DISTRIBUSI SPASIAL DAN VARIABILITAS KOEFISIEN TOTAL HAMBURAN DI PERMUKAAN PERAIRAN BERBAGAI MUSIM

Ukuran: px
Mulai penontonan dengan halaman:

Download "DISTRIBUSI SPASIAL DAN VARIABILITAS KOEFISIEN TOTAL HAMBURAN DI PERMUKAAN PERAIRAN BERBAGAI MUSIM"

Transkripsi

1 DISTRIBUSI SPASIAL DAN VARIABILITAS KOEFISIEN TOTAL HAMBURAN DI PERMUKAAN PERAIRAN BERBAGAI MUSIM Oleh: MURJAT HI. UNTUNG NRP: C PROGRAM PASCASARJANA INSTITUT PERTANIAN BOGOR BOGOR 2013

2 PERNYATAAN MENGENAI TESIS DAN SUMBER INFORMASI SERTA PELIMPAHAN HAK CIPTA Dengan ini saya menyatakan bahwa tesis berjudul Distribusi Spasial dan Variabilitas Koefisien Total Hamburan di Permukaan Perairan Berbagai Musim adalah benar karya saya dengan arahan dari komisi pembimbing dan belum diajukan dalam bentuk apa pun kepada perguruan tinggi mana pun. Sumber informasi yang berasal atau dikutip dari karya yang diterbitkan maupun tidak diterbitkan dari penulis lain telah disebutkan dalam teks dan dicantumkan dalam Daftar Pustaka di bagian akhir thesis ini. Dengan ini saya limpahkan hak cipta dari karya tulis saya kepada Institut Pertanian Bogor. Bogor, Agustus 2013 Murjat Hi. Untung NRP C

3 RINGKASAN MURJAT Hi. UNTUNG. Distribusi Spasial dan Variabilitas Koefisien Total Hamburan di Permukaan Perairan Berbagai Musim. Dibimbing oleh Vincentius P. Siregar dan Bisman Nababan. Sifat optik perairan dipengaruhi oleh intensitas dan sudut datang cahaya serta materi yang terkandung di dalam kolom perairan. Sifat optik perairan ini dibagi dalam dua kategori yaitu apparent optical properties (AOP) yaitu sifat optik yang dipengaruhi oleh intensitas dan sudut ruang cahaya datang serta kandungan materi dalam air dan inherent optical properties (IOP) yaitu sifat optik yang hanya dipengaruhi oleh kandungan materi dalam kolom air seperti fitoplankton, padatan tersuspensi, bahan organik, dan materi organik bewarna terlarut (colored dissolved organic matter (CDOM). Hamburan adalah proses penghamburan energi oleh kolom air maupun materi yang terkandung dalam kolom air tersebut. Hamburan disini berupa hamburan balik (backward scattering) maupun hamburan maju (forward scattering). Total hamburan merupakan gabungan dari hamburan balik dan hamburan maju. Perairan Northeastern Gulf of Mexico (NEGOM) mencakup perairan tipe- 1 (perairan laut lepas atau offshore) dan tipe-2 (perairan pesisir) serta dipengaruhi oleh Loop Current, upwelling, angin, dan debit air tawar dari beberapa sungai. Sejauh ini masih sedikit penelitian terkait variabilitas dan distribusi spasial total hamburan di perairan NEGOM, khususnya perairan tropis sehingga penelitian ini sangat penting dilakukan. Disamping itu fasilitas dan peralatan bio-optik yang standar sangat minim atau bahkan tidak ada di Indonesia. Tujuan penelitian ini adalah untuk mengetahui variabilitas dan distribusi spasial koefisien total hamburan (scattering) pada 9 panjang gelombang (λ) pada berbagai musim di wilayah perairan Northeastern Gulf of Mexico (NEGOM). Hasil penelitian ini diharapkan memperoleh informasi tentang nilai, variabilitas, dan distribusi spasial koefisien total hamburan (scattering) yang nantinya dapat dimanfaatkan dalam pengembangan algoritma bio-optik satelit ocean color. Hasil penelitian menunjukkan bahwa koefisien total hamburan pada tahun 1999 pada masing-masing panjang gelombang secara umum lebih tinggi pada musim panas (rata-rata 0,26(±0,05)-0.37(±0,07) m -1 ) dibandingkan dengan musim gugur (rata-rata 0,09(±0,002)-0,23(±0,04) m -1. Khusus di daerah perairan sekitar Mississippi, variabilitas koefisien total hamburan pada tahun 1999 pada musim semi (rata-rata 1,54(±0,94)-2,01(±1,03) m -1 ) lebih tinggi dibandingkan pada musim panas dan gugur. Pada tahun 2000, nilai koefisien total hamburan secara umum tetap lebih tinggi pada musim panas (rata-rata 0,21(±0,02)-0,32(±0,02) m - 1 ) dibandingkan musim semi dan gugur (rata 0,03(±0,003)-0,21(±0,01) m -1 ). Hasil ini menunjukkan bahwa kandungan partikel dan materi tersuspensi pada musim panas secara umum lebih tinggi dibandingkan pada musim semi dan gugur. Secara umum, koefisien total hamburan (scattering) relatif tinggi ditemui di perairan pesisir khususnya dekat muara sungai setiap musim dan relatif rendah di perairan offshore kecuali pada musim panas koefisien total hamburan yang relatif tinggi juga ditemui pada perairan offshore. Koefisien total hamburan yang relatif tinggi pada musim panas di perairan offshore disebabkan oleh adanya

4 intrusi aliran sungai Mississippi ke arah offshore yang mengandung banyak nutrient yang dapat meningkatkan pertumbuhan fitoplankton di perairan offshore dan materi tersuspensi serta menurunkan salinitas yang secara bersama-sama meningkatkan koefisien total hamburan. Nilai rata-rata koefisien total hamburan pada setiap wilayah pesisir dan offshore di perairan NEGOM setiap musim menunjukkan hasil yang berbeda nyata. Kata kunci: distribusi spasial, variabilitas, koefisien total hamburan, berbagai musim

5 SUMMARY MURJAT Hi.UNTUNG. Spatial Distribution and Variability of Total Scattering Coefficient in Surface Water of Various Season. Supervised by Vincentius P. Siregar and Bisman Nababan. The optical properties of the waters are affected by the intensity and angle of incidence light and material contained in the water column. The optical properties are divided into two categories i.e., apparent optical properties (AOP) influenced by the intensity and angle of incident light and the amount of material in the water, and the inherent optical properties (IOP) affected only by the content of the material in the column water such as phytoplankton, suspended solid materials, organic matter, and colored dissolved organic matter (colored dissolved organic matter (CDOM). Scattering is the process of radiation deflection by the water column and the material contained in the water column. Scattering is divided into two categories i.e., backscattering and forward scattering. Total scattering is a combination of backscattering and forward scattering. The Northeastern Gulf of Mexico waters (NEGOM) contains type-1 waters (offshore) and type-2 (coastal waters). The NEGOM waters are also influenced by the Loop Current, upwelling, wind, and freshwater discharge of several rivers. Currently, few studies were conducted related variability and spatial distribution of the total scattering in NEGOM waters especially in tropical waters. Standard facilities and bio-optical equipment are also minimal to none in Indonesia. Therefore, this research is very important to be conducted. The purpose of this study was to determine the variability of the spatial and temporal distribution of the total scattering coefficient (scattering) in 9 wavelength (λ) in different seasons in the NEGOM. The result was expected to obtain information about the value, variability, and the spatial distribution of the total scattering coefficient (scattering) which will be utilized in the development of bio-optical algorithms satellite ocean color. The results showed that the total scattering coefficient in 1999 (average of 0.26(±0.05)-0.37(± 0.07) m -1 ), was generally higher in the summer than that in spring and winter (average of 0.09(±0.002)-0.23(±0.04) m -1 ). Except in the Mississippi region, the total scattering coefficient in spring 1999 (average of 1.54(±0.94)-2.01(±1.03) m -1 ) was higher than that in summer and winter. In 2000, total scattering coefficient values were also generally higher in summer (average of 0.21(±0.02)-0.32(±0.02) m -1 ) than that in spring and winter (average of 0.03(±0.003)-0.21(±0.01) m -1. These results showed that particles and suspended matter in summer were generally higher than that in spring and winter. In general, total scattering coefficients were relatively high especially in the coastal waters near the reiver mouth and relatively low in offshore waters in every season except during the summer the total scattering coefficients were relatively high in offshore waters. The relatively high total scattering coefficients found in offshore during summer was caused by the intrusion of the Mississippi river flow toward offshore containing high nutrients that can enhance the growth of phytoplankton in the waters offshore, increase suspended matter, and reduce salinity. The average value of total scattering coefficients at each local coastal and

6 offshore waters in the NEGOM each season were also showed significantly different results. Keywords: spatial distribution, variability, total scattering coefficient, various seasons

7 Hak Cipta Milik IPB, Tahun 2013 Hak Cipta Dilindungi Undang-Undang Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan atau menyebutkan sumbernya. Pengutipan hanya kepentingan pendidikan, penelitian, penulisan karya ilmiah, penyusunan laporan, penulisan kritik atau tujuan suatu masalah; dan pengutipan tersebut tidak merugikan kepentingan IPB Dilarang mengumumkan dan memperbanyak sebagian atau seluruh karya tulis ini dalam bentuk apa pun tanpa izin IPB

8 DISTRIBUSI SPASIAL DAN VARIABILITAS KOEFISIEN TOTAL HAMBURAN DI PERMUKAAN PERAIRAN BERBAGAI MUSIM MURJAT HI. UNTUNG Tesis sebagai salah satu syarat untuk memperoleh gelar Magister Sains pada Program Studi Teknologi Kelautan PROGRAM PASCASARJANA INSTITUT PERTANIAN BOGOR BOGOR 2013

9 Penguji luar komisi : Dr Ir Jonson Lumban Gaol, MSi

10 Judul Tesis Nama NRP : Distribusi Spasialdan Vatiabilitas KoefisienTotal Hamburan di Permukaan Perairan Berbagai Musim : Murjat Hi Untung : C Disetujui oleh Komisi Pembimbing Dr Ir Vincentius P. Siregar, DBA Ketua Dr Ir Bisman Nababan, MSc Anggota Diketahui oleh Ketua Program Studi Teknologi Kelautan Tangal Ujian:20 Agustus 2013 Tangal Lulus: 03 SEP 2Qt

11 Judul Tesis Nama NRP Mayor : Distribusi Spasial dan Variabilitas Koefisien Total Hamburan di Permukaan Perairan Berbagai Musim : Murjat Hi Untung : C : Teknologi Kelautan Disetujui oleh Komisi Pembimbing Dr Ir Vincentius P. Siregar, DEA Ketua Dr Ir Bisman Nababan, MSc Anggota Diketahui oleh Ketua Program Studi Teknologi Kelautan Dekan Sekolah Pascasarjana Dr Ir Jonson Lumban Gaol, MSi Dr Ir Dahrul Syah, MScAgr Tangal Ujian: 20 Agustus 2013 Tangal Lulus:

12 PRAKATA Puji dan syukur penulis panjatkan kepada Allah SWT atas segala karunianya sehingga karya ilmiah ini berhasil diselesaikan. Judul tesis ini adalah: Distribusi Spasial dan Variabilitas Koefisien Total Hamburan di Permukaan Perairan Berbagai Musim. Pada kesempatan ini penulis mengucapkan terima kasih kepada Bapak Dr. Ir. Vincentius P. Siregar, DEA. dan Dr. Ir. Bisman Nababan, M.Sc. selaku pembimbing Ketua dan Anggota, Bapak Dr. Ir. Jonson Lumban Gaol, M.Si selaku penguji yang telah banyak memberikan masukan, saran dan kritikan dalam penyusunan tesis ini. Terima kasih juga disampaikan kepada : 1. Kedua orang tua (Bapak H. Untung Somadayo dan Ibu Hj. Binuri), kekasihku Fadlia Hamim S.Pd dan adik-adik tercinta Asri, Awali, Aden dan Riska Fadila atas segala doa serta dukungan kepada penulis. 2. Ketua Program Studi Teknologi Kelautan Dr. Ir. Jonson Lumban Gaol, M.Si dan sekertaris Ibu Dr. Ir. Sri Pujiyati, M.Si serta seluruh staf pengajar pada Program Studi Teknologi Kelautan 3. Disamping itu, penghargan penelis sampaikan kepada Mahsiswa Pascasarjana Program Doktor (S3) Teknologi Kelautan (TEK) dan Teknologi Perikanan Tangkap (TPT) angkatan 2010 Bapak Nurhalis Wahidin, Bapak Romy Joniery, Bapak Sahdan, Bapak Domey Luwits Mariharapon, Bapak Amirul Karman, Bapak Imran Taeran, Bapak Ismawan Talo 4. Teman-teman Mahasiswa Pascasarjana Program Magister (S2) Teknologi Kelautan (TEK) angkatan 2010 Pa Bambang Soepartono, Pa John C. Karwal, Ellis Nurjuliastuti Nigsih, Widya Kusumanigrum, Miske Manery, Akta Wiratama. 5. Teman-teman Mahasiswa Pascasarjana (IKL) Abang Rezi Aprilia, Ibu Eva, Bapak Abdul Mutalib Angkotasan, Yaser Ahmad dan semua pihak yang tidak dapat disebutkan satu persatu yang telah membantu kepada penulis. Semoga karya ilmiah ini bermanfaat. Bogor, Agustus 2013 Penulis Murjat Hi. Untung

13 DAFTAR ISI DAFTAR TABEL DAFTAR GAMBAR DAFTAR LAMPIRAN Halaman xii xiii xiv I. PENDAHULUAN 1.1 Latar Belakang Rumusan Masalah Tujuan dan Manfaat Penelitian 2 II. METODE PENELITIAN 2.1 Waktu dan Lokasi Alat Pengukuran dan pemrosesan data Perangkat Survei Lapangan Perangkat Pemrosesan data Kalibrasi Alat dan Pengukuran Sampel Air Prosedur Kalibrasi Alat Prosedur Pengukuran Sampel Air Pengolahan Data Filter Data Air Murni (Milli-Q) Koreksi Data Pengukuran Koreksi Waktu Total Hamburan (Scattering) 8 III. HASIL DAN PEMBAHASAN 3.1 Variabilitas Koefisien Total Hamburan Dsitribusi Spasial Koefisien Hamburan Musim Semi Musim Panas Musim Gugur Variabilitas Antar Musim 15 IV. KESIMPULAN DAN SARAN 4.1 Kesimpulan Saran 18 DAFTAR PUSTAKA LAMPIRAN

14 DAFTAR TABEL Halaman 1. Jadwal pelaksanaan pengambilan data lapangan 4 2. Nilai rata-rata (simpangan deviasi) total koefisien hamburan masing-masing musim 10

15 DAFTAR GAMBAR Halaman 1. Peta Lokasi Penelitian 3 2. Alat Ac-9 In-situ Spectrometer. Komponen Ac-9 (kiri) dan penampilan pemasangan alat Ac-9 di dalam kapal (kanan) Distribusi koefisien total hamburan (scattering) pada gelombang biru, hijau, dan merah saat musim semi 1999 di wilayah perairan NEGOM Distribusi koefisien total hamburan (scattering) pada gelombang biru, hijau, dan merah saat musim semi 2000 di wilayah perairan NEGOM Distribusi koefisien total hamburan (scattering) pada gelombang biru, hijau, dan merah saat musim panas 1999 di wilayah perairan NEGOM Distribusi koefisien total hamburan (scattering) pada gelombang biru, hijau, dan merah saat musim panas 2000 di wilayah perairan NEGOM Distribusi koefisien total hamburan (scattering) pada gelombang biru, hijau, dan merah saat musim gugur 1999 di wilayah perairan NEGOM Variabilitas koefisien total hamburan pada berbagai musim di perairan NEGOM Variabilitas koefisien total hamburan antar musim setiap wilayah pengamatan di perairan NEGOM 17

