BAB 1 PENDAHULUAN Latar Belakang

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB 1 PENDAHULUAN Latar Belakang"

Transkripsi

1 BAB 1 PENDAHULUAN Bab ini akan membahas mengenai latar belakang penelitian, rumusan masalah, tujuan penelitian, batasan masalah, manfaat penelitian dan sistematika penulisan Latar Belakang Kelapa sawit merupakan komoditas pertanian utama dan unggulan di Indonesia. Produksi kelapa sawit cenderung meningkat dari tahun ke tahun sehingga industri kelapa sawit akan memiliki prospek yang cukup cerah dan menjanjikan. Hasil dari produksi kelapa sawit selain berupa bahan baku minyak goreng juga berupa bahan baku oleochemical (Kacaribu, 2013). Industri kelapa sawit harus mempersiapkan bahan baku tersebut sesuai dengan permintaan pasar untuk memenuhi kebutuhan tersebut. Hasil produksi kelapa sawit merupakan hal yang terpenting dalam industri kelapa sawit. Hasil produksi kelapa sawit dalam waktu dan jumlah yang tepat merupakan sesuatu yang diinginkan oleh perusahaan perkebunan. Oleh karena itu, perusahaan perkebunan negara atau swasta membutuhkan prediksi produksi untuk melakukan perancangan biaya dan juga memenuhi permintaan pasar. Hasil prediksi produksi tersebut dijadikan acuan target produksi kelapa sawit. Pada perusahaan kelapa sawit terutama pada perusahaan perseorangan, prediksi produksi kelapa sawit biasanya mengalami kendala berupa hasil produksi yang tidak mencapai target terlalu besar. Sehingga diperlukan metode yang tepat untuk menghasilkan prediksi produksi yang tepat. yang tidak mencapai target terlalu besar, sehingga diperlukan prediksi produksi yang tepat.

2 2 Prediksi merupakan suatu usaha untuk meramalkan keadaan di masa mendatang melalui pengujian keadaan di masa lalu (Rambe, 2002). Upaya untuk melakukan prediksi produksi kelapa sawit dapat dilakukan dengan bantuan teknologi informasi. Teknologi basis data dalam perusahaan merupakan kebutuhan pokok. Data tersebut dapat diolah dengan menggunakan konsep data mining. Data mining merupakan proses kegiatan yang meliputi pengumpulan, pemakaian data historis untuk menemukan keteraturan pola atau hubungan dalam set data berukuran besar (Santosa, 2007). Data mining memiliki sifat prediksi (prediction driven) untuk menjawab pertanyaan apa dan sesuatu yang bersifat tidak pasti yang digunakan untuk validasi hipotesis, querying dan pelaporan, analisis multidimensi (dimensional summary) serta analisis statistik (Hermawati, 2013). Penelitian Bando (2012) melakukan penelitian mengenai prediksi produksi kelapa sawit dengan menggunakan metode ARIMA (Autoregressive Integrated Moving Average) untuk memprediksi curah hujan dan produksi kelapa sawit dalam jangka waktu yang pendek yang menghasilkan data mengenai hasil peramalan produksi dalam bentuk grafik dengan indikator curah hujan. Penelitian lain oleh Hermantoro dan Purnawan (2009) menggunakan metode Artificial Neural Network (ANN) berdasarkan tujuh data parameter dengan menggunakan kualitas lahan yaitu curah hujan, ketinggian dari permukaan laut, kelerengan, umur tanaman, batuan, solium, dan keasaman tanah. Hasil dari penelitian tersebut saat pengujian mendapat nilai R 2 = dan nilai RMSE = dengan model Kacaribu (2013) menggunakan metode regresi ganda dan Exponential Smoothing dengan variabel bebas berupa umur tanaman, jumlah pohon, curah hujan dan dosis pupuk. Penelitian menghasilkan perbandingan data hasil produksi dengan kedua metode dengan nilai MAPE regresi ganda = 22% dan keterhubungan variabel dengan hasil produksi. Jaringan saraf tiruan adalah salah satu cabang ilmu dari bidang ilmu kecerdasan buatan dan merupakan alat untuk memecahkan masalah terutama dibidang-bidang yang melibatkan pengelompokan dan pengenalan pola (pattern recognition) (Puspitaningrum, 2006). Jaringan saraf tiruan cocok digunakan untuk masalah prediksi. Salah satu jaringan saraf tiruan yang akan diterapkan pada penelitian ini adalah Radial Basis Function (RBF). RBF berbeda dari pendekatan Multilayer Perceptron (MLP) yang lebih sering digunakan, jaringan RBF

3 3 menggunakan kalkulasi yang lebih mudah sehingga metode ini dapat belajar lebih cepat dan memiliki error yang lebih kecil dibandingkan MLP (Jayawardena et al, 1997). Jaringan RBF memiliki algoritma pelatihan dengan pembelajaran supervised (terawasi) dan unsupervised (tidak terawasi) yang dipakai secara bersamaan. Pada umumnya untuk pembelajaran tidak terawasi menggunakan algoritma K-means, sedangkan untuk pembelajaran terawasi dapat menggunakan algoritma Least Means Square (LMS). Algoritma K-means digunakan karena perhitungannya yang sederhana dan mampu mencari sendiri nilai center yang terbaik bagi data, sedangkan LMS digunakan untuk mencari nilai weight yang akan digunakan untuk proses pengujian. Penggunaan metode RBF ini sudah pernah diterapkan dalam beberapa kasus seperti prediksi harga saham (Tan et al, 2012), prediksi harga emas (Hussein et al, 2011), pengenalan pola tanda tangan (Jariah et al, 2011), dan klasifikasi genre musik (Gardhianta, 2013). Pada penelitian ini, penulis akan memprediksikan produksi panen kelapa sawit dengan menggunakan jaringan saraf RBF. Pemilihan input dilakukan berdasarkan atribut yang ada. Output yang akan dihasilkan merupakan prediksi hasil produksi panen yang dapat digunakan untuk target produksi panen. Dengan pemilihan algoritma, input dan output yang akan digunakan, diharapkan RBF akan memberikan hasil prediksi yang dibutuhkan oleh perusahaan Rumusan Masalah Penentuan target produksi diperlukan untuk memenuhi rencana kerja dan penentuan biaya produksi pada suatu perusahaan perkebunan. Perusahaan memerlukan prediksi hasil produksi panen yang tepat untuk dijadikan acuan target produksi panen. Oleh karena itu, dibutuhkan sebuah aplikasi untuk memprediksi hasil produksi panen kelapa sawit agar perusahaan lebih mudah menentukan target produksi Tujuan Penelitian Adapun tujuan dari penelitian ini adalah memprediksi produksi kelapa sawit dengan menggunakan jaringan saraf Radial Basis Function (RBF).

