STORAGE TANK DAN PRESSURE VESSEL

Ukuran: px
Mulai penontonan dengan halaman:

Download "STORAGE TANK DAN PRESSURE VESSEL"

Transkripsi

1 STORAGE TANK DAN PRESSURE VESSEL A. Tangki penyimpanan ( Storage tank ) Penyimpanan merupakan bagian dari industri proses produksi dalam industri kimia. Tangki penyimpanan atau storage tank menjadi bagian yang penting dalam suatu proses industri kimia karena tangkipenyimpanan tidak hanya menjadi tempat penyimpanan bagi produk dan bahan baku tetapi juga menjaga kelancaran ketersediaan produk danbahan baku serta dapat menjaga produk atau bahan baku dari kontaminan ( kontaminantersebut dapat menurunkan kualitas dari produk atau bahan baku ). Penyimpanan bahan diperlukan agar proses produksi tidak tergantung pada pengumpanan dan pengeluaran bahan. Jumlah bahan yang perlu disimpan disesuaikan dengan konsumsi (keperluan perhari, stok wajib) atau dengan kondisi pengiriman (tanggal,harga). Cara penyimpanan juga tergantung pada sifat bahan yang disimpan (misalnya kondisiagregat,daya terhadap udara dan air, korosivitas, kemudahan terbakar dan beracun ), pada jenis penggunaan dan lamanya penyimpanan serta jumlahnya. Tangki pada dasarnya dipakai sebagai tempat penyimpanan material baik berupa benda padat, cair, maupun gas. Tanki penyimpanan atau storage tank menjadi bagian yang penting dalam suatu proses industri kimia karena tanki penyimpanan tidak hanya menjadi tempat penyimpanan bagi produk dan bahan baku tetapi juga menjaga kelancaran ketersediaan produk dan bahan baku serta dapat menjaga produk atau bahan baku dari kontaminan ( kontaminan tersebut dapat menurunkan kualitas dari produk atau bahan baku ). Pada uumunya produk atau bahan baku yang terdapat pada industri kimia berupa liquid atau gas, namun tidak tertutup kemungkinan juga dalam bentuk padatan (solid). 1. Jenis jenis tangki penyimpanan Storage tank atau tangki dapat memiliki berbagai macam bentuk dan tipe. Tiap tipe memiliki kelebihan dan kekurangan serta kegunaan masing masing 1.1 Berdasarkan tekananya Berdasarkan tekananya tangki penyimpanan di bagi dua yaitu tangki atmosferik dan tangki bertekanan a) Tangki atmosferik 1

2 Terdapat beberapa jenis dari tangki atmosferik ini yaitu : Fixed cone Roof tank, digunakan ujntuk menimbun atau menyimpan berbagai jenis fluida dengan tekanan uap rendah atau amat rendah ( mendekati atmosferik ) atau dengan kata lain fluida yang tidak mudah menguap namun pada literatur lainnya menyatakan bahwa fixed roof ( cone atau dome ) dapat digunakan untuk menyimpan semua jenis produk ( crude oil, gasoline, benzene, fuel dan lain lain termasuk produk atau bahan baku yang bersifat korosif, mudah terbakar, ekonomis bila digunakan hingga volume 2000 m^3, diameter dapat mencapai 300 ft ( 91.4 m ) dan tinggi 64 ft ( 19.5 m ). Gambar 1. Fixed Cone Roof with Internal Floating Roff Sumber : Tanki umbrella, kegunaanya sama dengan fixed cone roof bedanya adalah bentuk tutupnya yang melengkung dengan titik pusat meredian di puncak tanki. Tanki tutup cembung tetap ( fixed dome roof ), bentuk tutupnya cembung,ekonomis bila digunakan dengan volume > 2000 m^3 dan bahkan cukup ekonomis hingga volume 7000 m^3 ( dengan D < 65 m ), kegunaanya sama dengan fix cone roof tank. 2

3 Gambar 2. Self Supporting Dome Roof Sumber : Tanki Horizontal, tanki ini dapat menyimpan bahan kimia yang memiliki tingkat penguapan rendah ( low volatility ), air minum dengan tekanan uap tidak melebihi 5 psi, diameter dari tanki dapat mencapai 12 feet ( 3.6 m ) dengan panjang mencapai 60 feet ( 18.3 m ). Gambar 3. Tangki Horizontal (Sumber : Tanki Tipe plain Hemispheroid, digunakan untuk menimbun fluida ( minyak ) dngan tekanan uap ( RVP ) sedikit dibawah 5 psi. Gambar 4. Tangki Tipe Plain Hemispheroid (Sumber : Tanki tipe Noded Hemispheroid, untuk menyimpan fluida ( light naptha pentane ) dengan tekanan uap tidak lebih dari 5 psi. Tanki Plain Spheroid, tanki bertekanan rendah dengan kapasitas barrel. b) Pressure tank Dapat menyimpan fluida dengan tekanan uap lebih dari 11,1 psi dan umumnya fluida yang disimpan adalah produk produk minyak bumi. Tanki peluru ( bullet tank ), tanki ini sebenarnya lebih sebagai pressure vessel berbentuk horizontal dengan volume maksimum 2000 barrel biasanya digunakan 3

4 untuk menyimpan LPG, LPG, Propane, Butane, H2, ammonia dengan tekanan diatas 15 psig. Gambar 5. Tangki Peluru (Sumber : Tanki bola ( spherical tank ), pressure vessel yang digunakan untuk menyimpan gas gas yang dicairkan seperti LPG, O2, N2 dan lain lain bahkan dapat menyimpan gas cair tersebut hingga mencapai tekanan 75 psi, volume tanki dapat mencapai barrel, untuk penyimpanan LNG dengan suhu -190 ( cryogenic ) tanki dibuat berdinding double dimana diantara kedua dinding tersebut diisi dengan isolasi seperti polyurethane foam, tekanan penyimpanan diatas 15 psig. Gambar 6. Tangki Bola (Sumber : Dome Roof tank, untuk menyimpan bahan bahan yang mudah terbakar, meledak, dan mudah menguap seperti gasoline, bahan disimpan dengan tekanan rendah psig. 4

5 Gambar 7. Dome Roof Tank (Sumber : Berdasarkan letaknya Aboveground Tank, yaitu tangki penimbun yang terletak di atas permukaan tanah. Tangki penimbun ini bisa berada dalam posisi horizontal dan dalam keadaan tegak (vertical tank). Dapat dibagi menjadi 2 jenis berdasarkan cara perletakan di atas tanah, yaitu tangki di permukaan tanah dan tangki menara. Ciri-ciri yang membedakan jenis tangki menara dengan tangki di permukaan tanah adalah bentuk bagian bawah tangki. Seperti yang telah tercatat dalam peraturan, bentuk bagian bawah tangki menara adalah bentuk revolusi sebuah bentuk cangkang yang tidak sempurna, ataupun kombinasi dari bentuk cangkang tersebut. Desain tangki dengan bagian bawah rata untuk tangki menara tidak akan memberikan hasil yang baik, dengan melihat bahwa bentuk dasar yang demikian akan menyebabkan dibutuhkannya balok penopang yang besar untuk menahan tekuk. Underground Tank, yaitu tangki penimbun yang terletak di bawahpermukaan tanah. 1.3 Berdasarkan Bentuk Atapnya Fixed Roof Tank, dapat digunakan untuk menyimpan semua jenis produk,seperti crude oil, gasoline, benzene, fuel dan lain lain termasuk produkatau bahan baku yang bersifat korosif, mudah terbakar, ekonomis biladigunakan hingga volume 2000 m3, diameter dapat mencapai 300 ft (91,4m) dan tinggi 64 ft (19,5 m). Dibagi menjadi dua jenis bentuk atap yaitu : 5

6 Cone Roof, jenis tangki penimbun ini mempunyai kelemahan, yaituterdapat vapor space antara ketinggian cairan dengan atap. Jika vaporspace berada pada keadaan mudah terbakar, maka akan terjadi ledakan.oleh karena itu fixed cone roof tank dilengkapi dengan vent untukmengatur tekanan dalam tangki sehingga mendekati tekanan atmosfer.jenis tangki ini biasanya digunakan untuk menyimpan kerosene, air, dansolar. Terdapat dua jenis tipe cone roof berdasarkan penyanggga atapnyayaitu : Supported Cone Roof adalah suatu atap yang berbentuk menyerupaikonus dan ditumpu pada bagian utamanya dengan rusuk di atas balokpenopang ataupun kolom, atau oleh rusuk di atas rangka dengan atautanpa kolom. Pelat atap didukung oleh rafter pada girder dan kolomatau oleh rangka batang dengan atau tanpa kolom. Self-supporting Cone Roof adalah atap yang berbentuk menyerupaikonus dan hanya ditopang pada keliling konus. Atap langsung ditahanoleh dinding tangki (shell plate). Dome Roof adalah atap yang dibentuk menyerupai permukaan bulatandan hanya ditopang pada keliling kubah.yang biasanya digunakan untukmenyimpan cairan kimia. Bentuk dari tangki tipe dome roof Gambar 8. Tangki Fixed Dome Roof (Sumber : Floating Roof Tank, yang biasanya digunakan untuk menyimpan minyakmentah dan premium. Keuntungannya yaitu tidak terdapat vapour spacedan mengurangi 6

