teori dari komponen yang akan dipergunakan sehingga dapat diketahui karakteristik dan prinsip kerja dari rangkaian tersebut serta dapat menghasilkan k

Ukuran: px
Mulai penontonan dengan halaman:

Download "teori dari komponen yang akan dipergunakan sehingga dapat diketahui karakteristik dan prinsip kerja dari rangkaian tersebut serta dapat menghasilkan k"

Transkripsi

1 LINE FOLLOWER MENGGUNAKAN KONTROL PID DEDI TAMBUNAN Jurusan Sistem Komputer, Fakultas Ilmu Komputer, Universitas Gunadarma, Kalimalang, Bekasi. Abstraksi : Robot memiliki berbagai jenis pengendalian, ada robot yang bergerak secara otomatis dan ada robot yang digerakkan secara jarak jauh (remote). Robot yang bergerak secara otomatis digerakkan oleh sistem terprogram yang ditanamkan pada kontroler. Program menerjemahkan masukan dari sensor yang akan diproses oleh kontroler untuk menghasilkan keluran tertentu. Line Follower ini merupakan salah satu robot kendaraan otomatis. Robot line follower ini menggunakan sensor garis sebagai pembaca masukan untuk menggerakkan robot, Sensor membaca garis berwarna hitam dan dasar jalur berwarna putih. Sensor memberikan masukan tegangan ke komparator untuk dibandingkan. Komparator mengeluarkan logika rendah atau tinggi sebagai masukan ke mikrokontroler untuk diproses. Kontroler pada robot ini adalah mikrokontroler Atmega8535 yang dikombinasikan dengan kontrol PID yang berfungsi sebagai kendali utama robot. Program menerjemahkan masukan untuk menggerakan roda kendaraan.dimana dalam robot ini kita bias mengatur besar kecepatan perputaran rodanya tanpa harus mem flash ulang programnya. Penulis akhirnya menyimpulkan untuk membuat Skripsi dengan judul LINE FOLLOWER MENGGUNAKAN KONTROL PID.Kata kunci: Robot, Sensor, Kontrol PID, Mikrokontroler. Tanggal Pembuatan: 30 Januari 2012 PENDAHULUAN Perkembangan dunia elektronika saat ini semakin pesat, alat-alat elektronik bukanlah menjadi barang yang langka. Adanya tuntutan dari dunia industri yang menuntut adanya suatu alat dengan kemampuan tinggi dapat membantu manusia dan industri, hal ini membuat para desainer berlomba-lomba memenuhi tuntutan tersebut. Robot tidak lagi menjadi barang langka, robot dapat mengganti pekerjaan manusia sehingga menjadi lebih efektif dan efisien. Robot pengikut garis merupakan salah satu bentuk robot bergerak otonom yang banyak dirancang baik untuk penelitian, industri maupun kompetisi robot. Sesuai dengan namanya, tugas yang harus dilakukan oleh suatu robot pengikut garis adalah mengikuti garis pemandu yang dibuat dengan tingkat presisi tertentu. Perancangan penelitian ini pada dasarnya dibagi menjadi 2 bagian, yaitu perancangan perangkat keras (hardware) dan perancangan perangkat lunak (software). Perancangan perangkat keras berupa penyusunan komponen-komponen, sehingga menjadi satu kesatuan sistem rangkaian yang bisa bekerja sesuai dengan yang diharapkan, yaitu robot bisa mengikuti garis berwarna hitam. Perancangan perangkat lunak berupa bahasa pemrograman yang membuat sistem bisa bekerja sesuai dengan program atau perintah yang ditulis serta cara kerja alat di lapangan. TINJAUAN PUSTAKA Untuk membuat line follower dengan control PID ini, maka diperlukan landasan

2 teori dari komponen yang akan dipergunakan sehingga dapat diketahui karakteristik dan prinsip kerja dari rangkaian tersebut serta dapat menghasilkan keluaran yang diharapkan. Secara umum rangkaian ini terdiri dari sebagai berikut, yaitu : Mikrokontroler Mikrokontroler adalah suatu chip yang memiliki memory, register dan CPU yang dapat melakukan fungsi kendali pada suatu alat atau robot. Arsitektur mikrokontroler yang semakin komplek dan memudahkan para pengembang untuk mendesain system elektronika yang canggih. Jenis jenis Mikrokontroler Berdasarkan arsitekturnya mikro kontroler dapat dibagi menjadi dua jenis yaitu RISC (Reduce Instrution Set Computer) dan CISC (Kompleks Instruction Set Computer).. RISC mempunyai jumlah intruksi yang terbatas, tetapi mempunyai banyak fasilitas yang dapat digunakan Sebaliknya CISC memiliki instruksi yang cukup banyak, tetapi fitur yang ada hanya sedikit. Mikrokontroler ATMega8535 Mikrokontroler AVR (Alf and Vegard s Risc Prosessor) merupakan salah satu perkembangan produk mikroelektronika dari vendor Atmel. AVR merupakan teknologi yang memiliki kemampuan baik dengan biaya ekonomis yang cukup minimal. Mikrokontroler AVR memiliki arsitektur RISC 8 bit, dimana semua instruksi dikemas dalam kode 16 bit dan sebagian besar instruksi dieksekusi dalam 1 (satu) siklus clock, berbeda dengan instruksi MCS51 yang membutuhkan 12 siklus clock. Tentu saja itu terjadi karena kedua jenis mikrokontroler tersebut memiliki arsitektur yang berbeda. AVR berteknologi RISC (Reduced Instruction Set Computing), sedang MCS 51 berteknologi CISC (Complex Instruction Set Computing). Secara umum AVR dapat dikelompokkan menjadi 4 kelas, yaitu keluarga ATTiny, keluarga AT90Sxx, keluarga ATMega, dan AT86RFxx. Pada dasarnya yang membedakan masingmasing kelas adalah memori, peripheral, dan fungsinya. Dari segi arsitektur dan instruksi yang digunakan, mereka bisa dikatakan hampir sama. Arsitektur ATMega8535 Dari gambar 2.1 dapat dilihat bahwa ATMega8535 memiliki bagian sebagai berikut: a. Saluran I/O sebanyak 32 buah, yaitu port A, Port B, Port C, dan Port D. b. ADC 10 bit sebanyak 8 saluran. c. Tiga buah Timer/Counter dengan kemampuan pembandingan. d. CPU yang terdiri atas 32 buah register. e. Watchdog Timer dengan Oscilator Internal. f. SRAM sebanyak 512 byte. g. Memori Flash sebesar 8 kb dengan kemampuan Read While Write. h. Unit Interupsi internal dan eksternal. i. Port antarmuka SPI. j. EEPROM sebesar 512 byte yang dapat diprogram saat operasi. k. Antarmuka komparator analog. l. Port USART untuk komunikasi serial. Fitur ATMega8535 Kapabilitas detail dari ATMega8535 adalah sebagai berikut: a. Sistem mikroprosessor 8 bit berbasis RISC dengan kecepatan maksimal 16 MHz. b. Kapabilitas memori Flash 8 KB, SRAM sebesar 512 byte, dan EEPROM (Electrically Erasable Programmable Read Only Memory) sebesar 512 byte.

3 c. ADC Internal dengan fidelitas 10 bit sebanyak 8 saluran. d. Portal komunikasi serial (USART) dengan kecepatan maksimal 2,5 Mbps. e. Enam pilihan mode sleep menghemat penggunaan daya listrik. Gambar 2.1 Pin Mikrokontroler ATMega8535 LCD (Liquid Crystal Display) Liquid Crystal Display (LCD) merupakan perangkat (devais) yang sering digunakan untuk menampilkan data selain menggunakan seven segment. LCD berfungsi sebagai salah satu alat komunikasi dengan manusia dalam bentuk tulisan/gambar. Untuk menghubungkan mikrokontroler dengan LCD dibutuhkan konfigurasi antara pin-pin yang ada di LCD dengan port yang ada di mikrokontroler. Konfigurasi pin LCD dan mikrokontroler dapat dilihat pada gambar 2.3 dan tabel 2.3. Gambar 2.3 LCD 16 X 2 Interface LCD merupakan sebuah parallel bus, dimana hal ini sangat memudahkan dan sangat cepat dalam pembacaan dan penulisan data dari atau ke LCD. Kode ASCII yang ditampilkan sepanjang 8 bit dikirim ke LCD secara 4 atau 8 bit pada satu waktu. Jika mode 4 bit yang digunakan, maka 2 nibble data dikirim untuk membuat sepenuhnya 8 bit (pertama dikirim 4 bit MSB lalu 4 bit LSB dengan pulsa clock EN setiap nibblenya). Jalur kontrol EN digunakan untuk memberitahu LCD bahwa mikrokontroller mengirimkan data ke LCD. Untuk mengirim data ke LCD program harus menset EN ke kondisi high (1) dan kemudian menset dua jalur kontrol lainnya (RS dan R/W) atau juga mengirimkan data ke jalur data bus. Saat jalur lainnya sudah siap, EN harus diset ke 0 dan tunggu beberapa saat (tergantung pada datasheet LCD), dan set EN kembali ke high (1). Ketika jalur RS berada dalam kondisi low (0), data yang dikirimkan ke LCD dianggap sebagai sebuah perintah atau instruksi khusus (seperti bersihkan layar, posisi kursor dll). Ketika RS dalam kondisi high atau 1, data yang dikirimkan adalah data ASCII yang akan ditampilkan dilayar. Jalur kontrol R/W harus berada dalam kondisi low (0) saat informasi pada data bus akan dituliskan ke LCD. Apabila R/W berada dalam kondisi high (1), maka program akan melakukan query (pembacaan) data dari LCD. Instruksi pembacaan hanya satu, yaitu Get LCD status (membaca status LCD), lainnya merupakan instruksi penulisan. Jadi hampir setiap aplikasi yang menggunakan LCD, R/W selalu diset ke 0. Jalur data dapat terdiri 4 atau 8 jalur (tergantung mode yang dipilih pengguna), mereka dinamakan DB0, DB1, DB2, DB3, DB4, DB5, DB6 dan DB7. Mengirim data secara parallel baik 4 atau 8 bit merupakan 2 mode operasi primer. Untuk membuat sebuah aplikasi interface LCD, menentukan mode operasi merupakan hal yang paling penting. Mode 8 bit sangat baik digunakan ketika kecepatan menjadi keutamaan dalam sebuah aplikasi dan setidaknya minimal tersedia 11 pin I/O (3 pin untuk kontrol, 8 pin untuk data). Sedangkan mode 4 bit minimal hanya membutuhkan 7 bit (3 pin untuk kontrol, 4 untuk data).

