIN UAP. Penggunaan:

TURBIN UAP. Penggunaan: Turbin Uap TURBIN UAP Siklus pembangkitan tenaga terdiri dari pompa, generator uap (boiler), turbin, dan kondenser di mana fluida kerjanya (umumnya adala air) mengalami perubaan fasa dari cair ke uap

Lebih terperinci

BOILER / KETEL UAP. 1. Pengertian Ketel Uap

BOILER / KETEL UAP. 1. Pengertian Ketel Uap BOILER / KETEL UAP 1. Pengertian Ketel Uap Ketel uap merupakan gabungan yang kompleks dari pipa-pipa penguapan (evaporator), pemanas lanjut (superheater), pemanas air (ekonomiser) dan pemanas udara (air

Lebih terperinci

ANALISIS TERMODINAMIKA PERFORMA HRSG PT. INDONESIA POWER UBP PERAK-GRATI SEBELUM DAN SESUDAH CLEANING DENGAN VARIASI BEBAN

ANALISIS TERMODINAMIKA PERFORMA HRSG PT. INDONESIA POWER UBP PERAK-GRATI SEBELUM DAN SESUDAH CLEANING DENGAN VARIASI BEBAN ANALISIS TERMODINAMIKA PERFORMA HRSG PT. INDONESIA POWER UBP PERAK-GRATI SEBELUM DAN SESUDAH CLEANING DENGAN VARIASI BEBAN Ilham Bayu Tiasmoro. 1), Dedy Zulhidayat Noor 2) Jurusan D III Teknik Mesin Fakultas

Lebih terperinci

BAB II LANDASAN TEORI. Refrigerasi merupakan suatu media pendingin yang dapat berfungsi untuk

BAB II LANDASAN TEORI. Refrigerasi merupakan suatu media pendingin yang dapat berfungsi untuk BAB II LANDASAN TEORI 2.1 Refrigerasi Refrigerasi merupakan suatu media pendingin yang dapat berfungsi untuk menyerap kalor dari lingkungan atau untuk melepaskan kalor ke lingkungan. Sifat-sifat fisik

Lebih terperinci

ANALISIS PERUBAHAN TEKANAN VAKUM KONDENSOR TERHADAP KINERJA KONDENSOR DI PLTU TANJUNG JATI B UNIT 1

ANALISIS PERUBAHAN TEKANAN VAKUM KONDENSOR TERHADAP KINERJA KONDENSOR DI PLTU TANJUNG JATI B UNIT 1 EKSERGI Jurnal Teknik Energi Vol No. 2 Mei 214; 65-71 ANALISIS PERUBAHAN TEKANAN VAKUM KONDENSOR TERHADAP KINERJA KONDENSOR DI PLTU TANJUNG JATI B UNIT 1 Anggun Sukarno 1) Bono 2), Budhi Prasetyo 2) 1)

Lebih terperinci

TUGAS III MAKALAH TERMODINAMIKA

TUGAS III MAKALAH TERMODINAMIKA TUGAS III MAKALAH TERMODINAMIKA DISUSUN OLEH: KELOMPOK 7 Budi Jasmanto 111031098 Seto Ario Dewonggo 111031110 Syahrul Hidayah 111031114 Ahmad Fadli 111031115 Hindratmo 111031117 Rahmad Dani Suprayogi 111031119

Lebih terperinci

BAB I PENDAHULUAN. Pembangkit Listrik Tenaga Air Panglima Besar Soedirman. mempunyai tiga unit turbin air tipe Francis poros vertikal, yang

BAB I PENDAHULUAN. Pembangkit Listrik Tenaga Air Panglima Besar Soedirman. mempunyai tiga unit turbin air tipe Francis poros vertikal, yang BAB I PENDAHULUAN 1.1. Latar Belakang Pembangkit Listrik Tenaga Air Panglima Besar Soedirman mempunyai tiga unit turbin air tipe Francis poros vertikal, yang digunakan sebagai penggerak mula dari generator

Lebih terperinci

BAB II TINJAUAN PUSTAKA. mesin kerja. Pompa berfungsi untuk merubah energi mekanis (kerja putar poros)

BAB II TINJAUAN PUSTAKA. mesin kerja. Pompa berfungsi untuk merubah energi mekanis (kerja putar poros) BAB II TINJAUAN PUSTAKA 2.1. Pengertian Pompa Pompa adalah salah satu mesin fluida yang termasuk dalam golongan mesin kerja. Pompa berfungsi untuk merubah energi mekanis (kerja putar poros) menjadi energi

Lebih terperinci

ANALISIS KONSUMSI BAHAN BAKAR PADA PEMBANGKIT LISTRIK TENAGA UAP ( PLTU ) UNIT 3 DAN 4 GRESIK

ANALISIS KONSUMSI BAHAN BAKAR PADA PEMBANGKIT LISTRIK TENAGA UAP ( PLTU ) UNIT 3 DAN 4 GRESIK Wahana Teknik Vol 02, Nomor 02, Desember 2013 Jurnal Keilmuan dan Terapan teknik Hal 70-80 ANALISIS KONSUMSI BAHAN BAKAR PADA PEMBANGKIT LISTRIK TENAGA UAP ( PLTU ) UNIT 3 DAN 4 GRESIK Wardjito, Sugiyanto

Lebih terperinci

BAB II DASAR TEORI. 2.1 Prinsip Pembangkit Listrik Tenaga Gas

BAB II DASAR TEORI. 2.1 Prinsip Pembangkit Listrik Tenaga Gas BAB II DASAR TEORI. rinsip embangkit Listrik Tenaga Gas embangkit listrik tenaga gas adalah pembangkit yang memanfaatkan gas (campuran udara dan bahan bakar) hasil dari pembakaran bahan bakar minyak (BBM)

Lebih terperinci

BAB IV BAHASAN UTAMA

BAB IV BAHASAN UTAMA BAB IV BAHASAN UTAMA 4.1. Analisa Cara Kerja Ketel Uap 4.1.1. Pengapian Operator yang mengoperasikan ketel uap harus terlatih untuk memahami pengontrolan ruang pembakaran dan juga mamahami akibatakibat

Lebih terperinci

BAB I PENDAHULUAN BAB I PENDAHULUAN

BAB I PENDAHULUAN BAB I PENDAHULUAN BAB I 1.1 Latar Belakang Dalam sistem PLTA, turbin air tergolong mesin konversi energi yang mengubah energi translasi gerak lurus menjadi energi gerak rotasi. Energi air tergolong energi terbarukan atau

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang 1 BAB I PENDAHULUAN 1.1. Latar Belakang Listrik merupakan salah satu energi yang sangat dibutuhkan oleh manusia pada era modern ini. Tak terkecuali di Indonesia, negara ini sedang gencargencarnya melakukan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Boiler Longchuan Boiler Longchuan adalah boiler jenis thermal yang dihasilkan dari air, dengan sirkulasi untuk menyalurkan panasnya ke mesin-mesin produksi. Boiler Longchuan mempunyai

Lebih terperinci