16 DAFTAR LAMPIRAN Halaman 1. Hasil uji kruskal-wallis koefisien total hamburan diberbagai musim Hasil Diagram Box dan whisker koefisien total hamburan per panjang gelombang di wilayah perairan Mississippi Hasil Diagram Box dan whisker koefisien total hamburan per panjang gelombang di wilayah perairan Mobile Hasil Diagram Box dan whisker koefisien total hamburan per panjang gelombang di wilayah perairan Escambia Hasil Diagram Box dan whisker koefisien total hamburan per panjang gelombang di wilayah perairan Choctawhatche Hasil Diagram Box dan whisker koefisien total hamburan per panjang gelombang di wilayah perairan Apalachicola Hasil Diagram Box dan whisker koefisien total hamburan per panjang gelombang di wilayah perairan Suwannee Hasil Diagram Box dan whisker koefisien total hamburan per panjang gelombang di wilayah perairan Teluk Tampa Hasil Diagram Box dan whisker koefisien total hamburan per panjang gelombang di wilayah perairan terbuka (offshore) 60

17 1 I. PENDAHULUAN 1.1 Latar Belakang Sifat optik perairan dipengaruhi oleh intensitas dan sudut datang cahaya serta materi yang terkandung di dalam kolom perairan. Intensitas cahaya setelah mengenai perairan akan mengalami proses absorpsi dan hamburan yang mengakibatkan jumlah intensitas cahaya mengalami penurunan secara exponensial dengan kedalaman kolom perairan tersebut. Sifat optik perairan ini dibagi dalam dua kategori yaitu apparent optical properties (AOP) yaitu sifat optik yang dipengaruhi oleh intensitas dan sudut ruang cahaya datang serta kandungan materi dalam air dan inherent optical properties (IOP) yaitu sifat optik yang hanya dipengaruhi oleh kandungan materi dalam kolom air seperti fitoplankton, padatan tersuspensi, bahan organik, dan materi organik bewarna terlarut (colored dissolved organic matter (CDOM). Unsur-unsur dalam IOP berupa absorpsi, hamburan, transmittance, dan atenuasi (Mobley, 1994; Kirk, 1994). Absorpsi merupakan proses penyerapan energi oleh kolom air dan materi yang terkandung di dalamnya sedangkan hamburan adalah proses penghamburan energi oleh kolom air maupun materi yang terkandung dalam kolom air tersebut. Hamburan disini dapat berupa hamburan balik (backward scattering) maupun hamburan maju (forward scattering). Total hamburan merupakan gabungan dari hamburan balik dan hamburan maju. Peristiwa hilangnya energi (cahaya) melalaui proses absorpsi dan hamburan disebut proses atenuasi. Secara umum, attenuasi (c) adalah hasil penjumlahan absorpsi (a) dengan hamburan (b) (Boss et al., 2001; Miller et al., 2003, Kirk, 1994; Mobley, 1994). Spektrum cahaya merah lebih cepat diserap oleh kolom perairan dibandingkan dengan spektrum cahaya biru dan hijau karena gelombang ini mempunyai frekuensi yang lebih kecil jika dibandingkan dengan spektrum biru dan hijau yang mempunyai frekuensi yang jauh lebih besar (Mobley, 1994). Materi terkandung dalam kolom perairan seperti fitoplankton, bahan organik, dan colored dissoleved organic matter (CDOM) juga mempunyai sifat absorpsi dan hamburan yang akan mempengaruhi hilangnya energi cahaya (atenuasi) dalam kolom perairan (Kirk, 1994; Carder et al. 1999; McKee dan Cunningham, 2006; Capone et al., 2002; Pegau et al., 2003; Morel et al., 2007; Tonizo et al., 2009). Dengan demikian, variasi spektral absorpsi dan hamburan di perairan akan dipengaruhi secara langsung oleh perbedaan kosentrasi serta komposisi dari bahan atau material dalam kolom air (Pegau et al., 2003; Morel et al., 2007; Tonizo et al., 2009; Oubelkheir et al., 2005). Sifat optik di perairan pesisir (tipe-2) dipengaruhi oleh campuran partikel dan materi terlarut yang berasal dari air laut maupun aliran sungai yang masuk ke dalam perairan tersebut dengan bantuan berbagai proses fisik yang kompleks (Sosik dan Morrison. 1999). Variabilitas debit air sungai juga mempengaruhi variabilitas partikel dan bahan terlarut dalam air laut serta sifat optik secara spasial dan temporal, sehingga di perairan pesisir hamburan lebih tinggi jika dibandingkan di laut lepas yang cenderung rendah (D Sa et al. 2006). Disamping

18 2 itu, variabilitas hamburan pada air laut juga dipengaruhi oleh variabilitas ukuran, bentuk, dan struktur dari partikel yang ada dalam kolom air laut tesebut (Jonasz dan Fournier 2007). Perairan laut lepas (offshore) yang biasa disebut sebagai tipe- 1, variabilitas sifat optik umumnya hanya dipengaruhi oleh variabilitas fitoplakton. Ketika kandungan klorofil cukup rendah maka sebagian besar hamburan dalam kolom air tersebut berasal dari hamburan molekul air (Morel dan Loisel 1998). 1.2 Rumusan Masalah Perairan Northeastern Gulf of Mexico (NEGOM) merupakan lingkungan perairan yang dipengaruhi oleh enam sungai besar yang memiliki kontribusi yang sangat tinggi untuk mensuplai bahan atau material yang berasal dari daratan. Enam sungai itu adalah sungai Mississippi, Mobile, Escambia, Choctawhatche, Apalachicola, dan Suwannee. Selain itu faktor oseanografi dan musim juga berperan sangat penting dalam variabilitas bio-optik perairan ini (Nababan 2005). Fenomena El Nino Southern Oscillation (ENSO), musim, dan variabilitas arus Loop memberi perananan penting dalam variabilitas bio-optik dalam perairan NEGOM (Nababan et al. 2011; Nababan 2005; Bunge et al. 2002). Perairan NEGOM ini juga mencakup perairan tipe-1 (perairan laut lepas (offshore) dan tipe-2 (perairan pesisir) sehingga perairan ini sangat dinamis untuk mengetahui variabilitas dan distribusi spasial total hamburan. Sejauh ini juga masih sedikit penelitian terkait variabilitas dan distribusi spasial total hamburan di perairan NEGOM, khususnya perairan tropis sehingga penelitian ini sangat penting dilakukan. Disamping itu fasilitas dan peralatan bio-optik yang standar sangat minim atau bahkan tidak ada di Indonesia. Untuk itu adanya ketersediaan data ini sangat membantu untuk dapat melakukan penelitian dibidang bio-optik kelautan dimana hasilnya nanti dapat digunakan sebagai informasi awal dalam pengembangan algoritma penginderaan jauh kelautan khususnya peninderaan jauh kelautan warna laut (ocean color). Informasi terkait variabilitas dan distribusi spasial total hamburan akan sangat bermanfaat dalam penyediaan informasi bio-optik yang nantinya dapat dimanfaatkan untuk pengembangan algoritma bio-optik untuk satelit ocean color. 1.3 Tujuan dan Manfaat Penelitian Tujuan dari penelitian ini adalah untuk mendapatkan informasi variabilitas dan distribusi spasial koefisian total hamburan (scattering) pada 9 panjang gelombang (λ) pada berbagai musim di wilayah perairan Northeastern Gulf of Mexico (NEGOM). Manfaat penelitian ini adalah untuk memperoleh informasi tentang nilai, variabilitas, dan distribusi spasial koefisien total hamburan (scattering) yang nantinya dapat dimanfaatkan dalam pengembangan algoritma bio-optik satelit ocean color.

19 3 II. METODE PENELITIAN 2.1 Waktu dan Lokasi Pengambilan data koefisien absorpsi dan koefisien atenuasi di lapangan dilakukan oleh Bisman Nababan (sebagai koordinator lapangan) dari Institute of Marine Remote Sensing, University of South Florida di perairan Northeastern Gulf of Mexico (NEGOM) dan penggunaan data dalam thesis ini telah melalui persetujuan beliau. Pengambilan data dilakukan selama tiga musim (semi, panas, gugur) pada tahun Lokasi survei dengan koordinat N dan W (Gambar 1) dengan posisi yang membentang dari Delta Sungai Mississippi hingga Teluk Tampa. Terdapat enam sungai besar yang bermuara ke perairan di lokasi studi (cruise). Hasil identifikasi enam sungai yaitu sungai Mississippi, Mobile, Escambia, Choctawhatche, Apalachicola, dan Suwannee. Untuk survei pengukuran data yang dilakukan, dibatasi pada perairan pantai dengan kedalaman (isobaths) 10 m dan perairan laut lepas (offshore) dengan kedalaman 1000 m. Metode survei lapangan yang dilakukan untuk mewakili seluruh wilayah perairan NEGOM saat pengambilan data. Pengambilan data lapangan dilakukan secara sinambung (continuos) selama penelitian dan menggunakan kapal Gyre Texas A&M University dengan waktu pengukuran data selama 2 minggu untuk setiap musim. Waktu pelaksanaan pengambilan data lapangan selengkapnya disajikan pada Tabel 1. Gambar 1. Peta Lokasi Penelitian

20 4 Tabel 1. Jadwal pelaksanaan pengambilan data lapangan. No. cruise Tanggal mulai Tanggal selesai CruiseID Musim 1 15 Mei Mei 1999 Sp-99 Semi 2 15 Agustus Agustus 1999 Su-99 Panas 3 13 November November 1999 Fa-99 Gugur 4 15 April April 2000 Sp-00 Semi 5 28 Juli Agustus 2000 Su-00 Panas 2.2 Alat Pengukuran dan Pemrosesan Data Perangkat Survei Lapangan Alat atau perangkat survei lapangan untuk pengkuran data serta fungsinya adalah sebagai berikut: 1. GPS (Global Positioning System) yang berfungsi sebagai navigasi dan pengambilan posisi saat pengukuran data lapangan. 2. Instrumen Ac-9 In-Situ Spectrophotometer digunakan untuk pengukuran data koefisien absorsi dan koefisien atenuasi secara in situ pada sembilan kanal (band) yaitu pada panjang gelombang 412, 440, 488, 510, 532, 555, 650, 676, dan 715 nm (Miller dan D sa, 2002). 3. Conductivity and Temperature Sea-Bird sensors digunakan untuk mengukur nilai suhu dan salinitas perairan serta merekam secara otomatis titik koordinat. Pengukuran data ini menggunakan sistem operasi yang secara serentak dengan instrumen ac-9. Namun data yang digunakan dalam penelitian ini hanya data koordinat yang kemudian disamakan dengan data ac Alat debubbler merupakan suatu alat penampung air laut sementara yang juga berfungsi untuk menghilangkan gas yang terjebak dalam air saat pemompaan air laut dari kedalaman 3 meter sebelum dialirkan ke instrument ac-9. Air laut yang dialirkan ke intrumen ac-9 harus bebas dari gas atau udara yang terjebak supaya tidak mempengaruhi hasil pengukuran akibat dari keberadaan gas tersebut dalam air laut Perangkat Pemrosesan Data Pemrosesan data ini dengan menggunakan beberapa perangkat lunak seperti WETview, Ms. Excell, Matlab, Surfer 9, ArcGIS, Mintab 16 dan Software Statistica. Fungsi dari perangkat lunak (tools) di atas dapat diuraikan sebagai berikut: 1. Perangkat lunak WETview adalah perangkat lunak yang digunakan dalam melakukan pemrosesan akuisisi data saat pengukuran dan penyimpanan data dari hasil pengukuran instrumen ac-9 dalam format atau tipe file (dat). 2. Perangkat lunak Ms. Excell digunakan untuk mengolah dan mengatur susunan data, sehingga memudahkan untuk pengolahan atau menganalisis data hasil pengukuran. 3. Matlab digunakan dalam melakukan filtering data dan mengoreksi nilai dari hasil pengukuran terhadap variabel yang diukur.

21 5 4. Perangkat lunak Surfer 9 digunakan untuk visualisasi hasil akhir pengolahan data secara spasial yakni memetakan hasil akhir koefisien total hamburan. 5. ArcGIS digunakan untuk mendigitasi beberapa wilayah atau zona perairan yang terukur seperti muara sungai dan wilayah lepas pantai (offshore) 6. Mintab 16 dan Software Statistica digunakan untuk uji statistik pada data yang terukur. 2.3 Kalibrasi Alat dan Pengukuran Sampel Air Sebelum melakukan pengambilan data di lapangan, kalibrasi di laboratorium dilakukan terhadap instrumen ac-9 dengan mengalirkan Milli-Q terhadap sensor ac-9 (Gambar 2). Prosedur pengukuran absorpsi (a) dan atenuasi (c) dilakukan sesuai dengan prosedur kerja alat. Data hasil pengukuran ini digunakan sebagai data kalibrasi terhadap data hasil pengukuran di lapangan dengan mengurangkan nilai hasil pengukuran Milli-Q terhadap hasil pengukuran di lapangan sehingga diperoleh data yang lebih valid dan akurat (Pegau et al, 2003). Kalibrasi yang sama juga dilakukan paling tidak satu kali dalam sehari di lapangan. Gambar 2. Alat Ac-9 In-situ Spectrometer. Komponen Ac-9 (kiri), Sumber: dan penampilan pemasangan alat Ac-9 di dalam kapal (kanan) (Nababan 2005).