4 Motor DC Motor DC adalah motor yang nonterpolarisasi -yang berarti bahwa tegangan dapat di balikkan maka putarannyapun akan berubah. Tegangan yang digunakan untuk memutar motor DC sekitar 6V-24V atau lebih. Motor DC Yang digunakan pada robot sekitar motor DC 6V-12V. Jadi, mengapa motor beroperasi pada tegangan yang berbeda? Seperti yang kita semua tahu (atau seharusnya tahu), tegangan secara langsung berkaitan dengan torsi dari sebuah motor. Lebih besar tegangan, maka lebih besar torsi yang dihasilkan. Tetapi dalam pemberian tegangan tidak boleh melebihi dari tegangan yang di butuhkan. Misalkan pemberian tegangan hingga 100V, itu menyebabkan motor tidak akan lagi berputar(rusak). Hal itu menyebabkan motor menjadi terlalu panas dan kumparan akan meleleh.meskipun motor 24V mungkin lebih kuat, apakah benar-robot harus membawa baterai 24V (yang lebih berat dan lebih besar,kecuali jika benar-benar membutuhkan sebuah torsi pada motor.ada beberapa macam driver motor DC yang biasa kita pakai seperti menggunakan relay yang diaktifkan dengan transistor sebagai saklar, namun yang demikian dianggap tidak efesien dalam pengerjaan hardwarenya. Dengan berkembangnya dunia IC, sekarang sudah ada H Bridge yang dikemas dalam satu IC dimana memudahkan kita dalam pelaksanaan hardware dan kendalinya menggunakan mikrokontroler, berikut IC yang familiar dalam dunia robotika seperti IC L298 dan L293, kedua IC ini memiliki kelebihan dan kekurangan masing-masing. Modul yang menggunakan IC driver L298 yang memiliki kemampuan menggerakkan motor DC sampai arus 4A dan tegangan maksimum 46 VoltDC untuk satu kanalnya. Rangkaian driver motor DC dengan IC L298 diperlihatkan pada Gambar 2.4 Pin Enable A dan B untuk mengendalikan jalan atau kecepatan motor, pin Input 1 sampai 4 untuk mengendalikan arah putaran. Pin Enable diberi VCC 5 Volt untuk kecepatan penuh dan PWM (Pulse Width Modulation) untuk kecepatan rotasi yang bervariasi tergantung dari level highnya. Ilustrasinya ditunjukkan pada Gambar 2.4 dibawah ini. Gambar 2.4 Rangkaian Driver motor DC dengan L298 Kontrol PID PID (dari singkatan bahasa Proportional Integral Derivative controller) merupakan kontroler untuk menentukan presisi suatu sistem instrumentasi dengan karakteristik adanya umpan balik pada sistem tesebut. Komponen kontrol PID ini terdiri dari tiga jenis yaitu Proportional, Integratif dan Derivatif. Ketiganya dapat dipakai bersamaan maupun sendiri-sendiri tergantung dari respon yang kita inginkan terhadap suatu plant. Kontroler Proporsional (P) Pengaruh pada sistem : 1. Menambah atau mengurangi kestabilan. 2. Dapat memperbaiki respon transien khususnya : rise time, settling time 3. Mengurangi (bukan menghilangkan) Error steady state. Kontroler Proporsional memberi pengaruh langsung (sebanding) pada error.semakin besar error, semakin besar sinyal kendali yang dihasilkan kontroler.

5 Kontroler Integral (I) Pengaruh pada sistem : 1. Menghilangkan Error Steady State 2. Respon lebih lambat (dibandingkan dengan P) 3. Dapat Menambah Ketidakstabilan (karena menambah orde pada sistem) Kontroler Derivatif (D) Pengaruh pada sistem : 1. Memberikan efek redaman pada sistem yang berosilasi sehingga bisa memperbesar pemberian nilai Kp 2. Memperbaiki respon transien, karena memberikan aksi saat ada perubahan error 3. D hanya berubah saat ada perubahan error, sehingga saat ada error statis D tidak beraksi.sehingga D tidak boleh digunakan sendiri Kontrol PID saat ini banyak digunakan dalam aksi-aksi di dunia industri dan juga kontrol robot. jika kita berbicara kontrol robot line follower dengan PID maka bukanlah kontrol PID yang sebenarnya sebab pada robot line follower elemen ukur (sensor) tidak terdapat pada plant (motor penggerak) dari robot, yang serharusnya \adalah sensor terdapat di plant(motor penggerak), dengan contoh tachometer sebagai sensor pada motor, encoder atau yang lainnya yang terletak pada plant. sedangkan pada robot line follower sensor berupa pendeteksi garis (tidak terletak pada plant) dan dari hasil kondisi garis tersebut barulah dikontrol ke motor (plant), walaupun begitu kontrol PID masih dapat diterapkan untuk mengendalikan robot line follower. Berikut dijelaskan mengenai Blok aksi control PID pada Gambar 2.5 dibawah ini. Gambar 2.5 blok control PID Dari blok diagram diatas dapat dijelaskan sebagai berikut 1. SP = Set point, secara simple maksudnya ialah suatu prameter nilai acuan atau nilai yang kita inginkan. 2. PV = Present Value, kalo yang ini maksudnya ialah nilai bobot pembacaan sensor saat itu atau variabel terukur yang di umpan balikan oleh sensor (sinyal feedback dari sensor). 3. Error = nilai kesalahan, nach kalo yang ini pengertiannya ialah Deviasi atau simpangan antar variabel terukur atau bobot sensor (PV) dengan nilai acuan (SP) Nilai konstanta perhitungan PID di tuning secara trial and error, proses ini dilakukan dengan metode mencoba-coba (eksperimental) nilai proporsional, derivatif dan integratif pada formula PID hingga ditemukan hasil sistem yag stabil, adapun cara yang dilakukan untuk mentuning PID pada robot line follower ialah sebagai berikut: 1. Langkah awal gunakan kontrol proporsional terlebih dahulu, abaikan konstanta integratif dan derivatifnya dengan memberikan nilai nol pada integratif dan derivatif. 2. Tambahkan terus konstanta proporsional maksimum hingga keadaan stabil namun robot masih berosilasi. 3. Untuk meredam osilasi, tambahkan konstanta derivatif dengan membagi dua nilai proporsional, amati keadaan sistem robot hingga stabil dan lebih responsif.

6 4. Jika sistem robot telah stabil, kontrol integratif dapat menjadi opsional, dalam artian jika ingin mencoba-coba tambahkan kontrol integratif tersebut, namun pemberian nilai integratif yang tidak tepat dapat membuat sistem robot menjadi tidak stabil. 5. Nilai set point kecepatan dan nilai batas bawah/atas memberikan patokan kecepatan robot. 6. Nilai time sampling (waktu cuplik) juga mempengaruhi perhitungan PID, tentunnya saat penggunaan kontrol integratif dan derivatif. Definisi-definisi yang digunakan dalam PID: Target Position - Untuk mengikuti garis, posisi ini adalah tengah garis. Kita akan merepresentasikannya dengan nilai nol. Measured Position - Seberapa jauh ke kiri atau ke kanan terhadap garis. Nilai ini dapat negatif atau positif untuk merepresentasikan posisi relatif terhadap garis. Error - Perbedaan antara target position dan measured position. Proportional - Mengukur berapa jauh robot kita keluar dari garis. Proportional merupakan dasar untuk membaca posisi robot dengan menggunakan sensor. Semakin banyak data, semakin akurat kita dapat mengukur posisi robot di atas garis. Integral - Mengukur akumulasi error terhadap waktu. Nilai integral naik ketika robot tidak berada di tengah garis. Semakin lama robot tidak berada di tengah garis, semakin tinggi nilai integral. Derivative - Mengukur seberapa sering robot bergerak dari kiri ke kanan atau dari kanan ke kiri. Faktor P - Kp, adalah konstanta yang digunakan untuk memperbesar dan memperkecil pengaruh dari Proportional. Faktor I - Ki, adalah konstanta yang digunakan untuk memperbesar dan memperkecil pengaruh dari Integral. Faktor D - Kd, adalah konstanta yang digunakan untuk memperbesar dan memperkecil pengaruh dari Derivative. PERANCANGAN ALAT Prototipe robot ini merupakan robot line follower menggunakan kontrol PID. Robot ini berjalan dengan bantuan sensor sebagai alat indra robot tersebut. Sensor membaca garis berwarna hitam dan dasar jalur berwarna putih. Jika sensor membaca garis hitam, maka sensor akan memberikan masukan tegangan ke komparator untuk dibandingkan. Komparator mengeluarkan logika low sebagai masukan ke mikrokontroler untuk diproses. Program akan menterjemahkan masukan untuk menggerakan roda dalam robot line follower ini. Perancangan prototype robot line follower ini merupakan perancangan secara perangkat keras dan perangkat lunak. Dalam perancangan ini meliputi analisa rangkaian secara blok diagram, analisa rangkaian keseluruhan, diagram alur (flowchart) dan analisa secara program. Analisa Rangkaian Secara Blok Diagram Blok diagram rancangan prototipe line follower disajikan dalam gambar 3.1. Masing-masing blok mempunyai karakteristik dan fungsi yang berbedabeda. Pada Gambar 3.1, merupakan blok diagram rangkaian prototipe line follower secara keseluruhan. Blok diagram tersebut terdiri dari beberapa blok yang saling berkaitan. Blok input terdiri dari rangkaian sensor. Blok proses terdiri dari rangkaian komparator, mikrokontroler dan motor driver. Sedangkan blok keluaran terdiri dari rangkaian motor DC, LCD.