7 kehilangan akibat penguapan. Floating roof tank terbagimenjadi dua yaitu external floating roof dan internal floating roof. Bentuk dan tangki tipe floating roof dapat dilihat pada gambar dibawah ini. Gambar 9. Tangki Floating Roof Tank (Sumber : Berdasarkan Bentuk Tangki Tangki Lingkaran (Circular Tank) Tangki yang umum digunakan sebagai tempat penyimpanan adalahtangki yang berbentuk silinder. Tangki ini memiliki nilai ekonomis dalamperencanaan. Selain itu, dalam perhitungan teknisnya, momen yang terjadi tidakbesar. Tangki Persegi / Persegi Panjang (Rectangular Tank) Bentuk silinder secara structural paling cocok untuk kostruksi tangki, tapitangki persegi panjang sering disukai untuk tujuan tertentu, antara lain kemudahandalam proses konstruksi. Desain tangki persegi panjang mirip dengan konsep desaintangki lingkaran. Perbedaan utama dalam konsep desain tangki persegi panjangdengan tangki lingkaran adalah momen yang terjadi, gaya geser dan tekanan padadinding tangki. Sebagai contoh : Sludge Oil Reclaimed Tank pada Pabrik MinyakKelapa Sawit 7

8 B. Bejana tekan ( pressure Vessel ) A. Pengertian Pressure vessel atau bejana tekan memiliki konstruksi yang cukup sederhana akan tetapi dalam pembuatannya memang sangatlah rumit dikarenakan pada proses pembuatannya ini melalui proses pengelasan atau welding. Bejana tekan merupakan suatu wadah untuk menyimpan fluida bertekanan. Fluida yang disimpan dapat mengalami perubahan keadaan pada saat berada di dalam seperti pada kasus boiler atau dapat digabungkan dengan suatu reagen lainnya seperti pada pabrik kimia. Bejana tekan dirancang dengan pertimbangan yang perlu diperhatikan karena pecahnya bejana tekan berarti terjadinya ledakan yang dapat menyebabkan hilangnya nyawa dan kerusakan benda sekitar. Berdasarkan dimensinya bejana tekan dapat dibagi menjadi 2, yaitu : 1. Bejana tekan dinding tebal yaitu bejana yang memiliki ketebalan dinding shell lebih dari 1/20 diameter shell. 2. Bejana tekan dinding tipis yaitu bejana yang memiliki ketebalan dinding shell kurang dari 1/20 diameter shell. 8

9 Gambar 1. Distribusi tegangan (a) Bejana tekan dinding tipis, (b) Bejana tekan dinding tebal Perbedaan bejana tekan dinding tipis dengan dinding tebal berada pada distribusi tegangan yang terjadi pada dinding bejana tekan tersebut, bejana tekan dinding tebal memiliki ditribusi tegangan yang harus diperhitungkan sedangkan pada bejana tekan dinding tipis distribusi tegangan dapat diabaikan karena perbedaan diameter luar dengan diameter dalam sangat tipis sehingga distribusi tegangan yang terjadi sangat kecil, dapat dilihat seperti pada Gambar di atas. Bejana tekan digunakan dalam sejumlah industri, seperti industri pembangkit listrik dengan bahan bakar fosil dan nuklir, industri petrokimia sebagai tempat penyimpanan dan pengolahan minyak bumi dalam tangki seperti tempat penyimpanan pada stasiun bahan bakar, dan beberapa industri kimia (pada reaktor kimia). Penggunaannya telah berkembang di seluruh dunia. Bejana tekan dan tangki faktanya merupakan elemen penting pada industri perminyakan, kimia, petrokimia, dan industri nuklir. Hal ini dikarenakan peralatan tersebut merupakan tempat terjadinya suatu proses, pemisahan, dan penyimpanan bahan baku. B. Komponen bejana tekan Bejana tekan terdiri dari berbagai macam komponen utama dan pendukung, yang mempunyai fungsi masing-masing untuk menunjang operasi bejana tekan. Komponen-komponen bejana tekan antara lain shell, opening, nossel, flanges, ladder support, sadel dan lain-lain. 9

10 Gambar 2. Bejana tekan spherical Keterangan: 1. Shell 2. Sadel 3. Ladder support 4. Opening dan nossel 5. Flanges 10

11 Pemilihan komponen bejana tekan disesuaikan dengan kebutuhan operasi dan kebutuhan perawatan bejana tekan, dengan pertimbangan utama desain komponen yaitu tekanan operasi, temperatur operasi. 1. Shell Shell yaitu kulit atau cangkang yang dibuat dari pelat dengan ketebalan tertentu dan bentuknya yaitu silinder yang di buat melalui proses pengerolan. Untuk bejana tekan yang difungsikan untuk penyimpanan, biasanya menggunakan bentuk geometri bulat atau sphere. Pada bejana tekan bentuk sphere terjadi tegangan latitudinal dan tegangan meridional. Dalam mendesain bejana tekan, biasanya ditentukan terlebih dahulu dimensi awal dinding bejananya berupa diameter yang ditentukan berdasarkan volume operasi bejana tekan, dan kemudian tebal shell yang bergantung pada tekanan internal/eksternal ditambah beban-beban yang signifikan lainnya. Tebal dinding bejana tekan dipengaruhi pula oleh kekuatan material, sehingga tekanan maksimal yang dapat diterima oleh bejana tekan dibatasi oleh kekuatan material yang tersedia. Tebal bejana tekan dapat ditentukan melalui analisis tegangan pada dinding dan tegangan yang diijinkan oleh material yang digunakan. Gambar 3 menunjukkan shell tipe sphere. Gambar 3.Spherical shell Pada shell berbentuk sphere, tegangan latitudinal dan tegangan meridonalnya mempunya nilai yang sama. Persamaan dalam menentukan tebal 11

12 bejana tekan berdasarkan diameter dalam dan tekanan internal adalah sebagai berikut : Dimana: t = tebal, in P = tekanan internal, psi r = diameter dalam silinder, in S = tegangan yang diijinkan pada material pada suhu tertentu, psi E = efisiensi sambungan [3]. 2. Sadel Pemilihan tipe penyangga pada bejana tekan bergantung kepada beberapa sebab, antara lain ukuran bejana, ketebalan dinding, area plant yang tersedia, elevasi dari bejana dibanding dengan elevasi tanah, dan konstruksi materialnya. Bejana tekan tipe sphere biasanya disangga dengan kaki-kaki penyangga yang berfungsi sebagai sadel. Ada beberapa hal yang harus diperhatikan dalam memutuskan jumlah dan jenis kaki penyangga seperti kesetabilan bejana tekan dan berat dari bejana tekan itu sendiri. Gambar 4 merupakan salah satu contoh skema sadel untuk bejana tekan tipe sphere dengan kaki penyangga berupa pipa. 12

13 Gambar 4. Tipe sadel spherical vessel [8] 3. Opening Bejana tekan didesain untuk digunakan dalam berbagai keperluan, oleh karenanya perlu adanya opening atau lubang-lubang untuk meletakkan komponen-komponen yang menghubungkan bejana tekan dengan berbagai komponen lainnya pada sebuah plant, meletakkan nosel untuk sambungan pipapipa pemasukkan dan pengeluaran, lubang untuk menguras bejana tekan, lubang untuk inspeksi. Beberapa tujuan opening pada bejana adalah sebagai berikut: Nosel in/out sebagai saluran keluar dan masuk fluida kerja. Drain sebagai lubang untuk menguras bejana tekan pada saat inspeksi total atau pada saat perawatan. Manway lubang yang diperuntukkan sebagai akses orang yang berkepentingan untuk keluar masuk bejana tekan. 13

14 Pemberian opening pada dasarnya mengganggu aliran tegangan pada dinding bejana tekan yang mengakibatkan konsentrasi tegangan, dan dijaga agar konstrasi tegangan tersebut tidak melebih tegangan yang diijinkan agar tidak terjadi kegagalan pada saat operasi bejana tekan. Opening sebaiknya tidak diletakkan pada bagian bejana tekan yang telah diketahui mengalami tegangan yang berbahaya, ukuran diameter opening dan jarak antar opening juga diatur sedemikian rupa agar konsentrasi tegangan yang terjadi tidak melebihi tegangan yang diijinkan. Bagaimanapun juga, karena adanya penghilangan bagian dinding bejana oleh opening, terjadi konsentrasi tegangan yang berlebih pada bagian tersebut, oleh karenanya perlu ada penggantian luas yang yang hilang dengan penebalan pada bagian sekeliling opening tersebut. Seperti pada Gambar 2.5, luas A merupakan luas yang hilang dan harus diganti dengan total luas yang sama dari penjumlahan A1, A2, A21, A3, dan A42. Pada Tabel dibawah terdapat persamaan yang dapat digunakan untuk menghitung dimensi reinforce pad yang sesuai Gambar 5. Skema reinforce pad [9] 14

15 Tabel Perhitungan geometri reinforcement pad [9] Dimana ; A A1 A2 A21 A3 A42 d t tr tn trn l fr = Luas yang dibutuhkan, in2 = Luas yang terdapat pada shell, in2 = Luas yang terdapat pada nosel, in2 = Luas pengelasan, in2 = Luas Reinforcement pad, in2 = Luas pengelasan, in2 = diameter nosel, in = tebal shell yang digunakan, in = tebal shell yang dibutuhkan, in = tebal nosel yang diguakan, in = tebal nosel yang dibutuhkan, in = Panjang kaki pengelasan, in = faktor reduksi kekuatan 15