22 Prosedur Kalibrasi Alat Prosedur kalibrasi dilakukan sebagai berikut: 1. Tabung absorpsi a(λ) dan atenuasi c(λ) dibersihkan dengan cara menyemprot dengan Milli-Q dan alkohol kemudian tabung dibiarkan untuk kering. 2. Bersihkan lensa filter cahaya (bagian bawah ac-9) dan lensa detector (bagian atas ac-9) dengan cara membasahi kertas tissue dengan isopropil alkohol atau etanol dan mengusapkan dengan kertas sepanjang permukaan lensa detektor. Pastikan jari tangan tidak menyentuh lensa detektor ini. 3. Pasang kembali tabung absorpsi dan atenuasi ke instrumen ac-9 dan sambungkan instrument ac-9 dengan Komputer. Set up program ac-9 pada komputer dan pastikan komputer dan ac-9 sudah siap untuk melakukan pengukuran kalibrasi. 4. Alirkan Milli-Q ke instrumen ac-9 dan lakukan pencatatan nilai absorpsi dan atenuasi setiap 5 detik kemudian simpan data hasil pengukuran setelah berlangsung selama menit Prosedur Pengukuran Sampel Air Laut Langkah-langkah yang digunakan dalam pengukuran sampel air laut di lapangan adalah sebagai berikut: 1. Air dari kedalaman 3 m dari depan kapal dipompa masuk melalui lambung kapal dan dialirkan kedalam tabung debubbler. Air laut dalam debubbler disimpan selama sekitar 1 menit kemudian dialirkan dengan menggunakan pipa atau selang yang lebih kecil ke sensor absorpsi dan atenuasi instrumen ac-9. Laju air laut yang masuk kedalam tabung instrumen ac-9 adalah sebesar 1 liter/menit. 2. Instrumen ac-9 tersambung dengan lap top yang sudah diatur settingannya sehingga dapat melakukan perekaman data setiap 5 detik secara terusmenerus (continue). 3. Data hasil pengukuran disimpan setiap 6 atau 8 jam untuk menghindari ukuran file yang tidak terlalu besar. 4. Pembersihan instrumen ac-9 dilakukan paling tidak sekali dalam sehari untuk menghilangkan kemungkinan bakteri atau jamur yang lengket dalam tabung instrumen ac-9. Kalibrasi dengan Milli-Q juga dilakukan paling tidak satu kali dalam sehari. Prosedur kalibrasi hingga sampai pada pengukuran sampel air laut untuk mendapatkan data koefisien absorposi (a) dan koefisien atenuasi (c). 2.4 Pengolahan Data Data koefisien absorpsi dan koefisien atenuasi yang diperoleh dari hasil pengukuran alat Ac-9 In-situ Spectrometer di lapangan dengan format atau tipe file (dat). Pengolahan data dilakukan di Departemen Ilmu dan Teknologi Kelautan Institut Pertanian Bogor. Dalam pengolahan data ini menggunakan beberapa tahapan sebagai berikut:

23 Filter Data Air Murni (Milli-Q) Proses filtering data air murni (Milli-Q) dilakukan secara manual dengan menggunakan Ms Excel, sebelum melakukan filtering nilai koefisien absorpsi dan koefisien atenuasi hasil pengukuran Milli-Q dirata-ratakan dan mencari standar deviasi dari data tersebut, kemudian mencari nilai batas atas (ba) dan nilai batas bawah (bb). Nilai batas atas (ba) diperoleh dari hasil rata-rata ditambah nilai standar deviasi dan nilai batas bawah (bb) diperoleh dari rata-rata dikurangi nilai standar deviasi. Filtering yang dilakukan dengan menggunakan fungsi logika IF, prinsip ini dilakukan agar dapat menghilangkan nilai yang dianggap ekstrim/menjauhi nilai pada sebaran normal atau nilai sebenarnya dari data air murni (Milli-Q). Formula yang digunakan untuk memfilter data ini sebagai berikut: dan ( [ ] [ ]) ( ( )) (1) dimana : bb = batas bawah ba = batas atas Nilai dari hasil filter yang diperoleh untuk masing-masing panjang gelombang dengan menggunakan fungsi logika di atas menjadi referensi sebagai faktor koreksi data pengukuran sampel air laut Koreksi Data Pengukuran Koreksi data yang dimaksud di sini adalah koreksi data pengukuran sampel dengan mengunakan data Milli-Q dari hasil filter. Proses koreksi data dilakukan untuk mengurangi data yang dianggap ekstrim dari hasil pengukuran. Koreksi data sebagaimana biasanya yaitu nilai absorpsi (a) dan atenuasi (c) dari hasil pengukuran pada masing-masing panjang gelombang dikurangi dengan data Milli-Q hasil fiter. Persamaan yang digunakan untuk koreksi data pengkuran sebagai berikut: dimana: a m dan c m adalah koefisien absopsi dan koefisien atenuasi hasil koreksi a t dan c t adalah koefisien total absorpsi dan koefisien total atenuasi sampel a wr dan c wr adalah koefisien absorpsi dan koefisien atenuasi dari air murni Hasil koreksi data pengukuran kemudian dilakukan koreksi hamburan cahaya setiap panjang gelombang, karena pada umumnya hamburan cahaya dari sumbernya tidak semua terdeteksi oleh sensor absorpsi. Hamburan cahaya yang tidak dapat terdeteksi disebut scattering error. Metode yang sering digunakan dalam koreksi scattering error adalah pengurangan data pada panjang gelombang yang menjadi referensi. Pada metode ini panjang gelombang near infrared yang menjadi refensi dengan asumsi bahwa absorpsi pada kisaran gelombang tersebut (2a) (2b)

24 8 adalah nol. Metode koreksi hamburan dapat dilakukan dengan menggunakan rumus sebagai berikut (Bell 2010) ( ) ( ) ( ) (3) dimana: a(λ) = adalah koefisien absorpsi hasil koreksi (scattering correction) a m (λ) = adalah koefisien absorpsi hasil koreksi nilai air murni a m (λ ref ) = adalah koefisien absorpsi hasil koreksi nilai air murni panjang gelombang near infrared (715 nm) Koreksi Waktu Data pengukuran Ac-9 adalah dengan menggunakan format waktu local time, kemudian dikonversi ke Greenwich Mean Time (GMT). Dari hasil konversi waktu Ac-9 disamakan dengan waktu dari hasil perekaman alat conductivity and temperature Sea-Bird sensors. Waktu perekaman Sea-Bird sensors dengan rentang (range) waktu 2 menit sedangkan pengukuran data dengan menggunakan alat Ac-9 dengan rentang (range) waktu 5 detik. Pada kedua data waktu yang berbeda disamakan dengan mengikuti waktu pengukuran dari Sea-Bird sensors. Hal ini dilakukan karena data pengukuran mengunakan Sea-Bird sensors secara otomatis merekam data koordinat atau posisi pada saat (cruise). Hasil pengurangan dirata ratakan per 24 data untuk memperoleh data setiap titik pengukuran Total Hamburan (Scattering) Data koefisien absorpsi dan koefisien atenuasi yang diperoleh, kemudian dilakukan perhitungan untuk mendapatkan nilai hamburan setiap panjang gelombang (λ) karena fungsi dari koefisien atenuasi dan koefisien absorpsi yang terukur akan mendapatkan nilai koefisien total hamburan. Metode perhitungan untuk menghitung nilai koefisien total hamburan (b) dilakukan sebagai berikut(mobley 1994): ( ) ( ) ( ) ( ) dimana: b = koefisien hamburan (scattering) c = koefisien atenuasi a = koefisien absorpsi Analisis ini dilakukan untuk mengetahui nilai hamburan cahaya dari air laut setiap panjang gelombang (λ) atau band dari hasil pengukuran absorpsi dan atenuasi yang menggunakan alat Ac-9. Data tersebut kemudian divisualisasi menggunakan surfer 9 dengan metode interpolasi kriging. Metode tersebut digunakan untuk menginterpolasi seluruh data hamburan dari hasil analisis sehingga memudahkan dalam mengiterpertasi distribusi koefisien hamburan setiap panjang gelombang (λ). Selain dari itu data total hamburan juga dilakukan analisis uji statistik Kruskal- Wallis untuk mengetahui nilai perbedaan hamburan antar musim pada setiap panjang gelombang (λ). Uji statistik ini menguji hipotesis nol (H 0 ) yaitu hamburan masing-masing musim pada setiap panjang gelombang (λ) adalah sama

25 9 dan (H 1 ) dimana paling tidak ada satu pasang (antar musim) rata-rata koefisien total hamburan tidak sama (Walpole 1992). Tingkat signifikansi (taraf nyata) yang digunakan adalah 5% - 1% (α = 0,05 dan 0.01). Persamaan uji Kruskal-Wallis yang digunakan sebagai berikut: ( ) ( ) ( ) dimana H adalah nilai uji Kruskal-Wallis n adalah jumlah sampel c adalah jumlah kelas R adalah jumlah rangking pada sampel ke-i Hamburan masing-masing musim pada setiap panjang gelombang (λ) berbeda nyata jika nilai H > nilai kritis dari chi-khuadrat (x 2 =9.488) dan (x 2 =13.277).

26 10 3 HASIL DAN PEMBAHASAN 3.1 Variabilitas Koefisien Total Hamburan Hasil pengukuran data dalam penelitan ini berupa data koefisien atenuasi (attenuation) dan koefisien absorpsi (absorption) yang diukur menggunakan alat Ac-9 In-Situ Spectrophotometer. Data yang diperoleh dari hasil pengukuran kemudian dikoreksi dalam beberapa tahapan dan dihitung menggunakan persamaan b(λ) = c(λ) a(λ) (Mobley 1994; Kirik, 1994; Hu et al. 2002). Persamaan tersebut digunakan untuk menghitung nilai koefisien total hamburan pada setiap panjang gelombang di masing-masing musim. Panjang gelombang dalam alat atau instrumen terdiri dari gelombang biru, hijau dan merah. Gelombang biru terdiri dari panjang gelombang 412, 440, 488 nm, gelombang hijau 510, 532, 555 nm, gelombang merah 650, 676, 715 nm. Hasil analisis rata-rata dilakukan untuk melihat kisaran nilai koefisien total hamburan dan membandingkan nilai koefisien total hamburan pada masingmasing musim di perairan NEGOM. Hasil penelitian menunjukkan bahwa koefisien total hamburan pada masing-masing panjang gelombang secara umum lebih tinggi pada musim panas dibandingkan dengan musim semi dan gugur pada tahun yang sama dengan kisaran nilai rata-rata 0.26 (±0,05) (±0,07) m -1 (tahun 1999; Tabel 2). Hasil juga menunjukkan bahwa nilai koefisien total hamburan maksimum terjadi pada gelombang biru (λ=412 nm) (Tabel 2). Hasil ini menunjukkan bahwa secara umum kandungan partikel baik fitoplankton maupun materi tersuspensi lainnya lebih tinggi pada musim panas dibandingkan dengan musim semi dan gugur. Hasil ini sesuai dengan hasil penelitian Nababan et al. (2011) dan Nababan (2005) bahwa sebaran konsentrasi fitoplankton pada musim panas lebih tinggi dan menyebar sampai laut lepas dibandingkan dengan musim semi dan gugur. Pada tahun 2000, nilai koefisien total hamburan secara umum tetap lebih tinggi pada musim panas dibandingkan musim semi dengan kisaran nilai rata-rata 0,21(±0,02) 0,32(±0,02) m -1 (Tabel 2). Tabel 2. Nilai rata-rata (simpangan deviasi) koefisien total hamburan masingmasing musim (m -1 ) Panjang Gelombang Musim Sp 99 0,26 0,26 0,22 0,16 0,15 0,13 0,11 0,11 0,11 (±0,06) (±0,05) (±0,04) (±0,04) (±0,04) (±0,04) (±0,02) (±0,02) (±0,02) Su 99 0,37 0,36 0,33 0,31 0,29 0,28 0,28 0,26 0,27 (±0,07) (±0,06) (±0,06) (±0,06) (±0,06) (±0,06) (±0,05) (±0,05) (±0,05) Fa 99 0,23 0,21 0,14 0,14 0,12 0,10 0,09 0,09 0,09 (±0,004) (±0,004) (±0,004) (±0,003) (±0,003) (±0,003) (±0,003) (±0,002) (±0,002) Sp 00 0,21 0,16 0,10 0,09 0,08 0,07 0,05 0,05 0,03 (±0,01) (±0,01) (±0,009) (±0,008) (±0,007) (±0,006) (±0,004) (±0,005) (±0,003) Su00 0,32 0,31 0,26 0,27 0,26 0,25 0,22 0,21 0,21 (±0,02) (±0,02) (±0,01) (±0,01) (±0,02) (±0,02) (±0,02) (±0,02) (±0,02)

27 11 Hasil ini dapat memberi informasi bahwa kandungan partikel dan materi tersuspensi pada musim panas 1999 lebih tinggi dibandingkan musim panas 2000 dan hasil ini sesuai dengan hasil yang dilaporkan Nababan et al. (2011) dan Nababan (2005). Relatif tingginya koefisien total hamburan pada musim panas disebabkan oleh adanya pengaruh intrusi air tawar dari sungai Mississippi yang membawa nutrient dan partikel lainnya ke laut lepas arah timur dan tenggara muara sungai Mississippi yang mengakibatkan terjadinya blooming fitoplankton di laut lepas (offshore) (Nababan et al. 2011; Nababan 2005; Walsh et al. 2003). Selain itu salinitas dari muara sungai Mississippi yang sedikit rendah dengan suhu yang tinggi terdistribusi hingga ke laut lepas (offshore), maka mengakibatkan koefisien total hamburan di perairan lebih tinggi (Sulivan et al. 2006). Kondisi yang sama juga ditemukan oleh (Nababan 2005). Intrusi air tawar dari sungai Mississippi ke laut lepas ini terjadi akibat adanya gerakan angin dari arah barat dan barat laut yang membantu pergerakan arus dekat muara sungai Mississippi bergerak menuju timur dan tenggara sebagai mana diinformasikan oleh (Nababan 2005). Gerakan arus di daerah pesisir ini dibantu dengan keberadaan Loop Current yang memiliki gerakan anticyclonic dan berada dekat muara sungai Mississippi yang membawa air tawar dari aliran sungai Mississippi lebih jauh ke arah offshore pada musim panas (Nababan et al. 2011; Nababan 2005; Walsh et al. 2003; Muller-Karger 2000; Nowlin et al. 2000; Walker, 1996). Pada musim semi dan gugur, arah dan kecepatan angin tidak membantu pergerakan aliran sungai Mississippi ke arah timur dan tenggara muara sungai Mississippi serta posisi Loop Current juga lebih jauh di daerah offshore sehingga tidak dapat membantu pergerakan aliran sungai Mississippi lebih jauh ke arah offshore (Nababan et al. 2011; Nababan 2005). Secara umum, koefisien total hamburan pada musim gugur lebih kecil dibandingkan musim semi dan panas pada tahun 1999 dengan kisaran nilai ratarata 0,09(±0,002) 0,23(±0,004) m -1 (Tabel 2). Hasil menunjukkan bahwa kandungan konsentrasi fitoplankton dan materi tersuspensi lainnya lebih rendah pada musim gugur dibandingkan dengan musim lainnya. Rendahnya kandungan konsentrasi fitoplankton pada musim gugur ini mungkin disebabkan oleh relatif rendahnya intensitas radiasi matahari pada musim ini dibandingkan dengan musim lainnya. Konsentrasi klorofil-a yang relatif rendah pada musim gugur di perairan timur laut Teluk Meksiko ini juga telah dilaporkan Nababan et al. (2011) dan Nababan (2005). 3.2 Distribusi Spasial Koefisien Total Hamburan Secara umum distribusi spasial pada semua gelombang biru, hijau, dan merah memberikan pola yang sama sehingga visualisasi dalam penelitian ini untuk gelombang biru diwakili oleh panjang gelombang 440 nm, hijau pada panjang gelombang 532 nm, dan merah pada panjang gelombang 676 nm Musim Semi Berdasarkan hasil analisis data pada musim semi periode 1999 dan 2000 yang divisualisasikan menunjukan bahwa distribusi total hamburan untuk ke dua musim secara spasial sedikit berbeda. Pada saat musim semi 1999, distribusi nilai koefisien total hamburan pada gelombang biru, hijau, dan merah maksimum ditemukan di sekitar muara sungai Mississippi sementara pada musim semi 2000

28 12 nilai koefisien total hamburan gelombang biru, hijau, dan merah maksimum ditemukan di muara sungai Mobile (Gambar 3 dan 4). Namun secara spasial terlihat bahwa nilai koefisien total hamburan yang relatif tinggi terdistribusi lebih luas pada musim semi 1999 (Sp-99) dibandingkan musim semi 2000 (Sp-00). Hal ini terjadi karena pengambilan data pada musim semi 1999 (Mei 1999) lebih dekat ke musim panas dibandingkan pada musim semi 2000 (April 2000). Arah angin dan sirkulasi air laut di timur laut Teluk Meksiko berubah-ubah selama musim semi dan untuk bulan Mei lebih mendekati kepada arah angin dan sirkulasi laut untuk musim panas (Nababan et al. 2011; Nababan 2005). Disamping itu, intensitas radiasi matahari relatif tinggi pada bulan Mei dibandingkan bulan April yang mempngaruhi proses fotosintesis dan perkembangan fitoplankton. Nababan et al. (2011) dan Nababan (2005) melaporkan bahwa rata-rata konsentrasi fitoplankton pada musim semi 1999 relatif lebih tinggi dibandingkan pada musim semi 2000 hal ini disebabkan oleh karena pada musim semi 1999 (Mei 1999) arah angin lebih condong berasal dari barat dan barat laut yang dapat membawa aliran sungai Misssissippi lebih jauh ke arah timur dan tenggara dari muara sungai Mississippi. Proses ini akan membawa banyak nutrient untuk perkembangan fitoplankton di daerah ini (Nababan et al. 2011; Nababan 2005). Relatif tingginya konsentrasi fitoplankton pada musim semi 1999 dibandingkan musim semi 2000 berkorelasi positif dengan koefisien total hamburan di daerah ini. Secara umum, distribusi spasial koefisien total hamburan pada saat musim semi 1999 dan 2000 (Sp-99 dan Sp-00) cenderung lebih tinggi di perairan pesisir khususnya dekat muara sungai dibandingkan daerah offshore. Tingginya koefisien total hamburan di daerah pesisir ini akibat dari pengaruh debit air sungai yang bermuara ke pesisir ini banyak membawah bahan atau materi dari daratan dengan kandungan nutrient yang relatif tinggi yang mengakibatkan adanya blooming fitoplankton di daerah pesisir khususnya dekat muara sungai. Gambar 3. Distribusi koefisien total hamburan (scattering) pada gelombang biru, hijau, dan merah saat musim semi 1999 di wilayah perairan NEGOM