7 Begitu juga robot line follower ini, dia memiliki sensor garis yang berfungsi seperti mata pada manusia. Gambar 3.1 blok diagram Blok tegangan dan rangkaian regulator Sumber tegangan yang digunakan pada Robot Pengikut Garis ini menggunakan 2 tegangan yang berbeda pada motor driver menggunakan 12 volt dan 5 volt, dan yang lainnya hanya perlu 5volt, maka dari itu saya mengunakan masukan tegangan 12volt saja. Untuk blok-blok rangkaian lain saya menggunakan rangkaian regulator, dimana rangkaian ini dapat menghasilkan tegangan 5 volt yang dibutuhkan pada blok rangjkain lainnya. Jadi pada alurnya dari 12 volt akan di sambungkan ke motor driver yang membutuhkan 12volt dan disambungkan ke regulator, dari regulator disambungkan ke blok rangkaian yang membutuhkan tegangan 5volt Blok sensor Sensor garis disini adalah suatu perangkat/alat yang digunakan untuk mendeteksi adanya sebuah garis atau tidak. Garis yang dimaksud adalah garis berwarna hitam diatas permukaan berwarna putih. Alat ini menggunakan teknik pantulan cahaya inframerah yang ditangkap oleh photodioda dari sebuah LED Seperti layaknya manusia, bagaimana manusia dapat berjalan pada mengikuti jalan yang ada tanpa menabrak dan sebagainya, tentunya karena manusia memiliki mata sebagai penginderanya. Sensor garis ini mendeteksi adanya garis atau tidak pada permukaan lintasan robot tersebut, dan informasi yang diterima sensor garis kemudian diteruskan ke prosesor untuk diolah sedemikian rupa dan akhirnya hasil informasi hasil olahannya akan diteruskan ke penggerak atau motor agar motor dapat menyesuaikan gerak tubuh robot sesuai garis yang dideteksinya. Pada konstruksi yang sederhana, robot line follower memiliki dua sensor garis (A-Kiri dan B-Kanan), yang terhubung ke dua motor (kanan dan kiri) secara bersilang melalui sebuah prosesor/driver (lihat gambar). Sensor garis A (Kiri) mengendalikan motor kanan, sedangkan sensor garis B (kanan) mengendalikan motor kiri. Gambar 3.2 Blok sensor Ketika sensor A mendeteksi garis sedangkan sensor B keluar garis ini berarti posisi robot berada lebih sebelah kanan dari garis, untuk itu motor kanan akan aktif sedangkan motor kiri akan mati. Akibatnya motor akan berbelok kearah kiri. Begitu sebaliknya ketika sensor B mendeteksi garis, motor kiri aktif dan motor kanan mati, maka robot akan berbelok ke kanan. Jika kedua sensor mendeteksi garis maka kedua motor akan aktif dan robot akan bergerak maju

8 Blok Mikrokontroler Gambar 3.3 dibawah ini merupakan Blok pada mikrokontroller dimana fungsinya sebagai pusat dari pemrosesan robot. Didalam mikrokontroller akan dimasukkan program yang akan menjalankan motor. Akan tetapi mikrokontroller juga mempunyai input dan output sendiri, input dari sensor dan output yang akan diteruskan ke motor driver Gambar 3.3 Blok Mikrokontroler Blok Driver Pada blok ini merupakan penggerak pada motor, dimana membutuhkan tegangan 5volt dan 12volt, seperti pembahasan yang telah diajarkan mikrokontroler akan aktif jika diberi logika low, mikrokontroler akan memberikan output pada driver dengan logika high ( 1 ) dan pada saat itu driver akan menggerakan motor. Gambar 3.4 Blok Driver Analisa Rangkaian Secara Detail Dalam pengoperasian Prototipe Robot Line follower dengan Kontrol PID menggunakan tegangan DC 12v. Tegangan tersebut dikonversikan oleh IC regulator LM 7805 untuk menghasilkan tegangan 5v agar sesuai dengan tegangan mikrokontroler. Tengangan 5v tersebut mengaktifkan rangkaian sensor, komparator, mikrokontroler, motor driver. Pada rangkaian robot tersebut, sensor yang digunakan adalah sensor garis. Sensor garis berguna untuk mengatur kemudi robot agar mengikuti garis yang telah dibuat. Sensor tersebut merupakan rangkaian led sebagai pengirim cahaya dan rangkaian photo dioda sebagai penerima cahaya. Pada saat cahaya led terkena jalur warna putih, maka pantulan cahaya led akan mengenai photo dioda sehingga resistansi pada photo dioda sangat kecil. Sedangkan saat cahaya led terkena garis hitam, maka cahaya led akan terserap oleh warna hitam sehingga resistansi pada photo dioda besar. Saat resistansi pada photo dioda kecil maka tegangan pada photo dioda besar, sedangkan saat resistansi pada photo dioda besar maka tegangan pada photo dioda kecil. Tegangan photo dioda akan masuk ke dalam komparator. Komparator berfungsi membandingkan tegangan photo dioda dengan tegangan referensi. Jika tegangan photo dioda lebih besar daripada tegangan referensi, maka keluaran dari rangkaian komparator berlogika high. Jika tegangan photo dioda lebih kecil daripada tegangan referensi, maka keluaran dari rangkaian komparator berlogika low.keluaran dari komparatorakan\masukkedalam mikrokontroler. Masukan pada robot ini berupa aktif low karena pada program masukandari blok inputan diinisialisasikan sebagai aktif low. Jadi pada robot ini akan bergerak jika sensor terkena garis warna hitam.

9 Diagram alur (flowchart) 1. Hubungkan prototipe line follower dengan tegangan 12v. Tegangan dapat berasal baterai. 2. Tempatkan line follower pada jalurnya. Jalur berupa garis hitam dengan dasar berwarna putih. 3. Robot akan berjalan sesuai jalur dengan algoritma seperti pada bab 3 (tiga). Cara kerja alat Cara kerja dari robot line follower ini dibagi dalam dua bagian, yakni cara kerja dari sensor garis dan prinsip kerja control PID. Cara kerja sensor Gambar 3.5 flowchart bag.1 Prinsip kerja sensor pada robot line follower ini berasal dari cahaya led yang dipantulkan medium berwarna hitam dan putih. Pada saat cahaya led terkena medium berwarna putih, maka cahaya led akan memantul sempurna dan diterima oleh photo dioda dengan baik. Sedangkan saat cahaya led terkena medium berwarna hitam, maka cahaya led akan memantul sangat sedikit ke photo dioda karena terserap oleh medium berwarna hitam. Oleh karena itu, resistansi pada photo dioda sangat berbeda. Prinsip kerja sensor dapat dilihat pada gambar 4.1 dan 4.2. Gambar 3.6 flowchart bag.2 UJI COBA DAN ANALISA Cara pengoperasian alat Pada robot Line Follower ini, pengoprasian alat menggunakan tegangan baterai sebesar 12V Algoritma pengoprasian alat sebagai berikut: gambar 4.1 gambar 4.2 cahaya pantul dengan cahaya pantul medium hitam dengan medium putih Prinsip kerja control PID Robot line follower dengan kontrol PID adalah salah satu bentuk pengaplikasian dari IC mikrokontroler Atmega8535, yang dalam pengoperasianya

10 menggunakan sensor garis yang berupa rangkaian LED dan photo dioda. Prinsip kerja kontrol PIDrobot ini adalah menggunakan 8(delapan) sensor di depan untuk mengikuti garis. Lebar garis yang ideal untuk dilalui robot line follower ini sekitar 1,5 2 cm, dengan kemungkinan 2-3 sensor dapat mengenai garis. Langkah selanjutnya yaitu melakukan mapping nilai sensor untuk mendapatkan process variable (PV). Kurang lebih seperti berikut (misal nilai 0 merepresentasikan sensor mengenai garis): (-7) // ujung kiri (-6) (-6) (-5) (-4) (-4) (-3) (-2) (-2) (-1) (0) // tengah (1) (2) (2) (3) (4) (4) (5) (6) (6) (7) // ujung kanan (8 / -8) // loss Kondisi ideal pada robot adalah bergerak maju lurus mengikuti garis, dengan kata lain PV = 0 (nilai sensor = ). Dari sini bisa kita asumsikan Set Point (SP) / kondisi ideal adalah saat SP = 0. Nilai sensor yang dibaca oleh sensor disebut Process Variable (PV) / nilai aktual pembacaan. Menyimpangnya posisi robot dari garis disebut sebagai error (e), yang didapat dari e = SP - PV. Dengan mengetahui besar error, microcontroller dapat memberikan nilai PWM motor kanan dan kiri yang sesuai agar dapat menuju ke posisi ideal (SP = 0). Besar PWM ini bisa kita dapatkan dengan menggunakan kontrol Proportional (P), dimana P = e * Kp (Kp adalah konstanta proportional yang nilainya kita set sendiri dari hasil tuning). Misalkan nilai PWM didefinisikan dari dengan nilai 0 berarti berhenti dan 255 berarti kecepatan penuh. Dari data nilai 8 sensor yang telah dimapping ada 16 PWM untuk tiap motor. Tapi dalam kondisi real dimisalkan saat sepelan-pelannya motor adalah PWM < 30 dan secepat-cepatnya (maju lurus) adalah 250. Saat PV = 8 atau -8 itu tergantung dari kondisi PV sebelumnya, jika PV lebih besar dari 0 maka, nilai PV adalah 8 dan jika PV kurang dari 0 maka nilai PV adalah -8. Dalam pemrograman robot line follower ini kodenya ditulis secara sederhana seperti berikut: If Sensor = &B Then If Pv < 0 Then : Pv = -30 End If If Pv > 0 Then : Pv = 30 End If End If Perhitungan kendali proporsional Dengan mengukur seberapa jauh robot menyimpang dari kondisi ideal, sistem kontrol P sudah diterapkan. Output (berupa nilai PWM) didapat dari perhitungan yang melibatkan hanya variabel P = e * Kp. Jika pergerakan robot masih terlihat bergelombang, bisa ditambahkan kontrol Derivative (D). Kontrol D digunakan untuk mengukur seberapa cepat robot bergerak dari kiri ke kanan atau dari kanan ke kiri. Semakin cepat bergerak dari satu sisi ke sisi lainnya, maka semakin besar nilai D. Konstanta D (Kd) digunakan untuk menambah atau mengurangi imbas dari derivative. Dengan mendapatkan nilai Kd yang tepat pergerakan sisi ke sisi yang bergelombang akibat dari proportional PWM bisa diminimalisasi. Nilai D didapat dari: D = Kd * rate, dimana rate = e(n) - e(n-1). Dalam program nilai error (SP PV) saat itu menjadi nilai