16 Dp = diameter luar reinforcement pad, in 4. Nosel Nosel berfungsi sebagai saluran keluar masuk dan untuk menguras isi bejana tekan, nosel berupa pipa yang dipasang dengan sambungan las, baut dan sebagainya pada bukaan yang pada dinding bejana tekan. Pipa yang digunakan sebagai nosel dirancang juga sesuai dengan tekanan kerja bejana tekan, agar mampu melayani operasi bejana tekan tersebut. Diameter nosel disesuaikan dengan diameter bukaan dan fungsinya, sehingga tepat penggunanaanya. Beban nosel juga harus diperhitungkan, sebab bejana tekan juga mendapat beban akibat berat dari nosel-nosel yang terpasang dinding bejan tekan. 5. Flangers Komponen bejana tekan yang berfungsi sebagai pengikat nosel-nosel bejana tekan dengan pipa-pipa yang akan mengalirkan fluida kerja masuk dan keluar bejana tekan. Flanges memiliki bentuk yang bermacam-macam dan memiliki kelebihan dan kekurangan yang berbeda tiap jenisnya. Jenis-jenis flanges antara lain slip-on, welding-neck, blind, dan lap-joint. Ukuran standar flanges dapat ditemukan pada ASME B yang dibagi berdasarkan rating tekanan kerja, yaitu 150, 300, 400, 600, 900, 1500, dan 2500-lb. flanges biasanya disertai dengan gasket sebagai segel agar tidak terjadi kebocoran pada sambungan flanges. Gambar 2.6 menunjukkan empat tipe flanges yang sesuai standar ANSI

17 Gambar6. (a) slip-on flange, (b) weld-neck flange, (c) blind flange, (d) lap joint flange Hal yang perlu diperhatikan pada perancangan flange adalah besarnya momen yang timbul akibat berat dan tekanan internal dari bejana tekan tersebut. Pada Gambar 2.7 di bawah ini dapat dilihat momen yang timbul akibat beban dan lengan pada flange dengan tipe slip-on, flat face dan full gasket. Gambar 7. Dimensi slip-on flange untuk perhitungan momen 17

18 Dari gambar 7. tersebut, dapat diketahui bahwa terdapat momen pada permukaan flange. Momen tersebut dapat dicari setelah dimensi dari flange diketahui dengan pemilihan sesuai akan kebutuhan saat operasi. Untuk mencari momen pada flange dapat diperoleh dari persamaan pada Tabel di bawah ini. Tabel Rumus perhitungan momen flange tipe slip-on Dimana ; MO MD MT H HD HT = Momen total, lb.in = Momen akibat gaya dalam pada flange, lb.in = Momen akibat tekanan pada permukaan flange, lb.in = Beban akibat hidrostatis, lb = Beban akibat gaya dalam pada flange, lb = Beban akibat tekanan pada permukaan flange, lb 18

19 hd, hg, ht, R = Jarak radial, in P B C G g1 = Tekanan desain, psi = Diameter dalam flange, in = Diameter lingkar baut, in = Diameter reaksi beban gasket = tebal hub flange, in C. Beban pada bejana tekan Gaya-gaya yang diterima bejana tekan atau struktur-struktur yang ditanamkan pada bejana tekan diperhitungkan sebagai beban-beban dalam merancang bejana tekan. Seorang perancang harus mempersiapkan seluruh data perancangan secara lengkap, menyeluruh dan seakurat mungkin. Beban-beban utama yang harus dipertimbangkan dalam perancangan bejana tekan antara lain: 1. Tekanan desain 2. Beban mati 3. Beban akibat angin 4. Beban gempa bumi 5. Beban temperatur 6. Tekanan pada bejana tekanan Berbagai kombinasi dari beban-beban tersebut sangat mungkin terjadi, perancang harus mampu memilih kombinasi beban yang paling memungkinkan terjadi pada desain yang akan dibuat demi desain yang ekonomis dan aman. 19

20 Pada umumnya, kegagalan pada bejana tekan dapat ditinjau dari beberapa sebab,antara lain: a. Material: pemilihan material yang tidak tepat untuk lingkungan operasi; cacat; kontrol kualitas yang tidak baik. b. Desain: kondisi desain yang salah; perhitungan dan spesifikasi teknis yang tidak matang; penyederhanaan tanpa mempertimbangkan solusi analitik yang benar; tes yang tidak memenuhi syarat. c. Operasi: perubahan kondisi kerja; personel perwatan yang kurang pengalaman dan pengetahuan; inspeksi terhadap korosi yang tidak teliti. d. Pembuatan: prosedur pembuatan yang tidak memnuhi syarat; ispeksi yang tidak memnuhi syarat; penanganan material khusus tanpa pengetahuan yang memadai. 1. Tekanan Desain Merupakan tekanan yang digunakan sebagai dasar mendesain bejana tekan. Dalam merancang bejana tekan beserta komponen-komponennya direkomendasikan agar kuat terhadap tekanan yang lebih besar daripada tekanan operasinya, tekanan desain sebaiknya lebih besar 30 psi atau 10 persen dari pada tekanan operasinya. Tekanan desain bermanfaat untuk menentukan ketebalan minimum dinding bejana tekan. Berdasarkan kode, ketebalan yang dibutuhkan adalah ketebalan minimum bejana tekan berdasarkan perhitungan dalam Kode belum termasuk perkiraan korosi. Sedangkan ketebalan desain adalah ketebalan minimum ditambah perkiraan korosi. 2. Temperatur Desain 20

21 Temperatur desain mempengaruhi pemilihan material, dalam kondisi temperatur tertentu mempengaruhi kekuatan material tersebut. Berdasarkan Kode, temperatur desain sebaiknya tidak kurang dari temperatur rata-rata material dinding bejana tekan sepanjang tebalnya pada sebuah kondisi operasi. Dan temperatur pada dinding bejana tekan tidak boleh melebihi temperatur maksimum yang tertera pada tabel tegangan yang diijinkan pada meterial tersebut. 3. Beban Mati Beban mati adalah beban akibat berat bejana itu sendiri ditambah berat komponen yang terpasang permanen pada bejana tersebut. Pada umumnya bejana tekan memiliki tiga tipe baban yang patut untuk dipertimbangkan. a. Erection (empty) dead load dari bejana, yaitu berat bejana tanpa terpasang exsternal maupun internal struktur pasangan dan perpipaan b. Operating dead load adalah berat bejana siap dengan segala komponen yang permanen maupun yang dapat dilepas siap untuk beroperasi. c. Shop test dead load adalah berat bejana yang hanya terdiri diding bejana setelah selesai semua proses pengelasan dan diisi dengan cairan untuk mengetes kebocoran. 4. Beban Angin Beban angin yaitu beban yang diberikan pada bejana tekan akibat tekanan aliran turbulen yang terjadi pada alam, biasanya arah angin berupa horizontal. Hubungan antara kecepatan angin dengan tekanan angin saat penampang horizontal melingkar dapat dicari dengan persamaan berikut, Pw = 0,0025 Vw 2 Diamana : Pw = Tekanan Angin, lb/ft2 Vw = Kecepatan Angin, mil/jam. 21

22 5. Beban Gempa Bumi Beban gempa adalah akibat getaran pada tanah yang berefek dudukan dari bejana bereaksi pada gerakan ini. Faktor utama yang mengakibatkan kerusakan pada struktur adalah intensitas dan durasi dari gempa. 6. Tegangan pada Bejana Tekan Pada sebuah bejana tekan berdinding tipis dengan jari-jari r dan tebal t (t r) dan bejana terkena tekanan internal sebesar p yang mengakibatkan tegangan pada dinding yang perlu untuk diketahui besarnya. Diketahui bahwa t r maka tegangan kearah radial dapat diabaikan, dan tegangan pada dinding bejana seragam, maka terdapat dua tegangan yang saling tegak lurus. 22

23 KESIMPULAN Storage tank atau tangki dapat memiliki berbagai macam bentuk dan tipe. Tiap tipe memiliki kelebihan dan kekurangan serta kegunaan masing masing 1. Berdasarkan tekanannya a. Tangki atmosperik b. Perssure tank 2. Berdasarkan letaknya a. Aboveground Tank b. Underground Tank, 3. Berdaarkan bentuk atapnya a. Fixed Roof Tank b. Floating Roof Tank 4. Berdasarkan bentuk tangkinya a. Tangki lingkaran b. Tangki persegi atau persegi panajang Berdasarkan dimensinya bejana tekan dapat dibagi menjadi 2, yaitu : 1. Bejana tekan dinding tebal yaitu bejana yang memiliki ketebalan dinding shell lebih dari 1/20 diameter shell. 2. Bejana tekan dinding tipis yaitu bejana yang memiliki ketebalan dinding shell kurang dari 1/20 diameter shell. Beban-beban utama yang harus dipertimbangkan dalam perancangan tekan antara lain: bejana 1. Tekanan desain 2. Beban mati 3. Beban akibat angin 4. Beban gempa bumi 5. Beban temperatur 23

24 6. Tekanan pada bejana tekan 24

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Umum Tangki pada dasarnya dipakai sebagai tempat penyimpanan material baik berupa benda padat, cair, maupun gas. Dalam mendesain tangki, konsultan perencana harus merencanakan

Lebih terperinci

Atmospheric Storage Tank

Atmospheric Storage Tank Atmospheric Storage Tank Garnis Nurfadila Sari 6512010007 Peminatan Mechanical Rotating Jurusan Teknik Mesin LNG Academy ATMOSPHERIC STORAGE TANK Definisi Storage tank adalah tangki penyimpanan untuk menampung

Lebih terperinci

Jenis-Jenis Tangki 1.1 Latar belakang

Jenis-Jenis Tangki 1.1 Latar belakang Jenis-Jenis Tangki 1.1 Latar belakang Tangki pada dasarnya dipakai sebagai tempat penyimpanan material baik berupa benda padat, cair, maupun gas. Dalam mendesain tangki, konsultan perencana harus merencanakan

Lebih terperinci

Sumber : Brownell & Young Process Equipment design. USA : Jon Wiley &Sons, Inc. Chapter 3, hal : Abdul Wahid Surhim

Sumber : Brownell & Young Process Equipment design. USA : Jon Wiley &Sons, Inc. Chapter 3, hal : Abdul Wahid Surhim Sumber : Brownell & Young. 1959. Process Equipment design. USA : Jon Wiley &Sons, Inc. Chapter 3, hal : 36-57 3 Abdul Wahid Surhim *Vessel merupakan perlengkapan paling dasar dari industri kimia dan petrokimia

Lebih terperinci

Proses Desain dan Perancangan Bejana Tekan Jenis Torispherical Head Cylindrical Vessel di PT. Asia Karsa Indah.