4 Batasan atau Ruang Lingkup Penelitian Batasan masalah dibuat untuk mencegah meluasnya pembahasan dan agar lebih terarah. Batasan-batasan tersebut adalah sebagai berikut. 1. Data yang dianalisis adalah data-data hasil produksi harian kelapa sawit pada perusahaan perkebunan negara daerah Sumatera Utara pada periode Hasil prediksi tidak mempertimbangkan pengaruh-pengaruh lain seperti faktor alam selain dari atribut input yang digunakan. 3. Hasil prediksi tidak mempertimbangkan kejadian pencurian dan pertimbangan yang menyebabkan kehilangan produksi secara disengaja ataupun tidak. 4. Hanya melakukan perbandingan hasil prediksi dan menguji performa metode yang dipakai Manfaat Penelitian Manfaat penelitian ini adalah sebagai berikut. 1. Mengidentifikasi dan mengimplementasika data dengan jaringan saraf RBF. 2. Mengetahui kemampuan jaringan saraf RBF dalam memprediksi produksi panen kelapa sawit. 3. Menghasilkan prediksi hasil produksi panen kelapa sawit. 4. Penelitian dapat dijadikan sebagai bahan rujukan untuk penelitian lain Metodologi Penelitian Tahapan-tahapan yang akan dilakukan pada pelaksanaan penelitian ini adalah sebagai berikut. 1. Studi literatur Studi literatur yang dilakukan dalam penelitian ini adalah mengumpulkan bahan bahan referensi tentang prediksi produksi kelapa sawit, faktor yang mempengaruhi dan jaringan saraf tiruan serta bahan pembelajaran pendukung dari banyak sumber berupa jurnal, buku dan dari referensi lainnya.

5 5 2. Analisis permasalahan Pada tahap ini dilakukan analisis dari bahan referensi yang telah dikumpulkan, untuk memahami teknik prediksi data mining, faktor-faktor produksi dan jaringan saraf tiruan dalam penelitian ini. 3. Pengumpulan data Pada tahap ini dilakukan pengumpulan serta pembagian data yang telah didapat. Pembagian data dikelompokkan menjadi data latih dan data uji. 4. Pembangunan program Pada tahap ini dibangun program dengan mengimplementasikan jaringan saraf RBF untuk memprediksi hasil produksi panen kelapa sawit dari data yang telah dikumpulkan. 5. Analisis dan evaluasi hasil Pada tahap ini dilakukan analisis dan evaluasi terhadap hasil yang didapat melalui implementasi jaringan saraf Radial Basis Function dengan menghitung hasil error antara nilai aktual dan nilai hasil prediksi. 6. Dokumentasi dan pelaporan Pada tahap ini dilakukan dokumentasi dan penyusunan laporan hasil evaluasi dan analisis serta implementasi jaringan saraf Radial Basis Function pada aplikasi prediksi produksi kelapa sawit Sistematika Penulisan Sistematika penulisan dari skripsi ini terdiri atas lima bagian utama sebagai berikut: Bab I : Pendahuluan Bab ini berisi latar belakang dari penelitian, rumusan masalah, tujuan penelitian, batasan masalah, manfaat penelitian, metodologi penelitian serta sistematika penulisan. Bab II : Landasan Teori Bab ini berisi teori yang diperlukan untuk memahami permasalahan yang dibahas pada penelitian ini. Teori yang berhubungan dengan data mining, kelapa sawit,

6 6 prediksi, jaringan saraf tiruan dan materi pendukung yang lainnya akan dibahas dalam bab ini. Bab III : Analisis dan Perancangan Bab ini membahas analisis dan penerapan metode jaringan saraf Radial Basis Function untuk memprediksi produksi kelapa sawit. Pada bab ini juga akan dijabarkan arsitektur umum, proses yang akan dilakukan termasuk perancangan aplikasi prediksi. Bab IV : Implementasi dan Pengujian Bab ini berisi pembahasan tentang implementasi dari analisis dan perancangan yang disusun pada Bab III. Selain itu akan dijabarkan hasil implementasi yang didapatkan. Bab V : Kesimpulan dan Saran Bab ini berisi kesimpulan dari rancangan yang telah dibahas pada bab-bab sebelumnya terutama pada bab III dan bab IV. Bagian akhir dari bab ini akan berisi saran-saran yang diajukan untuk pengembangan penelitian selanjutnya.