11 last_error, sehingga rate didapat dari error - last_error Perhitungan kendali proporsional + Derivatif Jika dengan P + D sudah membuat pergerakan robot cukup smooth, maka penambahan Integral menjadi opsional. Jika ingin mencoba-coba bisa ditambahakan Integral (I). I digunakan untuk mengakumulasi error dan mengetahui durasi error. Dengan menjumlahkan error disetiap pembacaan PV akan memberikan akumulasi offset yang harus diperbaiki sebelumnya. Saat robot bergerak menjauhi garis, maka nilai error akan bertambah. Semakin lama tidak mendapatkan SP, maka semakin besar nilai I. Degan mendapatkan nilai Ki yang tepat, imbas dari Integral bisa dikurangi. Nilai akumulasi error didapat dari: I = I + error. Nilai I sendiri : I = I * Ki. PENUTUP Kesimpulan Dari hasil pengujian line follower ini dapat disimpulkan sebagai berikut: 1. Robot line follower ini berjalan berdasarkan jalur tersendiri. 2. Mikrokontroler dapat mengartikan logika masukan sensor karena telah diterjemahkan oleh program yang ditanamkan. 3. Kecepatan atau pun pergerakan dari robot ini bisa di atur dengan system kontrol PID tersebut 4. Pengembangan dari alat ini dapat berupa menjadi suatu kendaraan angkutan missal. Saran 1. Robot line follower ini dapat ditambahkan berbagai komponen lain seperti sensor jarak dan gps. Sensor jarak dapat berfungsi saat ada kendaraan atau benda lain yang berada di depan jalur line follower ini agar robot ini dapat berhenti. Gps memudahkan operator memantau setiap kendaraan yang berada di jalan. 2. Penggunaan PID di Robot line follower ini masih sangat sederhana, jika ada yang salah dengan penggunaan PID atau mungkin cara mendapatkan nilai PWM yang tepat dari MV mohon saran dan kritik demi pengembangan PID kedepannya lebih baik lagi. Knowledge is Belong to the World. DAFTAR PUSTAKA [1] Anonim, Modul Panduan Elektronik Dasar 1, Laboratorium Dasar Elektronika [2] Anonim, Modul Panduan Embedded system, Laboratorium Menengah dan Komputer Universitas Gunadarma, Depok, [3] ontroller, 8 Agustus 2011 [4] M. Ary Heryanto dan Wisnu Andi P, Pemrograman Bahasa C Untuk Malvino, Albert Paul, Prinsip-Prinsip Elektronika, Edisi ke-2, Salemba Teknika, [5] Mikrokontroler ATmega8535, Andi, Yogyakarta, [6] URL 8 Agustus [7] URL : 08/photodioda-dan-led.html, 8 mei [8] URL : tasheet/atmel/2502s.pdf, 17 mei [9] URLhttp:// ertanpamikro.html,8 mei

TUNING KONTROL PID LINE FOLLOWER. Dari blok diagram diatas dapat q jelasin sebagai berikut

TUNING KONTROL PID LINE FOLLOWER. Dari blok diagram diatas dapat q jelasin sebagai berikut TUNING KONTROL PID LINE FOLLOWER Tunning kontrol PID ini bertujuan untuk menentukan paramater aksi kontrol Proportional, Integratif, Derivatif pada robot line follower. Proses ini dapat dilakukan dengan

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Di era globalisasi sekarang ini teknologi dan informasi semakin berkembang pesat, begitu juga teknologi robot. Robotika merupakan bidang teknologi yang mengalami banyak

Lebih terperinci

BAB I PENDAHULUAN. Seiring dengan kemajuan teknologi yang sangat pesat dewasa ini,

BAB I PENDAHULUAN. Seiring dengan kemajuan teknologi yang sangat pesat dewasa ini, BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Seiring dengan kemajuan teknologi yang sangat pesat dewasa ini, Perkembangan teknologi berbasis mikrokontroler terjadi dengan sangat pesat dan cepat. Kemajuan

Lebih terperinci

II. TINJAUAN PUSTAKA. Mikrokontroler ATmega8535 merupakan salah satu jenis mikrokontroler keluarga AVR

II. TINJAUAN PUSTAKA. Mikrokontroler ATmega8535 merupakan salah satu jenis mikrokontroler keluarga AVR II. TINJAUAN PUSTAKA A. Mikrokontroler ATmega8535 Mikrokontroler ATmega8535 merupakan salah satu jenis mikrokontroler keluarga AVR (Alf and Vegard s Risc Processor) yang diproduksi oleh Atmel Corporation.

Lebih terperinci

III. METODOLOGI PENELITIAN. Penelitian dan perancangan tugas akhir ini telah dimulai sejak bulan Juli 2009

III. METODOLOGI PENELITIAN. Penelitian dan perancangan tugas akhir ini telah dimulai sejak bulan Juli 2009 III. METODOLOGI PENELITIAN A. Waktu dan Tempat Penelitian Penelitian dan perancangan tugas akhir ini telah dimulai sejak bulan Juli 2009 dilakukan di Laboratorium Konversi Energi Elektrik dan Laboratorium

Lebih terperinci

BAB 1 PERSYARATAN PRODUK

BAB 1 PERSYARATAN PRODUK BAB 1 PERSYARATAN PRODUK 1.1 Pendahuluan Saat ini teknologi robotika telah menjangkau sisi industri (Robot pengangkut barang), pendidikan (penelitian dan pengembangan robot). Salah satu kategori robot

Lebih terperinci

BAB III PERANCANGAN DAN PEMBUATAN ALAT

BAB III PERANCANGAN DAN PEMBUATAN ALAT 39 BAB III PERANCANGAN DAN PEMBUATAN ALAT 3.1 Gambaran Umum Pada bab ini akan dibahas mengenai perencanaan perangkat keras elektronik (hardware) dan pembuatan mekanik Eskalator. Sedangkan untuk pembuatan

Lebih terperinci

BAB III PERANCANGAN DAN PEMBUATAN ALAT

BAB III PERANCANGAN DAN PEMBUATAN ALAT BAB III PERANCANGAN DAN PEMBUATAN ALAT 3.1 Uraian Umum Dalam perancangan alat akses pintu keluar masuk menggunakan pin berbasis mikrokontroler AT89S52 ini, penulis mempunyai pemikiran untuk membantu mengatasi

Lebih terperinci

III. METODE PENELITIAN. dari bulan November 2014 s/d Desember Alat dan bahan yang digunakan dalam perancangan Catu Daya DC ini yaitu :

III. METODE PENELITIAN. dari bulan November 2014 s/d Desember Alat dan bahan yang digunakan dalam perancangan Catu Daya DC ini yaitu : III. METODE PENELITIAN 3.1. Waktu dan Tempat Penelitian Penelitian tugas akhir ini dilakukan di laboratorium Teknik Kendali Jurusan Teknik Elektro, Fakultas Teknik, Universitas Lampung yang dilaksanakan

Lebih terperinci

APLIKASI PID PADA ROBOT LINE FOLLOWER BERBASIS MIKROKONTROLER AT-8535

APLIKASI PID PADA ROBOT LINE FOLLOWER BERBASIS MIKROKONTROLER AT-8535 APLIKASI PID PADA ROBOT LINE FOLLOWER BERBASIS MIKROKONTROLER AT-8535 Yani Prabowo, TW Wisjhnuadji, Andika Alie Wibowo Sistem Komputer Universitas Budi Luhur E-mail: [yan_crosser; wisnoex; andikaaliewibowo]@yahoo.com

Lebih terperinci

BAB II DASAR TEORI. open-source, diturunkan dari Wiring platform, dirancang untuk. memudahkan penggunaan elektronik dalam berbagai

BAB II DASAR TEORI. open-source, diturunkan dari Wiring platform, dirancang untuk. memudahkan penggunaan elektronik dalam berbagai BAB II DASAR TEORI 2.1 Arduino Uno R3 Arduino adalah pengendali mikro single-board yang bersifat open-source, diturunkan dari Wiring platform, dirancang untuk memudahkan penggunaan elektronik dalam berbagai

Lebih terperinci

BAB III PERANCANGAN DAN PEMBUATAN ALAT

BAB III PERANCANGAN DAN PEMBUATAN ALAT BAB III PERANCANGAN DAN PEMBUATAN ALAT 3.1 Gambaran Umum Pada bab ini akan dibahas mengenai perencanaan perangkat keras elektronik (hardware) dan pembuatan mekanik robot. Sedangkan untuk pembuatan perangkat

Lebih terperinci

II. PERANCANGAN SISTEM

II. PERANCANGAN SISTEM Sistem Pengaturan Intensitas Cahaya Dengan Perekayasaan Kondisi Lingkungan Pada Rumah Kaca Alfido, Ir. Purwanto, MT., M.Aziz muslim, ST., MT.,Ph.D. Teknik Elektro Universitas Brawijaya Jalan M.T Haryono

Lebih terperinci

PENGENDALIAN KECEPATAN MOTOR DC MENGGUNAKAN SENSOR ENCODER DENGAN KENDALI PI

PENGENDALIAN KECEPATAN MOTOR DC MENGGUNAKAN SENSOR ENCODER DENGAN KENDALI PI PENGENDALIAN KECEPATAN MOTOR DC MENGGUNAKAN SENSOR ENCODER DENGAN KENDALI PI Jumiyatun Jurusan Teknik Elektro Fakultas Teknik Universitas Tadolako E-mail: jum@untad.ac.id ABSTRACT Digital control system

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1. Mikrokontroller AVR Mikrokontroller adalah suatu alat elektronika digital yang mempunyai masukan serta keluaran serta dapat di read dan write dengan cara khusus. Mikrokontroller

Lebih terperinci

BAB III PERANCANGAN. Pada bab ini akan dibahas mengenai beberapa hal dasar tentang bagaimana. simulasi mobil automatis dirancang, diantaranya adalah :

BAB III PERANCANGAN. Pada bab ini akan dibahas mengenai beberapa hal dasar tentang bagaimana. simulasi mobil automatis dirancang, diantaranya adalah : BAB III PERANCANGAN Pada bab ini akan dibahas mengenai beberapa hal dasar tentang bagaimana simulasi mobil automatis dirancang, diantaranya adalah : 1. Menentukan tujuan dan kondisi pembuatan simulasi

Lebih terperinci

II. TINJAUAN PUSTAKA. kondisi cuaca pada suatu daerah. Banyak hal yang sangat bergantung pada kondisi

II. TINJAUAN PUSTAKA. kondisi cuaca pada suatu daerah. Banyak hal yang sangat bergantung pada kondisi II. TINJAUAN PUSTAKA A. Temperatur dan Kelembaban Temperatur dan kelembaban merupakan aspek yang penting dalam menentukan kondisi cuaca pada suatu daerah. Banyak hal yang sangat bergantung pada kondisi