Proses Desain dan Perancangan Bejana Tekan Jenis Torispherical Head Cylindrical Vessel di PT. Asia Karsa Indah. Proses Desain dan Perancangan Bejana Tekan Jenis Torispherical Head Cylindrical Vessel di PT. Asia Karsa Indah. Dengan kemajuan teknologi yang semakin pesat, telah diciptakan suatu alat yang bisa menampung,

Lebih terperinci

BAB IV PEMBAHASAN. 4.1 Data Perancangan. Tekanan kerja / Po Temperatur kerja / To. : 0,9 MPa (130,53 psi) : 43ºC (109,4ºF)

BAB IV PEMBAHASAN. 4.1 Data Perancangan. Tekanan kerja / Po Temperatur kerja / To. : 0,9 MPa (130,53 psi) : 43ºC (109,4ºF) 35 BAB IV PEMBAHASAN 4.1 Data Perancangan Jenis bejana tekan Tekanan kerja / Po Temperatur kerja / To Panjang silinder Diameter dalam silinder / Di Panjang bejana tekan (head to head) / z Joint efisiensi

Lebih terperinci

Gambar 1. Fixed Cone Roof with Internal Floating Roff

Gambar 1. Fixed Cone Roof with Internal Floating Roff 1 A. STORAGE TANK AND PREASSURE VESSEL 1. Tangki penyimpanan ( Storage tank ) Penyimpanan merupakan bagian dari industri proses produksi dalam industri kimia. Tangki penyimpanan atau storage tank menjadi

Lebih terperinci

PERENCANAAN LIQUID STORAGE TANK DENGAN PENGARUH GEMPA DEWI CENDANA

PERENCANAAN LIQUID STORAGE TANK DENGAN PENGARUH GEMPA DEWI CENDANA PERENCANAAN LIQUID STORAGE TANK DENGAN PENGARUH GEMPA TUGAS AKHIR Diajukan untuk melengkapi syarat penyelesaian Pendidikan sarjana teknik sipil Oleh : DEWI CENDANA 070404004 BIDANG STUDI STRUKTUR DEPARTEMEN

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Pada saat ini, dunia industri memegang peranan vital dalam perekonomian, oleh karena itu perancangan plan industri yang efisien sangat penting. Dari bermacam-macam

Lebih terperinci

UNIVERSITAS DIPONEGORO PERANCANGAN DAN ANALISA TEGANGAN PADA BEJANA TEKAN SPHERICAL DENGAN METODE ELEMEN HINGGA TUGAS AKHIR EKO SUPRIYANTO L2E

UNIVERSITAS DIPONEGORO PERANCANGAN DAN ANALISA TEGANGAN PADA BEJANA TEKAN SPHERICAL DENGAN METODE ELEMEN HINGGA TUGAS AKHIR EKO SUPRIYANTO L2E UNIVERSITAS DIPONEGORO PERANCANGAN DAN ANALISA TEGANGAN PADA BEJANA TEKAN SPHERICAL DENGAN METODE ELEMEN HINGGA TUGAS AKHIR EKO SUPRIYANTO L2E 007 030 FAKULTAS TEKNIK JURUSAN TEKNIK MESIN SEMARANG SEPTEMBER

Lebih terperinci

MAKALAH OPERASI TEKNIK KIMIA I PERALATAN PENYIMPANAN FLUIDA DAN PADATAN OLEH : KELOMPOK 1 KELAS C

MAKALAH OPERASI TEKNIK KIMIA I PERALATAN PENYIMPANAN FLUIDA DAN PADATAN OLEH : KELOMPOK 1 KELAS C MAKALAH OPERASI TEKNIK KIMIA I PERALATAN PENYIMPANAN FLUIDA DAN PADATAN OLEH : KELOMPOK 1 KELAS C AHMAD ZAKI (1207121266) ANDRI MULIA (0807132101) FENNY LASMA H. S. (1207113627) PETER (1207113617) SUCI

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Dalam tugas akhir ini akan dilakukan perancangan bejana tekan vertikal dan simulasi pembebanan eksentrik pada nozzle dengan studi kasus pada separator kluster 4 Fluid

Lebih terperinci

BAB I PENDAHULUAN. Dalam beberapa industri dapat ditemukan aplikasi sains yakni merubah suatu

BAB I PENDAHULUAN. Dalam beberapa industri dapat ditemukan aplikasi sains yakni merubah suatu BAB I PENDAHULUAN 1.1 Latar Belakang Penulisan Dalam beberapa industri dapat ditemukan aplikasi sains yakni merubah suatu material dari satu bentuk ke bentuk yang lainnya baik secara kimia maupun secara

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang. Sebagai salah satu komoditi strategis didalam pembangunan tidak dapat

BAB I PENDAHULUAN. 1.1 Latar Belakang. Sebagai salah satu komoditi strategis didalam pembangunan tidak dapat BAB I PENDAHULUAN 1.1 Latar Belakang Sebagai salah satu komoditi strategis didalam pembangunan tidak dapat dipungkiri bahwa ketersediaan bahan bakar minyak didalam negeri merupakan hal yang amat penting

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang

BAB I PENDAHULUAN Latar Belakang 1.1. Latar Belakang BAB I PENDAHULUAN Di dunia industri terutama dibidang petrokimia dan perminyakan banyak proses perubahan satu fluida ke fluida yang lain yang lain baik secara kimia maupun non kimia.

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Bejana tekan merupakan suatu wadah yang berfungsi sebagai penampung fluida, baik fluida cair maupun gas. Dalam perancangan suatu bejana tekan ada beberapa hal yang

Lebih terperinci

BAB I PENDAHULUAN. penyimpanan bagi produk dan bahan baku tetapi juga menjaga kelancaran

BAB I PENDAHULUAN. penyimpanan bagi produk dan bahan baku tetapi juga menjaga kelancaran BAB I PENDAHULUAN 1.1. Latar Belakang Tangki penyimpanan atau storage tank menjadi bagian yang penting dalam suatu proses industri kimia karena tangki penyimpanan tidak hanya menjadi tempat penyimpanan

Lebih terperinci

UNIVERSITAS DIPONEGORO PERANCANGAN DAN ANALISA TEGANGAN PADA BEJANA TEKAN HORIZONTAL DENGAN METODE ELEMEN HINGGA TUGAS AKHIR

UNIVERSITAS DIPONEGORO PERANCANGAN DAN ANALISA TEGANGAN PADA BEJANA TEKAN HORIZONTAL DENGAN METODE ELEMEN HINGGA TUGAS AKHIR UNIVERSITAS DIPONEGORO PERANCANGAN DAN ANALISA TEGANGAN PADA BEJANA TEKAN HORIZONTAL DENGAN METODE ELEMEN HINGGA TUGAS AKHIR SYARIEF AFIF HABSYA L2E 007 077 FAKULTAS TEKNIK JURUSAN TEKNIK MESIN SEMARANG

Lebih terperinci

BAB III METODOLOGI PERANCANGAN. Untuk mempermudah perancangan Tugas Akhir, maka dibuat suatu alur

BAB III METODOLOGI PERANCANGAN. Untuk mempermudah perancangan Tugas Akhir, maka dibuat suatu alur BAB III METODOLOGI PERANCANGAN 3.1 Bagan Alir Perancangan Untuk mempermudah perancangan Tugas Akhir, maka dibuat suatu alur sistematika perancangan struktur Kubah, yaitu dengan cara sebagai berikut: START

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Dalam tugas akhir ini akan dilakukan analisis kekuatan bejana tekan vertikal berbasis code ASME VIII Div I terhadap variasi tekanan. Definisi bejana tekan berdasarkan

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang

BAB I PENDAHULUAN Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Dalam tugas akhir ini akan dilakukan analisis kekuatan bejana tekan vertikal berbasis code ASME VIII Div 1 terhadap variasi tekanan dan beban eksentris. Definisi bejana