1 Pendahuluan. 1.1 Latar Belakang Masalah

1 Pendahuluan. 1.1 Latar Belakang Masalah 1 Pendahuluan 1.1 Latar Belakang Masalah Kebutuhan masyarakat akan perkiraan cuaca terutama curah hujan ini menjadi sangat penting untuk merencanakan segala aktifivitas mereka. Curah hujan juga memiliki

Lebih terperinci

BAB 1 PENDAHULUAN 1.1. Latar Belakang

BAB 1 PENDAHULUAN 1.1. Latar Belakang BAB 1 PENDAHULUAN 1.1. Latar Belakang Kelapa sawit (Elaeis Guineensis) merupakan salah satu komoditas ekspor perkebunan terbesar di Indonesia. Indonesia mempunyai struktur tanah serta curah hujan yang

Lebih terperinci

LEARNING VECTOR QUANTIZATION UNTUK PREDIKSI PRODUKSI KELAPA SAWIT PADA PT. PERKEBUNAN NUSANTARA I PULAU TIGA

LEARNING VECTOR QUANTIZATION UNTUK PREDIKSI PRODUKSI KELAPA SAWIT PADA PT. PERKEBUNAN NUSANTARA I PULAU TIGA LEARNING VECTOR QUANTIZATION UNTUK PREDIKSI PRODUKSI KELAPA SAWIT PADA PT. PERKEBUNAN NUSANTARA I PULAU TIGA 1,2,3 Fakultas Ilmu Komputer dan Teknologi Informasi, Universitas Sumatera Utara e-mail: [email protected],

Lebih terperinci

PREDIKSI PRODUKSI PANEN KELAPA SAWIT MENGGUNAKAN JARINGAN SARAF RADIAL BASIS FUNCTION (RBF) SKRIPSI RINI JANNATI

PREDIKSI PRODUKSI PANEN KELAPA SAWIT MENGGUNAKAN JARINGAN SARAF RADIAL BASIS FUNCTION (RBF) SKRIPSI RINI JANNATI PREDIKSI PRODUKSI PANEN KELAPA SAWIT MENGGUNAKAN JARINGAN SARAF RADIAL BASIS FUNCTION (RBF) SKRIPSI RINI JANNATI 101402072 PROGRAM STUDI S1 TEKNOLOGI INFORMASI FAKULTAS ILMU KOMPUTER DAN TEKNOLOGI INFORMASI

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1. Forecasting Forecasting (peramalan) adalah seni dan ilmu untuk memperkirakan kejadian di masa yang akan datang. Hal ini dapat dilakukan dengan melibatkan data historis dan memproyeksikannya

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN Bab ini membahas tentang hal-hal yang menjadi latar belakang pembuatan tugas akhir, rumusan masalah, tujuan, batasan masalah, manfaat, metodologi penelitian serta sistematika penulisan

Lebih terperinci

BAB 1 PENDAHULUAN Latar Belakang

BAB 1 PENDAHULUAN Latar Belakang 1 BAB 1 PENDAHULUAN Bab ini membahas tentang latar belakang, rumusan masalah, batasan masalah, tujuan penelitian, manfaat penelitian, metodologi penelitian, serta sistematika penulisan. 1.1. Latar Belakang

Lebih terperinci

1 PENDAHULUAN 1.1 Latar Belakang

1 PENDAHULUAN 1.1 Latar Belakang 1 PENDAHULUAN 1.1 Latar Belakang Curah hujan merupakan faktor yang berpengaruh langsung terhadap perubahan cuaca yang semakin memburuk. Curah hujan merupakan total air hujan yang terjatuh pada permukaan

Lebih terperinci

Peramalan Deret Waktu Menggunakan S-Curve dan Quadratic Trend Model

Peramalan Deret Waktu Menggunakan S-Curve dan Quadratic Trend Model Konferensi Nasional Sistem & Informatika 2015 STMIK STIKOM Bali, 9 10 Oktober 2015 Peramalan Deret Waktu Menggunakan S-Curve dan Quadratic Trend Model Ni Kadek Sukerti STMIK STIKOM Bali Jl. Raya Puputan

Lebih terperinci

1. Pendahuluan. 1.1 Latar Belakang

1. Pendahuluan. 1.1 Latar Belakang 1. Pendahuluan 1.1 Latar Belakang Pasar valuta asing telah mengalami perkembangan yang tak terduga selama beberapa dekade terakhir, dunia bergerak ke konsep "desa global" dan telah menjadi salah satu pasar

Lebih terperinci

BAB I PENDAHULUAN. Peramalan (forecasting) adalah kegiatan untuk meramalkan apa yang akan

BAB I PENDAHULUAN. Peramalan (forecasting) adalah kegiatan untuk meramalkan apa yang akan BAB I PENDAHULUAN A. Latar Belakang Peramalan (forecasting) adalah kegiatan untuk meramalkan apa yang akan terjadi pada masa yang akan datang. Sedangkan ramalan adalah suatu situasi atau kondisi yang akan

Lebih terperinci

BAB I PENDAHULUAN. finansial (financial assets) dan investasi pada aset-aset riil (real assets). Investasi pada

BAB I PENDAHULUAN. finansial (financial assets) dan investasi pada aset-aset riil (real assets). Investasi pada BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Investasi pada hakikatnya merupakan komitmen terhadap sejumlah sumber daya pada saat ini dengan tujuan untuk mendapatkan keuntungan di masa depan (Abdul halim,

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Sering terdapat tenggang waktu (time lag) antara kesadaran akan peristiwa atau kebutuhan mendatang dengan peristiwa itu sendiri. Adanya waktu tenggang ini merupakan

Lebih terperinci

PREDIKSI PRODUKSI KELAPA SAWIT BERDASARKAN KUALITAS LAHAN MENGGUNAKAN MODEL ARTIFICIAL NEURAL NETWORK (ANN)

PREDIKSI PRODUKSI KELAPA SAWIT BERDASARKAN KUALITAS LAHAN MENGGUNAKAN MODEL ARTIFICIAL NEURAL NETWORK (ANN) PREDIKSI PRODUKSI KELAPA SAWIT BERDASARKAN KUALITAS LAHAN MENGGUNAKAN MODEL ARTIFICIAL NEURAL NETWORK (ANN) (PREDICTION OF OIL PALM PRODUCTION BASE ON LAND QUALITY USING ARTIFICIAL NEURAL NETWORK) Oleh

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN Bab ini akan membahas tentang latar belakang, rumusan masalah, keaslian penelitian, tujuan penelitian, manfaat penelitian, batasan masalah, dan sistematika penulisan. 1.1 Latar Belakang

