BAB II STUDI PUSTAKA

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB II STUDI PUSTAKA"

Transkripsi

1 BAB II STUDI PUSTAKA II.1 UMUM Perubahan penebalan pada batang non prismatis akan menyebabkan kekakuan yang tidak sama di setiap titiknya. Besarnya momen inersia di setiap titik ini akan memberikan pengaruh pada besarnya momen-momen dan gaya-gaya geser di titik tersebut. Perbedaan besar momen-momen dan inersia di setiap titik pada penampang gelagar non prismatis ini mempengaruhi lendutan yang akan terjadi pada konstruksi tersebut. Kayu merupakan salah satu bahan bangunan yang banyak dijumpai, sering dipakai dan di Indonesia relatif mudah untuk mendapatkannya. Berat jenis kayu lebih ringan bila dibanding baja ataupun beton, selain itu kayu juga mudah dalam pengerjaannya. Ditinjau dari segi struktur, kayu cukup baik dalam menahan gaya tarik, tekan dan lentur. Ditinjau dari segi arsitektur, bangunan kayu mempunyai nilai estetika yang tinggi dan relatif ekonomis. Metode plastis merupakan metode desain struktur yang memperhitungkan keruntuhan suatu struktur dikarenakan terjadinya sejumlah sendi plastis. Lendutan pada kondisi plastis akan terus bertambah tanpa memerlukan penambahan beban lagi. Keadaan ini menunjukkan bahwa struktur telah mencapai mekanisme runtuhnya. Semakin besar penambahan 9

2 beban yang dilakukan secara bertahap maka daerah serat dari penampang akan mengalami tegangan leleh yang semakin besar pula. Hingga pada suatu beban plastis, maka seluruh serat akan mengalami leleh, yang akibatnya konstruksi akan runtuh. Metode ini berdasar prinsip kerja virtual yaitu kerja luar sama dengan kerja dalam. II.2 SIFAT-SIFAT KAYU II.2.1 Umum Potensi kayu sebagai bahan struktural saat ini belum tergantikan oleh bahan lain secara menyeluruh. Kayu adalah salah satu bahan konstruksi yang digunakan dalam struktur bangunan sipil seperti rumah, jembatan, dan bantalan kereta api. Ketersediaannya yang banyak dan mudah karena didapatkan dari tumbuhan di alam, menjadikan kayu sebagai bahan konstruksi yang paling pertama digunakan. Sifatnya yang dapat diperbaharui (renewable) membuat kayu sebagai bahan konstruksi yang ramah lingkungan. Hal ini juga membuat kayu merupakan bahan konstruksi yang akan selalu dibutuhkan sampai kapanpun. Kayu mempunyai kuat tarik dan kuat tekan relatif tinggi dan berat yang relatif rendah, mempunyai daya tahan tinggi terhadap pengaruh kimia dan listrik, dapat dengan mudah untuk dikerjakan, relative murah, dapat mudah diganti, dan bisa didapat dalam waktu singkat (Felix, 1965). Kayu dinilai memiliki sifat-sifat utama yang menyebabkan kayu tetap dibutuhkan oleh manusia. Beberapa sifat umum kayu tersebut antara lain : 10

3 1. Kayu merupakan sumber kekayaan alam yang tidak akan habis, apabila dikelola dan diusahakan dengan cara-cara yang baik. Artinya jika pohon di hutan ditebang untuk diambil kayunya, segera harus dilakukan penanaman kembali, supaya sumber kayu tidak habis. Oleh karena itu kayu dikatakan sebagai sumber daya alam yang dapat di perbaharui. Berbeda dengan barang tambang yang setelah di eksploitasi, sumbernya akan habis. Jadi eksploitasi bahan-bahan tambang dibatasi persediaannya yang diukur dengan satuan waktu. 2. Kayu merupakan bahan mentah yang mudah diposes untuk dijadikan suatu bentuk jadi. Dengan kemajuan teknologi, kayu sebagai bhan mentah dapat diolah menjadi berbagai bentuk yang memudahkan dalam proses konstruksi. 3. Kayu mempunyai sifat-sifat spesifik yang tidak bisa ditiru oleh bahan-bahan lain. Misalnya kayu mempunyai sifat elastis. 4. Kayu tersusun dari sel-sel yang memiliki tipe bermacam - macam dan susunan dinding selnya terdiri dari senyawa kimia berupa selulosa dan hemi selulosa (karbohirat) serta lignin (non karbohidrat). 5. Semua kayu bersifat anisotropik, yaitu memperlihatkan sifat-sifat yang berlainan jika diuji menurut tiga arah utamanya (longitudinal, radial dan tangensial). 6. Kayu merupakan bahan yang bersifat higroskopis, yaitu dapat menyerap atau melepaskan kadar air (kelembaban) sebagai akibat perubahan kelembaban dan suhu udara disekelilingnya. 7. Kayu dapat diserang oleh hama dan penyakit dan dapat terbakar terutama dalam keadaan kering. 11

4 II.2.2 Sifat Fisis Kayu dan Sifat Mekanis Kayu Sifat dan kekuatan tiap-tiap jenis kayu berbeda-beda, sehingga penggunaan kelas kayu harus disesuaikan dengan konstruksi yang akan dibuat. Oleh karena itu kita harus sedikit banyaknya mengetahui tentang beberapa ciri-ciri dan sifat-sifat kayu. Antara lain yang terpenting adalah mengenai sifat-sifat mekanis atau kekuatan kayu, yang merupakan kemampuan kayu untuk menahan muatan dari luar berupa gaya-gaya di luar kayu yang mempunyai kecenderungan untuk mengubah bentuk dan besarnya kayu. II Sifat Fisis Kayu a. Berat Jenis Kayu Berat jenis didefenisikan sebagai angka berat dari satuan volume suatu material. Berat jenis diperoleh dengan membagikan berat kepada volume benda tersebut. Berat jenis diperoleh dengan cara menimbang suatu benda pada suatu timbangan dengan tingkat keakuratan yang diperlukan. Untuk praktisnya, digunakan timbangan dengan ketelitian 20%, yaitu sebesar 20 gr/kg. Sedangkan untuk menentukan volume, cara yang umum dan mudah dilakukan adalah dengan mengukur panjang, lebar dan tebal suatu benda dan mengalikan ketiganya. Sebaiknya ukuran sampel kayu tidak kurang dari ukuran dari 7.5 cm x 5 cm x 2.5 cm, 12

5 Mengingat kayu terbentuk dari sel sel yang memiliki bermacam macam tipe, memungkinkan terjadinya suatu penyimpangan tertentu. Pada perhitungan berat jenis kayu semestinya berpangkal pada keadaan kering udara, yaitu sekering keringnya tanpa pengeringan buatan. Berat jenis kayu biasanya berbanding lurus dengan kekuatan daripada kayu atau sifat sifat mekanisnya. Makin tinggi berat jenis suatu kayu maka makin tinggi pula kekuatannya. b. Kadar Air Kayu Kayu sebagai bahan konstruksi dapat mengikat air dan juga dapat melepaskan air yang dikandungnya. Keadaan seperti ini tergantung pada kelembaban suhu udara di sekelilingnya, dimana kayu itu berada. Kayu mempunyai sifat peka terhadap kelembaban, karena pengaruh kadar airnya menyebabkan mengembang dan menyusutnya kayu serta mempengaruhi pula sifat-sifat fisis dan mekanis kayu. Kadar air sangat besar pengaruhnya terhadap kekuatan kayu, terutama daya pikulnya terhadap tegangan desak sejajar arah serat dan juga tegak lurus arah serat kayu. Sel-sel kayu mengandung air, yang sebagian merupakan bebas yang mengisi dinding sel. Apabila kayu mengering, air bebas keluar dahulu dan saat air bebas itu habis keadaannya disebut titik jenuh serat (Fibre Saturation Point). Kadar air pada saat itu kira-kira 25 %-30 %. Apabila kayu mengering di bawah titik jenuh serat, dinding sel menjadi semakin padat sehingga mengakibatkan serat-seratnya menjadi kokoh dan kuat. Maka dapat 13

6 diambil suatu kesimpulan bahwa turunnya kadar air mengakibatkan bertambahnya kekuatan kayu. Pada umumnya kayu-kayu di Indonesia yang kering udara mempunyai kadar air (kadar lengas) antara 12 %-18 %, atau rata-rata adalah 15 %. Tetapi apabila berat dari benda uji tersebut menunjukkan angka yang terus-menerus menurun (berkurang), maka kayu belum dapat dianggap kering udara (jadi masih basah). Untuk menentukan secara kasar apakah kadar lengas kayu sudah di bawah 30 % atau belum, dapat digunakan rumus pendekatan seperti di bawah ini : = 1,15 100% Dimana : x = Kadar air kayu (%) Gx = Berat benda uji mula-mula (gr) Gku = Berat benda uji setelah kering udara (gr) Bila berat benda uji sudah menunjukkan angka yang konstan, maka kayu tersebut sudah dapat dianggap kering udara, sehingga kadar lengas kayu dapat diperoleh dengan cara : = 100% 14

7 II Sifat Mekanis Sifat mekanis kayu meliputi keteguhan kayu, yaitu perlawanan yang diberikan oleh suatu jenis kayu terhadap perubahan-perubahan bentuk yang disebabkan oleh gaya-gaya luar. Perlawanan kayu terhadap gaya-gaya luar ini dapat dibedakan menjadi: a. Keteguhan Tarik Keteguhan tarik adalah kekuatan atau daya tahan kayu terhadap dua buah gaya yang bekerja dengan arah yang berlawanan dan gaya ini bersifat tarik (lihat Gambar II.1). Gaya tarik ini berusaha melepas ikatan antara seratserat kayu tersebut. Sebagai akibat dari gaya tarik (P), maka timbullah di dalam kayu tegangan-tegangan tarik, yang harus berjumlah sama dengan gaya-gaya luar P. Bila gaya tarik ini membesar sedemikian rupa, serat-serat kayu terlepas dan terjadilah patahan. Dalam suatu konstruksi bangunan, hal ini tidak boleh terjadi untuk menjaga keamanan. Tegangan tarik masih diizinkan bila tidak timbul suatu perubahan atau bahaya pada kayu, disebut dengan tegangan tarik yang diizinkan dengan notasi F t (MPa). Misalnya, untuk kayu dengan kode mutu E26 tegangan tarik yang diizinkan dalam arah sejajar serat adalah 60 MPa. Serat Kayu P P Gambar 2.1 Batang yang menerima gaya tarik P 15