Lebih terperinci

BAB IV PERHITUNGAN ANALISA DAN PEMBAHASAN

BAB IV PERHITUNGAN ANALISA DAN PEMBAHASAN BAB IV PERHITUNGAN ANALISA DAN PEMBAHASAN 4.1 Perhitungan Bejana Tekan Seperti yang diuraikan pada BAB II, bahwa bejana tekan yang dimaksud dalam penyusunan tugas akhir ini adalah suatu tabung tertutup

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Tangki pada dasarnya dipakai sebagai tempat penyimpanan material baik berupa benda padat, cair, maupun gas. Dalam mendesain tangki, seorang perencanaan harus merencanakan pembuatan

Lebih terperinci

BAB II LANDASAN TEORI 2.1 Tinjauan Pustaka Menurut Popov (1996) bejana tekan berdinding tipis adalah bejana yang memiliki dinding yang idealnya bekerja sebagai membran, yaitu tidak terjadi lenturan dari

Lebih terperinci

I. PENDAHULUAN. Pada perencanaan pembangunan sebuah pondasi harus diperhatikan beberapa

I. PENDAHULUAN. Pada perencanaan pembangunan sebuah pondasi harus diperhatikan beberapa I. PENDAHULUAN A. Latar Belakang Pada perencanaan pembangunan sebuah pondasi harus diperhatikan beberapa aspek penting, seperti lingkungan, sosial, ekonomi, serta aspek keamanan. Untuk itu diperlukan suatu

Lebih terperinci

TUTUP BEJANA ( HEAD )

TUTUP BEJANA ( HEAD ) TUTUP BEJANA ( HEAD ) Tutup tangki (head) adalah bagian tutup atas suatu tangki yang penggunaanya disesuaikan dengan tekanan operasi. Tutup bejana tersebut terbagi menjadi 5 bentuk yaitu : 1. Hemispherical

Lebih terperinci

bahan kimia, farmasi makanan dan minuman, minyak dan bahan bakar, industri nuklir, dan industri plastik. 2.2 Bejana Tekan Silindris Penelaahan bejana

bahan kimia, farmasi makanan dan minuman, minyak dan bahan bakar, industri nuklir, dan industri plastik. 2.2 Bejana Tekan Silindris Penelaahan bejana BAB II LANDASAN TEORI 2.1 Pengertian Bejana Tekan (Pressure Vessel). Bejana tekan atau istilah dalam dalam tehnik adalah tabung tertutup berbentuk silinder, sebagai penampung yang dapat menahan tekanan

Lebih terperinci

BAB III LANDASAN TEORI. Bangunan Gedung SNI pasal

BAB III LANDASAN TEORI. Bangunan Gedung SNI pasal BAB III LANDASAN TEORI 3.1. Analisis Penopang 3.1.1. Batas Kelangsingan Batas kelangsingan untuk batang yang direncanakan terhadap tekan dan tarik dicari dengan persamaan dari Tata Cara Perencanaan Struktur

Lebih terperinci

BAB IV ANALISA DATA DAN PERHITUNGAN

BAB IV ANALISA DATA DAN PERHITUNGAN BAB IV ANALISA DATA DAN ERHITUNGAN 4.1 erhitungan dan emeriksaan Kekuatan 4.1.1 erhitungan Tutup Bejana Dari hasil pengumpulan data, tutup bejana (head) yang dipakai adalah jenis Ellipsoidal, data yang

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI.1 Vessel 1. Vessel merupakan salah satu contoh dari bejana bertekanan (Pressure Vessel) yang paling sederhana, hal ini dikarenakan bagian utama dari suatu Vessel hanya terdiri dari

Lebih terperinci

Jurnal FEMA, Volume 1, Nomor 4, Oktober 2013

Jurnal FEMA, Volume 1, Nomor 4, Oktober 2013 Jurnal FEMA, Volume 1, Nomor 4, Oktober 013 PERANCANGAN BEJANA TEKAN (PRESSURE VESSEL) UNTUK PENGOLAHAN LIMBAH KELAPA SAWIT DENGAN VARIABEL KAPASITAS PRODUKSI 10.000 TON/BULAN Meylia Rodiawati 1) A. Yudi

Lebih terperinci

PERANCANGAN BEJANA TEKAN KAPASITAS 5 M3 DENGAN TEKANAN DESAIN 10 BAR BERDASARKAN STANDAR ASME 2007 SECTION VIII DIV 1

PERANCANGAN BEJANA TEKAN KAPASITAS 5 M3 DENGAN TEKANAN DESAIN 10 BAR BERDASARKAN STANDAR ASME 2007 SECTION VIII DIV 1 PERANCANGAN BEJANA TEKAN KAPASITAS 5 M3 DENGAN TEKANAN DESAIN 10 BAR BERDASARKAN STANDAR ASME 2007 SECTION VIII DIV 1 Riki Candra Putra Jurusan Teknik Mesin Universitas Muhammadiyah Tangerang ABSTRAK Dalam

Lebih terperinci

UNIVERSITAS DIPONEGORO PERANCANGAN DAN ANALISA TEGANGAN PADA BEJANA TEKAN VERTIKAL DENGAN METODE ELEMEN HINGGA TUGAS AKHIR JOKO PURNOMO L2E

UNIVERSITAS DIPONEGORO PERANCANGAN DAN ANALISA TEGANGAN PADA BEJANA TEKAN VERTIKAL DENGAN METODE ELEMEN HINGGA TUGAS AKHIR JOKO PURNOMO L2E UNIVERSITAS DIPONEGORO PERANCANGAN DAN ANALISA TEGANGAN PADA BEJANA TEKAN VERTIKAL DENGAN METODE ELEMEN HINGGA TUGAS AKHIR JOKO PURNOMO L2E 007 052 FAKULTAS TEKNIK JURUSAN TEKNIK MESIN SEMARANG MARET 2012

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Pada dunia industri terutama industri kimia dan perminyakan banyak proses yang berhubungan dengan perubahan satu material ke material yang lain baik secara kimia maupun

Lebih terperinci

V. SPESIFIKASI ALAT. Pada lampiran C telah dilakukan perhitungan spesifikasi alat-alat proses pembuatan

V. SPESIFIKASI ALAT. Pada lampiran C telah dilakukan perhitungan spesifikasi alat-alat proses pembuatan V. SPESIFIKASI ALAT Pada lampiran C telah dilakukan perhitungan spesifikasi alat-alat proses pembuatan pabrik furfuril alkohol dari hidrogenasi furfural. Berikut tabel spesifikasi alat-alat yang digunakan.

Lebih terperinci

BAB III SPESIFIKASI PERALATAN PROSES

BAB III SPESIFIKASI PERALATAN PROSES BAB III SPESIFIKASI PERALATAN PROSES 3.1. Furnace : F : Tempat terjadinya reaksi cracking ethylene dichloride menjadi vinyl chloride dan HCl : Two chamber Fire box : 1 buah Kondisi Operasi - Suhu ( o C)

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 4 BAB II TINJAUAN PUSTAKA 2.1. Tinjauan Pustaka Bejana tekan merupakan suatu tempat untuk menampung atau menyimpan suatu fluida bertekanan. Bejana tekan dirancang agar mampu menampung atau menyimpan fluida

Lebih terperinci

Spesifikasi Pipa Beton untuk Air Buangan, Saluran Peluapan dari Gorong-Gorong

Spesifikasi Pipa Beton untuk Air Buangan, Saluran Peluapan dari Gorong-Gorong Spesifikasi Pipa Beton untuk Air Buangan, Saluran Peluapan dari Gorong-Gorong SNI 03-6367-2000 1 Ruang lingkup Spesifikasi ini meliputi pipa beton tidak bertulang yang digunakan sebagai pembuangan air

Lebih terperinci

BAB VII PENUTUP Perancangan bejana tekan vertikal separator

BAB VII PENUTUP Perancangan bejana tekan vertikal separator BAB VII PENUTUP 7.1. Kesimpulan Dari hasil perancangan bejana tekan vertikal dan simulasi pembebanan eksentrik pada nozzle (studi kasus separator unit karaha PT. Pertamina Geothermal Energy), secara garis

Lebih terperinci

BAB III PERANCANGAN PROSES

BAB III PERANCANGAN PROSES BAB III PERANCANGAN PROSES 3.1. Uraian Proses Larutan benzene sebanyak 1.257,019 kg/jam pada kondisi 30 o C, 1 atm dari tangki penyimpan (T-01) dipompakan untuk dicampur dengan arus recycle dari menara

Lebih terperinci

PENDAHULUAN. 1.1 Latar Belakang

PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN PENDAHULUAN 1.1 Latar Belakang Kontruksi bangunan merupakan bagian dari kehidupan manusia yang tidak akan pernah berhenti dan terus mengalami perkembangan dari masa ke masa. Berbagai

Lebih terperinci

BAB II DASAR TEORI. Gambar 2.1 Tumpuan Rol

BAB II DASAR TEORI. Gambar 2.1 Tumpuan Rol BAB II DASAR TEORI 2.1 Pengertian Rangka Rangka adalah struktur datar yang terdiri dari sejumlah batang-batang yang disambung-sambung satu dengan yang lain pada ujungnya, sehingga membentuk suatu rangka

Lebih terperinci

Analisa Pemasangan Ekspansi Loop Akibat Terjadinya Upheaval Buckling pada Onshore Pipeline