Lebih terperinci

BAB 4 ANALISIS DAN BAHASAN. Pada bab ini, akan disajikan penjelasan mengenai analisis data dan

BAB 4 ANALISIS DAN BAHASAN. Pada bab ini, akan disajikan penjelasan mengenai analisis data dan BAB 4 ANALISIS DAN BAHASAN Pada bab ini, akan disajikan penjelasan mengenai analisis data dan pembahasan. Sub bab akan menjelaskan tentang bagaimana cara mengolah data dan akan dilanjutkan dengan interpretasi

Lebih terperinci

ANALISIS PERBANDINGAN METODE BACKPROPAGATION DAN RADIAL BASIS FUNCTION UNTUK MEM PREDIKSI CURAH HUJAN DENGAN JARINGAN SYARAF TIRUAN

ANALISIS PERBANDINGAN METODE BACKPROPAGATION DAN RADIAL BASIS FUNCTION UNTUK MEM PREDIKSI CURAH HUJAN DENGAN JARINGAN SYARAF TIRUAN ANALISIS PERBANDINGAN METODE BACKPROPAGATION DAN RADIAL BASIS FUNCTION UNTUK MEM PREDIKSI CURAH HUJAN DENGAN JARINGAN SYARAF TIRUAN Abstrak Vinsensius Rinda Resi - NIM : A11.2009.04645 Program Studi Teknik

Lebih terperinci

PREDIKSI HARGA SAHAM PERUSAHAAN KELAPA SAWIT MENGGUNAKAN PEMODELAN MLP DAN RBF

PREDIKSI HARGA SAHAM PERUSAHAAN KELAPA SAWIT MENGGUNAKAN PEMODELAN MLP DAN RBF PRDIKSI HARGA SAHAM PRUSAHAAN KLAPA SAWIT MNGGUNAKAN PMODLAN MLP DAN RBF Linda Sari Dewi Program Studi Sistem Informasi STMIK Nusa Mandiri Jakarta Jl. Damai No. 8 Warung Jati Barat (Margasatwa) Jakarta

Lebih terperinci

T 11 Aplikasi Model Backpropagation Neural Network Untuk Perkiraan Produksi Tebu Pada PT. Perkebunan Nusantara IX

T 11 Aplikasi Model Backpropagation Neural Network Untuk Perkiraan Produksi Tebu Pada PT. Perkebunan Nusantara IX T 11 Aplikasi Model Backpropagation Neural Network Untuk Perkiraan Produksi Tebu Pada PT. Perkebunan Nusantara IX Oleh: Intan Widya Kusuma Program Studi Matematika, FMIPA Universitas Negeri yogyakarta

Lebih terperinci

1. Pendahuluan 1.1 Latar belakang masalah

1. Pendahuluan 1.1 Latar belakang masalah 1. Pendahuluan 1.1 Latar belakang masalah Emas adalah unsur kimia dalam tabel periodik yang memiliki simbol Au (bahasa Latin: 'aurum') dan nomor atom 79. Emas digunakan sebagai standar keuangan di banyak

Lebih terperinci

BAB 3 METODOLOGI PENELITIAN

BAB 3 METODOLOGI PENELITIAN BAB 3 METODOLOGI PENELITIAN 3.1 Variabel Berikut merupakan variabel yang digunakan dalam pemecahan masalah pada penelitian ini yaitu sebagai berikut : Data historis penjualan yang akan digunakan untuk

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah. Sebuah fakta bahwa waktu adalah uang dalam aktivitas penjualan. Pengambilan

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah. Sebuah fakta bahwa waktu adalah uang dalam aktivitas penjualan. Pengambilan BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Sebuah fakta bahwa waktu adalah uang dalam aktivitas penjualan. Pengambilan keputusan merupakan hal yang penting untuk kesuksesan penjualan. Dalam hal ini seseorang

Lebih terperinci

BAB 3 PERANCANGAN PROGRAM. 3.1 Alasan digunakan Metode Exponential Smoothing. Banyak metode peramalan yang dapat digunakan dalam memprediksi tingkat

BAB 3 PERANCANGAN PROGRAM. 3.1 Alasan digunakan Metode Exponential Smoothing. Banyak metode peramalan yang dapat digunakan dalam memprediksi tingkat BAB 3 PERANCANGAN PROGRAM 3.1 Alasan digunakan Metode Exponential Smoothing Banyak metode peramalan yang dapat digunakan dalam memprediksi tingkat penjualan untuk beberapa periode ke depan. Biasanya untuk

Lebih terperinci

ANALISIS PENAMBAHAN NILAI MOMENTUM PADA PREDIKSI PRODUKTIVITAS KELAPA SAWIT MENGGUNAKAN BACKPROPAGATION

ANALISIS PENAMBAHAN NILAI MOMENTUM PADA PREDIKSI PRODUKTIVITAS KELAPA SAWIT MENGGUNAKAN BACKPROPAGATION ANALISIS PENAMBAHAN NILAI MOMENTUM PADA PREDIKSI PRODUKTIVITAS KELAPA SAWIT MENGGUNAKAN BACKPROPAGATION Eka Irawan1, M. Zarlis2, Erna Budhiarti Nababan3 Magister Teknik Informatika, Universitas Sumatera

Lebih terperinci

BAB I PENDAHULUAN I-1

BAB I PENDAHULUAN I-1 BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Kabupaten Purworejo adalah daerah agraris karena sebagian besar penggunaan lahannya adalah pertanian. Dalam struktur perekonomian daerah, potensi daya dukung

Lebih terperinci

BAB 1 PENDAHULUAN. Pertanian memiliki peranan penting dalam perekonomian di Indonesia.