29 13 Gambar 4. Distribusi koefisien total hamburan (scattering) pada gelombang biru, hijau, dan merah saat musim semi 2000 di wilayah perairan NEGOM Musim Panas Secara umum, koefisien total hamburan pada musim panas terdistrisbusi lebih merata pada seluruh perairan timur laut Teluk Meksiko dibandingkan dengan musim semi dan gugur. Hasil penelitian juga memperlihatkan bahwa sebaran koefisien total hamburan pada musim panas 1999 relatif lebih merata dan lebih tinggi dibandingkan dengan musim panas 2000 (Gambar 5 dan 6). Hal ini mungkin disebabkan oleh karena debit sungai Mississippi pada musim panas 1999 jauh lebih tinggi dibandingkan dengan musim panas 2000 (Nababan et al dan Nababan 2005). Pada musim panas 1999, sebaran total hamburan di daerah pesisir khususnya dekat muara sungai Mobile, Escambia, Chicthawhatchee, Apalachicola, dan Suwannee umumnya lebih tinggi dibandingkan pada musim panas Hal ini mungkin disebabkan oleh debit sungai yang mengalir ke perairan ini pada musim panas 1999 lebih tinggi dibandingkan dengan musim panas 2000 (Nababan et al., 2011; Nababan 2000). Relatif tingginya debit air sungai pada musim panas 1999 akan menyebabkan konsentrasi materi tersuspensi dan fitoplankton pada perairan pesisir ini yang menyebabkan nilai total koefisien hamburan menjadi relatif tinggi dibandingkan musim panas Distribusi spasial koefisien total hamburan pada musim panas 2000 (Su 00) relatif lebih tinggi di muara sungai Mississippi dan kemudian terdistribusi hingga ke perairan terbuka (offshore) dibandingkan pada musim panas 1999 (Gambar 5 dan 6). Hal ini mungkin disebabkan oleh lokasi Loop Current memiliki posisi yang lebih dekat ke muara sungai Mississippi yang membantu pergerakan massa air dengan kandungan nutrient dan padatan tersuspensi yang tinggi ke arah offshore terlihat menjadi lebih nyata dibandingkan pada musim panas 1999 (Nababan et al., 2011; Nababan 2005).

30 14 Gambar 5. Distribusi koefisien total hamburan (scattering) pada gelombang biru, hijau, dan merah saat musim panas 1999 di wilayah perairan NEGOM Gambar 6. Distribusi koefisien total hamburan (scattering) pada gelombang biru, hijau, dan merah saat musim panas 2000 di wilayah perairan NEGOM Musim Gugur 1999 Hasil analisis data distribusi koefisien total hamburan pada musim gugur 1999 (Fa 99) relatif lebih tinggi ditemukan di muara sungai Mississippi hingga ke bagian Utara dari muara Mississippi (Gambar 7). Tingginya koefisien total hamburan lebih dominan di wilayah pesisir, jika dibandingkan dengan perairan terbuka (offshore), kondisi pada musim ini disebabkan oleh debit air sungai Mississippi yang lebih tinggi di wilayah perairan NEGOM (Nababan et al. 2011). Selain itu secara spasial terlihat bahwa koefisien total hamburan yang terdistribusi ke bagian Utara muara Mississippi akibat tekanan masa air di wilayah pesisir dari bagian Selatan, maka bahan atau materi serta nutrient yang tinggi terdistribusi di wilayah perairan sekitar muara Mississippi dan bagian Utara dari Mississippi

31 15 Gambar 7. Distribusi koefisien total hamburan (scattering) pada gelombang biru, hijau, dan merah saat musim gugur 1999 di wilayah perairan NEGOM 3.3 Variabilitas antar Musim Secara umum hasil analisis rata-rata variabilitas antar musim menunjukan bahwa koefisien total hamburan yang diperoleh pada musim semi, panas dan gugur 1999 di perairan NEGOM mempunyai pola yang mirip dan ketiga musim tersebut mempunyai pucak hamburan yang lebih tinggi di musim panas. Hal yang yang sama juga diperoleh pada musim semi dan panas 2000 (Sp 00 dan Su 00), dimana puncak koefisien total hamburan lebih tinggi di musim panas 2000 (Su 00). Kemiripan pola koefisien total hamburan tersebut terindikasi adanya bahan atau materi yang tinggi di perairan dan pengaruh intensitas cahaya yang maksimal terkecuali pada musim gugur yang diperoleh sedikit menurun (Gambar 8). Perbedaan variabilitas koefisien total hamburan diperairan disebabkan oleh bahan atau materi di kolom air serta intensitas cahaya (Mobley, 1994; Kirk, 1994). Pada saat musim semi dan panas 2000 (Sp 00 dan Su 00) terlihat bahwa puncak koefisien total hamburan terdapat di kisaran gelombang biru dan kemudian kisaran gelombang hijau dan merah terlihat lebih rendah. Kondisi yang sama ditemukan oleh Nababan et al. (2011).

32 16 Gambar 8. Variabilitas koefisien total hamburan pada berbagai musim di perairan NEGOM Berdasarkan perhitungan statistik dengan menggunakan uji beda nyata menunjukan bahwa variabilitas distribusi koefisien total hamburan yang diperoleh di masing-masing musim berbeda nyata (berbeda sangat nyata pada α 0.01) (Lampiran 1). Perbedaan tersebut juga ditemukan pada masing-masing wilayah perairan, meskipun dalam kondisi musim yang sama (Lampiran 2-9) Hasil juga menunjukan bahwa nilai rata-rata koefisien total hamburan di musim semi 1999 lebih tinggi di perairan Mississippi, semi 2000 lebih tinggi di perairan Mobile, musim panas 1999 lebih tinggi di perairan Choctawhatche, panas 2000 lebih tinggi di perairan Mississippi dan musim gugur 1999 lebih tinggi di perairan Mississippi (Gambar 9). Kondisi ini terlihat bahwa secara umum lebih tinggi di perairan pesisir dibandingkan dengan perairan offshore (Gambar 9). Hal ini dikarenakan nutrient, bahan organik dan bahan tersuspensi lebih besar terdistribusi di perairan pesisir (Newall dan Fisher 2002; Chami et al. 2005; Nababan 2005; Son et al. 2012). Selain itu adanya Fenomena El Nino Southern Oscillation (ENSO), dan pengarauh arus Loop yang mempunyai perananan penting dalam variabilitas bio-optik dalam perairan NEGOM, maka distribusi bahan maupun material lebih terkosentrasi di perairan pesisir (Nababan 2005; Babin et al. 2003; Sulivan et al. 2005). Fenomena ENSO menyebabkan meningkatnya curah hujan di perairan NEGOM dan wilayah bagian barat Florida (Schmidt et al. 2000)

33 Gambar 9. Variabilitas koefisien total hamburan antar musim setiap wilayah pengamatan di perairan NEGOM 17

34 18 4 KESIMPULAN DAN SARAN 4.1 Kesimpulan Secara umum, koefisien total hamburan (scattering) relatif tinggi ditemui di perairan pesisir khususnya dekat muara sungai setiap musim dan relatif rendah di perairan offshore kecuali pada musim panas koefisien total hamburan yang relatif tinggi juga ditemui pada perairan offshore. Hasil penelitian menunjukkan bahwa koefisien total hamburan pada tahun 1999 pada masing-masing panjang gelombang secara umum lebih tinggi pada musim panas (rata-rata 0,26(±0,05)-0.37(±0,07) m -1 ) dibandingkan dengan musim gugur (rata-rata 0,09(±0,002)-0,23(±0,04) m -1. Khusus di daerah perairan sekitar Mississippi, variabilitas koefisien total hamburan pada tahun 1999 pada musim semi (rata-rata 1,54(±0,94)-2,01(±1,03) m -1 ) lebih tinggi dibandingkan pada musim panas dan gugur. Pada tahun 2000, nilai koefisien total hamburan secara umum tetap lebih tinggi pada musim panas (rata-rata 0,21(±0,02)-0,32(±0,02) m - 1 ) dibandingkan musim semi dan gugur (rata 0,03(±0,003)-0,21(±0,01) m -1 ). Berdasarkan perhitungan statistik dengan menggunakan uji beda nyata menunjukan bahwa variabilitas distribusi koefisien total hamburan yang diperoleh setiap wilayah pada masing-masing musim berbeda nyata (berbeda sangat nyata pada α=0,01). 4.2 Saran Perlu dilakukan analisis data lanjutan yang menghubungkan data remote sensing reflektansi hasil pengukuran di lapangan dan hasil pengukuran dari satelit ocean color, serta data pendukung lainnya seperti kandungan partikel terlarut, suhu, salinitas yang berperan langsung dalam proses hamburan.

35 19 DAFTAR PUSTAKA Babin M, Stramski D, Ferrari GM, Claustre H, Bricaud A, Obolensky G, Hoepffner N Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe. Journal of Geophysical Research. 108(7): 1-20 Boss E, Slade W Spectral particulate attenuation and particle size distribution in the bottom boundary layer of a continental shelf. Journal of geophysical research. 106(5): Bunge L, Ochoa J, Badan A, Candela J, Sheinbaum J Deep flows in the Yucatan Channel and their relation to changes in the Loop Current extension. Journal of Geophysical Research. 107.(12): Capone A, Digaetano T, Grimaldi A, Habel R, Presti DL, Migneco E, Masullo R, Moro F, Petruccetti M, Petta C et al Measurements of light transmission in deep sea with the AC9 Trasmissometer. Nuclear Instruments and Methods in Physics Research. 487: Carder KL, Chen FR, Lee ZP, Hawes SK, Kamykowski D Semi Analytic Moderate-Resolution Imaging Spectrometer Algorithms for Chlorophyll a and Absorption With Bio-Optical Domains Based on Nitrate-Depletion Temperatures. Journal of Geophysical. 104(3): Chami M, Shybanov EB, Churilova TY, Khomenko GA, Lee MEG, Martynov OV, Berseneva GA, and Korotaev G K. (2005) Optical properties of the particles in the Crimea coastal waters (Black Sea), Jurnal of Geophysical.110:1-17. D Sa. EJ, Miller RL, Castillo CD Bio-optical properties and ocean color algorithms for coastal waters influenced by the Mississippi River during a cold front. Optical Society of America. 45: D Sa EJ, Korobkin M Wind influence on chlorophyll variability along the Louisiana-Texas coast from satellite wind and ocean color data. Remote Sensing of the Ocean. Hu C, Muller-Karger FE Absorbance, absorption coefficient, and apparent quantum yield. Limnol Oceanogr, 47: Jonasz M, Fournier GR Light Scattering by Particles in Water. Academic Press is an imprint of Elseiver. Kirk, JTO Light and photosynthesis in aquatic ecosystems. Cambridge, United Kingdom: Cambridge University Press.500p. Levin I, Darecki M, Sagan S, Radomyslskaya T Relationships between inherent optical properties in the Baltic Sea for application to the underwater imaging problem. Papers, Institute of Oceanology, Polish Academy of Sciences. Oceanologia. 55(1):12-26 McKee D, Cunningham A Identification and Characterisation Of Two Optical Water Types In The Irish Sea From In Situ Inherent Optical Properties and Seawater Constituents. Estuarine Coastal and Shelf Science. 68: Miller RL, Sa EJD Bio-Optical Properties In Waters Influenced by The Mississippi River during low flow conditions. Remote Sensing of Environment. 84:

3. METODOLOGI PENELITIAN

3. METODOLOGI PENELITIAN 3. METODOLOGI PENELITIAN 3.1 Lokasi dan Waktu Penelitian Penelitian ini dilakukan di bagian timur laut Teluk Meksiko mulai dari delta Sungai Mississippi sampai Teluk Tampa di sebelah barat Florida (Gambar

Lebih terperinci

2. TINJAUAN PUSTAKA. cahaya, sudut datang cahaya, kondisi permukaan perairan, bahan yang terlarut,

2. TINJAUAN PUSTAKA. cahaya, sudut datang cahaya, kondisi permukaan perairan, bahan yang terlarut, 2. TINJAUAN PUSTAKA 2.1 Sifat Optik Perairan Penetrasi cahaya yang sampai ke dalam air dipengaruhi oleh intensitas cahaya, sudut datang cahaya, kondisi permukaan perairan, bahan yang terlarut, dan tersuspensi

Lebih terperinci

KOEFISIEN ABSORPSI DAN ATENUASI CAHAYA DI PERMUKAAN AIR LAUT PADA BERBAGAI MUSIM DENNY ARDLY WIGUNA

KOEFISIEN ABSORPSI DAN ATENUASI CAHAYA DI PERMUKAAN AIR LAUT PADA BERBAGAI MUSIM DENNY ARDLY WIGUNA KOEFISIEN ABSORPSI DAN ATENUASI CAHAYA DI PERMUKAAN AIR LAUT PADA BERBAGAI MUSIM DENNY ARDLY WIGUNA DEPARTEMEN ILMU DAN TEKNOLOGI KELAUTAN FAKULTAS PERIKANAN DAN ILMU KELAUTAN INSTITUT PERTANIAN BOGOR

Lebih terperinci

VARIABILITAS DAN DISTRIBUSI SPASIAL KOEFISIEN TOTAL HAMBURAN DI PERMUKAAN PERAIRAN PADA BERBAGAI MUSIM

VARIABILITAS DAN DISTRIBUSI SPASIAL KOEFISIEN TOTAL HAMBURAN DI PERMUKAAN PERAIRAN PADA BERBAGAI MUSIM Jurnal Ilmu dan Teknologi Kelautan Tropis, Vol. 5, No. 2, Hlm. 429-440, Desember 2013 VARIABILITAS DAN DISTRIBUSI SPASIAL KOEFISIEN TOTAL HAMBURAN DI PERMUKAAN PERAIRAN PADA BERBAGAI MUSIM VARIABILITY

Lebih terperinci

VARIABILITAS MUSIMAN KOEFISIEN ABSORPSI CAHAYA PADA PERMUKAAN AIR LAUT SEASONAL VARIABILITY OF LIGHT ABSORPTION COEFFICIENT OF SURFACE WATER

VARIABILITAS MUSIMAN KOEFISIEN ABSORPSI CAHAYA PADA PERMUKAAN AIR LAUT SEASONAL VARIABILITY OF LIGHT ABSORPTION COEFFICIENT OF SURFACE WATER Jurnal Ilmu dan Teknologi Kelautan Tropis, Vol. 7, No. 2, Hlm. 715-729, Desember 2015 VARIABILITAS MUSIMAN KOEFISIEN ABSORPSI CAHAYA PADA PERMUKAAN AIR LAUT SEASONAL VARIABILITY OF LIGHT ABSORPTION COEFFICIENT

Lebih terperinci

4. HASIL DAN PEMBAHASAN

4. HASIL DAN PEMBAHASAN 4. HASIL DAN PEMBAHASAN 4.1 Musim Panas Tahun 1999 Pola grafik R rs dari masing-masing lokasi pengambilan data radiansi dan irradiansi pada musim panas 1999 selengkapnya disajikan pada Gambar 7.Grafik