Analisa Pemasangan Ekspansi Loop Akibat Terjadinya Upheaval Buckling pada Onshore Pipeline Sidang Tugas Akhir Analisa Pemasangan Ekspansi Loop Akibat Terjadinya Upheaval Buckling pada Onshore Pipeline HARIONO NRP. 4309 100 103 Dosen Pembimbing : 1. Dr. Ir. Handayanu, M.Sc 2. Yoyok Setyo H.,ST.MT.PhD

Lebih terperinci

KEPALA BADAN PENGAWAS TENAGA NUKLIR REPUBLIK INDONESIA

KEPALA BADAN PENGAWAS TENAGA NUKLIR REPUBLIK INDONESIA SALINAN KEPALA BADAN PENGAWAS TENAGA NUKLIR REPUBLIK INDONESIA LAMPIRAN II PERATURAN KEPALA BADAN PENGAWAS TENAGA NUKLIR NOMOR 2 TAHUN 2012 TENTANG DESAIN PROTEKSI BAHAYA INTERNAL SELAIN KEBAKARAN DAN

Lebih terperinci

BAB VII PENUTUP Perancangan sistem perpipaan

BAB VII PENUTUP Perancangan sistem perpipaan BAB VII PENUTUP 7.1. Kesimpulan Dari hasil perancangan dan analisis tegangan sistem perpipaan sistem perpipaan berdasarkan standar ASME B 31.4 (studi kasus jalur perpipaan LPG dermaga Unit 68 ke tangki

Lebih terperinci

DASAR-DASAR PENGELASAN

DASAR-DASAR PENGELASAN DASAR-DASAR PENGELASAN Pengelasan adalah proses penyambungan material dengan menggunakan energi panas sehingga menjadi satu dengan atau tanpa tekanan. Pengelasan dapat dilakukan dengan : - pemanasan tanpa

Lebih terperinci

DAFTAR ISI. i ii iii iv v vi

DAFTAR ISI. i ii iii iv v vi DAFTAR ISI HALAMAN JUDUL HALAMAN PENGESAHAN HALAMAN PERNYATAAN HALAMAN PERSEMBAHAN INTISARI KATA PENGANTAR DAFTAR ISI DAFTAR GAMBAR DAFTAR TABEL DAFTAR NOTASI DAN SINGKATAN i ii iii iv v vi viii x xii

Lebih terperinci

BAB III SPESIFIKASI ALAT PROSES

BAB III SPESIFIKASI ALAT PROSES BAB III SPESIFIKASI ALAT PROSES III.. Spesifikasi Alat Utama Alat-alat utama di pabrik ini meliputi mixer, static mixer, reaktor, separator tiga fase, dan menara destilasi. Spesifikasi yang ditunjukkan

Lebih terperinci

BAB I PENDAHULUAN. Plant, Nuclear Plant, Geothermal Plant, Gas Plant, baik di On-Shore maupun di. Offshore, semuanya mempunyai dan membutuhkan Piping.

BAB I PENDAHULUAN. Plant, Nuclear Plant, Geothermal Plant, Gas Plant, baik di On-Shore maupun di. Offshore, semuanya mempunyai dan membutuhkan Piping. BAB I PENDAHULUAN 1.1. Latar Belakang Masalah. Didalam sebuah Plant, entah itu LNG Plant, Petrochemical Plant, Fertilizer Plant, Nuclear Plant, Geothermal Plant, Gas Plant, baik di On-Shore maupun di Offshore,

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Perkembangan teknologi dalam bidang konstruksi terus menerus mengalami peningkatan, kontruksi bangunan merupakan bagian dari kehidupan manusia yang tidak akan pernah

Lebih terperinci

I. PENDAHULUAN. yang memproduksi bahan kimia serta obat-obatan, dan juga digunakan dalam

I. PENDAHULUAN. yang memproduksi bahan kimia serta obat-obatan, dan juga digunakan dalam 1 I. PENDAHULUAN A. Latar Belakang Sistem perpipaan merupakan bagian yang selalu ada dalam industri masa kini, misalnya industri gas dan pengilangan minyak, industri air minum, pabrik yang memproduksi

Lebih terperinci

PERANCANGAN DAN ANALISATEGANGAN PADA BEJANA TEKAN HORIZONTAL DENGAN METODE ELEMEN HINGGA

PERANCANGAN DAN ANALISATEGANGAN PADA BEJANA TEKAN HORIZONTAL DENGAN METODE ELEMEN HINGGA Available online at Website http://ejournal.undip.ac.id/index.php/rotasi PERANCANGAN DAN ANALISATEGANGAN PADA BEJANA TEKAN HORIZONTAL DENGAN METODE ELEMEN HINGGA 1) Djoeli Satrijo * dan 2) Syarief Afif

Lebih terperinci

BAB I PENDAHULUAN Umum. Pada dasarnya dalam suatu struktur, batang akan mengalami gaya lateral

BAB I PENDAHULUAN Umum. Pada dasarnya dalam suatu struktur, batang akan mengalami gaya lateral 1 BAB I PENDAHULUAN 1. 1 Umum Pada dasarnya dalam suatu struktur, batang akan mengalami gaya lateral dan aksial. Suatu batang yang menerima gaya aksial desak dan lateral secara bersamaan disebut balok

Lebih terperinci

BAB I PENDAHULUAN. 1 Universitas Sumatera Utara

BAB I PENDAHULUAN. 1 Universitas Sumatera Utara BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Bahan bakar fosil merupakan salah satu sumber energi yang membutuhkan proses hingga dapat dikonsumsi oleh masyarakat. Salah satu bahan bakar fosil yaitu minyak.

Lebih terperinci

STRUKTUR CANGKANG I. PENDAHULULUAN

STRUKTUR CANGKANG I. PENDAHULULUAN STRUKTUR CANGKANG I. PENDAHULULUAN Cangkang adalah bentuk struktural berdimensi tiga yang kaku dan tipis serta yang mempunyai permukaan lengkung. Permukaan cangkang dapat mempunyai bentuk sembarang. Bentuk

Lebih terperinci

BAB III METODOLOGI PERENCANAAN

BAB III METODOLOGI PERENCANAAN BAB III METODOLOGI PERENCANAAN 3.1. Diagram Alir Perencanaan Struktur Atas Baja PENGUMPULAN DATA AWAL PENENTUAN SPESIFIKASI MATERIAL PERHITUNGAN PEMBEBANAN DESAIN PROFIL RENCANA PERMODELAN STRUKTUR DAN

Lebih terperinci

PERENCANAAN BEJANA TEKAN (PRESSURE VESSEL) TIPE SEPARATOR UNTUK FLUIDA GAS

PERENCANAAN BEJANA TEKAN (PRESSURE VESSEL) TIPE SEPARATOR UNTUK FLUIDA GAS PERENCANAAN BEJANA TEKAN (PRESSURE VESSEL) TIPE SEPARATOR UNTUK FLUIDA GAS Ilham Kurniawan,Edi Septe.S, Iman Satria. Program Studi Teknik Mesin-Fakultas Teknologi Industri-Universitas Bung Hatta Jl. Gajah

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang 1 BAB I PENDAHULUAN 1.1 Latar Belakang Wellhead dan X-mass tree adalah peralatan yang harus dimiliki oleh sumur migas. Wellhead dipasang saat pengeboran dan X-mass tree dipasang saat sumur akan memasuki

Lebih terperinci

σa = Tegangan tarik ijin kg/cm 2

σa = Tegangan tarik ijin kg/cm 2 PELAKSANAAN TES DAN INSPEKSI INSTALANSI PENSTOCK 1. Uraian Dengan selesainya pekerjaan pemasangan, telah dilaksanakan tes dan inspeksi sesuai dengan ketentuan dalam dokumen kontrak dan Prosedur metode

Lebih terperinci

ANALISA RANCANGAN PIPE SUPPORT PADA SISTEM PERPIPAAN DARI POMPA MENUJU PRESSURE VESSE DAN HEAT EXCHANGER DENGAN PENDEKATAN CAESARR II

ANALISA RANCANGAN PIPE SUPPORT PADA SISTEM PERPIPAAN DARI POMPA MENUJU PRESSURE VESSE DAN HEAT EXCHANGER DENGAN PENDEKATAN CAESARR II ANALISA RANCANGAN PIPE SUPPORT PADA SISTEM PERPIPAAN DARI POMPA MENUJU PRESSURE VESSE DAN HEAT EXCHANGER DENGAN PENDEKATAN CAESARR II Asvin B. Saputra 2710 100 105 Dosen Pembimbing: Budi Agung Kurniawan,

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang 1.1.1 Konsep Desain Desain struktur harus memenuhi beberapa kriteria, diantaranya Kekuatan (strength), kemampuan layan (serviceability), ekonomis (economy) dan Kemudahan

Lebih terperinci

PERANCANGAN PRESSURE VESSEL KAPASITAS 0,017 M 3 TEKANAN 1 MPa UNTUK MENAMPUNG AIR KONDENSASI BOGE SCREW COMPRESSOR ABSTRAK

PERANCANGAN PRESSURE VESSEL KAPASITAS 0,017 M 3 TEKANAN 1 MPa UNTUK MENAMPUNG AIR KONDENSASI BOGE SCREW COMPRESSOR ABSTRAK PERANCANGAN PRESSURE VESSEL KAPASITAS 0,017 M 3 TEKANAN 1 MPa UNTUK MENAMPUNG AIR KONDENSASI BOGE SCREW COMPRESSOR Cahya Sutowo 1.,ST.MT. Hantawan 2 Lecture 1,College student 2,Departement of machine,