BAB 1 PENDAHULUAN. Pertanian memiliki peranan penting dalam perekonomian di Indonesia. BAB 1 PENDAHULUAN 1.1 Latar Belakang Pertanian memiliki peranan penting dalam perekonomian di Indonesia. Berdasarkan data dari Badan Pusat Statistik (BPS) kontribusi pertanian terhadap Produk Domestik

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Investasi merupakan suatu rangkaian tindakan menanamkan sejumlah dana dengan tujuan mendapatkan nilai tambah berupa keuntungan dimasa yang akan datang. Dalam perkembangannya

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 7 BAB 2 LANDASAN TEORI 2.1 Iklim Iklim ialah suatu keadaan rata-rata dari cuaca di suatu daerah dalam periode tertentu. Curah hujan ialah suatu jumlah hujan yang jatuh di suatu daerah pada kurun waktu

Lebih terperinci

1. Pendahuluan. 1.1 Latar Belakang

1. Pendahuluan. 1.1 Latar Belakang 1. Pendahuluan 1.1 Latar Belakang Persaingan dalam dunia bisnis, terlebih lagi bagi perusahaan besar, tidak lepas dari adanya proses jual beli saham. Saham secara umum merupakan surat berharga yang dapat

Lebih terperinci

BAB 2 LANDASAN TEORITIS

BAB 2 LANDASAN TEORITIS BAB 2 LANDASAN TEORITIS 2.1 Pengertian Peramalan Peramalan (forecasting) adalah kegiatan memperkirakan atau memprediksikan apa yang akan terjadi pada masa yang akan datang dengan waktu yang relative lama.

Lebih terperinci

BAB 2 LANDASAN TEORI. Pengenalan suara (voice recognition) dibagi menjadi dua jenis, yaitu

BAB 2 LANDASAN TEORI. Pengenalan suara (voice recognition) dibagi menjadi dua jenis, yaitu BAB 2 LANDASAN TEORI 2.1 Pengenalan Suara. Pengenalan suara (voice recognition) dibagi menjadi dua jenis, yaitu speech recognition dan speaker recognition. Speech recognition adalah proses yang dilakukan

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Dalam perkembangan teknologi yang semakin pesat ini banyak sekali perubahan perkembangan yang telah terjadi untuk membantu kehidupan masyarakat. Dalam perkembangan

Lebih terperinci

BAB 1 PENDAHULUAN Latar Belakang

BAB 1 PENDAHULUAN Latar Belakang BAB 1 PENDAHULUAN 1.1. Latar Belakang Semua negara mempunyai mata uang sebagai alat tukar. Pertukaran uang dengan barang yang terjadi disetiap negara tidak akan menimbulkan masalah mengingat nilai uang

Lebih terperinci

APLIKASI JARINGAN SYARAF TIRUAN MULTI LAYER PERCEPTRON PADA APLIKASI PRAKIRAAN CUACA

APLIKASI JARINGAN SYARAF TIRUAN MULTI LAYER PERCEPTRON PADA APLIKASI PRAKIRAAN CUACA Aplikasi Jaringan Syaraf Tiruan Multilayer Perceptron (Joni Riadi dan Nurmahaludin) APLIKASI JARINGAN SYARAF TIRUAN MULTI LAYER PERCEPTRON PADA APLIKASI PRAKIRAAN CUACA Joni Riadi (1) dan Nurmahaludin

Lebih terperinci

Sistem Deteksi Kebocoran pada Jaringan Pipa Air PDAM Menggunakan Analisis Tekanan dengan Metode Extreme Learning Machine

Sistem Deteksi Kebocoran pada Jaringan Pipa Air PDAM Menggunakan Analisis Tekanan dengan Metode Extreme Learning Machine Sistem Deteksi Kebocoran pada Jaringan Pipa Air PDAM Menggunakan Analisis Tekanan dengan Metode Extreme Learning Machine Abstrak Muh.Taufiq Hardiyanto Umar 1 Ahmad Zaky Abbas 1, A. Ejah Umraeni Salam 2

Lebih terperinci

Penerapan Jaringan Saraf Tiruan Metode Backpropagation Menggunakan VB 6

Penerapan Jaringan Saraf Tiruan Metode Backpropagation Menggunakan VB 6 Penerapan Jaringan Saraf Tiruan Metode Backpropagation Menggunakan VB 6 Sari Indah Anatta Setiawan SofTech, Tangerang, Indonesia [email protected] Diterima 30 November 2011 Disetujui 14 Desember 2011

Lebih terperinci

BAB 2 LANDASAN TEORI. sama setiap hrinya. Pada bulan-bulan tertentu curah hujan sangat tinggi dan pada

BAB 2 LANDASAN TEORI. sama setiap hrinya. Pada bulan-bulan tertentu curah hujan sangat tinggi dan pada BAB 2 LANDASAN TEORI 2.1 Curah Hujan Hujan sangat diperlukan diberbagai penjuru masyarakat. Curah hujan tidak selalu sama setiap hrinya. Pada bulan-bulan tertentu curah hujan sangat tinggi dan pada bulan-bulan

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Akhir-akhir ini kita banyak mendengar banyak berita bahwa Perusahaan Listrik Negara (PLN) mengalami kerugian yang sangat besar setiap tahunnya yang disebabkan faktor-faktor

Lebih terperinci

TINJAUAN PUSTAKA II.1 Peramalan...7

TINJAUAN PUSTAKA II.1 Peramalan...7 DAFTAR ISI Halaman Lembar Judul...i Lembar Pengesahan...ii Lembar Pernyataan...iii Kata Pengantar...iv Daftar Isi...vi Daftar Tabel...x Daftar Gambar...xii Daftar Persamaan...xiii Daftar Lampiran...xv

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang 1 BAB 1 PENDAHULUAN 1.1 Latar Belakang Perangkat keras komputer berkembang dengan pesat setiap tahunnya selalu sudah ditemukan teknologi yang lebih baru. Meskipun demikian masih banyak hal yang belum dapat

Lebih terperinci

PERAMALAN PENGGUNA INDIHOME DI PT.TELEKOMUNIKASI TBK PALEMBANG

PERAMALAN PENGGUNA INDIHOME DI PT.TELEKOMUNIKASI TBK PALEMBANG PERAMALAN PENGGUNA INDIHOME DI PT.TELEKOMUNIKASI TBK PALEMBANG Oktariani 1*, Sopian Soim 2, Adewasti 3 1 Program Studi Teknik Telekomunikasi, Jurusan Teknik Elektro, Politeknik Negeri Sriwijaya Bukit Besar,