Lebih terperinci

BAB III PERENCANAAN PERANGKAT KERAS DAN LUNAK

BAB III PERENCANAAN PERANGKAT KERAS DAN LUNAK 21 BAB III PERENCANAAN PERANGKAT KERAS DAN LUNAK 3.1 Gambaran umum Perancangan sistem pada Odometer digital terbagi dua yaitu perancangan perangkat keras (hardware) dan perangkat lunak (software). Perancangan

Lebih terperinci

BAB III ANALISIS DAN PERANCANGAN

BAB III ANALISIS DAN PERANCANGAN BAB III ANALISIS DAN PERANCANGAN III.1. Analisis Permasalahan Dalam Perancangan dan Implementasi Pemotong Rumput Lapangan Sepakbola Otomatis dengan Sensor Garis dan Dinding ini, terdapat beberapa masalah

Lebih terperinci

PENGONTROL PID BERBASIS PENGONTROL MIKRO UNTUK MENGGERAKKAN ROBOT BERODA. Jurusan Teknik Elektro, Fakultas Teknik. Universitas Kristen Maranatha

PENGONTROL PID BERBASIS PENGONTROL MIKRO UNTUK MENGGERAKKAN ROBOT BERODA. Jurusan Teknik Elektro, Fakultas Teknik. Universitas Kristen Maranatha PENGONTROL PID BERBASIS PENGONTROL MIKRO UNTUK MENGGERAKKAN ROBOT BERODA Hendrik Albert Schweidzer Timisela Jl. Babakan Jeruk Gg. Barokah No. 25, 40164, 081322194212 Email: has_timisela@linuxmail.org Jurusan

Lebih terperinci

Jurnal Coding Sistem Komputer Untan Volume 03, No 2 (2015), hal ISSN X IMPLEMENTASI ALGORITMA MAZE SOLVING PADA ROBOT LINE FOLLOWER

Jurnal Coding Sistem Komputer Untan Volume 03, No 2 (2015), hal ISSN X IMPLEMENTASI ALGORITMA MAZE SOLVING PADA ROBOT LINE FOLLOWER IMPLEMENTASI ALGORITMA MAZE SOLVING PADA ROBOT LINE FOLLOWER [1] Mega Nurmalasari, [2] Dedi Triyanto, [3] Yulrio Brianorman [1] [2] [3] Jurusan Sistem Komputer, Fakultas MIPA Universitas Tanjungpura Jalan

Lebih terperinci

BAB III ANALISIS MASALAH DAN RANCANGAN PROGRAM

BAB III ANALISIS MASALAH DAN RANCANGAN PROGRAM BAB III ANALISIS MASALAH DAN RANCANGAN PROGRAM III.1. Analisa Masalah Dalam perancangan sistem otomatisasi pemakaian listrik pada ruang belajar berbasis mikrokontroler terdapat beberapa masalah yang harus

Lebih terperinci

BAB II DASAR TEORI. open-source, diturunkan dari Wiring platform, dirancang untuk. software arduino memiliki bahasa pemrograman C.

BAB II DASAR TEORI. open-source, diturunkan dari Wiring platform, dirancang untuk. software arduino memiliki bahasa pemrograman C. BAB II DASAR TEORI 2.1 ARDUINO Arduino adalah pengendali mikro single-board yang bersifat open-source, diturunkan dari Wiring platform, dirancang untuk memudahkan penggunaan elektronik dalam berbagai bidang.

Lebih terperinci

BAB III PERANCANGAN ALAT

BAB III PERANCANGAN ALAT BAB III PERANCANGAN ALAT Pada bab ini menjelaskan tentang perancangan sistem alarm kebakaran menggunakan Arduino Uno dengan mikrokontroller ATmega 328. yang meliputi perancangan perangkat keras (hardware)

Lebih terperinci

BAB III METODE PENELITIAN. Metode penelitian yang digunakan adalah metode eksperimen. Eksperimen

BAB III METODE PENELITIAN. Metode penelitian yang digunakan adalah metode eksperimen. Eksperimen BAB III METODE PENELITIAN A. METODE PENELITIAN Metode penelitian yang digunakan adalah metode eksperimen. Eksperimen didalamnya termasuk adalah pengambilan data dan membangun sistem kontrol temperatur.

Lebih terperinci

RANCANGAN SISTEM PARKIR TERPADU BERBASIS SENSOR INFRA MERAH DAN MIKROKONTROLER ATMega8535

RANCANGAN SISTEM PARKIR TERPADU BERBASIS SENSOR INFRA MERAH DAN MIKROKONTROLER ATMega8535 RANCANGAN SISTEM PARKIR TERPADU BERBASIS SENSOR INFRA MERAH DAN MIKROKONTROLER ATMega8535 Masriadi dan Frida Agung Rakhmadi Program Studi Fisika Fakultas Sains dan Teknologi UIN Sunan Kalijaga Jl. Marsda

Lebih terperinci

BAB III PERANCANGAN SISTEM

BAB III PERANCANGAN SISTEM BAB III PERANCANGAN SISTEM Pada bab ini akan dibahas mengenai perancangan dan realisasi dari perangkat keras maupun perangkat lunak dari setiap modul yang dipakai pada skripsi ini. 3.1. Perancangan dan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pengertian Hidroponik Hidroponik merupakan pertanian masa depan sebab hidroponik dapat diusahakan di berbagai tempat, baik di desa, di kota maupun di lahan terbuka, atau di

Lebih terperinci

BAB 3 PERANCANGAN SISTEM. Bab ini akan membahas tentang perancangan sistem yang digunakan dari alat

BAB 3 PERANCANGAN SISTEM. Bab ini akan membahas tentang perancangan sistem yang digunakan dari alat BAB 3 PERANCANGAN SISTEM Bab ini akan membahas tentang perancangan sistem yang digunakan dari alat pengukur tinggi bensin pada reservoir SPBU. Dalam membuat suatu sistem harus dilakukan analisa mengenai

Lebih terperinci

Pengaturan suhu dan kelembaban dilakukan dengan memasang satu buah sensor SHT11, kipas dan hairdryer dengan program bahasa C berbasis mikrokontroler A

Pengaturan suhu dan kelembaban dilakukan dengan memasang satu buah sensor SHT11, kipas dan hairdryer dengan program bahasa C berbasis mikrokontroler A SISTEM INKUBATOR BAYI PORTABLE Deny Abdul Basit. Jl. Jati Raya RT 004 Rw 006 No.17 Ps.Minggu Jakarta Selatan (denny.abdul.basit@gmail.com) Jurusan Sistem Komputer, Fakultas Ilmu Komputer dan Teknologi,

Lebih terperinci

II. TINJAUAN PUSTAKA. menjadi sumber tegangan arus searah yang bersifat variable. Pengubah daya DC-

II. TINJAUAN PUSTAKA. menjadi sumber tegangan arus searah yang bersifat variable. Pengubah daya DC- II. TINJAUAN PUSTAKA A. Pengenalan DC Chopper Chopper adalah suatu alat yang mengubah sumber tegangan arus searah tetap menjadi sumber tegangan arus searah yang bersifat variable. Pengubah daya DC- DC

Lebih terperinci

BAB II LANDASAN TEORI. ATMega 8535 adalah mikrokontroller kelas AVR (Alf and Vegard s Risc

BAB II LANDASAN TEORI. ATMega 8535 adalah mikrokontroller kelas AVR (Alf and Vegard s Risc BAB II LANDASAN TEORI 2.1. Mikrokontroller ATMega 8535 ATMega 8535 adalah mikrokontroller kelas AVR (Alf and Vegard s Risc Processor) keluarga ATMega. Mikrokontroller AVR memiliki arsitektur 8 bit, dimana

Lebih terperinci

III. METODE PENELITIAN. Pengerjaan tugas akhir ini bertempat di laboratorium Terpadu Teknik Elektro

III. METODE PENELITIAN. Pengerjaan tugas akhir ini bertempat di laboratorium Terpadu Teknik Elektro III. METODE PENELITIAN 3.1 Waktu dan Tempat Penelitian Pengerjaan tugas akhir ini bertempat di laboratorium Terpadu Teknik Elektro Jurusan Teknik Elektro Universitas Lampung pada bulan Desember 2013 sampai

Lebih terperinci

RANCANG BANGUN ROBOT PENGIKUT GARIS DAN PENDETEKSI HALANG RINTANG BERBASIS MIKROKONTROLER AVR SKRIPSI

RANCANG BANGUN ROBOT PENGIKUT GARIS DAN PENDETEKSI HALANG RINTANG BERBASIS MIKROKONTROLER AVR SKRIPSI 1 RANCANG BANGUN ROBOT PENGIKUT GARIS DAN PENDETEKSI HALANG RINTANG BERBASIS MIKROKONTROLER AVR SKRIPSI Oleh Wahyu Adi Nugroho NPM. 0734210306 JURUSAN TEKNIK INFORMATIKA FAKULTAS TEKNOLOGI INDUSTRI UNIVERSITAS

Lebih terperinci

BAB II LANDASAN TEORI. pada itu dapat juga dijadikan sebagai bahan acuan didalam merencanakan suatu system.