8 b. Keteguhan Tekan Keteguhan tekan/kompresi adalah kekuatan atau daya tahan kayu terhadap gaya-gaya tekan yang bekerja sejajar atau tegak lurus serat kayu. Gaya tekan yang bekerja sejajar serat kayu akan menimbulkan bahaya tekuk pada kayu tersebut (lihat Gambar II.2). Sedangkan gaya tekan yang bekerja tegak lurus arah serat akan menimbulkan retak pada kayu (Gambar II.3). Bahaya Tekuk P P Gambar 2.2 Batang kayu menerima gaya tekan sejajar serat Batang-batang yang panjang dan tipis seperti papan, mengalami bahaya kerusakan lebih besar ketika menerima gaya tekan sejajar serat jika dibandingkan dengan gaya tekan tegak lurus serat kayu. Sebagai akibat adanya gaya tekan ini akan menimbulkan tegangan tekan pada kayu. Tegangan tekan terbesar dimana tidak menimbulkan adanya bahaya disebut tegangan tekan yang diizinkan, dengan notasi F c (MPa). P Serat Kayu P Gambar 2.3 Batang kayu yang menerima gaya tekan tegak lurus serat 16

9 c. Keteguhan Geser Keteguhan geser adalah kekuatan atau daya tahan kayu terhadap dua gaya-gaya tekan yang bekerja padanya, kemampuan kayu untuk menahan gaya-gaya yang menyebabkan bagian kayu tersebut bergeser atau tergelincir dari bagian lain di dekatnya. Akibat gaya geser ini maka akan timbul tegangan geser pada kayu (lihat Gambar II.4). Dalam hal ini, keteguhan geser dibagi menjadi 3 (tiga) macam, yaitu keteguhan geser sejajar serat, keteguhan geser tegak lurus serat dan keteguhan geser miring. Tegangan geser terbesar yang tidak akan menimbulkan bahaya pada pergeseran serat kayu disebut tegangan geser yang diizinkan, dengan notasi F v (MPa). Gaya Geser P P Gambar 2.4 Batang kayu yang menerima gaya geser tegak lurus arah serat, F v (MPa) d. Keteguhan Lengkung ( Lentur ) Keteguhan lengkung ( lentur ) adalah kekuatan atau daya tahan kayu terhadap gaya-gaya yang berusaha melengkungkan kayu tersebut. Keteguhan lengkung dapat dibedakan menjadi 2 (dua) macam, yaitu keteguhan lengkung statik dan keteguhan lengkung pukul. Keteguhan lengkung statik menunjukkan kekuatan kayu dalam menahan gaya yang mengenainya 17

10 perlahan-lahan, sedangkan keteguhan lengkung pukul adalah kekuatan kayu dalam menahan gaya yang mengenainya secara mendadak. Balok kayu yang terletak pada dua tumpuan atau lebih, bila menerima beban berlebihan akan melengkung/melentur. Pada bagian sisi atas balok akan terjadi tegangan tekan dan pada sisi bawah akan terjadi tegangan tarik yang besar (lihat Gambar II.5). Akibat tegangan tarik yang melampaui batas kemampuan kayu maka akan terjadi regangan yang cukup berbahaya. P T ertekan garis netral T ertarik Gambar 2.5 Batang kayu yang menerima beban lengkung e. Keteguhan Belah Keteguhan belah adalah kemampuan kekuatan kayu dalam menahan gaya-gaya yang berusaha membelah kayu. Kayu lebih mudah membelah menurut arah sejajar serat kayu. Keadaan kayu juga mempengaruhi sifat pembelahan, misalnya kayu yang basah lebih mudah dibelah daripada kayu yang telah kering. II.2.3 Tegangan Bahan Kayu Istilah kekuatan atau tegangan pada bahan seperti kayu adalah kemampuan bahan untuk mendukung beban luar atau beban yang berusaha 18

11 merubah bentuk dan ukuran bahan tersebut. Akibat beban luar yang bekerja ini menyebabkan timbulnya gaya gaya dalam pada bahan yang berusaha menahan perubahan ukuran dan bentuk bahan. Gaya dalam ini disebut dengan tegangan yang dinyatakan dalam Pound / ft 2. Dibeberapa negara satuan tegangan ini mengacu ke sistem Internasional ( SI ) yaitu N / mm 2. Perubahan ukuran atau bentuk ini dikenal sebagai deformasi atau regangan. Jika tegangan yang bekerja kecil maka regangan atau deformasi yang terjadi juga kecil dan jika tegangan yang bekerja besar maka deformasi yang terjadi juga besar. Jika kemudian tegangan dihilangkan maka bahan akan kembali kebentuk semula. Kemampuan bahan untuk kembali kebentuk semula tergantung pada besar sifat elastisitasnya. Jika tegangan yang diberikan melebihi daya dukung serat maka serat serat akan putus dan terjadi kegagalan atau keruntuhan. Deformasi sebanding dengan besarnya beban yang bekerja sampai pada satu titik. Titik ini adalah Limit Proporsional. Setelah melewati titik ini besarnya deformasi akan bertambah lebih cepat dari besarnya beban yang diberikan. Hubungan antara beban dan deformasi ditunjukkan pada gambar 2.6 berikut. 19

12 Tarikan Beban Limit Proporsional Tekanan Limit Proporsional Deformasi Gambar 2.6 Hubungan antara beban tekan dengan deformasi untuk tarikan dan tekanan Kayu memiliki beberapa tegangan, pada satu jenis tegangan nilainya besar dan untuk jenis tegangan yang lain nilainya kecil. Sebagai contoh tegangan tekan cenderung memperpendek kayu sedangkan tegangan tarik akan memperpanjang kayu. Biasanya kayu akan menderita kombinasi dari beberapa tegangan yang terjadi secara bersamaan meski salah satu jenis tegangan lebih mendominasi. Kemampuan untuk melentur bebas dan kembali kebentuk semula tergantung kepada elastisitas, dan kemampuan untuk menahan terjadinya perubahan bentuk disebut dengan kekakuan. Modulus elastisitas adalah ukuran hubungan antara tegangan dan regangan dalam limit proporsional yang memberikan angka umum untuk menyatakan kekakuan atau elastis suatu bahan. Semakin besar modulus elastisitas kayu, maka kayu tersebut semakin kaku. Istilah getas digunakan untuk mendeskripsikan deformasi yang terjadi sebelum patah. Dapat diperhatikan bahwa sifat getas ini bukan menyatakan kelemahan. Sebagai contoh, besi tuang dan kapas adalah bahan yang getas, 20

13 walaupun besarnya beban yang dibutuhkan untuk mengakibatkannya hancur sangat berbeda. Dalam mencari karakteristik kekuatan kayu ada dua cara yang dapat dilakukan. Pertama, dengan pengujian langsung di lapangan. Kedua, dengan penelitian. Karena pelaksanaan pengujian di lapangan memerlukan biaya yang besar maka pengujian dengan penelitian merupakan alternatif pemilihan. Pada penelitian ada 2 (dua) jenis pengujian yang dapat dilakukan. Pengujian dengan menggunakan sampel kecil dan pengujian kayu sebagai struktural. Pengujian dengan menggunakan sampel penting untuk tujuan komparatif, yang memberikan indikasi bahwa sifat-sifat kekuatan setiap jenisjenis kayu berbeda. Karena pengujian dirancang untuk menghindari pengaruh kerusakan lain, sehingga hasilnya tidak menunjukkan beban aktual yang mampu diterima dan faktor yang harus digunakan untuk mendapatkan tegangan kerja yang aman. Pengujian kayu dengan bentuk struktural lebih mendekati kondisi penggunaan yang sebenarnya. Secara khusus dianggap penting karena dapat mengamati kerusakan seperti pecah-pecah. Kelemahan pada pengujian ini adalah memerlukan biaya yang besar dan pekerjaannya sulit karena membutuhkan kayu dalam jumlah yang besar dan butuh waktu yang lebih lama. Selain itu, faktor pemilihan bahan dalam ukuran yang besar dengan kualitas yang seragam menjadi sangat penting dibandingkan dengan pemilihan sampel dalam ukuran kecil. Pengujian dengan menggunakan sampel kecil telah memiliki standar pengujian. Karena sifat kekuatan kayu sangat dipengaruhi oleh kandungan 21

14 air, pengujian dapat dilakukan dalam kondisi terpisah. Pengujian ini dilakukan dengan menggunakan material kayu yang memiliki kandungan standar. Pengujian dilakukan pada bahan kering udara dengan kadar air yang diketahui dan angka-angka kekuatan tersebut dikoreksi terhadap kandungan air standar. Ketelitian dibutuhkan untuk mengeliminasi faktor-faktor yang dapat membuat variasi sifat kekuatan. Pengujian dengan sampel kecil dari jenis-jenis kayu yang berbedabeda kini telah dilakukan, dan banyak batasan data yang diperoleh. Angkaangka yang diterbitkan untuk kayu yang berbeda-beda dapat dibandingkan dengan metode pengujian yang telah distandarkan. Angka-angka ini sendiri dapat dipakai dalam memperhitungkan tegangan kerja karena faktor koreksi telah diperhitungkan. Umumnya secara empiris hanya sedikit karakteristik kekuatan kayu yang diketahui. Sebagai contoh adalah kualitas kayu oak, kayu jati, dan kayu damar sebagai bahan struktur. Hasil pengujian berdasarkan nilai tegangan dan regangan dari kayu tersebut. Nilai tegangan diperoleh dari besarnya beban per luas penampang yang dibebani, dinyatakan dalam N/mm², atau : Tegangan (σ ) = Beban Luas Penampang yaitu : Dan regangan didefinisikan sebagai deformasi per ukuran semula regangan(ε ) = Deformasi Panjang Mula Mula 22

15 Ada beberapa jenis tegangan yang dapat dialami oleh suatu material, yaitu tegangan tekan (Compression Strength), tegangan tarik (Tensile Strength), dan tegangan lentur (Bending Strength). Pada tegangan tekan, material mengalami tekanan pada luasan tertentu yang menyebabkan timbulnya tegangan pada material dalam menahan tekanan tersebut sampai batas keruntuhan dan diambil sebagai nilai tegangan tekan. Demikian pula dengan tarikan, tegangan tarik timbul akibat adanya gaya dalam pada material yang berusaha menahan beban tarikan yang terjadi. Kemampuan maksimum material menahan tarikan adalah sebagai sebagai tegangan tarik (lihat Gambar II.8). T e k a n a n T a r i k a n T e g. T e k a n T e g. T a r i k Gambar 2.7 Tegangan tekan dan tegangan tarik Tegangan yang bekerja : ( tk / tr ) = P ( tk / tr ) σ.( 2.1 ) A Dimana : σ ( / tr ) tk = Tegangan tekan/tarik yang terjadi (kg/cm²) 23