Lebih terperinci

ANALISIS PERBANDINGAN METODE JARINGAN SYARAF TIRUAN DAN REGRESI LINEAR BERGANDA PADA PRAKIRAAN CUACA

ANALISIS PERBANDINGAN METODE JARINGAN SYARAF TIRUAN DAN REGRESI LINEAR BERGANDA PADA PRAKIRAAN CUACA ANALISIS PERBANDINGAN METODE JARINGAN SYARAF TIRUAN DAN REGRESI LINEAR BERGANDA PADA PRAKIRAAN CUACA Nurmahaludin (1) (1) Staf Pengajar Jurusan Teknik Elektro Politeknik Negeri Banjarmasin Ringkasan Kebutuhan

Lebih terperinci

ABSTRAK PERAMALAN KURS RUPIAH TERHADAP US DOLLAR MENGGUNAKAN METODE HIBRID

ABSTRAK PERAMALAN KURS RUPIAH TERHADAP US DOLLAR MENGGUNAKAN METODE HIBRID ABSTRAK PERAMALAN KURS RUPIAH TERHADAP US DOLLAR MENGGUNAKAN METODE HIBRID Peramalan adalah bagian integral dari kegiatan pengambilan keputusan manajemen. Ramalan yang dilakukan umumnya berdasarkan pada

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Peranan pariwisata dalam pembangunan ekonomi tidak perlu dipertanyakan lagi. Dengan tidak tersedianya sumber daya alam seperti migas, hasil hutan ataupun industri manufaktur

Lebih terperinci

BAB 2 TINJAUAN TEORITIS

BAB 2 TINJAUAN TEORITIS BAB 2 TINJAUAN TEORITIS 2.1. Peramalan 2.1.1. Pengertian dan Kegunaan Peramalan Peramalan (forecasting) menurut Sofjan Assauri (1984) adalah kegiatan memperkirakan apa yang akan terjadi pada masa yang

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Kelangsungan sebuah usaha sangat diperlukan oleh setiap organisasi baik yang berorientasi pada profit ataupun yang nonprofit. Dalam organisasi yang berorientasi pada

Lebih terperinci

BAB 2 TINJAUAN TEORITIS. yang akan datang. Ramalan adalah situasi dan kondisi yang diperkirakan akan terjadi

BAB 2 TINJAUAN TEORITIS. yang akan datang. Ramalan adalah situasi dan kondisi yang diperkirakan akan terjadi BAB 2 TINJAUAN TEORITIS 2.1 Pengertian Peramalan Peramalan adalah kegiatan untuk memperkirakan apa yang akan terjadi pada masa yang akan datang. Ramalan adalah situasi dan kondisi yang diperkirakan akan

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB 1 PENDAHULUAN. 1.1 Latar Belakang Masalah BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah Jaringan Syaraf Tiruan (artificial neural network), atau disingkat JST menurut Hermawan (2006, hlm.37) adalah sistem komputasi dimana arsitektur dan operasi

Lebih terperinci

BAB 1 PENDAHULUAN 1-1

BAB 1 PENDAHULUAN 1-1 BAB 1 PENDAHULUAN Bab ini menguraikan penjelasan umum mengenai tugas akhir yang dikerjakan. Penjelasan tersebut meliputi latar belakang masalah, tujuan tugas akhir, lingkup tugas akhir, metodologi yang

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang Lia Saputri, 2016

BAB I PENDAHULUAN 1.1. Latar Belakang Lia Saputri, 2016 BAB I PENDAHULUAN 1.1. Latar Belakang Foreign Exchange (forex) saat ini berkembang pesat sebagai salah satu model investasi yang menggiurkan, karena forex trading memiliki tingkat pengembalian yang tinggi.

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Tenaga listrik merupakan kebutuhan yang sangat penting bagi manusia dalam melakukan aktifitasnya sehari-hari. Peralatan rumah tangga maupun industri hampir semuanya

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB 1 PENDAHULUAN. 1.1 Latar Belakang Masalah BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah Bisnis pada berbagai kegiatannya selalu melakukan suatu perencanaan untuk kedepannya. Untuk melakukan perencanaan suatu kegiatan yang akan disusun dan dilakukan

Lebih terperinci

PENERAPAN JARINGAN SYARAF TIRUAN DALAM MEMPREDIKSI TINGKAT PENGANGGURAN DI SUMATERA BARAT

PENERAPAN JARINGAN SYARAF TIRUAN DALAM MEMPREDIKSI TINGKAT PENGANGGURAN DI SUMATERA BARAT PENERAPAN JARINGAN SYARAF TIRUAN DALAM MEMPREDIKSI TINGKAT PENGANGGURAN DI SUMATERA BARAT Havid Syafwan Program Studi Manajemen Informatika, Amik Royal, Kisaran E-mail: [email protected] ABSTRAK:

Lebih terperinci

VOL. 01 NO. 02 [JURNAL ILMIAH BINARY] ISSN :

VOL. 01 NO. 02 [JURNAL ILMIAH BINARY] ISSN : PENERAPAN JARINGAN SYARAF TIRUAN UNTUK MEMPREDIKSI JUMLAH PRODUKSI AIR MINUM MENGGUNAKAN ALGORITMA BACKPROPAGATION (STUDI KASUS : PDAM TIRTA BUKIT SULAP KOTA LUBUKLINGGAU) Robi Yanto STMIK Bina Nusantara

Lebih terperinci

BAB 1 PENDAHULUAN Latar Belakang

BAB 1 PENDAHULUAN Latar Belakang BAB 1 PENDAHULUAN 1.1. Latar Belakang Data mining adalah proses mengeksplorasi dan menganalisis data dalam jumlah besar untuk menemukan pola dan rule yang berarti (Berry & Linoff, 2004). Klasifikasi adalah