Lebih terperinci

PENDUGAAN KONSENTRASI KLOROFIL-a DAN TRANSPARANSI PERAIRAN TELUK JAKARTA DENGAN CITRA SATELIT LANDSAT

PENDUGAAN KONSENTRASI KLOROFIL-a DAN TRANSPARANSI PERAIRAN TELUK JAKARTA DENGAN CITRA SATELIT LANDSAT PENDUGAAN KONSENTRASI KLOROFIL-a DAN TRANSPARANSI PERAIRAN TELUK JAKARTA DENGAN CITRA SATELIT LANDSAT DESSY NOVITASARI ROMAULI SIDABUTAR SKRIPSI DEPARTEMEN ILMU DAN TEKNOLOGI KELAUTAN FAKULTAS PERIKANAN

Lebih terperinci

SPEKTRAL REMOTE SENSING REFLEKTANSI PERMUKAAN AIR LAUT SPECTRAL OF REMOTE SENSING REFLECTANCE OF SURFACE WATERS

SPEKTRAL REMOTE SENSING REFLEKTANSI PERMUKAAN AIR LAUT SPECTRAL OF REMOTE SENSING REFLECTANCE OF SURFACE WATERS Jurnal Ilmu dan Teknologi Kelautan Tropis, Vol. 5, No. 1, Hlm. 69-84, Juni 2013 SPEKTRAL REMOTE SENSING REFLEKTANSI PERMUKAAN AIR LAUT SPECTRAL OF REMOTE SENSING REFLECTANCE OF SURFACE WATERS Bisman Nababan

Lebih terperinci

REMOTE SENSING REFLEKTANSI PADA BERBAGAI MUSIM DAN TIPE AIR LAUT

REMOTE SENSING REFLEKTANSI PADA BERBAGAI MUSIM DAN TIPE AIR LAUT REMOTE SENSING REFLEKTANSI PADA BERBAGAI MUSIM DAN TIPE AIR LAUT ANAK AGUNG GEDE WIRAPRAMANA SKRIPSI DEPARTEMEN ILMU DAN TEKNOLOGI KELAUTAN FAKULTAS PERIKANAN DAN ILMU KELAUTAN INSTITUT PERTANIAN BOGOR

Lebih terperinci

PENENTUAN POLA SEBARAN KONSENTRASI KLOROFIL-A DI SELAT SUNDA DAN PERAIRAN SEKITARNYA DENGAN MENGGUNAKAN DATA INDERAAN AQUA MODIS

PENENTUAN POLA SEBARAN KONSENTRASI KLOROFIL-A DI SELAT SUNDA DAN PERAIRAN SEKITARNYA DENGAN MENGGUNAKAN DATA INDERAAN AQUA MODIS PENENTUAN POLA SEBARAN KONSENTRASI KLOROFIL-A DI SELAT SUNDA DAN PERAIRAN SEKITARNYA DENGAN MENGGUNAKAN DATA INDERAAN AQUA MODIS Firman Ramansyah C64104010 PROGRAM STUDI ILMU DAN TEKNOLOGI KELAUTAN FAKULTAS

Lebih terperinci

Aplikasi-aplikasi ICV untuk sumber daya air: - Pengukuran luas perairan, - Identifikasi konsentrasi sedimen/tingkat kekeruhan, - Pemetaan daerah

Aplikasi-aplikasi ICV untuk sumber daya air: - Pengukuran luas perairan, - Identifikasi konsentrasi sedimen/tingkat kekeruhan, - Pemetaan daerah ICV APLIKASI UNTUK SUMBER DAYA AIR Aplikasi-aplikasi ICV untuk sumber daya air: - Pengukuran luas perairan, - Identifikasi konsentrasi sedimen/tingkat kekeruhan, - Pemetaan daerah banjir, - Kesuburan perairan,

Lebih terperinci

APLIKASI DATA INDERAAN MULTI SPEKTRAL UNTUK ESTIMASI KONDISI PERAIRAN DAN HUBUNGANNYA DENGAN HASIL TANGKAPAN IKAN PELAGIS DI SELATAN JAWA BARAT

APLIKASI DATA INDERAAN MULTI SPEKTRAL UNTUK ESTIMASI KONDISI PERAIRAN DAN HUBUNGANNYA DENGAN HASIL TANGKAPAN IKAN PELAGIS DI SELATAN JAWA BARAT APLIKASI DATA INDERAAN MULTI SPEKTRAL UNTUK ESTIMASI KONDISI PERAIRAN DAN HUBUNGANNYA DENGAN HASIL TANGKAPAN IKAN PELAGIS DI SELATAN JAWA BARAT Oleh: Nurlaila Fitriah C64103051 PROGRAM STUDI ILMU DAN TEKNOLOGI

Lebih terperinci

ANALISIS SPASIAL SUHU PERMUKAAN LAUT DI PERAIRAN LAUT JAWA PADA MUSIM TIMUR DENGAN MENGGUNAKAN DATA DIGITAL SATELIT NOAA 16 -AVHRR

ANALISIS SPASIAL SUHU PERMUKAAN LAUT DI PERAIRAN LAUT JAWA PADA MUSIM TIMUR DENGAN MENGGUNAKAN DATA DIGITAL SATELIT NOAA 16 -AVHRR ANALISIS SPASIAL SUHU PERMUKAAN LAUT DI PERAIRAN LAUT JAWA PADA MUSIM TIMUR DENGAN MENGGUNAKAN DATA DIGITAL SATELIT NOAA 16 -AVHRR Oleh : MIRA YUSNIATI C06498067 SKRIPSI PROGRAM STUDI ILMU DAN TEKNOLOGI

Lebih terperinci

4. HASIL DAN PEMBAHASAN

4. HASIL DAN PEMBAHASAN 4. HASIL DAN PEMBAHASAN 4.1. Pemetaan Batimetri 4.1.1. Pemilihan Model Dugaan Dengan Nilai Digital Asli Citra hasil transformasi pada Gambar 7 menunjukkan nilai reflektansi hasil transformasi ln (V-V S

Lebih terperinci

KERAGAMAN SUHU DAN KECEPATAN ARUS DI SELAT MAKASSAR PERIODE JULI 2005 JUNI 2006 (Mooring INSTANT)

KERAGAMAN SUHU DAN KECEPATAN ARUS DI SELAT MAKASSAR PERIODE JULI 2005 JUNI 2006 (Mooring INSTANT) KERAGAMAN SUHU DAN KECEPATAN ARUS DI SELAT MAKASSAR PERIODE JULI 2005 JUNI 2006 (Mooring INSTANT) Oleh: Ince Mochammad Arief Akbar C64102063 PROGRAM STUDI ILMU DAN TEKNOLOGI KELAUTAN FAKULTAS PERIKANAN

Lebih terperinci

DINAMIKA MASSA AIR DI PERAIRAN TROPIS PASIFIK BAGIAN BARAT DAN HUBUNGANNYA DENGAN PERUBAHAN MUSIM DAN EL NINO SOUTHERN OSCILLATION

DINAMIKA MASSA AIR DI PERAIRAN TROPIS PASIFIK BAGIAN BARAT DAN HUBUNGANNYA DENGAN PERUBAHAN MUSIM DAN EL NINO SOUTHERN OSCILLATION DINAMIKA MASSA AIR DI PERAIRAN TROPIS PASIFIK BAGIAN BARAT DAN HUBUNGANNYA DENGAN PERUBAHAN MUSIM DAN EL NINO SOUTHERN OSCILLATION Oleh : SEPTINA PAPILAYA K.L C64103024 PROGRAM STUDI ILMU DAN TEKNOLOGI

Lebih terperinci

4. HASIL DAN PEMBAHASAN. Pada Gambar 7 tertera citra MODIS level 1b hasil composite RGB: 13, 12

4. HASIL DAN PEMBAHASAN. Pada Gambar 7 tertera citra MODIS level 1b hasil composite RGB: 13, 12 4. HASIL DAN PEMBAHASAN 4.1 Sebaran Tumpahan Minyak Dari Citra Modis Pada Gambar 7 tertera citra MODIS level 1b hasil composite RGB: 13, 12 dan 9 dengan resolusi citra resolusi 1km. Composite RGB ini digunakan

Lebih terperinci

PENENTUAN ARUS PERMUKAAN MENGGUNAKAN DATA CITRA SATELIT NOAA DAN METODE MAXIMUM CROSS CORRELATION

PENENTUAN ARUS PERMUKAAN MENGGUNAKAN DATA CITRA SATELIT NOAA DAN METODE MAXIMUM CROSS CORRELATION PENENTUAN ARUS PERMUKAAN MENGGUNAKAN DATA CITRA SATELIT NOAA DAN METODE MAXIMUM CROSS CORRELATION Tugas Akhir Disusun untuk memenuhi syarat kurikuler untuk memperoleh gelar sarjana dari Program Studi Oseanografi

Lebih terperinci

VARIABILITAS SUHU DAN SALINITAS DI PERAIRAN BARAT SUMATERA DAN HUBUNGANNYA DENGAN ANGIN MUSON DAN IODM (INDIAN OCEAN DIPOLE MODE)

VARIABILITAS SUHU DAN SALINITAS DI PERAIRAN BARAT SUMATERA DAN HUBUNGANNYA DENGAN ANGIN MUSON DAN IODM (INDIAN OCEAN DIPOLE MODE) VARIABILITAS SUHU DAN SALINITAS DI PERAIRAN BARAT SUMATERA DAN HUBUNGANNYA DENGAN ANGIN MUSON DAN IODM (INDIAN OCEAN DIPOLE MODE) Oleh : HOLILUDIN C64104069 SKRIPSI PROGRAM STUDI ILMU DAN TEKNOLOGI KELAUTAN

Lebih terperinci

VARIABILITY NET PRIMERY PRODUCTIVITY IN INDIAN OCEAN THE WESTERN PART OF SUMATRA

VARIABILITY NET PRIMERY PRODUCTIVITY IN INDIAN OCEAN THE WESTERN PART OF SUMATRA 1 VARIABILITY NET PRIMERY PRODUCTIVITY IN INDIAN OCEAN THE WESTERN PART OF SUMATRA Nina Miranda Amelia 1), T.Ersti Yulika Sari 2) and Usman 2) Email: nmirandaamelia@gmail.com ABSTRACT Remote sensing method

Lebih terperinci

Pola Sebaran Total Suspended Solid (TSS) di Teluk Jakarta Sebelum dan Sesudah Reklamasi

Pola Sebaran Total Suspended Solid (TSS) di Teluk Jakarta Sebelum dan Sesudah Reklamasi Pola Sebaran Total Suspended Solid (TSS) di Teluk Jakarta Sebelum dan Sesudah Ahmad Arif Zulfikar 1, Eko Kusratmoko 2 1 Jurusan Geografi, Universitas Indonesia, Depok, Jawa Barat E-mail : Ahmad.arif31@ui.ac.id

Lebih terperinci

3. METODOLOGI. Penelitian dilaksanakan pada bulan Maret hingga Oktober Survei

3. METODOLOGI. Penelitian dilaksanakan pada bulan Maret hingga Oktober Survei 3. METODOLOGI 3.1 Waktu dan Lokasi Penelitian Penelitian dilaksanakan pada bulan Maret hingga Oktober 2010. Survei lapang dilaksanakan pada tanggal 20-27 Maret 2010 dengan mengikuti kegiatan yang dilakukan

Lebih terperinci

KAJIAN SEBARAN SPASIAL PARAMETER FISIKA KIMIA PERAIRAN PADA MUSIM TIMUR DI PERAIRAN TELUK SEMARANG

KAJIAN SEBARAN SPASIAL PARAMETER FISIKA KIMIA PERAIRAN PADA MUSIM TIMUR DI PERAIRAN TELUK SEMARANG KAJIAN SEBARAN SPASIAL PARAMETER FISIKA KIMIA PERAIRAN PADA MUSIM TIMUR DI PERAIRAN TELUK SEMARANG F1 08 Nurul Latifah 1)*), Sigit Febrianto 1), Churun Ain 1) dan Bogi Budi Jayanto 2) 1) Program Studi

Lebih terperinci

STRATEGI PENGEMBANGAN DAYA SAING PRODUK UNGGULAN DAERAH INDUSTRI KECIL MENENGAH KABUPATEN BANYUMAS MUHAMMAD UNGGUL ABDUL FATTAH

STRATEGI PENGEMBANGAN DAYA SAING PRODUK UNGGULAN DAERAH INDUSTRI KECIL MENENGAH KABUPATEN BANYUMAS MUHAMMAD UNGGUL ABDUL FATTAH i STRATEGI PENGEMBANGAN DAYA SAING PRODUK UNGGULAN DAERAH INDUSTRI KECIL MENENGAH KABUPATEN BANYUMAS MUHAMMAD UNGGUL ABDUL FATTAH SEKOLAH PASCASARJANA INSTITUT PERTANIAN BOGOR BOGOR 2016 iii PERNYATAAN

Lebih terperinci

DISTRIBUSI VERTIKAL KLOROFIL-A DI PERAIRAN LAUT BANDA BERDASARKAN NEURAL NETWORK ACH. FACHRUDDIN SYAH

DISTRIBUSI VERTIKAL KLOROFIL-A DI PERAIRAN LAUT BANDA BERDASARKAN NEURAL NETWORK ACH. FACHRUDDIN SYAH DISTRIBUSI VERTIKAL KLOROFIL-A DI PERAIRAN LAUT BANDA BERDASARKAN NEURAL NETWORK ACH. FACHRUDDIN SYAH SEKOLAH PASCA SARJANA INSTITUT PERTANIAN BOGOR BOGOR 2009 PERNYATAAN MENGENAI TESIS DAN SUMBER INFORMASI

Lebih terperinci

PRODUKTIVITAS PRIMER FITOPLANKTON DAN KAITANNYA DENGAN UNSUR HARA DAN CAHAYA DI PERAIRAN MUARA JAYA TELUK JAKARTA USMAN MADUBUN

PRODUKTIVITAS PRIMER FITOPLANKTON DAN KAITANNYA DENGAN UNSUR HARA DAN CAHAYA DI PERAIRAN MUARA JAYA TELUK JAKARTA USMAN MADUBUN PRODUKTIVITAS PRIMER FITOPLANKTON DAN KAITANNYA DENGAN UNSUR HARA DAN CAHAYA DI PERAIRAN MUARA JAYA TELUK JAKARTA USMAN MADUBUN SEKOLAH PASCASARJANA INSTITUT PERTANIAN BOGOR BOGOR 2008 PERNYATAAN MENGENAI

Lebih terperinci

VARIABILITAS SPASIAL DAN TEMPORAL SUHU PERMUKAAN LAUT DAN KONSENTRASI KLOROFIL-a MENGGUNAKAN CITRA SATELIT AQUA MODIS DI PERAIRAN SUMATERA BARAT

VARIABILITAS SPASIAL DAN TEMPORAL SUHU PERMUKAAN LAUT DAN KONSENTRASI KLOROFIL-a MENGGUNAKAN CITRA SATELIT AQUA MODIS DI PERAIRAN SUMATERA BARAT VARIABILITAS SPASIAL DAN TEMPORAL SUHU PERMUKAAN LAUT DAN KONSENTRASI KLOROFIL-a MENGGUNAKAN CITRA SATELIT AQUA MODIS DI PERAIRAN SUMATERA BARAT Muslim 1), Usman 2), Alit Hindri Yani 2) E-mail: muslimfcb@gmail.com

Lebih terperinci

4. HASIL DAN PEMBAHASAN. 4.1 Pola Sebaran Suhu Permukaan Laut dan Salinitas pada Indomix Cruise

4. HASIL DAN PEMBAHASAN. 4.1 Pola Sebaran Suhu Permukaan Laut dan Salinitas pada Indomix Cruise 4. HASIL DAN PEMBAHASAN 4.1 Pola Sebaran Suhu Permukaan Laut dan Salinitas pada Indomix Cruise Peta sebaran SPL dan salinitas berdasarkan cruise track Indomix selengkapnya disajikan pada Gambar 6. 3A 2A