16 P ( / tr ) tk = Beban tekan / tarik yang terjadi (kg) A = Luas penampang yang menerima beban (cm²) Secara teoritis, semakin ringan kayu maka semakin kurang kekuatannya, demikian juga sebaliknya. Pada umumnya dapat dikatakan bahwa kayu-kayu yang berat sekali juga kuat sekali. Kekuatan, kekerasan dan sifat teknik lainnya adalah berbanding lurus dengan berat jenisnya. Tentunya hal ini tidak terlalu sesuai, karena susunan dari kayu tidak selalu sama. II.2.4 Kuat Acuan Berdasarkan Pemilahan Secara Mekanis Pemilihan secara mekanis untuk mendapatkan modulus elastisitas lentur harus dilakukan dengan mengikuti standar pemilahan mekanis yang baku. Berdasarkan modulus elastis lentur yang diperoleh secara mekanis, kuat acuan lainnya dapat diambil mengikuti tabel 2.1. Kuat acuan yang berbeda dengan Tabel 2.1 dapat digunakan apabila ada pembuktian secara eksperimental yang mengikuti standar-standar eksperimen yang baku. Tabel 2.1 Nilai Kuat Acuan (MPa) Berdasarkan Atas Pemilahan Secara Mekanis pada Kadar Air 15% ( Berdasarkan PKKI NI ) Kode Mutu E26 E25 E24 E23 E w F b F t// F c// F v F c , , , ,

17 E ,1 20 E ,9 19 E ,8 18 E ,6 17 E ,4 16 E ,4 15 E ,2 14 E ,1 13 E ,9 12 E ,8 11 E ,6 11 E ,5 10 E ,3 9 Dimana : Ew = Modulus elastis lentur Fb = Kuat lentur Ft// = Kuat tarik sejajar serat Fc// = Kuat tekan sejajar serat Fv = Kuat Geser Fc = Kuat tekan tegak lurus 25

18 II.2.5 Kuat Acuan Berdasarkan Pemilihan Secara Visual Pemilahan secara visual harus mengikuti standar pemilahan secara visual yang baku. Apabila pemeriksaan visual dilakukan berdasarkan atas pengukuran berat jenis, maka kuat acuan untuk kayu berserat lurus tanpa cacat dapat dihitung dengan menggunakan langkah-langkah sebagai berikut : a. Kerapatan ρ pada kondisi basah (berat dan volume diukur pada kondisi basah, tetapi kadar airnya lebih kecil dari 30 %) dihitung dengan mengikuti prosedur baku. Gunakan satuan kg/m³ untuk ρ. b. Kadar air, m % (m < 30), diukur dengan prosedur baku. c. Hitung berat jenis pada m % ( G m ) dengan rumus : d. G m = ρ / [1000 (1 + m/100)] (2.2) e. Hitung berat jenis dasar ( G b ) dengan rumus : f. G b = G m / [1 + 0,265 a G m ] (2.3) dengan a = (30 m ) / 30 g. Hitung berat jenis pada kadar air 15 % ( G 15 ) dengan rumus : G 15 = G b / (1 0,133 G b )....( 2.4 ) h. Hitung estimasi kuat acuan, dengan modulus elastisitas lentur (Ew) = G 0.7, dimana G : Berat jenis kayu pada kadar air 15 % = G 15. Untuk kayu dengan serat tidak lurus dan/atau mempunyai cacat kayu, estimasi nilai modulus elastis lentur acuan pada point f harus direduksi dengan mengikuti ketentuan pada SNI (Standar Nasional Indonesia) UDC (Universal Decimal Classification) tentang Mutu Kayu 26

19 Bangunan yaitu dengan mengalikan estimasi nilai modulus elastis lentur acuan dari Tabel 2.1 tersebut dengan nilai rasio tahanan yang ada pada Tabel 2.2 yang bergantung pada kelas mutu kayu. Kelas mutu kayu ditetapkan dengan mengacu pada Tabel II.3. Tabel 2.2 : Nilai Rasio Tahanan Kelas Mutu A Nilai Rasio Tahanan 0,80 B 0,63 C 0,50 Tabel 2.3 : Cacat Maksimum untuk Setiap Kelas Mutu Kayu Macam Cacat Kelas Mutu A Kelas Mutu B Kelas Mutu C Mata kayu : Terletak di muka lebar Terletak di muka sempit 1/6 lebar kayu 1/8 lebar kayu 1/4 lebar kayu 1/6 lebar kayu 1/2 lebar kayu 1/4 lebar kayu Retak 1/5 tebal kayu 1/6 tebal kayu 1/2 tebal kayu Pingul 1/10 tebal atau lebar kayu 1/6 tebal atau lebar kayu 1/4 tebal atau lebar kayu Arah serat 1:13 1:9 1:6 Saluran Damar 1/5 tebal kayu eksudasi tidak diperkenan 2/5 tebal kayu 1/2 tebal kayu Gubal Diperkenankan Diperkenankan Diperkenankan Lubang serangga Diperkenankan asal terpencar dan ukuran dibatasai dan tidak ada tanda- Diperkenankan asal terpencar dan ukuran dibatasai dan tidak ada tanda- Diperkenankan asal terpencar dan ukuran dibatasai dan tidak ada tanda-tanda 27

20 tanda serangga hidup tanda serangga hidup serangga hidup Cacat lain (lapuk, hati rapuh, retak melintang) Tidak diperkenankan Tidak diperkenankan Tidak diperkenankan II.3 HUBUNGAN MOMEN-KELENGKUNGAN Suatu struktur akan berotasi secara tidak terbatas pada saat terjadi sendi plastis. Momen menyebabkan terjadinya lenturan pada struktur. Semakin besar momen yang terjadi, akan semakin besar pula lenturan yang diakibatkannya. Sebelum gaya luar bekerja pada balok, maka balok masih dalam keadaan lurus. Namun setelah gaya luar bekerja pada balok tersebut, maka balok akan melentur. Biasanya diasumsikan bahwa material balok bersifat homogen, dan balok hanya mengalami lentru murni, yaitu dengan mengabaikan pengaruh gaya lintang dan gaya aksial yang bekerja pada balok tersebut. Adapun perubaan kelengkungan akibat lentur murni ditunjukkan oleh gambar berikut : 28

21 Gambar 2.8 Kelengkungan Balok Titik A, B dan C akan tertekan, sedangkan titik A 1, B 1 dan C 1 akan meregang. Perpanjangan garis A 1 -A, B 1 -B, atau C 1 -C akan bertemu disuatu titik, misalkan titik O. Kita mengasumsikan bahwa bidang rata akan tetap rata, dan selalu tegak lurus serat memanjang. Sudut yang terbentuk akibat terjadinya perubahan kelengkungan di titik A dan B atau B dan C, kita nyatakan dengan Ø. Kalau Ø ini cukup kecil, maka : ab = (ρ - y) Ø, a 1 b 1 =ρ Ø dengan ρ adalah jari-jari kelengkungan (radius of curvature). Dengan demikian, regangan memanjang di suatu serat sejauh y dari sumbu netral dinyatakan sebagai : ab a1b ε = a b y ε = ρ Dimana 1/ ρ menunjukkan kelengkungan. Tanda negatif menunjukkan 29

22 bahwa bagian di atas garis netral berada pada kondisi tekan; sedangkan bagian di bawah garis pada kondisi tarik. Dengan ε = σ / E, maka : σ = E 1 = R y R σ Ey adalah : Tegangan tarik pada serat bawah dan tegangan tekan pada serat atas M σ = S Dimana : S=Modulus penampang y = D/2 akhirnya diperoleh: 1 R = M ESD / 2 I = SD / 2 1 R = M EI 2 d y = dx Dari persamaan (2.6), untuk harga ε = ε y dan y = z diperoleh harga kelengkungan: K=ε y /z Dengan ε y merupakan regangan leleh. Pada saat penampang mengalami lenturan, bagian atas akan memendek dan bagian bawah akan memanjang. Selama proses dari elastis ke plastis, dapat dikatakan bahwa penampang mengalami 3 kondisi penting, yaitu : 30

23 1. Pada saat tegangan lelehnya masih berada di bagian atas. 2. Saat tegangan leleh telah mencapai bagian tengah. 3. Saat seluruh serat telah mencapai tegangan leleh. Keadaan di atas diperlihatkan pada gambar berikut: a b c d e Gambar 2.9 Distribusi Tegangan pada Penampang Persamaan kelengkungan untuk penampang segi-empat, nilai f = 1,5 : 2 K y M = f 0, K Kurva momen-kelengkungan yang diperoleh dari persamaan (2.10) diperlihatkan pada gambar berikut: Gambar 2.10 Hubungan Momen-Kelengkungan 31

24 Perbandingan antara momen plastis M p dengan momen leleh M y menyatakan peningkatan kekuatan penampang akibat ditinjau dari kondisi plastis. Perbandingan ini tergantung dari bentuk penampangnya, f (shape factor). Maka : f = M M p = y Z S Dimana : f = faktor bentuk (shape factor) Mp = momen plastis penampang My = momen leleh S = modulus penampang Z = modulus plastis II.4 ANALISA STRUKTUR SECARA PLASTIS II.4.1 Pengertian Sendi Plastis Analisa struktur secara plastis bertujuan untuk menentukan beban batas yang dapat dipikul oleh suatu struktur ketika mengalami keruntuhan. Keruntuhan struktur dimulai dengan terjadinya sendi plastis. Keruntuhan dapat bersifat menyeluruh atau parsial.penambahan beban lagi pada suatu struktur setelah serat terluar telah mencapai kondisi leleh, akan mengakibatkan tegangan lelehnya menjalar ke serat sebelah dalam. Dengan penambahan beban sedikit lagi maka seluruh serat pada penampang tersebut akan mengalami tegangan leleh. Dan momen maksimum yang terjadi pada penampang tersebut menjadi momen plastis. Pada saat keadaan ini, 32

25 penampang akan mengalami rotasi yang cukup besar tanpa terjadi perubahan momen. Dapat dikatakan bahwa pada struktur tersebut yang terjadi momen maksimum telah terbentuk sendi plastis (plastic hinge). Titik-titik tertentu pada penampang yang memiliki momen terbesar akan lebih cepat terbentuk sendi plastis dibandingkan titiktitik lain pada penampang tersebut. Dari keadaan di atas dapat dikatakan bahwa sendi plastis merupakan suatu kondisi dimana terjadi perputaran (rotasi) pada suatu struktur yang berlangsung secara terus menerus sebelum pada akhirnya mencapai keruntuhan yang diakibatkan oleh pembebanan eksternal. Jumlah sendi plastis yang diperlukan untuk mengubah suatu struktur ke dalam kondisi mekanisme keruntuhannya, sangat berkaitan dengan derajat statis tak tentu yang ada dalam struktur tersebut. Pada struktur statis tak tentu, pembentukan satu sendi plastis belum langsung menyebabkan terjadinya keruntuhan struktur. Sejumlah tertentu sendi plastis harus terbentuk dulu agar struktur mencapai kondisi mekanisme keruntuhannya. Hal ini dapat dirumuskan sebagai berikut : n = r +1 dimana : n = jumlah sendi plastis untuk runtuh r = derajat statis tak tentu atau redundan 33