Lebih terperinci

BAB I PENDAHULUAN. Peramalan keadaan pada suatu waktu merupakan hal penting. Hal itu

BAB I PENDAHULUAN. Peramalan keadaan pada suatu waktu merupakan hal penting. Hal itu BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Peramalan keadaan pada suatu waktu merupakan hal penting. Hal itu dikarenakan peramalan dapat digunakan sebagai rujukan dalam menentukan tindakan yang akan

Lebih terperinci

BAB III LANDASAN TEORI. Definisi Peramalan adalah memperkiraan atau memproyeksikan sesuatu

BAB III LANDASAN TEORI. Definisi Peramalan adalah memperkiraan atau memproyeksikan sesuatu BAB III LANDASAN TEORI 3.1 Definisi Peramalan Definisi Peramalan adalah memperkiraan atau memproyeksikan sesuatu yang akan terjadi dimasa sekarang maupun yang akan datang. dikarena masa yang akan datang

Lebih terperinci

ABSTRAK. Kata Kunci : Artificial Neural Network(ANN), Backpropagation(BP), Levenberg Marquardt (LM), harga emas, Mean Squared Error(MSE), prediksi.

ABSTRAK. Kata Kunci : Artificial Neural Network(ANN), Backpropagation(BP), Levenberg Marquardt (LM), harga emas, Mean Squared Error(MSE), prediksi. ABSTRAK Prediksi harga emas merupakan masalah yang sangat penting dalam menentukan pengambilan keputusan perdagangan dalam pertambangan. Prediksi yang akurat untuk pertambangan dapat memberikan keuntungan

Lebih terperinci

BAB I PENDAHULUAN. konstan, namun ada beberapa periode yang memperlihatkan keadaan yang ekstrim.

BAB I PENDAHULUAN. konstan, namun ada beberapa periode yang memperlihatkan keadaan yang ekstrim. 1 BAB I PENDAHULUAN 1.1. Latar Belakang Variasi dan keadaan curah hujan yang terjadi, tidaklah selalu tetap dan konstan, namun ada beberapa periode yang memperlihatkan keadaan yang ekstrim. Pada umumnya,

Lebih terperinci

Bab III PERANCANGAN PROGRAM APLIKASI

Bab III PERANCANGAN PROGRAM APLIKASI 35 Bab III PERANCANGAN PROGRAM APLIKASI 3.1 Spesifikasi Rumusan Rancangan Perancangan program aplikasi ini terbagi menjadi dua bagian yaitu proses, yaitu : proses input dan hasil keluaran atau output Proses

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 1 BAB 2 LANDASAN TEORI Bab ini membahas tentang teori penunjang dan penelitian sebelumnya yang berhubungan dengan metode ARIMA box jenkins untuk meramalkan kebutuhan bahan baku. 2.1. Peramalan Peramalan

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN Penelitian pada karya akhir ini membahas mengenai pengembangan model Artificial Neural Network serta menganalisa kemampuan Artificial Neural Network sebagai alat peramalan. Obyek yang

Lebih terperinci

Penerapan Model Hybrid ARIMA-Neural Network pada Data Saham IHSG

Penerapan Model Hybrid ARIMA-Neural Network pada Data Saham IHSG Penerapan Model Hybrid ARIMA-Neural Network pada Data Saham IHSG ¹) Ariane Yustisiani Mutmainah 1, Jadi Suprijadi 2, Zulhanif 3 Mahasiswa Program Studi Magister Statistika Terapan Universitas Padjajaran

Lebih terperinci

2014 ESTIMASI BEBAN PUNCAK HARIAN BERDASARKAN KLUSTER TIPE HARI BERBASIS ALGORITMA HYBRID SWARM PARTICLE-ARTIFICIAL NEURAL NETWORK

2014 ESTIMASI BEBAN PUNCAK HARIAN BERDASARKAN KLUSTER TIPE HARI BERBASIS ALGORITMA HYBRID SWARM PARTICLE-ARTIFICIAL NEURAL NETWORK BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Di negara yang memiliki jumlah populasi penduduknya besar dan perkembangan industrinya mengalami peningkatan, tentunya memiliki tingkat kebutuhan akan sumber

Lebih terperinci

BAB I PENDAHULUAN. Peramalan merupakan suatu kegiatan memprediksi nilai dari suatu

BAB I PENDAHULUAN. Peramalan merupakan suatu kegiatan memprediksi nilai dari suatu BAB I PENDAHULUAN A. LATAR BELAKANG Peramalan merupakan suatu kegiatan memprediksi nilai dari suatu variabel berdasarkan nilai yang diketahui dari variabel tersebut pada masa lalu atau variabel yang berhubungan.

Lebih terperinci

PRISMA FISIKA, Vol. III, No. 3 (2015), Hal ISSN :

PRISMA FISIKA, Vol. III, No. 3 (2015), Hal ISSN : PRISMA FISIKA, Vol. III, No. (05), Hal. 79-86 ISSN : 7-80 Pemodelan Kebutuhan Daya Listrik Di Pt. PLN (Persero) Area Pontianak dengan Menggunakan Metode Gauss-Newton Mei Sari Soleha ), Joko Sampurno *),

Lebih terperinci

PERAMALAN HARGA MINYAK MENTAH DUNIA NEURAL NETWORK

PERAMALAN HARGA MINYAK MENTAH DUNIA NEURAL NETWORK PERAMALAN HARGA MINYAK MENTAH DUNIA MENGGUNAKAN METODE RADIAL BASIS FUNCTION NEURAL NETWORK SKRIPSI Disusun oleh: Rahafattri Ariya Fauzannissa 24010211140092 JURUSAN STATISTIKA FAKULTAS SAINS DAN MATEMATIKA