Lebih terperinci

ANALISA STIFFENER RING DAN KONSTRUKSI VESSEL HP FLARE KO DRUM PADA PROYEK PUPUK KALTIM-5 MENGGUNAKAN SOFTWARE COMPRESS 6258

ANALISA STIFFENER RING DAN KONSTRUKSI VESSEL HP FLARE KO DRUM PADA PROYEK PUPUK KALTIM-5 MENGGUNAKAN SOFTWARE COMPRESS 6258 9 JTM Vol. 04, No. 1, Februari 2015 ANALISA STIFFENER RING DAN KONSTRUKSI VESSEL HP FLARE KO DRUM PADA PROYEK PUPUK KALTIM-5 MENGGUNAKAN SOFTWARE COMPRESS 6258 Fadhlika Ridha Program Studi Teknik Mesin,

Lebih terperinci

SKRIPSI PERANCANGAN TANGKI PENIMBUN SOLAR (HSD) TIPE FIXED CONE ROOF KAPASITAS BARREL

SKRIPSI PERANCANGAN TANGKI PENIMBUN SOLAR (HSD) TIPE FIXED CONE ROOF KAPASITAS BARREL SKRIPSI PERANCANGAN TANGKI PENIMBUN SOLAR (HSD) TIPE FIXED CONE ROOF KAPASITAS 130.000 BARREL Diajukan kepada Fakultas Teknik Universitas Muhammadiyah Malang untuk memenuhi salah satu persyaratan akademik

Lebih terperinci

BAB III PERANCANGAN PROSES

BAB III PERANCANGAN PROSES BAB III PERANCANGAN PROSES 3.1. Uraian Proses Proses pembuatan natrium nitrat dengan menggunakan bahan baku natrium klorida dan asam nitrat telah peroleh dari dengan cara studi pustaka dan melalui pertimbangan

Lebih terperinci

BAB 2 SAMBUNGAN (JOINT ) 2.1. Sambungan Keling (Rivet)

BAB 2 SAMBUNGAN (JOINT ) 2.1. Sambungan Keling (Rivet) BAB SAMBUNGAN (JOINT ).1. Sambungan Keling (Rivet) Pada umumnya mesin mesin terdiri dari beberapa bagian yang disambung-sambung menjadi sebuah mesin yang utuh. Sambungan keling umumnya diterapkan pada

Lebih terperinci

DAFTAR ISI. i ii iii iv vi v vii

DAFTAR ISI. i ii iii iv vi v vii DAFTAR ISI HALAMAN JUDUL... HALAMAN PENGESAHAN... HALAMAN PERNYATAAN... NASKAH SOAL... HALAMAN PERSEMBAHAN... INTISARI... KATA PENGANTAR... DAFTAR ISI... DAFTAR GAMBAR... DAFTAR TABEL... DAFTAR LAMPIRAN...

Lebih terperinci

BAB 8. BEJANA TEKAN (Pressure Vessel)

BAB 8. BEJANA TEKAN (Pressure Vessel) BAB 8 BEJANA TEKAN (Pressure Vessel) Bejana tekan (Pressure Vessel) adalah tempat penampungan suatu fluida baik berupa cair maupun gas dengan tekanan yang lebih tinggi dari tekanan atmosfir. Bejana Tekan

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Sejak abad ke 18 kereta api sudah digunakan untuk mengangkut berbagai jenis barang. Perkembangan paling pesat terjadi pada saat Revolusi Industri abad ke 19. Kereta

Lebih terperinci

JURNAL TUGAS AKHIR PERHITUNGAN STRUKTUR BETON BERTULANG PADA PEMBANGUNAN GEDUNG PERKULIAHAN FAPERTA UNIVERSITAS MULAWARMAN

JURNAL TUGAS AKHIR PERHITUNGAN STRUKTUR BETON BERTULANG PADA PEMBANGUNAN GEDUNG PERKULIAHAN FAPERTA UNIVERSITAS MULAWARMAN JURNAL TUGAS AKHIR PERHITUNGAN STRUKTUR BETON BERTULANG PADA PEMBANGUNAN GEDUNG PERKULIAHAN FAPERTA UNIVERSITAS MULAWARMAN Diajukan oleh : ABDUL MUIS 09.11.1001.7311.046 JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK

Lebih terperinci

Jurnal FEMA, Volume 1, Nomor 4, Oktober 2013

Jurnal FEMA, Volume 1, Nomor 4, Oktober 2013 Jurnal FEMA, Volume 1, Nomor 4, Oktober 2013 ANALII THERMAL DAN TEGANGAN PADA PERANCANGAN BEJANA TEKAN (PREURE VEEL) UNTUK LIMBAH KELAPA AWIT DENGAN KAPAITA 10.000 TON/BULAN A. Yudi Eka Risano 1), Ahmad

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Pembebanan Struktur bangunan yang aman adalah struktur bangunan yang mampu menahan beban-beban yang bekerja pada bangunan. Dalam suatu perancangan struktur harus memperhitungkan

Lebih terperinci

PERBANDINGAN BIAYA STRUKTUR BAJA NON-PRISMATIS, CASTELLATED BEAM, DAN RANGKA BATANG

PERBANDINGAN BIAYA STRUKTUR BAJA NON-PRISMATIS, CASTELLATED BEAM, DAN RANGKA BATANG PERBANDINGAN BIAYA STRUKTUR BAJA NON-PRISMATIS, CASTELLATED BEAM, DAN RANGKA BATANG Jason Chris Kassidy 1, Jefry Yulianus Seto 2, Hasan Santoso 3 ABSTRAK : Pesatnya perkembangan dalam dunia konstruksi

Lebih terperinci

PERANCANGAN DAN PEMBUATAN MESIN PENGADUK ADONAN ROTI TAWAR (BAGIAN STATIS) LAPORAN PROYEK AKHIR. Oleh :

PERANCANGAN DAN PEMBUATAN MESIN PENGADUK ADONAN ROTI TAWAR (BAGIAN STATIS) LAPORAN PROYEK AKHIR. Oleh : PERANCANGAN DAN PEMBUATAN MESIN PENGADUK ADONAN ROTI TAWAR (BAGIAN STATIS) LAPORAN PROYEK AKHIR Oleh : Eko Susilo NIM 011903101118 PROGRAM STUDI DIPLOMA III TEKNIK JURUSAN TEKNIK MESIN PROGRAM STUDI TEKNIK

Lebih terperinci

BAB 1 PENDAHULUAN Latar Belakang. Air adalah kebutuhan dasar manusia untuk kehidupan sehari-hari.

BAB 1 PENDAHULUAN Latar Belakang. Air adalah kebutuhan dasar manusia untuk kehidupan sehari-hari. BAB 1 PENDAHULUAN 1.1. Latar Belakang Air adalah kebutuhan dasar manusia untuk kehidupan sehari-hari. Distribusi air yang cukup tergantung pada desain sebuah tangki penampungan air di daerah tersebut.

Lebih terperinci

A. Dasar-dasar Pemilihan Bahan

A. Dasar-dasar Pemilihan Bahan BAB II TINJAUAN PUSTAKA A. Dasar-dasar Pemilihan Bahan Di dalam merencanakan suatu alat perlu sekali memperhitungkan dan memilih bahan-bahan yang akan digunakan, apakah bahan tersebut sudah sesuai dengan

Lebih terperinci

BAB III SPESIFIKASI PERALATAN PROSES

BAB III SPESIFIKASI PERALATAN PROSES 34 BAB III SPESIFIKASI PERALATAN PROSES 3.1. Tangki Tangki Bahan Baku (T-01) Tangki Produk (T-02) Menyimpan kebutuhan Menyimpan Produk Isobutylene selama 30 hari. Methacrolein selama 15 hari. Spherical

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Statika rangka Dalam konstruksi rangka terdapat gaya-gaya yang bekerja pada rangka tersebut. Dalam ilmu statika keberadaan gaya-gaya yang mempengaruhi sistem menjadi suatu obyek

Lebih terperinci

Komponen Struktur Tarik

Komponen Struktur Tarik Mata Kuliah : Perancangan Struktur Baja Kode : CIV 303 SKS : 3 SKS Komponen Struktur Tarik Pertemuan 2, 3 Sub Pokok Bahasan : Kegagalan Leleh Kegagalan Fraktur Kegagalan Geser Blok Desain Batang Tarik

Lebih terperinci

PERANCANGAN BEJANA TEKAN (PRESSURE VESSEL) UNTUK SEPARASI 3 FASA

PERANCANGAN BEJANA TEKAN (PRESSURE VESSEL) UNTUK SEPARASI 3 FASA ISSN: 1410-2331 PERANCANGAN BEJANA TEKAN (PRESSURE VESSEL) UNTUK SEPARASI 3 FASA Abdul Aziz, Abdul Hamid dan Imam Hidayat Program Studi Teknik Mesin, Fakultas Teknik, Universitas Mercu Buana Email : abdul.aza@gmail.com

Lebih terperinci

STRUKTUR DAN KONSTRUKSI BANGUNAN IV

STRUKTUR DAN KONSTRUKSI BANGUNAN IV STRUKTUR DAN KONSTRUKSI BANGUNAN IV STRUKTUR PLAT LIPAT AZRATIH HAIRUN FRILYA YOLANDA EFRIDA UMBU NDAKULARAK AGRIAN RIZKY RINTO HARI MOHAMMAD GIFARI A. PENGERTIAN STRUKTUR PLAT LIPAT Pelat adalah struktur

Lebih terperinci

FORMULASI PENGETAHUAN PROSES MELALUI SIMULASI ALIRAN FLUIDA TIGA DIMENSI

FORMULASI PENGETAHUAN PROSES MELALUI SIMULASI ALIRAN FLUIDA TIGA DIMENSI BAB VI FORMULASI PENGETAHUAN PROSES MELALUI SIMULASI ALIRAN FLUIDA TIGA DIMENSI VI.1 Pendahuluan Sebelumnya telah dibahas pengetahuan mengenai konversi reaksi sintesis urea dengan faktor-faktor yang mempengaruhinya.