26 Adapun mekanisme keruntuhan pada berbagai perletakan yaitu: 1. Struktur dua perletakan sendi - rol (balok statis tertentu) Struktur pembebanan mekanisme runtuh Gambar 2.11 Mekanisme Keruntuhan Balok Struktur dengan beban terpusat di tengah bentang ini hanya memerlukan sebuah sendi plastis untuk mencapai mekanisme keruntuhannya. Sendi plastis akan terbentuk di tengah bentangan struktur tersebut karena momen maksimum terjadi pada titik ini. Sehingga titik inilah yang mencapai kapasitas momen plastis penampangnya lebih dahulu dari pada titik lain pada bentang tersebut. 2. Struktur dua perletakan sendi - jepit (balok statis tak tertentu) Struktur pembebanan mekanisme runtuh Gambar 2.12 Mekanisme Keruntuhan Balok Struktur ini memerlukan dua buah sendi plastis agar tercapai mekanisme keruntuhannya. Sendi plastis akan terbentuk pada titik momen maksimum dan tumpuan jepit. 3. Struktur dua perletakan jepit jepit (balok statis tak tentu) Struktur pembebanan mekanisme runtuh Gambar 2.13 Mekanisme Keruntuhan Balok 34

27 Struktur ini memerlukan tiga buah sendi plastis untuk mencapai mekanisme keruntuhannya. Sendi plastis terbentuk pada kedua tumpuan jepit dan titik momen maksimum. 4. Struktur jepit bebas (balok kantilever) Struktur pembebanan mekanisme runtuh Gambar 2.14 Mekanisme Keruntuhan Balok Struktur ini hanya memerlukan sebuah sendi plastis untuk mencapai mekanisme keruntuhannya. Sendi plastis terbentuk pada tumpuan jepit struktur tersebut. II.4.2 Bentuk Sendi Plastis Panjang sendi plastis (Lp) tergantung pada geometri struktur dan pembebanan yang diberikan pada struktur. a. Bentuk sendi plastis pada balok pembebanan terpusat Gambar 2.15 Bentuk sendi plastis pembebanan terpusat M R x = M P l 35

28 b. Bentuk sendi plastis pada balok pembebanan terbagi rata Gambar 2.16 Bentuk sendi plastis pembebanan terbagi rata M R x = M P l II.4.3 Perhitungan Struktur berdasarkan Kekuatan Batas Perhitungan struktur ketika mencapai kondisi runtuh didasarkan atas tiga kondisi berikut, yaitu : 1. Kondisi Leleh (yield condition) Kondisi leleh merupakan keadaan pada saat runtuh, dimana momen lentur dari suatu struktur tidak ada yang melampaui kapasitas momen plastisnya, yaitu M p > M elastis. 2. Kondisi Keseimbangan (equilibrium condition) Kondisi keseimbangan merupakan kondisi dimana jumlah gayagaya dan momen-momen dalam keadaan seimbang adalah nol. 3. Kondisi Mekanisme (mechanism condition) Kondisi mekanisme merupakan suatu kondisi dimana sejumlah sendi plastis telah terbentuk dan cukup untuk mengubah sebagian ataupun seluruh struktur ke dalam kondisi mekanisme keruntuhannya. Kondisi kondisi di atas merupakan dasar dari teorema teorema berikut : 36

29 1. Teorema Batas Bawah (lower bound theorem) Teorema ini menetapkan atau menghitung distribusi momen dalam struktur berdasarkan kondisi keseimbangan dan leleh. Beban (factor beban λ) yang dihasilkan akan lebih kecil atau sama dengan harga yang sebenarnya λ c. λ λ c 2. Teorema Batas Atas (upper bound theorem) Teorema ini menetapkan atau menghitung distribusi momen dalam struktur berdasarkan kondisi keseimbangan dan mekanisme. Maka beban (factor beban λ) yang dihasilkan akan lebih besar atau sama dengan beban yang sebenarnya λ c. λ λ c Analisa struktur berdasarkan kekuatan batas, secara umum ada tiga cara yaitu ; 1. Cara Grafostatis Cara ini meliputi penentuan secara grafostatis suatu bidangmomen dalam keadaan batas sedemikian rupa, sehingga dengan momen di setiap penampang tidak melampaui momen batas ( M < M p ), tercapai suatu mekanisme keruntuhan. 2. Cara Mekanisme Cara mekanisme merupakan cara yang lebih cepat untuk mendapatkan hasil dibandingkan dengan cara grafostatis, terutama pada struktur yang derajat kehiperstatisannya lebih banyak. Cara mekanisme mempergunakan prinsip kerja virtual. 37

30 Prinsip kerja virtual adalah suatu cara yang meninjau keseimbangan energi dari struktur ketika mengalami mekanisme keruntuhannya. Dapat dikatakan bahwa energi dalam = energi luar. Persamaan prinsip kerja virtual dijelaskan berdasarkan persamaan berikut : Σ M p.θ = Σ P V. V + Σ P H. H Dimana : M p = Momen platis tampang θ P V P H V H = Sudut Rotasi Sendi Plastis = Gaya Vertikal = Gaya Horizontal = Displacement Vertikal = Displacement Horizontal 3. Cara Distribusi Momen (moment balancing method) Cara distribusi momen mirip dengan metode distribusi cara cross, sehingga cara ini sering juga disebut metode distribusi momen plastis. II.5 METODE NUMERIK Metode numerik adalah suatu teknik penyelesaian yang diformulasikan secara matematis dengan cara operasi hitungan/aritmatik dan dilakukan secara berulang-ulang dengan bantuan computer atau secara manual (hand calculation). Dalam menganalisis suatu permasalahan yang didekati dengan menggunakan metode numerik, umumnya melibatkan angka-angka dalam 38

31 jumlah banyak dan melewati proses perhitungan matematika yang cukup rumit. Gambar 2.17 Grafik aproksimasi diferensiasi maju, mundur, dan tengah Deret Taylor akan memberikan nilai hampiran bagi suatu fungsi pada suatu titik, berdasarkan nilai fungsi dan derivatifnya pada titik yang lain. Persamaan Deret Taylor yaitu : f "( xi ) 2 f ( xi ) n f ( xi+ ) f ( xi ) f '( xi ).( xi+ 1 xi) +. h h + R 2! n! 1 n ( n) Dalam metode numerik, persamaan diferensi hingga (finite difference) secara umum yaitu : f ( xi+ 1) f ( xi ) f '( xi ) = + 0 i+ 1 x x atau i+ 1 i ( x x ) f i f '( xi ) = h i 39

32 Persamaan 2.16 dan 2.17 disebut sebagai persamaan diferensi hingga maju dari turunan pertama. Selanjutnya deret taylor dapat diperluas mundur untuk menghitung nilai sebelumnya berdasarkan pada suatu nilai sekarang. f "( xi ) 2 f ( xi 1 ) = f ( xi ) f '( xi ). h+. h a 2! Dan bila dipotong setelah suku turunan pertama, maka akan diperoleh : f ( xi ) f ( xi 1) f '( xi ) + 0. h b h Persamaan 2.18b ini disebut diferensi hingga mundur dari turunan pertama. Bila persamaan 2.18a dan 2.16 dikurangkan maka akan didapat : f '( x ) f ( x ) 2h f ( x i+ 1 i 1 i + ) 0. h Persamaan 2.19 disebut diferensi hingga tengah dari turunan pertama. Sedangkan persamaan diferensi hingga maju turunan kedua yaitu : f ( xi+ 2 ) 2. f ( xi+ 1) f ( xi ) f "( xi ) = h Selanjutnya dapat diturunkan diferensi mundur turunan kedua yaitu : f ( xi ) 2. f ( xi 1) f ( xi 2 ) f "( xi ) = + 0 h h Dan diferensi tengahnya adalah : f ( xi+ 1) 2. f ( xi ) f "( x ) = 2 h f ( x i 1 i + ) 0 ( h) ( ) 21 ( h)

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Umum Struktur kayu merupakan suatu struktur yang susunan elemennya adalah kayu. Dalam merancang struktur kolom kayu, hal pertama yang harus dilakukan adalah menetapkan besarnya

Lebih terperinci

BAB II TEORI DASAR II.I.HUBUNGAN TEGANGAN DAN REGANGAN. Hooke pada tahun Dalam hukum hooke dijelaskan bahwa apabila suatu baja

BAB II TEORI DASAR II.I.HUBUNGAN TEGANGAN DAN REGANGAN. Hooke pada tahun Dalam hukum hooke dijelaskan bahwa apabila suatu baja BAB II TEORI DASAR II.I.HUBUNGAN TEGANGAN DAN REGANGAN Hubungan tegangan dan regangan pertama kali dikemukakan oleh Robert Hooke pada tahun 1678. Dalam hukum hooke dijelaskan bahwa apabila suatu baja lunak

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Kayu Kayu merupakan suatu bahan mentah yang didapatkan dari pengolahan pohon pohon yang terdapat di hutan. Kayu dapat menjadi bahan utama pembuatan mebel, bahkan dapat menjadi

Lebih terperinci

IV. HASIL DAN PEMBAHASAN. Pembahasan hasil penelitian ini secara umum dibagi menjadi lima bagian yaitu

IV. HASIL DAN PEMBAHASAN. Pembahasan hasil penelitian ini secara umum dibagi menjadi lima bagian yaitu IV. HASIL DAN PEMBAHASAN Pembahasan hasil penelitian ini secara umum dibagi menjadi lima bagian yaitu pengujian mekanik beton, pengujian benda uji balok beton bertulang, analisis hasil pengujian, perhitungan

Lebih terperinci

(trees). Terdapat perbedaan pengertian antara pohon dan tanam-tanaman

(trees). Terdapat perbedaan pengertian antara pohon dan tanam-tanaman DASAR-DASAR STRUKTUR KAYU A. MENGENAL KAYU 1. Pengertian kayu Kayu adalah bahan yang kita dapatkan dari tumbuh-tumbuhan (dalam) alam dan termasuk vegetasi hutan. Tumbuh-tumbuhan yang dimaksud disini adalah

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Dasar Dasar Teori 2.1.1. Hubungan tegangan dan regangan Hubungan teganan dan regangan pertama kali dikemukakan oleh Robert Hooke pada tahun 1678. Dalam hokum hooke dijelaskan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. UMUM Kapasitas pikul beban batas pada elemen struktur yang mengalami pembebanan khususnya balok tergantung pada panjang relatif dan karakteristik dimensional penampang melintang

Lebih terperinci

ANALISA LENDUTAN BALOK KAYU KELAPA NON PRISMATIS PERLETAKAN SENDI ROL DENGAN METODE PLASTIS (EKSPERIMEN)

ANALISA LENDUTAN BALOK KAYU KELAPA NON PRISMATIS PERLETAKAN SENDI ROL DENGAN METODE PLASTIS (EKSPERIMEN) ANALISA LENDUTAN BALOK KAYU KELAPA NON PRISMATIS PERLETAKAN SENDI ROL DENGAN METODE PLASTIS (EKSPERIMEN) TUGAS AKHIR Diajukan untuk melengkapi syarat penyelesaian pendidikan sarjana teknik sipil Oleh :

Lebih terperinci

BAB II TINJAUAN PUSTAKA. mengetahui sifat-sifat yang umum dari bahan struktur yang dimaksud.