BAB II LANDASAN TEORI. pada itu dapat juga dijadikan sebagai bahan acuan didalam merencanakan suatu system. BAB II LANDASAN TEORI Landasan teori sangat membantu untuk dapat memahami suatu sistem. Selain dari pada itu dapat juga dijadikan sebagai bahan acuan didalam merencanakan suatu system. Dengan pertimbangan

Lebih terperinci

BAB III DESKRIPSI MASALAH

BAB III DESKRIPSI MASALAH BAB III DESKRIPSI MASALAH 3.1 Perancangan Hardware Perancangan hardware ini meliputi keseluruhan perancangan, artinya dari masukan sampai keluaran dengan menghasilkan energi panas. Dibawah ini adalah diagram

Lebih terperinci

SISTEM KONTROL MOTOR ROBOT LINE FOLLOWER BERBASIS MIKROKONTROLLER ATMEGA32 MENGGUNAKAN ALGORITMA PID(PROPORSIONAL INTEGRAL DERIVATIF) Naskah Publikasi

SISTEM KONTROL MOTOR ROBOT LINE FOLLOWER BERBASIS MIKROKONTROLLER ATMEGA32 MENGGUNAKAN ALGORITMA PID(PROPORSIONAL INTEGRAL DERIVATIF) Naskah Publikasi SISTEM KONTROL MOTOR ROBOT LINE FOLLOWER BERBASIS MIKROKONTROLLER ATMEGA32 MENGGUNAKAN ALGORITMA PID(PROPORSIONAL INTEGRAL DERIVATIF) Naskah Publikasi diajukan oleh Ganef Saputro 11.21.0565 kepada SEKOLAH

Lebih terperinci

Implementasi Modul Kontrol Temperatur Nano-Material ThSrO Menggunakan Mikrokontroler Digital PIC18F452

Implementasi Modul Kontrol Temperatur Nano-Material ThSrO Menggunakan Mikrokontroler Digital PIC18F452 Implementasi Modul Kontrol Temperatur Nano-Material ThSrO Menggunakan Mikrokontroler Digital PIC18F452 Moh. Hardiyanto 1,2 1 Program Studi Teknik Industri, Institut Teknologi Indonesia 2 Laboratory of

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Line follower robot pada dasarnya adalah suatu robot yang dirancang agar

BAB II TINJAUAN PUSTAKA. Line follower robot pada dasarnya adalah suatu robot yang dirancang agar BAB II TINJAUAN PUSTAKA 2.1. Line Follower Robot Line follower robot pada dasarnya adalah suatu robot yang dirancang agar dapat beroperasi secara otomatis bergerak mengikuti alur garis yang telah dibuat

Lebih terperinci

Sistem Mikrokontroler FE UDINUS

Sistem Mikrokontroler FE UDINUS Minggu ke 2 8 Maret 2013 Sistem Mikrokontroler FE UDINUS 2 Jenis jenis mikrokontroler Jenis-jenis Mikrokontroller Secara teknis, hanya ada 2 macam mikrokontroller. Pembagian ini didasarkan pada kompleksitas

Lebih terperinci

BAB III PERANCANGAN PERANGKAT KERAS DAN LUNAK. Perangkat keras dari alat ini secara umum terdiri dari rangkaian dibagi

BAB III PERANCANGAN PERANGKAT KERAS DAN LUNAK. Perangkat keras dari alat ini secara umum terdiri dari rangkaian dibagi 68 BAB III PERANCANGAN PERANGKAT KERAS DAN LUNAK 3.1. Gambaran Umum Perangkat keras dari alat ini secara umum terdiri dari rangkaian dibagi perangkat elektronik. Perancangan rangkaian elektronika terdiri

Lebih terperinci

BAB III PERANCANGAN SISTEM. sebuah alat pemroses data yang sama, ruang kerja yang sama sehingga

BAB III PERANCANGAN SISTEM. sebuah alat pemroses data yang sama, ruang kerja yang sama sehingga BAB III PERANCANGAN SISTEM 3.1. Blok Diagram Sistem Untuk dapat membandingkan LM35DZ dengan DS18B20 digunakan sebuah alat pemroses data yang sama, ruang kerja yang sama sehingga perbandinganya dapat lebih

Lebih terperinci

PERANCANGAN SISTEM KENDALI GERAK PADA PLATFORM ROBOT PENGANGKUT

PERANCANGAN SISTEM KENDALI GERAK PADA PLATFORM ROBOT PENGANGKUT PERANCANGAN SISTEM KENDALI GERAK PADA PLATFORM ROBOT PENGANGKUT Ripki Hamdi 1, Taufiq Nuzwir Nizar 2 1,2 Jurusan Teknik Komputer Unikom, Bandung 1 qie.hamdi@gmail.com, 2 taufiq.nizar@gmail.com ABSTRAK

Lebih terperinci

BAB 3 PERANCANGAN SISTEM

BAB 3 PERANCANGAN SISTEM BAB 3 PERANCANGAN SISTEM Pada bab ini membahas tentang perancangan sistem yang dibuat dimana diantaranya terdiri dari penjelasan perancangan perangkat keras, perancangan piranti lunak dan rancang bangun

Lebih terperinci

BAB 4 HASIL DAN PEMBAHASAN

BAB 4 HASIL DAN PEMBAHASAN BAB 4 HASIL DAN PEMBAHASAN Pengujian robot mobil pemadam api dilakukan dengan tujuan untuk mengetahui kinerja robot serta performa dari sistem pergerakan robot yang telah dirancang pada Bab 3. Pengujian

Lebih terperinci

II. TINJAUAN PUSTAKA

II. TINJAUAN PUSTAKA II. TINJAUAN PUSTAKA 2.1. Pengertian Sistem Kendali Sistem kendali adalah suatu sistem yang keluaran sistemnya dikendalikan pada suatu nilai tertentu atau untuk mengubah beberapa ketentuan yang telah ditetapkan

Lebih terperinci

PERANCANGAN PENGENDALI POSISI LINIER UNTUK MOTOR DC DENGAN MENGGUNAKAN PID

PERANCANGAN PENGENDALI POSISI LINIER UNTUK MOTOR DC DENGAN MENGGUNAKAN PID PERANCANGAN PENGENDALI POSISI LINIER UNTUK MOTOR DC DENGAN MENGGUNAKAN PID Endra 1 ; Nazar Nazwan 2 ; Dwi Baskoro 3 ; Filian Demi Kusumah 4 1 Jurusan Sistem Komputer, Fakultas Ilmu Komputer, Universitas

Lebih terperinci

III. METODE PENELITIAN. Penelitian tugas akhir ini dilaksanakan di Laboratorium Elektronika Dasar

III. METODE PENELITIAN. Penelitian tugas akhir ini dilaksanakan di Laboratorium Elektronika Dasar 28 III. METODE PENELITIAN A. Waktu dan Tempat Penelitian Penelitian tugas akhir ini dilaksanakan di Laboratorium Elektronika Dasar dan Laboratorium Pemodelan Jurusan Fisika Universitas Lampung. Penelitian

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI PLC (Programable Logic Control) adalah kontroler yang dapat diprogram. PLC didesian sebagai alat kontrol dengan banyak jalur input dan output. Pengontrolan dengan menggunakan PLC

Lebih terperinci

BAB III PERANCANGAN SISTEM

BAB III PERANCANGAN SISTEM BAB III PERANCANGAN SISTEM Pada bab ini membahas perencanaan dan pembuatan dari alat yang akan dibuat yaitu Perencanaan dan Pembuatan Pengendali Suhu Ruangan Berdasarkan Jumlah Orang ini memiliki 4 tahapan

Lebih terperinci

BAB III PERANCANGAN DAN PEMBUATAN

BAB III PERANCANGAN DAN PEMBUATAN BAB III PERANCANGAN DAN PEMBUATAN 3.1. Diagram Blok Sistem Suplly Display Card RF RFID Atmega328 Buzzer Driver motor Motor Gambar 3.1 Diagram blok system 3.1.1. Fungsi-fungsi diagram blok 1. Blok card

Lebih terperinci

MIKROKONTROLER Yoyo Somantri dan Egi Jul Kurnia

MIKROKONTROLER Yoyo Somantri dan Egi Jul Kurnia MIKROKONTROLER Yoyo Somantri dan Egi Jul Kurnia Mikrokontroler Mikrokontroler adalah sistem komputer yang dikemas dalam sebuah IC. IC tersebut mengandung semua komponen pembentuk komputer seperti CPU,

Lebih terperinci

SELF-STABILIZING 2-AXIS MENGGUNAKAN ACCELEROMETER ADXL345 BERBASIS MIKROKONTROLER ATmega8

SELF-STABILIZING 2-AXIS MENGGUNAKAN ACCELEROMETER ADXL345 BERBASIS MIKROKONTROLER ATmega8 SELF-STABILIZING 2-AXIS MENGGUNAKAN ACCELEROMETER ADXL345 BERBASIS MIKROKONTROLER ATmega8 I Nyoman Benny Rismawan 1, Cok Gede Indra Partha 2, Yoga Divayana 3 Jurusan Teknik Elektro, Fakultas Teknik Universitas

Lebih terperinci

Pengontrolan Kecepatan Mobile Robot Line Follower Dengan Sistem Kendali PID

Pengontrolan Kecepatan Mobile Robot Line Follower Dengan Sistem Kendali PID Pengontrolan Kecepatan Mobile Robot Line Follower Dengan Sistem Kendali PID Hendri Miftahul 1, Firdaus 2, Derisma 3 1,3 Jurusan Sistem Komputer Universitas Andalas Jl. Universitas Andalas, Limau Manis,

Lebih terperinci

BAB III PERANCANGAN PERANGKAT KERAS MOBILE-ROBOT

BAB III PERANCANGAN PERANGKAT KERAS MOBILE-ROBOT BAB III PERANCANGAN PERANGKAT KERAS MOBILE-ROBOT 3.1. Perancangan Sistem Secara Umum bawah ini. Diagram blok dari sistem yang dibuat ditunjukan pada Gambar 3.1 di u(t) + e(t) c(t) r(t) Pengontrol Plant

Lebih terperinci

ROBOT PEMBAGI KERTAS SOAL UJIAN BERBASIS MIKROKONTROLER ATMEGA 16

ROBOT PEMBAGI KERTAS SOAL UJIAN BERBASIS MIKROKONTROLER ATMEGA 16 ROBOT PEMBAGI KERTAS SOAL UJIAN BERBASIS MIKROKONTROLER ATMEGA 16 Zumeidi Murtia, Yani Prabowo, Gatot P. Sistem Komputer, Fakultas Teknologi Informasi, Universitas Budi Luhur Jl. Raya Ciledug, Petukangan

Lebih terperinci

BAB II KONSEP DASAR SISTEM PENGONTROL PARTITUR OTOMATIS

BAB II KONSEP DASAR SISTEM PENGONTROL PARTITUR OTOMATIS BAB II KONSEP DASAR SISTEM PENGONTROL PARTITUR OTOMATIS Pada BAB II ini akan dibahas gambaran cara kerja sistem dari alat yang dibuat serta komponen-komponen yang digunakan untuk pembentuk sistem. Pada

Lebih terperinci

BAB III PERENCANAAN SISTEM DAN PEMBUATAN ALAT

BAB III PERENCANAAN SISTEM DAN PEMBUATAN ALAT BAB III PERENCANAAN SISTEM DAN PEMBUATAN ALAT 3.1 Pendahuluan Dalam bab ini akan dibahas pembuatan seluruh sistem perangkat dari Sistem Interlock pada Akses Keluar Masuk Pintu Otomatis dengan Identifikasi

Lebih terperinci

APLIKASI SENSOR UGN3505 SEBAGAI PENDETEKSI MEDAN MAGNET

APLIKASI SENSOR UGN3505 SEBAGAI PENDETEKSI MEDAN MAGNET APLIKASI SENSOR UGN3505 SEBAGAI PENDETEKSI MEDAN MAGNET Oleh: Yulastri Staf Pengajar Elektro Politeknik Negeri Padang ABSTRACT Sensor UGN3505 using hall effect as magnetic field detection and magnet pole.