Lebih terperinci

FORMULASI HAMILTONIAN UNTUK MENGGAMBARKAN GERAK GELOMBANG INTERNAL PADA LAUT DALAM RINA PRASTIWI

FORMULASI HAMILTONIAN UNTUK MENGGAMBARKAN GERAK GELOMBANG INTERNAL PADA LAUT DALAM RINA PRASTIWI FORMULASI HAMILTONIAN UNTUK MENGGAMBARKAN GERAK GELOMBANG INTERNAL PADA LAUT DALAM RINA PRASTIWI SEKOLAH PASCASARJANA INSTITUT PERTANIAN BOGOR BOGOR 2009 PERYATAAN MENGENAI TESIS DAN SUMBER INFORMASI Dengan

Lebih terperinci

JURNAL OSEANOGRAFI. Volume 4, Nomor 4, Tahun 2015, Halaman Online di :

JURNAL OSEANOGRAFI. Volume 4, Nomor 4, Tahun 2015, Halaman Online di : JURNAL OSEANOGRAFI. Volume 4, Nomor 4, Tahun 2015, Halaman 771-776 Online di : http://ejournal-s1.undip.ac.id/index.php/jose STUDI SEBARAN MATERIAL PADATAN TERSUSPENSI DI PERAIRAN SEBELAH BARAT TELUK JAKARTA

Lebih terperinci

4. HASIL DAN PEMBAHASAN

4. HASIL DAN PEMBAHASAN 4. HASIL DAN PEMBAHASAN 4.1 Pembuatan algoritma empiris klorofil-a Tabel 8, Tabel 9, dan Tabel 10 dibawah ini adalah percobaan pembuatan algoritma empiris dibuat dari data stasiun nomor ganjil, sedangkan

Lebih terperinci

Suhu, Cahaya dan Warna Laut. Materi Kuliah 6 MK Oseanografi Umum (ITK221)

Suhu, Cahaya dan Warna Laut. Materi Kuliah 6 MK Oseanografi Umum (ITK221) Suhu, Cahaya dan Warna Laut Materi Kuliah 6 MK Oseanografi Umum (ITK221) Suhu Bersama dengan salinitas dan densitas, suhu merupakan sifat air laut yang penting dan mempengaruhi pergerakan masa air di laut

Lebih terperinci

Pengaruh Sebaran Konsentrasi Klorofil-a Berdasarkan Citra Satelit terhadap Hasil Tangkapan Ikan Tongkol (Euthynnus sp) Di Perairan Selat Bali

Pengaruh Sebaran Konsentrasi Klorofil-a Berdasarkan Citra Satelit terhadap Hasil Tangkapan Ikan Tongkol (Euthynnus sp) Di Perairan Selat Bali Journal of Marine and Aquatic Sciences 3(1), 30-46 (2017) Pengaruh Sebaran Konsentrasi Klorofil-a Berdasarkan Citra Satelit terhadap Hasil Tangkapan Ikan Tongkol (Euthynnus sp) Di Perairan Selat Bali I

Lebih terperinci

4 HASIL DAN PEMBAHASAN

4 HASIL DAN PEMBAHASAN 23 4 HASIL DAN PEMBAHASAN 4.1. Pola Sebaran Suhu Permukaan Laut (SPL) Hasil olahan citra Modis Level 1 yang merupakan data harian dengan tingkat resolusi spasial yang lebih baik yaitu 1 km dapat menggambarkan

Lebih terperinci

PEMETAAN ARUS DAN PASUT LAUT DENGAN METODE PEMODELAN HIDRODINAMIKA DAN PEMANFAATANNYA DALAM ANALISIS PERUBAHAN GARIS PANTAI TUGAS AKHIR

PEMETAAN ARUS DAN PASUT LAUT DENGAN METODE PEMODELAN HIDRODINAMIKA DAN PEMANFAATANNYA DALAM ANALISIS PERUBAHAN GARIS PANTAI TUGAS AKHIR PEMETAAN ARUS DAN PASUT LAUT DENGAN METODE PEMODELAN HIDRODINAMIKA DAN PEMANFAATANNYA DALAM ANALISIS PERUBAHAN GARIS PANTAI (STUDI KASUS : PESISIR MUARA GEMBONG, KABUPATEN BEKASI, JAWA BARAT) TUGAS AKHIR

Lebih terperinci

SOLUSI PERSAMAAN BOLTZMANN DENGAN NILAI AWAL BOBYLEV MENGGUNAKAN PENDEKATAN ANALITIK DAN NUMERIK YOANITA HISTORIANI

SOLUSI PERSAMAAN BOLTZMANN DENGAN NILAI AWAL BOBYLEV MENGGUNAKAN PENDEKATAN ANALITIK DAN NUMERIK YOANITA HISTORIANI SOLUSI PERSAMAAN BOLTZMANN DENGAN NILAI AWAL BOBYLEV MENGGUNAKAN PENDEKATAN ANALITIK DAN NUMERIK YOANITA HISTORIANI SEKOLAH PASCASARJANA INSTITUT PERTANIAN BOGOR BOGOR 2007 PERNYATAAN MENGENAI TESIS DAN

Lebih terperinci

PENGARUH SERTIFIKASI GURU TERHADAP KESEJAHTERAAN DAN KINERJA GURU DI KABUPATEN SUMEDANG RIZKY RAHADIKHA

PENGARUH SERTIFIKASI GURU TERHADAP KESEJAHTERAAN DAN KINERJA GURU DI KABUPATEN SUMEDANG RIZKY RAHADIKHA 1 PENGARUH SERTIFIKASI GURU TERHADAP KESEJAHTERAAN DAN KINERJA GURU DI KABUPATEN SUMEDANG RIZKY RAHADIKHA SEKOLAH PASCASARJANA INSTITUT PERTANIAN BOGOR BOGOR 2014 PERNYATAAN MENGENAI TESIS DAN SUMBER INFORMASI

Lebih terperinci

LAPORAN TUGAS AKHIR NURUL MUBIN

LAPORAN TUGAS AKHIR NURUL MUBIN LAPORAN TUGAS AKHIR UJI KONSENTRASI KLOROFIL DAUN SIRSAK (ANNONA MURICATA L.) DENGAN TIPE KERTAS SARING YANG BERBEDA MENGGUNAKAN SPEKTROFOTOMETER SPECTONIC GENESYS 20 VISIBLE (Leaf Chlorophyll Concentration

Lebih terperinci

PERAMBATAN GELOMBANG ROSSBY DI PERAIRAN SAMUDERA HINDIA MENGGUNAKAN METODE WAVELET

PERAMBATAN GELOMBANG ROSSBY DI PERAIRAN SAMUDERA HINDIA MENGGUNAKAN METODE WAVELET PERAMBATAN GELOMBANG ROSSBY DI PERAIRAN SAMUDERA HINDIA MENGGUNAKAN METODE WAVELET RIESNI FITRIANI SKRIPSI DEPARTEMEN ILMU DAN TEKNOLOGI KELAUTAN FAKULTAS PERIKANAN DAN ILMU KELAUTAN INSTITUT PERTANIAN

Lebih terperinci

PENGARUH MONSUN TERHADAP DISTRIBUSI SUHU PERMUKAAN LAUT DAN KLOROFIL-a DI PERAIRAN SELATAN BALI

PENGARUH MONSUN TERHADAP DISTRIBUSI SUHU PERMUKAAN LAUT DAN KLOROFIL-a DI PERAIRAN SELATAN BALI JURNAL OSEANOGRAFI. Volume 2, Nomor 1, Tahun 2013, Halaman 79-87 Online di : http://ejournal-s1.undip.ac.id/index.php/jose PENGARUH MONSUN TERHADAP DISTRIBUSI SUHU PERMUKAAN LAUT DAN KLOROFIL-a DI PERAIRAN

Lebih terperinci

ANALISIS DISTRIBUSI ARUS PERMUKAAN LAUT DI TELUK BONE PADA TAHUN

ANALISIS DISTRIBUSI ARUS PERMUKAAN LAUT DI TELUK BONE PADA TAHUN ANALISIS DISTRIBUSI ARUS PERMUKAAN LAUT DI TELUK BONE PADA TAHUN 2006-2010 Yosik Norman 1, Nasrul Ihsan 2, dan Muhammad Arsyad 2 1 Badan Meteorologi Klimatologi dan Geofisika Makassar e-mail: yosikbrebes@gmail.com

Lebih terperinci

KAJIAN ARUS PERAIRAN PANTAI SEMARANG PENDEKATAN PEMODELAN NUMERIK TIGA DIMENSI DISERTASI

KAJIAN ARUS PERAIRAN PANTAI SEMARANG PENDEKATAN PEMODELAN NUMERIK TIGA DIMENSI DISERTASI KAJIAN ARUS PERAIRAN PANTAI SEMARANG PENDEKATAN PEMODELAN NUMERIK TIGA DIMENSI DISERTASI Karya tulis sebagai salah satu syarat Untuk memperoleh gelar Doktor dari Institut Teknologi Bandung Oleh FATHURRAZIE

Lebih terperinci

STUDI EDDY MINDANAO DAN EDDY HALMAHERA TESIS. Karya tulis sebagai salah satu syarat untuk memperoleh gelar Magister dari Institut Teknologi Bandung

STUDI EDDY MINDANAO DAN EDDY HALMAHERA TESIS. Karya tulis sebagai salah satu syarat untuk memperoleh gelar Magister dari Institut Teknologi Bandung STUDI EDDY MINDANAO DAN EDDY HALMAHERA TESIS Karya tulis sebagai salah satu syarat untuk memperoleh gelar Magister dari Institut Teknologi Bandung Oleh MARTONO NIM : 22405001 Program Studi Sains Kebumian

Lebih terperinci

PEMETAAN SUHU PERMUKAAN LAUT (SPL) MENGGUNAKAN CITRA SATELIT ASTER DI PERAIRAN LAUT JAWA BAGIAN BARAT MADURA

PEMETAAN SUHU PERMUKAAN LAUT (SPL) MENGGUNAKAN CITRA SATELIT ASTER DI PERAIRAN LAUT JAWA BAGIAN BARAT MADURA PEMETAAN SUHU PERMUKAAN LAUT (SPL) MENGGUNAKAN CITRA SATELIT ASTER DI PERAIRAN LAUT JAWA BAGIAN BARAT MADURA Dyah Ayu Sulistyo Rini Mahasiswa Pascasarjana Pada Jurusan Teknik dan Manajemen Pantai Institut

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Indonesia memiliki wilayah lautan yang lebih luas dibandingkan luasan daratannya. Luas wilayah laut mencapai 2/3 dari luas wilayah daratan. Laut merupakan medium yang

Lebih terperinci

RENCANA PEMBELAJARAN KULIAH. Bahan Kajian (Materi Pelajaran) Bentuk Pembelajaran 100 3, Pendahuluan a. Ruang lingkup kuliah b.

RENCANA PEMBELAJARAN KULIAH. Bahan Kajian (Materi Pelajaran) Bentuk Pembelajaran 100 3, Pendahuluan a. Ruang lingkup kuliah b. Mata Kuliah :Penginderaan Jauh Kelautan Semester: Ganjil, Kode:ITK441, sks :3(2-3) Program Studi : Ilmu dan Teknologi Dosen: 1. Dr.Ir. Bisman Nababan, M.Sc. 2. Dr.Ir. Vincentius P. Siregar, DEA 3. Dr.Ir.

Lebih terperinci

Simulasi Pola Arus Dua Dimensi Di Perairan Teluk Pelabuhan Ratu Pada Bulan September 2004

Simulasi Pola Arus Dua Dimensi Di Perairan Teluk Pelabuhan Ratu Pada Bulan September 2004 Simulasi Pola Arus Dua Dimensi Di Perairan Teluk Pelabuhan Ratu Pada Bulan September 2004 R. Bambang Adhitya Nugraha 1, Heron Surbakti 2 1 Pusat Riset Teknologi Kelautan-Badan (PRTK), Badan Riset Kelautan

Lebih terperinci

PREDIKSI KECEPATAN PHASE GELOMBANG SOLITER TERGANGGU AHMAD HAKIM

PREDIKSI KECEPATAN PHASE GELOMBANG SOLITER TERGANGGU AHMAD HAKIM PREDIKSI KECEPATAN PHASE GELOMBANG SOLITER TERGANGGU AHMAD HAKIM SEKOLAH PASCASARJANA INSTITUT PERTANIAN BOGOR BOGOR 2009 PERYATAAN MENGENAI TESIS DAN SUMBER INFORMASI Dengan ini saya menyatakan bahwa

Lebih terperinci

2. TINJAUAN PUSTAKA. sebaran dan kelimpahan sumberdaya perikanan di Selat Sunda ( Hendiarti et

2. TINJAUAN PUSTAKA. sebaran dan kelimpahan sumberdaya perikanan di Selat Sunda ( Hendiarti et 2. TINJAUAN PUSTAKA 2.1. Kondisi geografis lokasi penelitian Keadaan topografi perairan Selat Sunda secara umum merupakan perairan dangkal di bagian timur laut pada mulut selat, dan sangat dalam di mulut

Lebih terperinci

Arah Dan Kecepatan Angin Musiman Serta Kaitannya Dengan Sebaran Suhu Permukaan Laut Di Selatan Pangandaran Jawa Barat

Arah Dan Kecepatan Angin Musiman Serta Kaitannya Dengan Sebaran Suhu Permukaan Laut Di Selatan Pangandaran Jawa Barat JURNAL OSEANOGRAFI. Volume 3, Nomor 3, Tahun 2014, Halaman 429-437 Online di : http://ejournal-s1.undip.ac.id/index.php/jose Arah Dan Kecepatan Angin Musiman Serta Kaitannya Dengan Sebaran Suhu Permukaan

Lebih terperinci

MODEL MATEMATIKA UNTUK PERUBAHAN SUHU DAN KONSENTRASI DOPANT PADA PEMBENTUKAN SERAT OPTIK MIFTAHUL JANNAH

MODEL MATEMATIKA UNTUK PERUBAHAN SUHU DAN KONSENTRASI DOPANT PADA PEMBENTUKAN SERAT OPTIK MIFTAHUL JANNAH MODEL MATEMATIKA UNTUK PERUBAHAN SUHU DAN KONSENTRASI DOPANT PADA PEMBENTUKAN SERAT OPTIK MIFTAHUL JANNAH SEKOLAH PASCASARJANA INSTITUT PERTANIAN BOGOR BOGOR 2009 PERYATAAN MENGENAI TESIS DAN SUMBER INFORMASI

Lebih terperinci

HUBUNGAN ANTARA INTENSITAS CAHAYA DENGAN KEKERUHAN PADA PERAIRAN TELUK AMBON DALAM

HUBUNGAN ANTARA INTENSITAS CAHAYA DENGAN KEKERUHAN PADA PERAIRAN TELUK AMBON DALAM HBNGAN ANTARA INTENSITAS CAHAYA DENGAN KEKERHAN PADA PERAIRAN TELK AMBON DALAM PENDAHLAN Perkembangan pembangunan yang semakin pesat mengakibatkan kondisi Teluk Ambon, khususnya Teluk Ambon Dalam (TAD)

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Indonesia merupakan Negara yang terletak pada wilayah ekuatorial, dan memiliki gugus-gugus kepulauan yang dikelilingi oleh perairan yang hangat. Letak lintang Indonesia

Lebih terperinci

MASPARI JOURNAL Juli 2015, 7(2):25-32

MASPARI JOURNAL Juli 2015, 7(2):25-32 MASPARI JOURNAL Juli 2015, 7(2):25-32 AKURASI NILAI KONSENTRASI KLOROFIL-A DAN SUHU PERMUKAAN LAUT MENGGUNAKAN DATA PENGINDERAAN JAUH DI PERAIRAN PULAU ALANGGANTANG TAMAN NASIONAL SEMBILANG VALUE ACCURACY