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Menurut SKK Migas, rasio cadangan produksi minyak Indonesia tahun 2013 tinggal 11 tahun, jumlah cadangan minyak bumi Indonesia sebesar 3,6 miliar barrel atau hanya

Lebih terperinci

BAB I PENDAHULUAN. Istimewa Yogyakarta pada khususnya semakin meningkat. Populasi penduduk

BAB I PENDAHULUAN. Istimewa Yogyakarta pada khususnya semakin meningkat. Populasi penduduk BAB I PENDAHULUAN 1.1. Latar Belakang Laju pertumbuhan penduduk di Indonesia pada umumnya dan di Daerah Istimewa Yogyakarta pada khususnya semakin meningkat. Populasi penduduk yang terus meningkat tentu

Lebih terperinci

BAB II TINJAUAN PUSTAKA. harus dilakukan berdasarkan ketentuan yang tercantum dalam Tata Cara

BAB II TINJAUAN PUSTAKA. harus dilakukan berdasarkan ketentuan yang tercantum dalam Tata Cara 4 BAB II TINJAUAN PUSTAKA 2.1. Pembebanan Struktur Dalam perencanaan komponen struktur terutama struktur beton bertulang harus dilakukan berdasarkan ketentuan yang tercantum dalam Tata Cara Perhitungan

Lebih terperinci

BAB III PERENCANAAN DAN GAMBAR

BAB III PERENCANAAN DAN GAMBAR BAB III PERENCANAAN DAN GAMBAR 3.1 Perencanaan Rangka Mesin Peniris Minyak Proses pembuatan mesin peniris minyak dilakukan mulai dari proses perancangan hingga finishing. Mesin peniris minyak dirancang

Lebih terperinci

BAB II TINJAUAN PUSTAKA. geser membentuk struktur kerangka yang disebut juga sistem struktur portal.

BAB II TINJAUAN PUSTAKA. geser membentuk struktur kerangka yang disebut juga sistem struktur portal. BAB II TINJAUAN PUSTAKA 2.1 Sistem Struktur Bangunan Suatu sistem struktur kerangka terdiri dari rakitan elemen struktur. Dalam sistem struktur konstruksi beton bertulang, elemen balok, kolom, atau dinding

Lebih terperinci

Penggunaan sistem Pneumatik antara lain sebagai berikut :

Penggunaan sistem Pneumatik antara lain sebagai berikut : SISTEM PNEUMATIK SISTEM PNEUMATIK Pneumatik berasal dari bahasa Yunani yang berarti udara atau angin. Semua sistem yang menggunakan tenaga yang disimpan dalam bentuk udara yang dimampatkan untuk menghasilkan

Lebih terperinci

BAB III METODOLOGI PERENCANAAN

BAB III METODOLOGI PERENCANAAN BAB III METODOLOGI PERENCANAAN III.. Gambaran umum Metodologi perencanaan desain struktur atas pada proyek gedung perkantoran yang kami lakukan adalah dengan mempelajari data-data yang ada seperti gambar

Lebih terperinci

BAB III LANDASAN TEORI. dan pasal SNI 1726:2012 sebagai berikut: 1. U = 1,4 D (3-1) 2. U = 1,2 D + 1,6 L (3-2)

BAB III LANDASAN TEORI. dan pasal SNI 1726:2012 sebagai berikut: 1. U = 1,4 D (3-1) 2. U = 1,2 D + 1,6 L (3-2) 8 BAB III LANDASAN TEORI 3.1. Elemen Struktur 3.1.1. Kuat Perlu Kuat yang diperlukan untuk beban-beban terfaktor sesuai pasal 4.2.2. dan pasal 7.4.2 SNI 1726:2012 sebagai berikut: 1. U = 1,4 D (3-1) 2.

Lebih terperinci

TUGAS AKHIR. Oleh: EKO PRIYANTO NIM : D

TUGAS AKHIR. Oleh: EKO PRIYANTO NIM : D TUGAS AKHIR REDESIGN BEJANA TEKAN KRIOGENIK VERTIKAL (VERTICAL CRYOGENIC PRESSURE VESSEL) DENGAN SUPPORT SKIRT BERDASARKAN STANDARD MEGYESY DENGAN BANTUAN SOFTWARE CATIA P3 V5R15 Diajukan Untuk Memenuhi

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Pengertian Roket Roket adalah suatu wahana antariksa yang dapat menjelajah dengan kecepatan yang sangat tinggi. Sir Isaac Newton, seorang ahli matematika, scientist, dan seorang

Lebih terperinci

2 BAB II TEORI. 2.1 Tinjauan Pustaka. Suatu sistem perpipaan dapat dikatakan aman apabila beban tegangan

2 BAB II TEORI. 2.1 Tinjauan Pustaka. Suatu sistem perpipaan dapat dikatakan aman apabila beban tegangan 2 BAB II TEORI 2.1 Tinjauan Pustaka Suatu sistem perpipaan dapat dikatakan aman apabila beban tegangan yang terjadi mempunyai nilai rasio lebih kecil atau sama dengan 1 dari tegangan yang diijinkan (allowable

Lebih terperinci

TUGAS PRA PERANCANGAN PABRIK BIODIESEL DARI DISTILAT ASAM LEMAK MINYAK SAWIT (DALMS) DENGAN PROSES ESTERIFIKASI KAPASITAS 100.

TUGAS PRA PERANCANGAN PABRIK BIODIESEL DARI DISTILAT ASAM LEMAK MINYAK SAWIT (DALMS) DENGAN PROSES ESTERIFIKASI KAPASITAS 100. EXECUTIVE SUMMARY TUGAS PERANCANGAN PABRIK KIMIA TUGAS PRA PERANCANGAN PABRIK BIODIESEL DARI DISTILAT ASAM LEMAK MINYAK SAWIT (DALMS) DENGAN PROSES ESTERIFIKASI KAPASITAS 100.000 TON/TAHUN Oleh: RUBEN

Lebih terperinci

Disusun oleh: KHAMDAN KHAMBALI

Disusun oleh: KHAMDAN KHAMBALI Perancangan Bejana Tekan Vertikal Air Receiver Kapasitas 50 m 3, Tekanan Desain Internal 0,99 MPa, dan Temperatur Desain 70,8ºC, dengan Bantuan Software PV Elite 2016 TUGAS AKHIR Diajukan Guna Memenuhi

Lebih terperinci

yang berhubungan satu sama lain secara kaku sehingga menjadi stabil dan dapat

yang berhubungan satu sama lain secara kaku sehingga menjadi stabil dan dapat BAB II LANDASAN TEORI 2.1 Struktur Ruang Kubah Satu Lapis Struktur ruang adalah rangka tiga dimensi yang terdiri dari batang-batang yang berhubungan satu sama lain secara kaku sehingga menjadi stabil dan

Lebih terperinci

STRUKTUR LIPATAN. Dengan bentuk lipatan ini,gaya-gaya akibat benda sendiri dan gaya-gaya luar dapat di tahan oleh bentuk itu sendiri

STRUKTUR LIPATAN. Dengan bentuk lipatan ini,gaya-gaya akibat benda sendiri dan gaya-gaya luar dapat di tahan oleh bentuk itu sendiri STRUKTUR LIPATAN Bentuk lipatan ini mempunyai kekakuan yang lebih dibandingkan dengan bentuk-bentuk yang datar dengan luas yang sama dan dari bahan yang sama pula. Karena momen energia yang didapat dari

Lebih terperinci

BAB I PENDAHULUAN. secara nyata baik dalam tegangan maupun dalam kompresi sebelum terjadi

BAB I PENDAHULUAN. secara nyata baik dalam tegangan maupun dalam kompresi sebelum terjadi BAB I PENDAHUUAN I. 1 Umum Baja adalah salah satu bahan kontruksi yang paling penting, sifat-sifatnya yang terutama dalam penggunaan konstruksi adalah kekuatannya yang tinggi dan sifat yang keliatannya.

Lebih terperinci

BAB III METOLOGI PENELITIAN

BAB III METOLOGI PENELITIAN BAB III METOLOGI PENELITIAN 3.1 Waktu dan Tempat Metode yang digunakan adalah untuk mendekatkan permasalahan yang diteliti sehingga menjelaskan dan membahas permasalahan secara tepat. Skripsi ini menggunakan

Lebih terperinci

Bab 5 Kesimpulan dan Saran

Bab 5 Kesimpulan dan Saran Bab 5 Kesimpulan dan Saran 5.1 Kesimpulan Desain konstruksi yang telah dilakukan dalam tugas akhir ini membuktikan bahwa anggaran yang besar tidak diperlukan untuk mendesain suatu bangunan tahan gempa.

Lebih terperinci