BAB II TINJAUAN PUSTAKA. mengetahui sifat-sifat yang umum dari bahan struktur yang dimaksud. BAB II TINJAUAN PUSTAKA II.1 Umum Konsep dasar perencananan bangunan komposit kayu-beton adalah kayu mempunyai kuat tarik dan tekan yang relatif baik serta berat yang relatif rendah dan material beton

Lebih terperinci

Pembebanan Batang Secara Aksial. Bahan Ajar Mekanika Bahan Mulyati, MT

Pembebanan Batang Secara Aksial. Bahan Ajar Mekanika Bahan Mulyati, MT Pembebanan Batang Secara Aksial Suatu batang dengan luas penampang konstan, dibebani melalui kedua ujungnya dengan sepasang gaya linier i dengan arah saling berlawanan yang berimpit i pada sumbu longitudinal

Lebih terperinci

BAB III LANDASAN TEORI Klasifikasi Kayu Kayu Bangunan dibagi dalam 3 (tiga) golongan pemakaian yaitu :

BAB III LANDASAN TEORI Klasifikasi Kayu Kayu Bangunan dibagi dalam 3 (tiga) golongan pemakaian yaitu : BAB III LANDASAN TEORI 3.1. Klasifikasi Kayu Kayu Bangunan dibagi dalam 3 (tiga) golongan pemakaian yaitu : 1. Kayu Bangunan Struktural : Kayu Bangunan yang digunakan untuk bagian struktural Bangunan dan

Lebih terperinci

ANALISIS BALOK BERSUSUN DARI KAYU LAPIS DENGAN MENGGUNAKAN PAKU SEBAGAI SHEAR CONNECTOR (EKSPERIMENTAL) TUGAS AKHIR

ANALISIS BALOK BERSUSUN DARI KAYU LAPIS DENGAN MENGGUNAKAN PAKU SEBAGAI SHEAR CONNECTOR (EKSPERIMENTAL) TUGAS AKHIR ANALISIS BALOK BERSUSUN DARI KAYU LAPIS DENGAN MENGGUNAKAN PAKU SEBAGAI SHEAR CONNECTOR (EKSPERIMENTAL) TUGAS AKHIR Diajukan untuk Melengkapi Tugas-tugas dan Memenuhi Syarat untuk Menempuh Ujian Sarjana

Lebih terperinci

KAJIAN KOEFISIEN PASAK DAN TEGANGAN IZIN PADA PASAK CINCIN BERDASARKAN REVISI PKKI NI DENGAN CARA EXPERIMENTAL TUGAS AKHIR

KAJIAN KOEFISIEN PASAK DAN TEGANGAN IZIN PADA PASAK CINCIN BERDASARKAN REVISI PKKI NI DENGAN CARA EXPERIMENTAL TUGAS AKHIR KAJIAN KOEFISIEN PASAK DAN TEGANGAN IZIN PADA PASAK CINCIN BERDASARKAN REVISI PKKI NI-5 2002 DENGAN CARA EXPERIMENTAL TUGAS AKHIR Diajukan Untuk Melengkapi Tugas-tugas dan Memenuhi Syarat untuk Menempuh

Lebih terperinci

HHT 232 SIFAT KEKUATAN KAYU. MK: Sifat Mekanis Kayu (HHT 331)

HHT 232 SIFAT KEKUATAN KAYU. MK: Sifat Mekanis Kayu (HHT 331) SIFAT KEKUATAN KAYU MK: Sifat Mekanis Kayu (HHT 331) 1 A. Sifat yang banyak dilakukan pengujian : 1. Kekuatan Lentur Statis (Static Bending Strength) Adalah kapasitas/kemampuan kayu dalam menerima beban

Lebih terperinci

BAB II STUDI PUSTAKA. rangka rumah, jembatan dan struktur lainnya, telah lama dikenal oleh masyarakat. Kayu

BAB II STUDI PUSTAKA. rangka rumah, jembatan dan struktur lainnya, telah lama dikenal oleh masyarakat. Kayu BAB II STUDI PUSTAKA II.1 Umum Penggunaan kayu sebagai bahan struktur seperti pada konstruksi kuda-kuda, rangka rumah, jembatan dan struktur lainnya, telah lama dikenal oleh masyarakat. Kayu dipilih sebagai

Lebih terperinci

BAB III METODE PENELITIAN. sesuai dengan SNI no. 03 tahun 2002 untuk masing-masing pengujian. Kayu tersebut diambil

BAB III METODE PENELITIAN. sesuai dengan SNI no. 03 tahun 2002 untuk masing-masing pengujian. Kayu tersebut diambil BAB III METODE PENELITIAN 3.1 Persiapan Penelitian Jenis kayu yang dipakai dalam penelitian ini adalah kayu rambung dengan ukuran sesuai dengan SNI no. 03 tahun 2002 untuk masing-masing pengujian. Kayu

Lebih terperinci

PERBANDINGAN PERENCANAAN SAMBUNGAN KAYU DENGAN BAUT DAN PAKU BERDASARKAN PKKI 1961 NI-5 DAN SNI 7973:2013

PERBANDINGAN PERENCANAAN SAMBUNGAN KAYU DENGAN BAUT DAN PAKU BERDASARKAN PKKI 1961 NI-5 DAN SNI 7973:2013 PERBANDINGAN PERENCANAAN SAMBUNGAN KAYU DENGAN BAUT DAN PAKU BERDASARKAN 1961 NI- DAN SNI 7973:213 Eman 1, Budisetyono 2 dan Ruslan 3 ABSTRAK : Seiring perkembangan teknologi, manusia mulai beralih menggunakan

Lebih terperinci

Pertemuan I,II,III I. Tegangan dan Regangan

Pertemuan I,II,III I. Tegangan dan Regangan Pertemuan I,II,III I. Tegangan dan Regangan I.1 Tegangan dan Regangan Normal 1. Tegangan Normal Konsep paling dasar dalam mekanika bahan adalah tegangan dan regangan. Konsep ini dapat diilustrasikan dalam

Lebih terperinci

BAB II STUDI PUSTAKA

BAB II STUDI PUSTAKA BAB II STUDI PUSTAKA 2.1. Kayu Kayu merupakan material yang diperoleh secara alami dari pohon dan sifatnya renewable yaitu ketersediaannya tidak terbatas selama dikelola secara baik. Kayu juga dapat dibentuk

Lebih terperinci

BAB III LANDASAN TEORI. Kayu memiliki berat jenis yang berbeda-beda berkisar antara

BAB III LANDASAN TEORI. Kayu memiliki berat jenis yang berbeda-beda berkisar antara BAB III LANDASAN TEORI 3.1 Berat Jenis dan Kerapatan Kayu Kayu memiliki berat jenis yang berbeda-beda berkisar antara 0.2-1.28 kg/cm 3. Berat jenis kayu merupakan suatu petunjuk dalam menentukan kekuatan

Lebih terperinci

II. TEGANGAN BAHAN KAYU

II. TEGANGAN BAHAN KAYU II. TEGANGAN BAHAN KAYU I. Definisi Istilah kekuatan atau tegangan pada bahan seperti kayu erat kaitannya dengan kemampuan bahan untuk mendukung gaya luar atau beban yang berusaha merubah ukuran dan bentuk

Lebih terperinci

BAB 2. TINJAUAN PUSTAKA

BAB 2. TINJAUAN PUSTAKA BAB 2. TINJAUAN PUSTAKA Teori garis leleh ini dikemukakan oleh A.Ingerslev (1921-1923) kemudian dikembangkan oleh K.W. Johansen (1940). Teori garis leleh ini popular dipakai di daerah asalnya yaitu daerah

Lebih terperinci

BAB I PENDAHULUAN. pozolanik) sebetulnya telah dimulai sejak zaman Yunani, Romawi dan mungkin juga

BAB I PENDAHULUAN. pozolanik) sebetulnya telah dimulai sejak zaman Yunani, Romawi dan mungkin juga BAB I PENDAHULUAN 1.1. Latar Belakang Penggunaan beton dan bahan-bahan vulkanik sebagai pembentuknya (seperti abu pozolanik) sebetulnya telah dimulai sejak zaman Yunani, Romawi dan mungkin juga sebelum

Lebih terperinci

d b = Diameter nominal batang tulangan, kawat atau strand prategang D = Beban mati atau momen dan gaya dalam yang berhubungan dengan beban mati e = Ek

d b = Diameter nominal batang tulangan, kawat atau strand prategang D = Beban mati atau momen dan gaya dalam yang berhubungan dengan beban mati e = Ek DAFTAR NOTASI A g = Luas bruto penampang (mm 2 ) A n = Luas bersih penampang (mm 2 ) A tp = Luas penampang tiang pancang (mm 2 ) A l =Luas total tulangan longitudinal yang menahan torsi (mm 2 ) A s = Luas

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN 4.1 Mutu Kekakuan Lamina BAB IV HASIL DAN PEMBAHASAN Penyusunan lamina diawali dengan melakukan penentuan mutu pada tiap ketebalan lamina menggunakan uji non destructive test. Data hasil pengujian NDT

Lebih terperinci

BAB I PENDAHULUAN. di alam dan pertama kali digunakan dalam sejarah umat manusia. Kayu sampai saat

BAB I PENDAHULUAN. di alam dan pertama kali digunakan dalam sejarah umat manusia. Kayu sampai saat BAB I PENDAHULUAN I.1 Latar Belakang Kayu merupakan salah satu material konstruksi yang paling banyak terdapat di alam dan pertama kali digunakan dalam sejarah umat manusia. Kayu sampai saat ini masih

Lebih terperinci

BAB II DASAR TEORI. 2.1 Pengertian rangka

BAB II DASAR TEORI. 2.1 Pengertian rangka BAB II DASAR TEORI 2.1 Pengertian rangka Rangka adalah struktur datar yang terdiri dari sejumlah batang-batang yang disambung-sambung satu dengan yang lain pada ujungnya, sehingga membentuk suatu rangka

Lebih terperinci

ANALISIS DAKTILITAS BALOK BETON BERTULANG

ANALISIS DAKTILITAS BALOK BETON BERTULANG ANALISIS DAKTILITAS BALOK BETON BERTULANG Bobly Sadrach NRP : 9621081 NIRM : 41077011960360 Pembimbing : Daud Rahmat Wiyono, Ir., M.Sc FAKULTAS TEKNIK JURUSAN TEKNIK SIPIL UNIVERSITAS KRISTEN MARANATHA

Lebih terperinci

BAB III LANDASAN TEORI

BAB III LANDASAN TEORI BAB III LANDASAN TEORI 3.1. Kuat Tekan Beton Kekuatan tekan adalah kemampuan beton untuk menerima gaya tekan persatuan luas. Kuat tekan beton mengidentifikasikan mutu dari sebuah struktur. Semakin tinggi