Lebih terperinci

BAB III PERANCANGAN ALAT

BAB III PERANCANGAN ALAT BAB III PERANCANGAN ALAT Pada bab ini akan dijelaskan mengenai perancangan dan realisasi dari perangkat keras, serta perangkat lunak dari trainer kendali kecepatan motor DC menggunakan kendali PID dan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 1.1 Penelitian Terdahulu Sebagai bahan pertimbangan dalam penelitian ini akan dicantumkan beberapa hasil penelitian terdahulu : Penelitian yang dilakukan oleh Universitas Islam

Lebih terperinci

BAB III PERANCANGAN DAN PEMBUATAN ALAT

BAB III PERANCANGAN DAN PEMBUATAN ALAT BAB III PEANCANGAN DAN PEMBUATAN ALAT 3.1. Pendahuluan Dalam Bab ini akan dibahas pembuatan seluruh sistem perangkat yang ada pada Perancangan Dan Pembuatan Alat Aplikasi pengendalian motor DC menggunakan

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Atmel AVR adalah jenis mikrokontroler yang paling sering dipakai dalam

BAB II TINJAUAN PUSTAKA. Atmel AVR adalah jenis mikrokontroler yang paling sering dipakai dalam BAB II TINJAUAN PUSTAKA 2.1 Mikrokontroler ATMega 8535 Atmel AVR adalah jenis mikrokontroler yang paling sering dipakai dalam bidang elektronika dan instrumentasi. Mikrokontroler AVR ini memiliki arsitektur

Lebih terperinci

DAFTAR ISI. HALAMAN PENGESAHAN... i. KATA PENGANTAR... iii. DAFTAR ISI... v. DAFTAR TABEL... x. DAFTAR GAMBAR... xi. DAFTAR LAMPIRAN...

DAFTAR ISI. HALAMAN PENGESAHAN... i. KATA PENGANTAR... iii. DAFTAR ISI... v. DAFTAR TABEL... x. DAFTAR GAMBAR... xi. DAFTAR LAMPIRAN... DAFTAR ISI Halaman HALAMAN PENGESAHAN... i ABSTRAKSI... ii KATA PENGANTAR... iii DAFTAR ISI... v DAFTAR TABEL... x DAFTAR GAMBAR... xi DAFTAR LAMPIRAN... xiv DAFTAR ISTILAH DAN SINGKATAN... xv BAB I PENDAHULUAN

Lebih terperinci

RANCANG BANGUN MESIN KEHADIRAN DENGAN MENGGUNAKAN KODE BAR

RANCANG BANGUN MESIN KEHADIRAN DENGAN MENGGUNAKAN KODE BAR RANCANG BANGUN MESIN KEHADIRAN DENGAN MENGGUNAKAN KODE BAR Dinar Bhakti W, Agus Trisanto, Ph.D., R. Arum S.P, S.Si, M.T. Jurusan Teknik Elektro-Universitas lampung Jl. Soemantri Brojonegoro No.1 G.Meneng,

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 18 BAB II TINJAUAN PUSTAKA 2.1. Mikrokontroler Mikrokontroler adalah suatu mikroposesor plus. Mikrokontroler adalah otak dari suatu sistem elektronika seperti halnya mikroprosesor sebagai otak komputer.

Lebih terperinci

ROBOT "AVOIDER" Robot Penghindar Halangan. St. Deddy Susilo

ROBOT AVOIDER Robot Penghindar Halangan. St. Deddy Susilo ROBOT "AVOIDER" Robot Penghindar Halangan St. Deddy Susilo Robot yang kami buat berbasis mikrokontroler keluarga MCS-51, dalam hal ini kami gunakan AT89S51 buatan ATMEL. Kelebihan tipe 89SXX daripada pendahulunya

Lebih terperinci

DT-51 Application Note

DT-51 Application Note DT-51 Application Note AN116 DC Motor Speed Control using PID Oleh: Tim IE, Yosef S. Tobing, dan Welly Purnomo (Institut Teknologi Sepuluh Nopember) Sistem kontrol dengan metode PID (Proportional Integral

Lebih terperinci

BAB II TINJAUAN PUSTAKA. [10]. Dengan pengujian hanya terbatas pada remaja dan didapatkan hasil rata-rata

BAB II TINJAUAN PUSTAKA. [10]. Dengan pengujian hanya terbatas pada remaja dan didapatkan hasil rata-rata BAB II TINJAUAN PUSTAKA 2.1 Penelitian Terdahulu Sebelumnya pernah dilakukan penelitian terkait dengan alat uji kekuatan gigit oleh Noviyani Agus dari Poltekkes Surabaya pada tahun 2006 dengan judul penelitian

Lebih terperinci

BAB IV PROTOTYPE ROBOT TANGGA BERODA. beroda yang dapat menaiki tangga dengan metode pengangkatan beban pada roda

BAB IV PROTOTYPE ROBOT TANGGA BERODA. beroda yang dapat menaiki tangga dengan metode pengangkatan beban pada roda BAB IV PROTOTYPE ROBOT TANGGA BERODA 4.1 Desain Sistem Sistem yang dibangun pada tugas akhir ini bertujuan untuk membangun robot beroda yang dapat menaiki tangga dengan metode pengangkatan beban pada roda

Lebih terperinci

DAFTAR ISI HALAMAN JUDUL... HALAMAN PENGESAHAN... HALAMAN PENYATAAN... INTISARI... ABSTRACT... HALAMAN MOTTO... HALAMAN PERSEMBAHAN... PRAKATA...

DAFTAR ISI HALAMAN JUDUL... HALAMAN PENGESAHAN... HALAMAN PENYATAAN... INTISARI... ABSTRACT... HALAMAN MOTTO... HALAMAN PERSEMBAHAN... PRAKATA... DAFTAR ISI HALAMAN JUDUL... HALAMAN PENGESAHAN... HALAMAN PENYATAAN... INTISARI... ABSTRACT... HALAMAN MOTTO... HALAMAN PERSEMBAHAN... PRAKATA... DAFTAR ISI... DAFTAR GAMBAR... DAFTAR TABEL... i iii iv

Lebih terperinci

BAB IV PENGUJIAN DAN ANALISIS SISTEM. didapat suatu sistem yang dapat mengendalikan mobile robot dengan PID

BAB IV PENGUJIAN DAN ANALISIS SISTEM. didapat suatu sistem yang dapat mengendalikan mobile robot dengan PID BAB IV PENGUJIAN DAN ANALISIS SISTEM Pada bab ini akan dibahas hasil analisa pengujian yang telah dilakukan, pengujian dilakukan dalam beberapa bagian yang disusun dalam urutan dari yang sederhana menuju

Lebih terperinci

PERANCANGAN DAN ANALISIS PERBANDINGAN POSISI SENSOR GARIS PADA ROBOT MANAGEMENT SAMPAH

PERANCANGAN DAN ANALISIS PERBANDINGAN POSISI SENSOR GARIS PADA ROBOT MANAGEMENT SAMPAH PERANCANGAN DAN ANALISIS PERBANDINGAN POSISI SENSOR GARIS PADA ROBOT MANAGEMENT SAMPAH Bambang Dwi Prakoso Jurusan Teknik Elektro Universitas Brawijaya Dosen Pembimbing : Sholeh Hadi Pramono, Eka Maulana

Lebih terperinci

2 - anakuntukmengetahuidanmelihats ecaralangsungbinatangbinatangbukanhanyabinatang masihbanyakterdapat di alam liar tetapijugabinatang hampirpunah. Te

2 - anakuntukmengetahuidanmelihats ecaralangsungbinatangbinatangbukanhanyabinatang masihbanyakterdapat di alam liar tetapijugabinatang hampirpunah. Te Mara Nugraha 21107044 ABSTRAK ROBOT PEMANDU WISATA KEBUN BINATANG MENGGUNAKAN ATMEGA8535 DENGAN SISTEM SUARA Tugas Akhir, Fakultas Ilmu Komputer dan Teknologi Informasi, Jurusan Sistem Komputer, Universitas

Lebih terperinci

ROBOT ULAR PENDETEKSI LOGAM BERBASIS MIKROKONTROLER

ROBOT ULAR PENDETEKSI LOGAM BERBASIS MIKROKONTROLER ROBOT ULAR PENDETEKSI LOGAM BERBASIS MIKROKONTROLER Jefta Gani Hosea 1), Chairisni Lubis 2), Prawito Prajitno 3) 1) Sistem Komputer, FTI Universitas Tarumanagara email : Jefta.Hosea@gmail.com 2) Sistem

Lebih terperinci

RANCANG BANGUN SISTIM PARKIR MOBIL BERBASIS MIKROKONTROLER

RANCANG BANGUN SISTIM PARKIR MOBIL BERBASIS MIKROKONTROLER RANCANG BANGUN SISTIM PARKIR MOBIL BERBASIS MIKROKONTROLER 1 Dickky Chandra, 2 Muhammad Irmansyah, 3 Sri Yusnita 123 Jurusan Teknik Elektro Politeknik Negeri Padang Kampus Unand Limau Manis Padang Sumatera

Lebih terperinci

BAB III PERANCANGAN DAN PEMBUATAN ALAT

BAB III PERANCANGAN DAN PEMBUATAN ALAT 27 BAB III PERANCANGAN DAN PEMBUATAN ALAT 3.1. Umum Didalam perancangan alat dirancang sebuah alat simulator penghitung orang masuk dan keluar gedung menggunakan Mikrokontroler Atmega 16. Inti dari cara

Lebih terperinci

RANCANG BANGUN RAUTAN PENSIL PINTAR BERBASIS MIKROKONTROLER ATMEGA 8535

RANCANG BANGUN RAUTAN PENSIL PINTAR BERBASIS MIKROKONTROLER ATMEGA 8535 Ali Firdaus, Rancang Bangun Rautan Pensil Pintar 31 RANCANG BANGUN RAUTAN PENSIL PINTAR BERBASIS MIKROKONTROLER ATMEGA 8535 Ali Firdaus *1, Rahmatika Inayah *2 1 Jurusan Teknik Komputer Politeknik; Negeri

Lebih terperinci

Rancangan Sistem Autofeeder Ikan pada Aquarium Berbasis Mikrokontroler ATMEGA8535