Lebih terperinci

IMPLEMENTASI JARINGAN SYARAF TIRUAN MULTI LAYER FEEDFORWARD DENGAN ALGORITMA BACKPROPAGATION SEBAGAI ESTIMASI NILAI KURS JUAL SGD-IDR

IMPLEMENTASI JARINGAN SYARAF TIRUAN MULTI LAYER FEEDFORWARD DENGAN ALGORITMA BACKPROPAGATION SEBAGAI ESTIMASI NILAI KURS JUAL SGD-IDR Seminar Nasional Teknologi Informasi dan Multimedia 205 STMIK AMIKOM Yogyakarta, 6-8 Februari 205 IMPLEMENTASI JARINGAN SYARAF TIRUAN MULTI LAYER FEEDFORWARD DENGAN ALGORITMA BACKPROPAGATION SEBAGAI ESTIMASI

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Ditinjau dari letak geografisnya, Indonesia merupakan negara yang beriklim tropis dan memiliki Sumber Daya Alam (SDA) yang kaya serta tanah yang subur, sehingga pemerintah

Lebih terperinci

PENGENALAN POLA TANDA TANGAN MENGGUNAKAN METODE MOMEN INVARIAN DAN RADIAL BASIS FUNCTION (RBF)

PENGENALAN POLA TANDA TANGAN MENGGUNAKAN METODE MOMEN INVARIAN DAN RADIAL BASIS FUNCTION (RBF) PENGENALAN POLA TANDA TANGAN MENGGUNAKAN METODE MOMEN INVARIAN DAN RADIAL BASIS FUNCTION (RBF) AINUN JARIAH 1209201721 DOSEN PEMBIMBING 1. Prof. Dr. Mohammad Isa Irawan, M.T 2. Dr Imam Mukhlas, S.Si, M.T

Lebih terperinci

BAB 1 PENDAHULUAN. datang berdasarkan keadaan masa lalu dan sekarang yang diperlukan untuk

BAB 1 PENDAHULUAN. datang berdasarkan keadaan masa lalu dan sekarang yang diperlukan untuk BAB 1 PENDAHULUAN 1.1. Latar Belakang Peramalan adalah menduga atau memperkirakan suatu keadaan di masa yang akan datang berdasarkan keadaan masa lalu dan sekarang yang diperlukan untuk menetapkan kapan

Lebih terperinci

3 METODE PENELITIAN 3.1 Kerangka Pemikiran

3 METODE PENELITIAN 3.1 Kerangka Pemikiran 41 3 METODE PENELITIAN 3.1 Kerangka Pemikiran Permasalahan adalah bagaimana ini mem menyediakan memenuhi syarat ke konsumennya. Sebagai salah satu bagian dari rantai pasok berbasis, di sangat tergantung

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Indonesia merupakan negara agraris yang didukung oleh sektor pertanian. Salah satu sektor pertanian tersebut adalah perkebunan. Perkebunan memiliki peranan yang besar

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Teknologi dan perkembangan ilmu pengetahuan dewasa ini sudah mengalami perkembangan pesat. Seiring berjalannya waktu, perkembangan ini menyebabkan timbulnya kebutuhan

Lebih terperinci

Perbaikan Metode Prakiraan Cuaca Bandara Abdulrahman Saleh dengan Algoritma Neural Network Backpropagation

Perbaikan Metode Prakiraan Cuaca Bandara Abdulrahman Saleh dengan Algoritma Neural Network Backpropagation 65 Perbaikan Metode Prakiraan Cuaca Bandara Abdulrahman Saleh dengan Algoritma Neural Network Backpropagation Risty Jayanti Yuniar, Didik Rahadi S. dan Onny Setyawati Abstrak - Kecepatan angin dan curah

Lebih terperinci

Gambar 2.1 Neuron biologi manusia (Medsker & Liebowitz, 1994)

Gambar 2.1 Neuron biologi manusia (Medsker & Liebowitz, 1994) BAB 2 LANDASAN TEORI 2.1. Jaringan Saraf Biologi Manusia Otak manusia memiliki struktur yang sangat kompleks, serta memiliki kemampuan yang luar biasa. Otak terdiri dari neuron-neuron dan penghubung yang

Lebih terperinci

BAB I PENDAHULUAN. perdagangan saham secara maksimal (Wang et al, 2009). semakin berkembang. Dengan memanfaatkan model model peramalan dari

BAB I PENDAHULUAN. perdagangan saham secara maksimal (Wang et al, 2009). semakin berkembang. Dengan memanfaatkan model model peramalan dari BAB I PENDAHULUAN 1.1 Latar Belakang Peramalan indeks harga saham merupakan sebuah peramalan deret waktu yang cukup sulit dilakukan (Kara et al, 2011). Banyak faktor yang mempengaruhi pergerakan harga

Lebih terperinci

Jurnal Informatika Mulawarman Vol 5 No. 1 Februari

Jurnal Informatika Mulawarman Vol 5 No. 1 Februari Jurnal Informatika Mulawarman Vol 5 No. 1 Februari 2010 50 Penerapan Jaringan Syaraf Tiruan Untuk Memprediksi Jumlah Pengangguran di Provinsi Kalimantan Timur Dengan Menggunakan Algoritma Pembelajaran

Lebih terperinci

PENERAPAN METODE EXPONENTIAL SMOOTHING UNTUK PERAMALAN PENGGUNAAN WAKTU TELEPON DI PT TELKOMSEL Divre 3 SURABAYA

PENERAPAN METODE EXPONENTIAL SMOOTHING UNTUK PERAMALAN PENGGUNAAN WAKTU TELEPON DI PT TELKOMSEL Divre 3 SURABAYA SISTEM PENDUKUNG KEPUTUSAN PENERAPAN METODE EXPONENTIAL SMOOTHING UNTUK PERAMALAN PENGGUNAAN WAKTU TELEPON DI PT TELKOMSEL Divre 3 SURABAYA Alda Raharja - 5206 100 008! Wiwik Anggraeni, S.Si, M.Kom! Retno

Lebih terperinci