Lebih terperinci

PENGUJIAN KUAT LENTUR KAYU PROFIL TERSUSUN BENTUK

PENGUJIAN KUAT LENTUR KAYU PROFIL TERSUSUN BENTUK PENGUJIAN KUAT LENTUR KAYU PROFIL TERSUSUN BENTUK Mega Nospita Matana Ellen J. Kumaat, Ronny Pandaleke Fakultas Teknik, Jurusan Teknik Sipil, Universitas Sam Ratulangi Email: megamatana@ymail.com ABSTRAK

Lebih terperinci

BAB II STUDI PUSTAKA. terutama untuk bangunan sederhana atau yang bersifat sementara dan kuda kuda untuk

BAB II STUDI PUSTAKA. terutama untuk bangunan sederhana atau yang bersifat sementara dan kuda kuda untuk BAB II STUDI PUSTAKA 2.1 Umum Sebagai salah satu bahan konstruksi, kayu memegang peranan cukup penting terutama untuk bangunan sederhana atau yang bersifat sementara dan kuda kuda untuk atap. Kayu adalah

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pembebanan Komponen Struktur Pada perencanaan bangunan bertingkat tinggi, komponen struktur direncanakan cukup kuat untuk memikul semua beban kerjanya. Pengertian beban itu

Lebih terperinci

BAB I PENDAHULUAN. Universitas Sumatera Utara

BAB I PENDAHULUAN. Universitas Sumatera Utara BAB I PENDAHULUAN 1.1. UMUM DAN LATAR BELAKANG Sejak permulaan sejarah, manusia telah berusaha memilih bahan yang tepat untuk membangun tempat tinggalnya dan peralatan-peralatan yang dibutuhkan. Pemilihan

Lebih terperinci

BAB II TINJAUAN PUSTAKA. gedung dalam menahan beban-beban yang bekerja pada struktur tersebut. Dalam. harus diperhitungkan adalah sebagai berikut :

BAB II TINJAUAN PUSTAKA. gedung dalam menahan beban-beban yang bekerja pada struktur tersebut. Dalam. harus diperhitungkan adalah sebagai berikut : 4 BAB II TINJAUAN PUSTAKA 2.1.Pembebanan Struktur Perencanaan struktur bangunan gedung harus didasarkan pada kemampuan gedung dalam menahan beban-beban yang bekerja pada struktur tersebut. Dalam Peraturan

Lebih terperinci

LENTUR PADA BALOK PERSEGI ANALISIS

LENTUR PADA BALOK PERSEGI ANALISIS LENTUR PADA BALOK PERSEGI ANALISIS Ketentuan Perencanaan Pembebanan Besar beban yang bekerja pada struktur ditentukan oleh jenis dan fungsi dari struktur tersebut. Untuk itu, dalam menentukan jenis beban

Lebih terperinci

PERILAKU BALOK BERTULANG YANG DIBERI PERKUATAN GESER MENGGUNAKAN LEMBARAN WOVEN CARBON FIBER

PERILAKU BALOK BERTULANG YANG DIBERI PERKUATAN GESER MENGGUNAKAN LEMBARAN WOVEN CARBON FIBER PERILAKU BALOK BERTULANG YANG DIBERI PERKUATAN GESER MENGGUNAKAN LEMBARAN WOVEN CARBON FIBER TUGAS AKHIR Diajukan untuk melengkapi tugas tugas dan melengkapi syarat untuk menempuh Ujian Sarjana Teknik

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 28 BAB II TINJAUAN PUSTAKA II.1 Material Beton II.1.1 Definisi Material Beton Beton adalah suatu campuran antara semen, air, agregat halus seperti pasir dan agregat kasar seperti batu pecah dan kerikil.

Lebih terperinci

ANALISA P Collapse PADA GABLE FRAME DENGAN INERSIA YANG BERBEDA MENGGUNAKAN PLASTISITAS PENGEMBANGAN DARI FINITE ELEMENT METHOD

ANALISA P Collapse PADA GABLE FRAME DENGAN INERSIA YANG BERBEDA MENGGUNAKAN PLASTISITAS PENGEMBANGAN DARI FINITE ELEMENT METHOD ANALISA P Collapse PADA GABLE FRAME DENGAN INERSIA YANG BERBEDA MENGGUNAKAN PLASTISITAS PENGEMBANGAN DARI FINITE ELEMENT METHOD Tugas Akhir Diajukan untuk melengkapi tugas-tugas dan memenuhi Syarat untuk

Lebih terperinci

ANALISA DAN EKSPERIMENTAL PERILAKU TEKUK KOLOM TUNGGAL KAYU PANGGOH Putri Nurul Hardhanti 1, Sanci Barus 2

ANALISA DAN EKSPERIMENTAL PERILAKU TEKUK KOLOM TUNGGAL KAYU PANGGOH Putri Nurul Hardhanti 1, Sanci Barus 2 ANALISA DAN EKSPERIMENTAL PERILAKU TEKUK KOLOM TUNGGAL KAYU PANGGOH Putri Nurul Hardhanti 1, Sanci Barus 2 1 Departemen Teknik Sipil, Universitas Sumatera Utara, Jl. Perpustakaan No. 1 Kampus USU Medan

Lebih terperinci

REKAYASA JALAN REL. MODUL 5 : Bantalan PROGRAM STUDI TEKNIK SIPIL

REKAYASA JALAN REL. MODUL 5 : Bantalan PROGRAM STUDI TEKNIK SIPIL REKAYASA JALAN REL MODUL 5 : Bantalan OUTPUT : Mahasiswa dapat menjelaskan fungsi bantalan dalam konstruksi jalan rel Mahasiswa dapat menjelaskan perbedaan tipe bantalan serta penggunaan yang tepat sesuai

Lebih terperinci

BAB III LANDASAN TEORI

BAB III LANDASAN TEORI BAB III LANDASAN TEORI 3.1 Kuat Tekan Beton Sifat utama beton adalah memiliki kuat tekan yang lebih tinggi dibandingkan dengan kuat tariknya. Kekuatan tekan beton adalah kemampuan beton untuk menerima

Lebih terperinci

BAB III LANDASAN TEORI

BAB III LANDASAN TEORI BAB III LANDASAN TEORI 3.1. Kuat Tekan Beton Sifat utama beton adalah memiliki kuat tekan yang lebih tinggi dibandingkan dengan kuat tariknya. Kekuatan tekan beton adalah kemampuan beton untuk menerima

Lebih terperinci

Pertemuan I,II,III I. Kayu Sebagai Bahan Konstruksi

Pertemuan I,II,III I. Kayu Sebagai Bahan Konstruksi Pertemuan I,II,III I. Kayu Sebagai Bahan Konstruksi I.1 Dasar-Dasar Penggunaan Kayu Kayu merupakan satu dari beberapa bahan konstruksi yang sudah lama dikenal masyarakat, didapatkan dari semacam tanaman

Lebih terperinci

MATERI/MODUL MATA PRAKTIKUM

MATERI/MODUL MATA PRAKTIKUM PENGUJIAN BETON 4.1. Umum Beton adalah material struktur bangunan yang mempunyai kelebihan kuat menahan gaya desak, tetapi mempunyai kelebahan, yaitu kuat tariknya rendah hanya 9 15% dari kuat desaknya.

Lebih terperinci

III. DASAR PERENCANAAN

III. DASAR PERENCANAAN III. DASAR PERENCANAAN Persamaan kekuatan secara umum dapat dituliskan seperti pada Persamaan 3.1, dimana F u adalah gaya maksimum yang diakibatkan oleh serangkaian sistem pembebanan dan disebut pula sebagai

Lebih terperinci

Pd M Ruang lingkup

Pd M Ruang lingkup 1. Ruang lingkup 1.1 Metode ini menentukan sifat lentur potongan panel atau panel struktural yang berukuran sampai dengan (122 X 244) cm 2. Panel struktural yang digunakan meliputi kayu lapis, papan lapis,

Lebih terperinci

BABII TINJAUAN PUSTAKA. Bab ini berisi tentang teori dari beberapa sumber buku seperti buku - buku

BABII TINJAUAN PUSTAKA. Bab ini berisi tentang teori dari beberapa sumber buku seperti buku - buku BABII TINJAUAN PUSTAKA Bab ini berisi tentang teori dari beberapa sumber buku seperti buku - buku laporan tugas akhir dan makalah seminar yang digunakan sebagai inspirasi untuk menyusun konsep penelitian

Lebih terperinci

BAB I PENDAHULUAN. A. Latar Belakang. Desain struktur merupakan faktor yang sangat menentukan untuk menjamin

BAB I PENDAHULUAN. A. Latar Belakang. Desain struktur merupakan faktor yang sangat menentukan untuk menjamin BAB I PENDAHULUAN A. Latar Belakang Desain struktur merupakan faktor yang sangat menentukan untuk menjamin kekuatan dan keamanan suatu bangunan, karena inti dari suatu bangunan terletak pada kekuatan bangunan

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Semakin berkembangnya teknologi dan ilmu pengetahuan dewasa ini, juga membuat semakin berkembangnya berbagai macam teknik dalam pembangunan infrastruktur, baik itu

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA A. Analisis Lentur Balok Mac. Gregor (1997) mengatakan tegangan lentur pada balok diakibatkan oleh regangan yang timbul karena adanya beban luar. Apabila beban bertambah maka pada

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang 1 BAB I PENDAHULUAN 1.1 Latar Belakang Dalam dunia teknik sipil, pengkajian dan penelitian masalah bahan bangunan dan model struktur masih terus dilakukan. Oleh karena itu masih terus dicari dan diusahakan

Lebih terperinci

BAB III LANDASAN TEORI. beban hidup dan beban mati pada lantai yang selanjutnya akan disalurkan ke

BAB III LANDASAN TEORI. beban hidup dan beban mati pada lantai yang selanjutnya akan disalurkan ke BAB III LANDASAN TEORI 3.1. Pelat Pelat beton (concrete slabs) merupakan elemen struktural yang menerima beban hidup dan beban mati pada lantai yang selanjutnya akan disalurkan ke balok dan kolom sampai

Lebih terperinci

Bab 5 Puntiran. Gambar 5.1. Contoh batang yang mengalami puntiran

Bab 5 Puntiran. Gambar 5.1. Contoh batang yang mengalami puntiran Bab 5 Puntiran 5.1 Pendahuluan Pada bab ini akan dibahas mengenai kekuatan dan kekakuan batang lurus yang dibebani puntiran (torsi). Puntiran dapat terjadi secara murni atau bersamaan dengan beban aksial,

Lebih terperinci

BAB II TINJAUAN PUSTAKA. pembebanan yang berlaku untuk mendapatkan suatu struktur bangunan

BAB II TINJAUAN PUSTAKA. pembebanan yang berlaku untuk mendapatkan suatu struktur bangunan BAB II TINJAUAN PUSTAKA 2.1.Pembebanan Struktur Dalam perencanaan struktur bangunan harus mengikuti peraturanperaturan pembebanan yang berlaku untuk mendapatkan suatu struktur bangunan yang aman. Pengertian