Rancangan Sistem Autofeeder Ikan pada Aquarium Berbasis Mikrokontroler ATMEGA8535 Rancangan Sistem Autofeeder Ikan pada Aquarium Berbasis Mikrokontroler ATMEGA8535 Dedi Satria Teknik Informatika Universitas Serambi Mekkah dedisatria@serambimekkah.ac.id ABSTRAK Kajian sistem mikrokontroler

Lebih terperinci

BAB III PERANCANGAN ALAT. eletronis dan software kontroler. Konstruksi fisik line follower robot didesain

BAB III PERANCANGAN ALAT. eletronis dan software kontroler. Konstruksi fisik line follower robot didesain BAB III PERANCANGAN ALAT 3.1. Konstruksi Fisik Line Follower Robot Konstruksi fisik suatu robot menjadi dasar tumpuan dari rangkaian eletronis dan software kontroler. Konstruksi fisik line follower robot

Lebih terperinci

BAB III PERANCANGAN SISTEM

BAB III PERANCANGAN SISTEM BAB III PERANCANGAN SISTEM Pada bab ini akan dijelaskan mengenai perancangan dari perangkat keras, serta perangkat lunak dari alat akuisisi data termokopel 8 kanal. 3.1. Gambaran Sistem Alat yang direalisasikan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Sistem Minimum AVR USB Sistem minimum ATMega 8535 yang didesain sesederhana mungkin yang memudahkan dalam belajar mikrokontroller AVR tipe 8535, dilengkapi internal downloader

Lebih terperinci

IV. PERANCANGAN SISTEM

IV. PERANCANGAN SISTEM SISTEM PENGATURAN KECEPATAN PUTARAN MOTOR PADA MESIN PEMUTAR GERABAH MENGGUNAKAN KONTROLER PROPORSIONAL INTEGRAL DEFERENSIAL (PID) BERBASIS MIKROKONTROLER Oleh: Pribadhi Hidayat Sastro. NIM 8163373 Jurusan

Lebih terperinci

Jurnal Elektro ELTEK Vol. 3, No. 1, April 2012 ISSN:

Jurnal Elektro ELTEK Vol. 3, No. 1, April 2012 ISSN: Perancangan dan Pembuatan Sistem Proteksi Kebocoran Air Pada Pelanggan PDAM Dengan Menggunakan Selenoid Valve dan Water Pressure Switch Berbasis ATMEGA 8535 Zanuar Rakhman dan M. Ibrahim Ashari Jurusan

Lebih terperinci

BAB III PERANCANGAN SISTEM

BAB III PERANCANGAN SISTEM 21 BAB III PERANCANGAN SISTEM 3.1 Rangkaian Keseluruhan Sistem kendali yang dibuat ini terdiri dari beberapa blok bagian yaitu blok bagian plant (objek yang dikendalikan), blok bagian sensor, blok interface

Lebih terperinci

PROTOTIPE PENGEREMAN OTOMATIS UNTUK MOBIL LISTRIK

PROTOTIPE PENGEREMAN OTOMATIS UNTUK MOBIL LISTRIK PROTOTIPE PENGEREMAN OTOMATIS UNTUK MOBIL LISTRIK Noer Soedjarwanto 1, Osea Zebua 2 Abstrak Teknologi transportasi dengan menggunakan energi listrik semakin berkembang. Mobil listrik semakin banyak digunakan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Pada bab ini akan dibahas mengenai teori yang mendukung dalam pembuatan proyek akhir ini. Adapun materi yang akan dibahas yaitu: robot, mikrokontroller ATMega 16, ATMega 8, frekuensi

Lebih terperinci

NASKAH PUBLIKASI KARYA ILMIAH PEMASANGAN MOTOR DC PADA SEKUTER DENGAN PENGENDALI PULSE WIDTH MODULATION

NASKAH PUBLIKASI KARYA ILMIAH PEMASANGAN MOTOR DC PADA SEKUTER DENGAN PENGENDALI PULSE WIDTH MODULATION NASKAH PUBLIKASI KARYA ILMIAH PEMASANGAN MOTOR DC PADA SEKUTER DENGAN PENGENDALI PULSE WIDTH MODULATION Diajukan Sebagai Salah Satu Syarat Menyelesaikan Program Studi S-1 Jurusan Teknik Elektro Fakultas

Lebih terperinci

DAFTAR ISTILAH. : perangkat keras sistem : perangkat lunak sistem. xiii

DAFTAR ISTILAH. : perangkat keras sistem : perangkat lunak sistem. xiii DAFTAR ISTILAH USART : Jenis komunikasi antar mikrokontroler tipe serial yang menggunakan pin transmitter dan receiver. Membership function : Nilai keanggotaan masukan dan keluaran dari logika fuzzy. Noise

Lebih terperinci

II. TINJAUAN PUSTAKA. Transduser adalah suatu piranti (alat) yang dapat mengubah satu bentuk energi ke

II. TINJAUAN PUSTAKA. Transduser adalah suatu piranti (alat) yang dapat mengubah satu bentuk energi ke 5 II. TINJAUAN PUSTAKA A. Transduser Ketinggian Air Transduser adalah suatu piranti (alat) yang dapat mengubah satu bentuk energi ke bentuk energi lain. Prinsip kerja dari tranduser ultrasonik yaitu mengirimkan

Lebih terperinci

BAB III PERANCANGAN SISTEM

BAB III PERANCANGAN SISTEM BAB III PERANCANGAN SISTEM 3.1 Gambaran Umum Pada bab ini membahas tentang perancangan sistem yang mencakup perangkat keras (hardware) dan perangkat lunak (software). Perangkat keras ini meliputi sensor

Lebih terperinci

BAB IV PENGUJIAN ALAT DAN ANALISA

BAB IV PENGUJIAN ALAT DAN ANALISA BAB IV Pengujian Alat dan Analisa BAB IV PENGUJIAN ALAT DAN ANALISA 4. Tujuan Pengujian Pada bab ini dibahas mengenai pengujian yang dilakukan terhadap rangkaian sensor, rangkaian pembalik arah putaran

Lebih terperinci

TUGAS MATAKULIAH APLIKASI KOMPUTER DALAM SISTEM TENAGA LISTRIK FINAL REPORT : Pengendalian Motor DC menggunakan Komputer

TUGAS MATAKULIAH APLIKASI KOMPUTER DALAM SISTEM TENAGA LISTRIK FINAL REPORT : Pengendalian Motor DC menggunakan Komputer TUGAS MATAKULIAH APLIKASI KOMPUTER DALAM SISTEM TENAGA LISTRIK FINAL REPORT : Pengendalian Motor DC menggunakan Komputer disusun oleh : MERIZKY ALFAN ADHI HIDAYAT AZZA LAZUARDI JA FAR JUNAIDI 31780 31924

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Robot Robot adalah sebuah alat mekanik yang dapat melakukan tugas fisik, baik menggunakan pengawasan dan kontrol manusia, ataupun menggunakan program yang telah didefinisikan

Lebih terperinci

BAB III PERANCANGAN DAN REALISASI PERANGKAT KERAS DAN PERANGKAT LUNAK SISTEM. Dari diagram sistem dapat diuraikan metode kerja sistem secara global.

BAB III PERANCANGAN DAN REALISASI PERANGKAT KERAS DAN PERANGKAT LUNAK SISTEM. Dari diagram sistem dapat diuraikan metode kerja sistem secara global. BAB III PERANCANGAN DAN REALISASI PERANGKAT KERAS DAN PERANGKAT LUNAK SISTEM 3.1 Perancangan Perangkat Keras 3.1.1 Blok Diagram Dari diagram sistem dapat diuraikan metode kerja sistem secara global. Gambar

Lebih terperinci

BAB II DASAR TEORI. Gambar 2.1 Sensor Ultrasonik HCSR04. Gambar 2.2 Cara Kerja Sensor Ultrasonik.

BAB II DASAR TEORI. Gambar 2.1 Sensor Ultrasonik HCSR04. Gambar 2.2 Cara Kerja Sensor Ultrasonik. BAB II DASAR TEORI Pada bab ini akan dibahas beberapa teori pendukung yang digunakan sebagai acuan dalam merealisasikan sistem. Teori-teori yang digunakan dalam pembuatan skripsi ini terdiri dari sensor

Lebih terperinci

BAB II DASAR TEORI. mikrokontroler yang berbasis chip ATmega328P. Arduino Uno. memiliki 14 digital pin input / output (atau biasa ditulis I/O,

BAB II DASAR TEORI. mikrokontroler yang berbasis chip ATmega328P. Arduino Uno. memiliki 14 digital pin input / output (atau biasa ditulis I/O, BAB II DASAR TEORI 2.1 Arduino Uno R3 Arduino Uno R3 adalah papan pengembangan mikrokontroler yang berbasis chip ATmega328P. Arduino Uno memiliki 14 digital pin input / output (atau biasa ditulis I/O,

Lebih terperinci

BAB III PERENCANAAN PERANGKAT KERAS DAN LUNAK

BAB III PERENCANAAN PERANGKAT KERAS DAN LUNAK BAB III PERENCANAAN PERANGKAT KERAS DAN LUNAK 3.1 Gambaran Umum Perangkat keras dari proyek ini secara umum dibagi menjadi dua bagian, yaitu perangkat elektronik dan mekanik alat pendeteksi gempa.perancangan

Lebih terperinci

BAB III METODE PENELITIAN DAN PERANCANGAN SISTEM. Metode penelitian yang digunakan adalah studi kepustakaan dan

BAB III METODE PENELITIAN DAN PERANCANGAN SISTEM. Metode penelitian yang digunakan adalah studi kepustakaan dan BAB III MEODE PENELIIAN DAN PERANCANGAN SISEM 3.1 Metode Penelitian Metode penelitian yang digunakan adalah studi kepustakaan dan penelitian laboratorium. Studi kepustakaan dilakukan sebagai penunjang

Lebih terperinci

BAB II DASAR TEORI Bentuk Fisik Sensor Gas LPG TGS 2610 Bentuk fisik sensor TGS 2610 terlihat pada gambar berikut :

BAB II DASAR TEORI Bentuk Fisik Sensor Gas LPG TGS 2610 Bentuk fisik sensor TGS 2610 terlihat pada gambar berikut : BAB II DASAR TEORI 2.1 SENSOR TGS 2610 2.1.1 Gambaran Umum Sensor gas LPG TGS 2610 adalah sebuah sensor gas yang dapat mendeteksi adanya konsentrasi gas LPG di sekitar sensor tersebut. Sensor gas LPG TGS

Lebih terperinci