Lebih terperinci

PERBANDINGAN HASIL PENGGEROMBOLAN METODE K-MEANS, FUZZY K-MEANS, DAN TWO STEP CLUSTER

PERBANDINGAN HASIL PENGGEROMBOLAN METODE K-MEANS, FUZZY K-MEANS, DAN TWO STEP CLUSTER PERBANDINGAN HASIL PENGGEROMBOLAN METODE K-MEANS, FUZZY K-MEANS, DAN TWO STEP CLUSTER LATHIFATURRAHMAH SEKOLAH PASCA SARJANA INSTITUT PERTANIAN BOGOR BOGOR 2010 PERNYATAAN MENGENAI TUGAS AKHIR DAN SUMBER

Lebih terperinci

KINETIKA AKTIVITAS REDUKSI NITRAT BAKTERI NITRAT AMONIFIKASI DISIMILATIF DARI MUARA SUNGAI PADA KONSENTRASI OKSIGEN (O 2 ) YANG BERBEDA TETI MARDIATI

KINETIKA AKTIVITAS REDUKSI NITRAT BAKTERI NITRAT AMONIFIKASI DISIMILATIF DARI MUARA SUNGAI PADA KONSENTRASI OKSIGEN (O 2 ) YANG BERBEDA TETI MARDIATI KINETIKA AKTIVITAS REDUKSI NITRAT BAKTERI NITRAT AMONIFIKASI DISIMILATIF DARI MUARA SUNGAI PADA KONSENTRASI OKSIGEN (O 2 ) YANG BERBEDA TETI MARDIATI SEKOLAH PASCASARJANA INSTITUT PERTANIAN BOGOR BOGOR

Lebih terperinci

3. BAHAN DAN METODE. Penelitian dilakukan di wilayah yang tercemar tumpahan minyak dari

3. BAHAN DAN METODE. Penelitian dilakukan di wilayah yang tercemar tumpahan minyak dari 3. BAHAN DAN METODE 3.1 Lokasi dan Waktu Penelitian Penelitian dilakukan di wilayah yang tercemar tumpahan minyak dari anjungan minyak Montara Australia. Perairan tersebut merupakan perairan Australia

Lebih terperinci

2. TINJAUAN PUSTAKA. berbeda tergantung pada jenis materi dan kondisinya. Perbedaan ini

2. TINJAUAN PUSTAKA. berbeda tergantung pada jenis materi dan kondisinya. Perbedaan ini 2. TINJAUAN PUSTAKA 2.1. Penginderaan Jauh Ocean Color Penginderaan jauh adalah ilmu dan seni untuk memperoleh informasi tentang suatu objek, daerah, atau fenomena melalui analisis data yang diperoleh

Lebih terperinci

ANALISIS RESPONS TINGKAH LAKU IKAN PEPETEK (Secutor insidiator) TERHADAP INTENSITAS CAHAYA BERWARNA EVA UTAMI

ANALISIS RESPONS TINGKAH LAKU IKAN PEPETEK (Secutor insidiator) TERHADAP INTENSITAS CAHAYA BERWARNA EVA UTAMI ANALISIS RESPONS TINGKAH LAKU IKAN PEPETEK (Secutor insidiator) TERHADAP INTENSITAS CAHAYA BERWARNA EVA UTAMI SEKOLAH PASCASARJANA INSTITUT PERTANIAN BOGOR BOGOR 2006 PERNYATAAN MENGENAI TESIS DAN SUMBER

Lebih terperinci

PREDIKSI KECEPATAN PHASE GELOMBANG SOLITER TERGANGGU AHMAD HAKIM

PREDIKSI KECEPATAN PHASE GELOMBANG SOLITER TERGANGGU AHMAD HAKIM PREDIKSI KECEPATAN PHASE GELOMBANG SOLITER TERGANGGU AHMAD HAKIM SEKOLAH PASCASARJANA INSTITUT PERTANIAN BOGOR BOGOR 2009 PERYATAAN MENGENAI TESIS DAN SUMBER INFORMASI Dengan ini saya menyatakan bahwa

Lebih terperinci

HUBUNGAN EFEKTIVITAS SISTEM PENILAIAN KINERJA DENGAN KINERJA KARYAWAN PADA KANTOR PUSAT PT PP (PERSERO), TBK JULIANA MAISYARA

HUBUNGAN EFEKTIVITAS SISTEM PENILAIAN KINERJA DENGAN KINERJA KARYAWAN PADA KANTOR PUSAT PT PP (PERSERO), TBK JULIANA MAISYARA HUBUNGAN EFEKTIVITAS SISTEM PENILAIAN KINERJA DENGAN KINERJA KARYAWAN PADA KANTOR PUSAT PT PP (PERSERO), TBK JULIANA MAISYARA SEKOLAH PASCASARJANA INSTITUT PERTANIAN BOGOR BOGOR 2014 PERNYATAAN MENGENAI

Lebih terperinci

PEMBUATAN BIOSENSOR FIBER BERBASIS EVANESCENT WAVE SEBAGAI SENSOR SENYAWA GLUKOSA DENGAN LED

PEMBUATAN BIOSENSOR FIBER BERBASIS EVANESCENT WAVE SEBAGAI SENSOR SENYAWA GLUKOSA DENGAN LED PEMBUATAN BIOSENSOR FIBER BERBASIS EVANESCENT WAVE SEBAGAI SENSOR SENYAWA GLUKOSA DENGAN LED Abstrak Arni Candra Pratiwi 1, Ahmad Marzuki 2 1 Program Studi Fisika FMIPA UNS, Surakarta. Jl. Ir Sutami No.

Lebih terperinci

STUDI EKOLOGI KISTA DINOFLAGELLATA SPESIES PENYEBAB HAB (Harmful Algal Bloom) DI SEDIMEN PADA PERAIRAN TELUK JAKARTA. Oleh; Galih Kurniawan C

STUDI EKOLOGI KISTA DINOFLAGELLATA SPESIES PENYEBAB HAB (Harmful Algal Bloom) DI SEDIMEN PADA PERAIRAN TELUK JAKARTA. Oleh; Galih Kurniawan C STUDI EKOLOGI KISTA DINOFLAGELLATA SPESIES PENYEBAB HAB (Harmful Algal Bloom) DI SEDIMEN PADA PERAIRAN TELUK JAKARTA Oleh; Galih Kurniawan C64104033 PROGRAM STUDI ILMU DAN TEKNOLOGI KELAUTAN FAKULTAS PERIKANAN

Lebih terperinci

ANALISIS BIPLOT UNTUK MEMETAKAN MUTU SEKOLAH YANG SESUAI DENGAN NILAI UJIAN NASIONAL SUJITA

ANALISIS BIPLOT UNTUK MEMETAKAN MUTU SEKOLAH YANG SESUAI DENGAN NILAI UJIAN NASIONAL SUJITA ANALISIS BIPLOT UNTUK MEMETAKAN MUTU SEKOLAH YANG SESUAI DENGAN NILAI UJIAN NASIONAL SUJITA SEKOLAH PASCASARJANA INSTITUT PERTANIAN BOGOR BOGOR 2009 PERNYATAAN MENGENAI TESIS DAN SUMBER INFORMASI Dengan

Lebih terperinci

ANALISIS SURUT ASTRONOMIS TERENDAH DI PERAIRAN SABANG, SIBOLGA, PADANG, CILACAP, DAN BENOA MENGGUNAKAN SUPERPOSISI KOMPONEN HARMONIK PASANG SURUT

ANALISIS SURUT ASTRONOMIS TERENDAH DI PERAIRAN SABANG, SIBOLGA, PADANG, CILACAP, DAN BENOA MENGGUNAKAN SUPERPOSISI KOMPONEN HARMONIK PASANG SURUT ANALISIS SURUT ASTRONOMIS TERENDAH DI PERAIRAN SABANG, SIBOLGA, PADANG, CILACAP, DAN BENOA MENGGUNAKAN SUPERPOSISI KOMPONEN HARMONIK PASANG SURUT Oleh: Gading Putra Hasibuan C64104081 PROGRAM STUDI ILMU

Lebih terperinci

2. TINJAUAN PUSTAKA. Suhu permukaan laut Indonesia secara umum berkisar antara O C

2. TINJAUAN PUSTAKA. Suhu permukaan laut Indonesia secara umum berkisar antara O C 2. TINJAUAN PUSTAKA 2.1 Kondisi Umum Perairan Laut Banda 2.1.1 Kondisi Fisik Suhu permukaan laut Indonesia secara umum berkisar antara 26 29 O C (Syah, 2009). Sifat oseanografis perairan Indonesia bagian

Lebih terperinci

PENDUGAAN PARAMETER WAKTU PERUBAHAN PROSES PADA 2 CONTROL CHART MENGGUNAKAN PENDUGA KEMUNGKINAN MAKSIMUM SITI MASLIHAH

PENDUGAAN PARAMETER WAKTU PERUBAHAN PROSES PADA 2 CONTROL CHART MENGGUNAKAN PENDUGA KEMUNGKINAN MAKSIMUM SITI MASLIHAH PENDUGAAN PARAMETER WAKTU PERUBAHAN PROSES PADA CONTROL CHART MENGGUNAKAN PENDUGA KEMUNGKINAN MAKSIMUM SITI MASLIHAH SEKOLAH PASCASARJANA INSTITUT PERTANIAN BOGOR BOGOR 008 PERNYATAAN MENGENAI TESIS DAN

Lebih terperinci

KOMPOSISI DAN KELIMPAHAN PLANKTON DI PERAIRAN PULAU GUSUNG KEPULAUAN SELAYAR SULAWESI SELATAN SKRIPSI. Oleh: ABDULLAH AFIF

KOMPOSISI DAN KELIMPAHAN PLANKTON DI PERAIRAN PULAU GUSUNG KEPULAUAN SELAYAR SULAWESI SELATAN SKRIPSI. Oleh: ABDULLAH AFIF KOMPOSISI DAN KELIMPAHAN PLANKTON DI PERAIRAN PULAU GUSUNG KEPULAUAN SELAYAR SULAWESI SELATAN SKRIPSI Oleh: ABDULLAH AFIF 26020110110031 JURUSAN ILMU KELAUTAN FAKULTAS PERIKANAN DAN ILMU KELAUTAN UNIVERSITAS

Lebih terperinci

EVALUASI PERUBAHAN TUTUPAN LAHAN WILAYAH PERAIRAN PESISIR SURABAYA TIMUR SIDOARJO DENGAN MENGGUNAKAN CITRA SATELIT MULTITEMPORAL

EVALUASI PERUBAHAN TUTUPAN LAHAN WILAYAH PERAIRAN PESISIR SURABAYA TIMUR SIDOARJO DENGAN MENGGUNAKAN CITRA SATELIT MULTITEMPORAL EVALUASI PERUBAHAN TUTUPAN LAHAN WILAYAH PERAIRAN PESISIR SURABAYA TIMUR SIDOARJO DENGAN MENGGUNAKAN CITRA SATELIT MULTITEMPORAL Grace Idolayanti Moko 1, Teguh Hariyanto 1, Wiweka 2, Sigit Julimantoro

Lebih terperinci

KARAKTERISTIK Fe, NITROGEN, FOSFOR, DAN FITOPLANKTON PADA BEBERAPA TIPE PERAIRAN KOLONG BEKAS GALIAN TIMAH ROBANI JUHAR

KARAKTERISTIK Fe, NITROGEN, FOSFOR, DAN FITOPLANKTON PADA BEBERAPA TIPE PERAIRAN KOLONG BEKAS GALIAN TIMAH ROBANI JUHAR KARAKTERISTIK Fe, NITROGEN, FOSFOR, DAN FITOPLANKTON PADA BEBERAPA TIPE PERAIRAN KOLONG BEKAS GALIAN TIMAH ROBANI JUHAR PROGRAM PASCA SARJANA INSTITUT PERTANIAN BOGOR BOGOR 2008 PERNYATAAN MENGENAI TESIS

Lebih terperinci

EVALUASI KINERJA KEUANGAN SATUAN USAHA KOMERSIAL PERGURUAN TINGGI NEGERI BADAN HUKUM DARSONO SEKOLAH PASCASARJANA INSTITUT PERTANIAN BOGOR BOGOR 2014

EVALUASI KINERJA KEUANGAN SATUAN USAHA KOMERSIAL PERGURUAN TINGGI NEGERI BADAN HUKUM DARSONO SEKOLAH PASCASARJANA INSTITUT PERTANIAN BOGOR BOGOR 2014 1 EVALUASI KINERJA KEUANGAN SATUAN USAHA KOMERSIAL PERGURUAN TINGGI NEGERI BADAN HUKUM DARSONO SEKOLAH PASCASARJANA INSTITUT PERTANIAN BOGOR BOGOR 2014 PERNYATAAN MENGENAI TESIS DAN SUMBER INFORMASI SERTA

Lebih terperinci

THESIS (DRAFT SEMINAR AKHIR/SIDANG) AZIS RIFAI NIM

THESIS (DRAFT SEMINAR AKHIR/SIDANG) AZIS RIFAI NIM KAJIAN PERUBAHAN KERAPATAN VEGETASI MANGROVE DAN KAITANNYA DENGAN TOTAL SUSPENDED MATTER (TSM) DI WILAYAH DELTA MAHAKAM BERDASARKAN CITRA SATELIT THESIS (DRAFT SEMINAR AKHIR/SIDANG) AZIS RIFAI NIM 22404010

Lebih terperinci

Pengaruh Formula dengan Penambahan Bumbu untuk Makanan Rumah Sakit pada Status Gizi dan Kesehatan Pasien LIBER

Pengaruh Formula dengan Penambahan Bumbu untuk Makanan Rumah Sakit pada Status Gizi dan Kesehatan Pasien LIBER Pengaruh Formula dengan Penambahan Bumbu untuk Makanan Rumah Sakit pada Status Gizi dan Kesehatan Pasien LIBER SEKOLAH PASCASARJANA INSTITUT PERTANIAN BOGOR BOGOR 2014 PERNYATAAN MENGENAI TESIS DAN SUMBER

Lebih terperinci

PENGARUH FENOMENA LA-NINA TERHADAP SUHU PERMUKAAN LAUT DI PERAIRAN KABUPATEN MALANG

PENGARUH FENOMENA LA-NINA TERHADAP SUHU PERMUKAAN LAUT DI PERAIRAN KABUPATEN MALANG Pengaruh Fenomena La-Nina terhadap SPL Feny Arafah PENGARUH FENOMENA LA-NINA TERHADAP SUHU PERMUKAAN LAUT DI PERAIRAN KABUPATEN MALANG 1) Feny Arafah 1) Dosen Prodi. Teknik Geodesi Fakultas Teknik Sipil

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN 7 3. Pengenceran Proses pengenceran dilakukan dengan menambahkan 0,5-1 ml akuades secara terus menerus setiap interval waktu tertentu hingga mencapai nilai transmisi yang stabil (pengenceran hingga penambahan

Lebih terperinci

SEKOLAH PASCASARJANA INSTITUT PERTANIAN BOGOR

SEKOLAH PASCASARJANA INSTITUT PERTANIAN BOGOR TRANSFORMASI GELOMBANG DAN PENGARUHNYA TERHADAP DINAMIKA PANTAI MUARA AJKWA TAHUN 1993-2007 MUKTI TRENGGONO SEKOLAH PASCASARJANA INSTITUT PERTANIAN BOGOR BOGOR 2009 PERNYATAAN MENGENAI TESIS DAN SUMBER