Lebih terperinci

Tegangan Dalam Balok

Tegangan Dalam Balok Mata Kuliah : Mekanika Bahan Kode : TSP 05 SKS : SKS Tegangan Dalam Balok Pertemuan 9, 0, TIU : Mahasiswa dapat menghitung tegangan yang timbul pada elemen balok akibat momen lentur, gaya normal, gaya

Lebih terperinci

PUNTIRAN. A. pengertian

PUNTIRAN. A. pengertian PUNTIRAN A. pengertian Puntiran adalah suatu pembebanan yang penting. Sebagai contoh, kekuatan puntir menjadi permasalahan pada poros-poros, karena elemen deformasi plastik secara teori adalah slip (geseran)

Lebih terperinci

Bab 6 Defleksi Elastik Balok

Bab 6 Defleksi Elastik Balok Bab 6 Defleksi Elastik Balok 6.1. Pendahuluan Dalam perancangan atau analisis balok, tegangan yang terjadi dapat diteritukan dan sifat penampang dan beban-beban luar. Untuk mendapatkan sifat-sifat penampang

Lebih terperinci

BAB III LANDASAN TEORI. A. Pembebanan

BAB III LANDASAN TEORI. A. Pembebanan BAB III LANDASAN TEORI A. Pembebanan Dalam perancangan suatu struktur bangunan harus memenuhi peraturanperaturan yang berlaku sehingga diperoleh suatu struktur bangunan yang aman secara konstruksi. Struktur

Lebih terperinci

KAJIAN PERBANDINGAN SAMBUNGAN ANTAR KAYU DENGAN KAYU DAN ANTAR KAYU DENGAN PELAT BAJA BERDASARKAN PKKI NI (TEORITIS DAN EKSPERIMENTAL)

KAJIAN PERBANDINGAN SAMBUNGAN ANTAR KAYU DENGAN KAYU DAN ANTAR KAYU DENGAN PELAT BAJA BERDASARKAN PKKI NI (TEORITIS DAN EKSPERIMENTAL) KAJIAN PERBANDINGAN SAMBUNGAN ANTAR KAYU DENGAN KAYU DAN ANTAR KAYU DENGAN PELAT BAJA BERDASARKAN PKKI NI-5-2002 (TEORITIS DAN EKSPERIMENTAL) TUGAS AKHIR Dilengkapi untuk Melengkapi Tugas dan Memenuhi

Lebih terperinci

KAJIAN KUAT LENTUR BALOK BETON BERTULANG BIASA DAN BALOK BETON BERTULANGAN KAYU DAN BAMBU PADA SIMPLE BEAM. Naskah Publikasi

KAJIAN KUAT LENTUR BALOK BETON BERTULANG BIASA DAN BALOK BETON BERTULANGAN KAYU DAN BAMBU PADA SIMPLE BEAM. Naskah Publikasi KAJIAN KUAT LENTUR BALOK BETON BERTULANG BIASA DAN BALOK BETON BERTULANGAN KAYU DAN BAMBU PADA SIMPLE BEAM Naskah Publikasi untuk memenuhi sebagian persyaratan mencapai derajat Sarjana S-1 Teknik Sipil

Lebih terperinci

BAB I PENDAHULUAN. pesat yaitu selain awet dan kuat, berat yang lebih ringan Specific Strength yang

BAB I PENDAHULUAN. pesat yaitu selain awet dan kuat, berat yang lebih ringan Specific Strength yang BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Konstruksi Baja merupakan suatu alternatif yang menguntungkan dalam pembangunan gedung dan struktur yang lainnya baik dalam skala kecil maupun besar. Hal ini

Lebih terperinci

PENGARUH VARIASI LUAS PIPA PADA ELEMEN BALOK BETON BERTULANG TERHADAP KUAT LENTUR

PENGARUH VARIASI LUAS PIPA PADA ELEMEN BALOK BETON BERTULANG TERHADAP KUAT LENTUR PENGARUH VARIASI LUAS PIPA PADA ELEMEN BALOK BETON BERTULANG TERHADAP KUAT LENTUR Million Tandiono H. Manalip, Steenie E. Wallah Fakultas Teknik Jurusan Sipil Universitas Sam Ratulangi Email : tan.million8@gmail.com

Lebih terperinci

BAB III LANDASAN TEORI. A. Pembebanan Pada Pelat Lantai

BAB III LANDASAN TEORI. A. Pembebanan Pada Pelat Lantai 8 BAB III LANDASAN TEORI A. Pembebanan Pada Pelat Lantai Dalam penelitian ini pelat lantai merupakan pelat persegi yang diberi pembebanan secara merata pada seluruh bagian permukaannya. Material yang digunakan

Lebih terperinci

BAB I PENDAHULUAN. fisik menuntut perkembangan model struktur yang variatif, ekonomis, dan aman. Hal

BAB I PENDAHULUAN. fisik menuntut perkembangan model struktur yang variatif, ekonomis, dan aman. Hal BAB I PENDAHULUAN 1.1 Umum Ilmu pengetahuan yang berkembang pesat dan pembangunan sarana prasarana fisik menuntut perkembangan model struktur yang variatif, ekonomis, dan aman. Hal tersebut menjadi mungkin

Lebih terperinci

KAYU LAMINASI. Oleh : Yudi.K. Mowemba F

KAYU LAMINASI. Oleh : Yudi.K. Mowemba F KAYU LAMINASI Oleh : Yudi.K. Mowemba F 111 12 040 Pendahuluan Kayu merupakan bahan konstruksi tertua yang dapat diperbaharui dan merupakan salah satu sumber daya ekonomi yang penting. Seiring dengan perkembangan

Lebih terperinci

BAB 1 PENDAHULUAN. metoda desain elastis. Perencana menghitung beban kerja atau beban yang akan

BAB 1 PENDAHULUAN. metoda desain elastis. Perencana menghitung beban kerja atau beban yang akan BAB 1 PENDAHULUAN 1.1 LATAR BELAKANG PENULISAN Umumnya, pada masa lalu semua perencanaan struktur direncanakan dengan metoda desain elastis. Perencana menghitung beban kerja atau beban yang akan dipikul

Lebih terperinci

STUDI PUSTAKA KINERJA KAYU SEBAGAI ELEMEN STRUKTUR

STUDI PUSTAKA KINERJA KAYU SEBAGAI ELEMEN STRUKTUR TUGAS AKHIR STUDI PUSTAKA KINERJA KAYU SEBAGAI ELEMEN STRUKTUR Untuk Memenuhi Sebagian Persyaratan Dalam Menyelesaikan Pendidikan Program Studi ( S-1) Pada Program Studi Teknik Sipil Fakultas Teknik Universitas

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Kolom Kolom beton murni dapat mendukung beban sangat kecil, tetapi kapasitas daya dukung bebannya akan meningkat cukup besar jika ditambahkan tulangan longitudinal. Peningkatan

Lebih terperinci

A. Struktur Balok. a. Tunjangan lateral dari balok

A. Struktur Balok. a. Tunjangan lateral dari balok A. Struktur Balok 1. Balok Konstruksi Baja Batang lentur didefinisikan sebagai batang struktur yang menahan baban transversal atau beban yang tegak lurus sumbu batang. Batang lentur pada struktur yang

Lebih terperinci

ANALISIS CELLULAR BEAM DENGAN METODE PENDEKATAN DIBANDINGKAN DENGAN PROGRAM ANSYS TUGAS AKHIR. Anton Wijaya

ANALISIS CELLULAR BEAM DENGAN METODE PENDEKATAN DIBANDINGKAN DENGAN PROGRAM ANSYS TUGAS AKHIR. Anton Wijaya ANALISIS CELLULAR BEAM DENGAN METODE PENDEKATAN DIBANDINGKAN DENGAN PROGRAM ANSYS TUGAS AKHIR Diajukan untuk melengkapi syarat penyelesaian Pendidikan sarjana teknik sipil Anton Wijaya 060404116 BIDANG

Lebih terperinci

STUDI PEMBUATAN BEKISTING DITINJAU DARI SEGI KEKUATAN, KEKAKUAN DAN KESTABILAN PADA SUATU PROYEK KONSTRUKSI

STUDI PEMBUATAN BEKISTING DITINJAU DARI SEGI KEKUATAN, KEKAKUAN DAN KESTABILAN PADA SUATU PROYEK KONSTRUKSI STUDI PEMBUATAN BEKISTING DITINJAU DARI SEGI KEKUATAN, KEKAKUAN DAN KESTABILAN PADA SUATU PROYEK KONSTRUKSI DENIE SETIAWAN NRP : 9721019 NIRM : 41077011970255 Pembimbing : Maksum Tanubrata, Ir., MT. FAKULTAS

Lebih terperinci

PERILAKU BALOK KOMPOSIT KAYU PANGGOH BETON DENGAN DIISI KAYU PANGGOH DI DALAM BALOK BETON

PERILAKU BALOK KOMPOSIT KAYU PANGGOH BETON DENGAN DIISI KAYU PANGGOH DI DALAM BALOK BETON PERILAKU BALOK KOMPOSIT KAYU PANGGOH BETON DENGAN DIISI KAYU PANGGOH DI DALAM BALOK BETON Vivi Angraini 1 dan Besman Surbakti 2 1 Departemen Teknik Sipil, Universitas Sumatera Utara, Jl.Perpustakaan No.1

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Baja Baja merupakan bahan konstruksi yang sangat baik, sifat baja antara lain kekuatannya yang sangat besar dan keliatannya yang tinggi. Keliatan (ductility) ialah kemampuan

Lebih terperinci

BAB I PENDAHULUAN Umum. Pada dasarnya dalam suatu struktur, batang akan mengalami gaya lateral

BAB I PENDAHULUAN Umum. Pada dasarnya dalam suatu struktur, batang akan mengalami gaya lateral 1 BAB I PENDAHULUAN 1. 1 Umum Pada dasarnya dalam suatu struktur, batang akan mengalami gaya lateral dan aksial. Suatu batang yang menerima gaya aksial desak dan lateral secara bersamaan disebut balok

Lebih terperinci

E(Pa) E(Pa) HASIL DAN PEMBAHASAN. 4.1 Pengujian Tarik Material Kayu. Spesimen uji tarik pada kayu dilakukan pada dua spesimen uji.

E(Pa) E(Pa) HASIL DAN PEMBAHASAN. 4.1 Pengujian Tarik Material Kayu. Spesimen uji tarik pada kayu dilakukan pada dua spesimen uji. BAB IV HASIL DAN PEMBAHASAN 4. Pengujian Tarik Material Kayu Spesimen uji tarik pada kayu dilakukan pada dua spesimen uji. Dengan mengacu pada ASTM (American Standart for Testing Material) Wood D07 Tensile

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 5 BAB II TINJAUAN PUSTAKA 2.1. Pembebanan Struktur Dalam perencanaan suatu struktur bangunan gedung bertingkat tinggi sebaiknya mengikuti peraturan-peraturan pembebanan yang berlaku untuk mendapatkan suatu

Lebih terperinci

BAB III LANDASAN TEORI

BAB III LANDASAN TEORI BAB III LANDASAN TEORI 3.1 Kuat Tekan Beton SNI 03-1974-1990 memberikan pengertian kuat tekan beton adalah besarnya beban per satuan luas, yang menyebabkan benda uji beton hancur bila dibebani dengan gaya

Lebih terperinci

STUDI ANALISIS DAN EKSPERIMENTAL PENGARUH PERKUATAN SAMBUNGAN PADA STRUKTUR JEMBATAN RANGKA CANAI DINGIN TERHADAP LENDUTANNYA

STUDI ANALISIS DAN EKSPERIMENTAL PENGARUH PERKUATAN SAMBUNGAN PADA STRUKTUR JEMBATAN RANGKA CANAI DINGIN TERHADAP LENDUTANNYA STUDI ANALISIS DAN EKSPERIMENTAL PENGARUH PERKUATAN SAMBUNGAN PADA STRUKTUR JEMBATAN RANGKA CANAI DINGIN TERHADAP LENDUTANNYA Roland Martin S 1*)., Lilya Susanti 2), Erlangga Adang Perkasa 3) 1,2) Dosen,

Lebih terperinci

sejauh mungkin dari sumbu netral. Ini berarti bahwa momen inersianya

sejauh mungkin dari sumbu netral. Ini berarti bahwa momen inersianya BABH TINJAUAN PUSTAKA Pada balok ternyata hanya serat tepi atas dan bawah saja yang mengalami atau dibebani tegangan-tegangan yang besar, sedangkan serat di bagian dalam tegangannya semakin kecil. Agarmenjadi

Lebih terperinci

PENDAHULUAN. Universitas Sumatera Utara

PENDAHULUAN. Universitas Sumatera Utara PENDAHULUAN 1.1 Latar Belakang Kayu adalah salah satu bahan material struktur yang sudah lama dikenal masyarakat. Bila dibandingkan dengan material struktur lain, material kayu memiliki berat jenis yang

Lebih terperinci

BAB I PENDAHULUAN. tersebut. Modifikasi itu dapat dilakukan dengan mengubah suatu profil baja standard menjadi

BAB I PENDAHULUAN. tersebut. Modifikasi itu dapat dilakukan dengan mengubah suatu profil baja standard menjadi BAB I PENDAHULUAN I.1. Umum Struktur suatu portal baja dengan bentang yang besar sangatlah tidak ekonomis bila menggunakan profil baja standard. Untuk itu diperlukannya suatu modifikasi pada profil baja

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Umum Struktur komposit beton dengan memanfaatkan kayu panggoh sebagai tulangan pokok direncanakan agar dapat menambah kekuatan tarik yang tidak dimiliki oleh beton karena pada

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Kolom adalah batang tekan vertikal dari rangka struktural yang memikul beban dari balok. Kolom meneruskan beban-beban dari elevasi atas ke elevasi yang lebih bawah hingga akhirnya

Lebih terperinci

Gambar 2.1 Rangka dengan Dinding Pengisi

Gambar 2.1 Rangka dengan Dinding Pengisi BAB II TINJAUAN PUSTAKA 2.1. Dinding Pengisi 2.1.1 Definisi Dinding pengisi yang umumnya difungsikan sebagai penyekat, dinding eksterior, dan dinding yang terdapat pada sekeliling tangga dan elevator secara

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA A. Deskripsi umum Desain struktur merupakan salah satu bagian dari keseluruhan proses perencanaan bangunan. Proses desain merupakan gabungan antara unsur seni dan sains yang membutuhkan

Lebih terperinci

BAB II STUDI PUSTAKA

BAB II STUDI PUSTAKA BAB II STUDI PUSTAKA 2.1. Kayu Kayu adalah suatu bahan konstruksi yang berasal dari alam dan merupakan salah satu bahan konstruksi yang pertama digunakan oleh manusia. Material kayu merupakan bahan struktur

Lebih terperinci

TUGAS MAHASISWA TENTANG

TUGAS MAHASISWA TENTANG TUGAS MAHASISWA TENTANG o DIAGRAM BIDANG MOMEN, LINTANG, DAN NORMAL PADA BALOK KANTILEVER. o DIAGRAM BIDANG MOMEN, LINTANG, DAN NORMAL PADA BALOK SEDERHANA. Disusun Oleh : Nur Wahidiah 5423164691 D3 Teknik

Lebih terperinci

BAB IV HASIL EKSPERIMEN DAN ANALISIS

BAB IV HASIL EKSPERIMEN DAN ANALISIS IV-1 BAB IV HASIL EKSPERIMEN DAN ANALISIS Data hasil eksperimen yang di dapat akan dilakukan analisis terutama kemampuan daktilitas beton yang menggunakan 2 (dua) macam serat yaitu serat baja dan serat

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Kolom adalah batang tekan vertikal dari rangka (frame) struktural yang

BAB II TINJAUAN PUSTAKA. Kolom adalah batang tekan vertikal dari rangka (frame) struktural yang BAB II TINJAUAN PUSTAKA 2.1. Kolom lentur. Kolom merupakan elemen struktur yang menahan gaya aksial dan momen 2.1.1. Pengertian dan prinsip dasar kolom Kolom adalah batang tekan vertikal dari rangka (frame)

Lebih terperinci

ANALISA DAN EKSPERIMENTAL KOMPOSIT KAYU KELAS MUTU TINGGI LANTAI BETON SECARA ELASTIS DAN ULTIMATE

ANALISA DAN EKSPERIMENTAL KOMPOSIT KAYU KELAS MUTU TINGGI LANTAI BETON SECARA ELASTIS DAN ULTIMATE ANALISA DAN EKSPERIMENTAL KOMPOSIT KAYU KELAS MUTU TINGGI LANTAI BETON SECARA ELASTIS DAN ULTIMATE TUGAS AKHIR Diajukan untuk melengkapi syarat penyelesaian pendidikan sarjana teknik sipil Oleh : RILLY

Lebih terperinci

PLATE GIRDER A. Pengertian Pelat Girder

PLATE GIRDER A. Pengertian Pelat Girder PLATE GIRDER A. Pengertian Pelat Girder Dalam penggunaan profil baja tunggal (seperti profil I) sebagai elemen lentur jika ukuran profilnya masih belum cukup memenuhi karena gaya dalam (momen dan gaya

Lebih terperinci

Bab II STUDI PUSTAKA

Bab II STUDI PUSTAKA Bab II STUDI PUSTAKA 2.1 Pengertian Sambungan, dan Momen 1. Sambungan adalah lokasi dimana ujung-ujung batang bertemu. Umumnya sambungan dapat menyalurkan ketiga jenis gaya dalam. Beberapa jenis sambungan

Lebih terperinci

BAB 4 Tegangan dan Regangan pada Balok akibat Lentur, Gaya Normal dan Geser

BAB 4 Tegangan dan Regangan pada Balok akibat Lentur, Gaya Normal dan Geser BAB 4 Tegangan dan Regangan pada Balok akibat Lentur, Gaya Normal dan Geser 4.1 Tegangan dan Regangan Balok akibat Lentur Murni Pada bab berikut akan dibahas mengenai respons balok akibat pembebanan. Balok

Lebih terperinci

BAB I PENDAHULUAN. analisa elastis dan plastis. Pada analisa elastis, diasumsikan bahwa ketika struktur

BAB I PENDAHULUAN. analisa elastis dan plastis. Pada analisa elastis, diasumsikan bahwa ketika struktur BAB I PENDAHUUAN 1.1. atar Belakang Masalah Dalam perencanaan struktur dapat dilakukan dengan dua cara yaitu analisa elastis dan plastis. Pada analisa elastis, diasumsikan bahwa ketika struktur dibebani

Lebih terperinci

BAB I PENDAHULUAN. berkembang dan telah mempermudah manusia untuk melakukan pekerjaan

BAB I PENDAHULUAN. berkembang dan telah mempermudah manusia untuk melakukan pekerjaan BAB I PENDAHULUAN 1.1.Umum dan Latar Belakang Perkembangan teknologi perancangan konstruksi gedung sudah semakin berkembang dan telah mempermudah manusia untuk melakukan pekerjaan analisis struktural yang

Lebih terperinci

DAFTAR NOTASI. xxvii. A cp

DAFTAR NOTASI. xxvii. A cp A cp Ag An Atp Al Ao Aoh As As At Av b bo bw C C m Cc Cs d DAFTAR NOTASI = Luas yang dibatasi oleh keliling luar penampang beton, mm² = Luas bruto penampang (mm²) = Luas bersih penampang (mm²) = Luas penampang

Lebih terperinci

BAB I PENDAHULUAN. pengkajian dan penelitian masalah bahan bangunan masih terus dilakukan. Oleh karena

BAB I PENDAHULUAN. pengkajian dan penelitian masalah bahan bangunan masih terus dilakukan. Oleh karena BAB I PENDAHULUAN I.1 Latar Belakang Sejalan dengan pembangunan prasarana fisik yang terus menerus dilaksanakan, pengkajian dan penelitian masalah bahan bangunan masih terus dilakukan. Oleh karena itu

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Beton berlulang merupakan bahan konstruksi yang paling penting dan merupakan

BAB II TINJAUAN PUSTAKA. Beton berlulang merupakan bahan konstruksi yang paling penting dan merupakan BAB II TINJAUAN PUSTAKA 2.1 Umum Beton berlulang merupakan bahan konstruksi yang paling penting dan merupakan suatu kombinasi antara beton dan baja tulangan. Beton bertulang merupakan material yang kuat

Lebih terperinci

STUDI DAKTILITAS DAN KUAT LENTUR BALOK BETON RINGAN DAN BETON MUTU TINGGI BERTULANG

STUDI DAKTILITAS DAN KUAT LENTUR BALOK BETON RINGAN DAN BETON MUTU TINGGI BERTULANG 9 Vol. Thn. XV April 8 ISSN: 854-847 STUDI DAKTILITAS DAN KUAT LENTUR BALOK BETON RINGAN DAN BETON MUTU TINGGI BERTULANG Ruddy Kurniawan, Pebrianti Laboratorium Material dan Struktur Jurusan Teknik Sipil

Lebih terperinci

DAFTAR NOTASI BAB I β adalah faktor yang didefinisikan dalam SNI ps f c adalah kuat tekan beton yang diisyaratkan f y

DAFTAR NOTASI BAB I β adalah faktor yang didefinisikan dalam SNI ps f c adalah kuat tekan beton yang diisyaratkan f y DAFTAR NOTASI BAB I β adalah faktor yang didefinisikan dalam SNI 03-2847-2002 ps. 12.2.7.3 f c adalah kuat tekan beton yang diisyaratkan BAB III A cv A tr b w d d b adalah luas bruto penampang beton yang

Lebih terperinci