Lebih terperinci

PREDIKSI STATUS KEAKTIFAN STUDI MAHASISWA DENGAN ALGORITMA C5.0 DAN K-NEAREST NEIGHBOR IIN ERNAWATI G

PREDIKSI STATUS KEAKTIFAN STUDI MAHASISWA DENGAN ALGORITMA C5.0 DAN K-NEAREST NEIGHBOR IIN ERNAWATI G PREDIKSI STATUS KEAKTIFAN STUDI MAHASISWA DENGAN ALGORITMA C5.0 DAN K-NEAREST NEIGHBOR IIN ERNAWATI G651044054 SEKOLAH PASCA SARJANA INSTITUT PERTANIAN BOGOR BOGOR 2008 PERNYATAAN MENGENAI TESIS DAN SUMBER

Lebih terperinci

DISTRIBUSI, KERAPATAN DAN PERUBAHAN LUAS VEGETASI MANGROVE GUGUS PULAU PARI KEPULAUAN SERIBU MENGGUNAKAN CITRA FORMOSAT 2 DAN LANDSAT 7/ETM+

DISTRIBUSI, KERAPATAN DAN PERUBAHAN LUAS VEGETASI MANGROVE GUGUS PULAU PARI KEPULAUAN SERIBU MENGGUNAKAN CITRA FORMOSAT 2 DAN LANDSAT 7/ETM+ DISTRIBUSI, KERAPATAN DAN PERUBAHAN LUAS VEGETASI MANGROVE GUGUS PULAU PARI KEPULAUAN SERIBU MENGGUNAKAN CITRA FORMOSAT 2 DAN LANDSAT 7/ETM+ Oleh : Ganjar Saefurahman C64103081 PROGRAM STUDI ILMU DAN TEKNOLOGI

Lebih terperinci

ANALISIS POLA SEBARAN DAN PERKEMBANGAN AREA UPWELLING DI BAGIAN SELATAN SELAT MAKASSAR

ANALISIS POLA SEBARAN DAN PERKEMBANGAN AREA UPWELLING DI BAGIAN SELATAN SELAT MAKASSAR ANALISIS POLA SEBARAN DAN PERKEMBANGAN AREA UPWELLING DI BAGIAN SELATAN SELAT MAKASSAR Analysis of Upwelling Distribution and Area Enlargement in the Southern of Makassar Strait Dwi Fajriyati Inaku Diterima:

Lebih terperinci

4. HASIL DAN PEMBAHASAN

4. HASIL DAN PEMBAHASAN 4. HASIL DAN PEMBAHASAN 4.1. Distribusi SPL Dari pengamatan pola sebaran suhu permukaan laut di sepanjang perairan Selat Sunda yang di analisis dari data penginderaan jauh satelit modis terlihat ada pembagian

Lebih terperinci

Physics Communication

Physics Communication Phys. Comm. 1 (1) (2017) Physics Communication http://journal.unnes.ac.id/nju/index.php/pc Analisis kondisi suhu dan salinitas perairan barat Sumatera menggunakan data Argo Float Lita Juniarti 1, Muh.

Lebih terperinci

PENENTUAN SUDUT DEVIASI MINIMUM PRISMA MELALUI PERISTIWA PEMBIASAN CAHAYA BERBANTUAN KOMPUTER

PENENTUAN SUDUT DEVIASI MINIMUM PRISMA MELALUI PERISTIWA PEMBIASAN CAHAYA BERBANTUAN KOMPUTER PENENTUAN SUDUT DEVIASI MINIMUM PRISMA MELALUI PERISTIWA PEMBIASAN CAHAYA BERBANTUAN KOMPUTER DETERMINATION OF MINIMUM DEVIATION ANGLE OF PRISM THROUGH THE LIGHT REFRACTION ASSISTED BY A COMPUTER Kunlestiowati

Lebih terperinci

PERUBAHAN DARATAN PANTAI DAN PENUTUPAN LAHAN PASCA TSUNAMI SECARA SPASIAL DAN TEMPORAL DI PANTAI PANGANDARAN, KABUPATEN CIAMIS JAWA BARAT

PERUBAHAN DARATAN PANTAI DAN PENUTUPAN LAHAN PASCA TSUNAMI SECARA SPASIAL DAN TEMPORAL DI PANTAI PANGANDARAN, KABUPATEN CIAMIS JAWA BARAT PERUBAHAN DARATAN PANTAI DAN PENUTUPAN LAHAN PASCA TSUNAMI SECARA SPASIAL DAN TEMPORAL DI PANTAI PANGANDARAN, KABUPATEN CIAMIS JAWA BARAT YUNITA SULISTRIANI SKRIPSI DEPARTEMEN ILMU DAN TEKNOLOGI KELAUTAN

Lebih terperinci

APLIKASI KONSEP EKOWISATA DALAM PERENCANAAN ZONA PEMANFAATAN TAMAN NASIONAL UNTUK PARIWISATA DENGAN PENDEKATAN RUANG

APLIKASI KONSEP EKOWISATA DALAM PERENCANAAN ZONA PEMANFAATAN TAMAN NASIONAL UNTUK PARIWISATA DENGAN PENDEKATAN RUANG APLIKASI KONSEP EKOWISATA DALAM PERENCANAAN ZONA PEMANFAATAN TAMAN NASIONAL UNTUK PARIWISATA DENGAN PENDEKATAN RUANG (Studi Kasus Wilayah Seksi Bungan Kawasan Taman Nasional Betung Kerihun di Provinsi

Lebih terperinci

BAB III BAHAN DAN METODE

BAB III BAHAN DAN METODE BAB III BAHAN DAN METODE 3.1 Waktu dan Tempat Penelitian ini merupakan bagian dari Kegiatan Penelitian Kompetitif Pusat Penelitian Oseanografi - LIPI (P2O-LIPI) yang telah dilakukan pada tahun 2010 dan

Lebih terperinci

SKRIPSI YUANITA ARUM PRIMANINGTYAS

SKRIPSI YUANITA ARUM PRIMANINGTYAS PEMETAAN INTRUSI AIR LAUT DI KAWASAN PESISIR GRESIK BERDASARKAN KADAR SALINITAS, DAYA HANTAR LISTRIK (DHL), DAN TOTAL DISSOLVED SOLID (TDS) BERBASIS SISTEM INFORMASI GEOGRAFIS (SIG) YUANITA ARUM PRIMANINGTYAS

Lebih terperinci

Variabilitas Suhu Permukaan Laut Di Pantai Utara Semarang Menggunakan Citra Satelit Aqua Modis

Variabilitas Suhu Permukaan Laut Di Pantai Utara Semarang Menggunakan Citra Satelit Aqua Modis JURNAL OSEANOGRAFI. Volume 4, Nomor 1, Tahun 2015, Halaman 166-170 Online di : http://ejournal-s1.undip.ac.id/index.php/jose Variabilitas Suhu Permukaan Laut Di Pantai Utara Semarang Menggunakan Citra

Lebih terperinci

SIFAT FISIK OSEANOGRAFI PERAIRAN KEPULAUAN TAMBELAN DAN SEKITARNYA, PROPINSI KEPULAUAN RIAU

SIFAT FISIK OSEANOGRAFI PERAIRAN KEPULAUAN TAMBELAN DAN SEKITARNYA, PROPINSI KEPULAUAN RIAU Jurnal PERIKANAN dan KELAUTAN 15,2 (21) : 173-184 SIFAT FISIK OSEANOGRAFI PERAIRAN KEPULAUAN TAMBELAN DAN SEKITARNYA, PROPINSI KEPULAUAN RIAU Syaifuddin 1) 1) Dosen Fakultas Perikanan dan Ilmu Kelautan

Lebih terperinci

PENGUKURAN KOEFISIEN DIFFUSE ATENUASI (Kd) DI PERAIRAN DANGKAL SEKITAR KARANG LEBAR, KEPULAUAN SERIBU, DKI JAKARTA

PENGUKURAN KOEFISIEN DIFFUSE ATENUASI (Kd) DI PERAIRAN DANGKAL SEKITAR KARANG LEBAR, KEPULAUAN SERIBU, DKI JAKARTA Jurnal Teknologi Perikanan dan Kelautan Vol. 8 No. 2 November 2017: 127-138 ISSN 2087-4871 PENGUKURAN KOEFISIEN DIFFUSE ATENUASI (Kd) DI PERAIRAN DANGKAL SEKITAR KARANG LEBAR, KEPULAUAN SERIBU, DKI JAKARTA

Lebih terperinci

POLA RESPIRASI BUAH TOMAT (Lycopersicum esculentum) YANG DI-COATING DENGAN GEL LIDAH BUAYA (Aloe vera barbadensis Miller) SELAMA PENYIMPANAN SKRIPSI

POLA RESPIRASI BUAH TOMAT (Lycopersicum esculentum) YANG DI-COATING DENGAN GEL LIDAH BUAYA (Aloe vera barbadensis Miller) SELAMA PENYIMPANAN SKRIPSI POLA RESPIRASI BUAH TOMAT (Lycopersicum esculentum) YANG DI-COATING DENGAN GEL LIDAH BUAYA (Aloe vera barbadensis Miller) SELAMA PENYIMPANAN SKRIPSI OLEH: FELANY SUTANTO NRP 6103013025 PROGRAM STUDI TEKNOLOGI

Lebih terperinci

PENGHAMBATAN DEGRADASI SUKROSA DALAM NIRA TEBU MENGGUNAKAN GELEMBUNG GAS NITROGEN DALAM REAKTOR VENTURI BERSIRKULASI TEUKU IKHSAN AZMI

PENGHAMBATAN DEGRADASI SUKROSA DALAM NIRA TEBU MENGGUNAKAN GELEMBUNG GAS NITROGEN DALAM REAKTOR VENTURI BERSIRKULASI TEUKU IKHSAN AZMI PENGHAMBATAN DEGRADASI SUKROSA DALAM NIRA TEBU MENGGUNAKAN GELEMBUNG GAS NITROGEN DALAM REAKTOR VENTURI BERSIRKULASI TEUKU IKHSAN AZMI SEKOLAH PASCASARJANA INSTITUT PERTANIAN BOGOR BOGOR 2008 PERNYATAAN

Lebih terperinci

4. HASIL DAN PEMBAHASAN

4. HASIL DAN PEMBAHASAN 4. HASIL DAN PEMBAHASAN 4.1. Variabilitas Kesuburan Perairan dan Oseanografi Fisika 4.1.1. Sebaran Ruang (Spasial) Suhu Permukaan Laut (SPL) Sebaran Suhu Permukaan Laut (SPL) di perairan Selat Lombok dipengaruhi

Lebih terperinci

3. BAHAN DAN METODE. Penelitian dilaksanakan pada bulan Februari hingga Agustus 2011 dengan

3. BAHAN DAN METODE. Penelitian dilaksanakan pada bulan Februari hingga Agustus 2011 dengan 22 3. BAHAN DAN METODE 3.1 Waktu dan Lokasi Penelitian Penelitian dilaksanakan pada bulan Februari hingga Agustus 2011 dengan menggunakan citra MODIS. Lokasi untuk objek penelitian adalah perairan Barat-

Lebih terperinci

KINERJA PENGAWAS KAPAL PERIKANAN (STUDI KASUS DI PELABUHAN PERIKANAN SAMUDERA NIZAM ZACHMAN JAKARTA) AHMAD MANSUR

KINERJA PENGAWAS KAPAL PERIKANAN (STUDI KASUS DI PELABUHAN PERIKANAN SAMUDERA NIZAM ZACHMAN JAKARTA) AHMAD MANSUR KINERJA PENGAWAS KAPAL PERIKANAN (STUDI KASUS DI PELABUHAN PERIKANAN SAMUDERA NIZAM ZACHMAN JAKARTA) AHMAD MANSUR SEKOLAH PASCA SARJANA INSTITUT PERTANIAN BOGOR BOGOR 2007 PERNYATAAN MENGENAI TESIS Dengan

Lebih terperinci

ANALISIS FAKTOR-FAKTOR YANG MEMPENGARUHI PENYALURAN KREDIT DI BANK UMUM MILIK NEGARA PERIODE TAHUN RENALDO PRIMA SUTIKNO

ANALISIS FAKTOR-FAKTOR YANG MEMPENGARUHI PENYALURAN KREDIT DI BANK UMUM MILIK NEGARA PERIODE TAHUN RENALDO PRIMA SUTIKNO ANALISIS FAKTOR-FAKTOR YANG MEMPENGARUHI PENYALURAN KREDIT DI BANK UMUM MILIK NEGARA PERIODE TAHUN 2004-2012 RENALDO PRIMA SUTIKNO SEKOLAH PASCASARJANA INSTITUT PERTANIAN BOGOR BOGOR 2013 PERNYATAAN MENGENAI

Lebih terperinci

Jurnal KELAUTAN, Volume 3, No.1 April 2010 ISSN :

Jurnal KELAUTAN, Volume 3, No.1 April 2010 ISSN : PENGUKURAN KONSENTRASI KLOROFIL-A DENGAN PENGOLAHAN CITRA LANDSAT ETM-7 DAN UJI LABORATORIUM DI PERAIRAN SELAT MADURA BAGIAN BARAT Halida Nuriya 1) Zainul Hidayah 2) Wahyu Andy Nugraha 2) 1) Mahasiswa

Lebih terperinci

Prakiraan Daerah Penangkapan Ikan Laut di Laut Banda Berdasarkan Data Citra Satelit. Forecasting Fishing Areas in Banda Sea Based on Satellite Data

Prakiraan Daerah Penangkapan Ikan Laut di Laut Banda Berdasarkan Data Citra Satelit. Forecasting Fishing Areas in Banda Sea Based on Satellite Data Seminar Nasional Penginderaan Jauh ke-4 Tahun 2017 Prakiraan Daerah Penangkapan Ikan Laut di Laut Banda Berdasarkan Data Citra Satelit Forecasting Fishing Areas in Banda Sea Based on Satellite Data Muhammad

Lebih terperinci

SIRKULASI ANGIN PERMUKAAN DI PANTAI PAMEUNGPEUK GARUT, JAWA BARAT

SIRKULASI ANGIN PERMUKAAN DI PANTAI PAMEUNGPEUK GARUT, JAWA BARAT SIRKULASI ANGIN PERMUKAAN DI PANTAI PAMEUNGPEUK GARUT, JAWA BARAT Martono Divisi Pemodelan Iklim, Pusat Penerapan Ilmu Atmosfir dan Iklim LAPAN-Bandung, Jl. DR. Junjunan 133 Bandung Abstract: The continuously

Lebih terperinci

POLA ARUS PERMUKAAN PADA SAAT KEJADIAN INDIAN OCEAN DIPOLE DI PERAIRAN SAMUDERA HINDIA TROPIS

POLA ARUS PERMUKAAN PADA SAAT KEJADIAN INDIAN OCEAN DIPOLE DI PERAIRAN SAMUDERA HINDIA TROPIS POLA ARUS PERMUKAAN PADA SAAT KEJADIAN INDIAN OCEAN DIPOLE DI PERAIRAN SAMUDERA HINDIA TROPIS Martono Pusat Sains dan Teknologi Atmosfer LAPANInstitusi Penulis Email: mar_lapan@yahoo.com Abstract Indian

Lebih terperinci

PERAN MODEL ARSITEKTUR RAUH DAN NOZERAN TERHADAP PARAMETER KONSERVASI TANAH DAN AIR DI HUTAN PAGERWOJO, TULUNGAGUNG NURHIDAYAH

PERAN MODEL ARSITEKTUR RAUH DAN NOZERAN TERHADAP PARAMETER KONSERVASI TANAH DAN AIR DI HUTAN PAGERWOJO, TULUNGAGUNG NURHIDAYAH PERAN MODEL ARSITEKTUR RAUH DAN NOZERAN TERHADAP PARAMETER KONSERVASI TANAH DAN AIR DI HUTAN PAGERWOJO, TULUNGAGUNG NURHIDAYAH SEKOLAH PASCASARJANA INSTITUT PERTANIAN BOGOR BOGOR 2009 PERNYATAAN MENGENAI

Lebih terperinci