BAB II TINJAUAN PUSTAKA. suatu benda. Secara lebih tepat temperatur merupakan ukuran energi kinetik

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB II TINJAUAN PUSTAKA. suatu benda. Secara lebih tepat temperatur merupakan ukuran energi kinetik"

Transkripsi

1 BAB II TINJAUAN PUSTAKA A. TEMPERATUR Seperti yang kita ketahui temperatur adalah ukuran panas atau dinginnya suatu benda. Secara lebih tepat temperatur merupakan ukuran energi kinetik molekul internal rata-rata sebuah benda. AC Srivastava, (1987), mengatakan temperatur merupakan salah satu dari empat besaran dasar yang diakui oleh Sistem Pengukuran Internasional (The International Measuring System). Lord Kelvin pada tahun 1848 mengusulkan skala temperatur termodinamika pada suatu titik tetap triple point, dimana fase padat, cair dan uap berada bersama dalam equilibrium, angka ini adalah 273,16 o K ( derajat Kelvin) yang juga merupakan titik es. Yayan I.B, (1998), mengatakan temperatur adalah kondisi penting dari suatu substrat. Sedangkan panas adalah salah satu bentuk energi yang diasosiasikan dengan aktifitas molekul-molekul dari suatu substrat. Partikel dari suatu substrat diasumsikan selalu bergerak. Pergerakan partikel inilah yang kemudian dirasakan sebagai panas. Sedangkan temperatur adalah ukuran perbandingan dari panas tersebut. 5

2 1. Sensor Temperatur Sifat fisik yang berubah dengan temperatur dinamakan sifat termometrik. Perubahan sifat termometrik merupakan perubahan temperatur benda itu. Setiap sifat termometrik dapat digunakan untuk menetapkan suatu skala temperatur dan membentuk termometer. Memilih sensor temperatur pada aplikasi pendeteksian atau pengukuran tertentu, dapat dipilih salah satu tipe sensor dengan pertimbangan sebagai berikut: a. Unjuk kerja (Performance) b. Keandalan (Reliabilitas) dan c. Faktor ekonomis ( Economic) hal-hal yang perlu diperhatikan sehubungan dengan pemilihan jenis sensor temperatur adalah: (Yayan I.B, 1998) a. Level temperatur maksimum dan minimum dari suatu substrat yang diukur. b. Jangkauan (range) maksimum pengukuran c. Konduktivitas kalor dari substrat d. Respon waktu perubahan temperatur dari substrat e. Linieritas sensor f. Jangkauan temperatur kerja 6

3 selain faktor-faktor tersebut perlu dipertimbangkan faktor fisik dan kimia sensor seperti ketahanan terhadap guncangan ataupun kemampuan sensor bertahan terhadap korosi. Tabel 2.1. Karakteristik sensor temperature (Schuller, Mc.Name, 1986) Thermocouple RTD Thermistor IC Sensor V R R V, I Keuntungan Kerugian T - Pembangkit Daya sendiri - simple - rugged - murah - variasi yang banyak - range yang lebar - non linear - tegangan rendah - dibutuhkan rfrensi - paling kurang stabil - paling kurang sensitif T - lebih stabil - lebih akurat - lebih linear dari thermocouple - mahal - butuh pembangkit daya - R kecil - Resistansi absoulute yang kecil - self heating - keluaran besar - cepat - two-wire ohms measurement T - non linear - range yang terbatas - agile - dibutuhkan pembangkit daya - self heating - paling linear - keluaran besar - murah T - T < 200 o C - Dibutuhkan pembangit gaya - pelan - self heating - konfigurasi yang terbatas Setiap sensor temperatur memiliki jangkauan kerja yang berbeda, untuk pengukuran temperatur disekitar kamar yaitu antara -35 o C sampai 150 o C, dapat dipilih sensor NTC ( Negative Thermal Coeffisien), PTC ( Positive Thermal Coeffisien), transistor, dioda dan IC hibrid. Untuk temperatur menengah yaitu antara 150 o C sampai 700 o C, dapat dipilih thermocouple dan RTD (Resistance 7

4 Thermal Detector). Untuk temperatur yang lebih tinggi sampai 1500 o C, tidak memungkinkan lagi dipergunakan sensor-sensor kontak langsung, maka teknis pengukurannya dilakukan menggunakan cara radiasi. Untuk pengukuran temperatur pada daerah sangat dingin dibawah 65 o K = -208 o C (0 o C = 273,16 o K) dapat digunakan resistor karbon biasa karena pada temperatur ini karbon berlaku seperti semikonduktor. Untuk kebutuhan jangkauan yang kecil dan berada dibawah 200 o C atau dalam rentang suhu kamar kita dapat menggunakan IC sensor. Tabel 2.1. memperlihatkan karakteristik dari beberapa jenis sensor temperatur yang biasa dijumpai. 2. Transfer Energi Termis Energi termis ditransfer dari suatu tempat ketempat lain melalui tiga proses: konduksi, konveksi, dan radiasi. Pada proses konduksi, energi termis ditransfer melalui interaksi antar atom-atom dan molekul, walaupun atom-atom dan molekulnya tidak berpindah. Sebagai contoh, jika salah satu ujung sebuah batang dipanaskan, maka atom-atom di ujung batang yang dipanaskan akan bergetar dengan energy yang lebih besar dibandingkan atom-atom di bagian ujung yang lebih dingin. Hal ini karena adanya interaksi atom-atom yang lebih energetik dari sekitarnya, energi dipindahkan sepanjang batang. Pada konveksi, panas dipindahkan langsung lewat perpindahan massa. Sebagai contoh jika udara dekat lantai dipanaskan, udara mulai naik menuju kerapatan yang lebih rendah. Jadi energi termis berpindah bersama perpindahan massa. Selain itu peristiwa konveksi juga teramati pada pemanasan air. Bila 8

5 perpindahannya dikarenakan perbedaan kerapatan disebut konveksi alami (natural convection) dan bila didorong, misal dengan fan atau pompa disebut konveksi paksa (forced convection). Sedangkan pada radiasi, energi dipancarkan dan diserap oleh benda-benda dalam bentuk radiasi elektromagnetik. Radiasi ini bergerak lewat ruang dengan kecepatan cahaya. 3. Sistem Termis Sistem termis memiliki dua buah blok dasar pembentuk sistem seperti yang terlihat pada gambar berikut: Gambar 2.1 (a) Resistansi termis, (b) kapasitansi termis a. Resistansi Termis Resistansi termis R adalah resistansi terhadap laju aliran panas q (lihat gambar 2.1 a) dan didefinisikan sebagai: = (2.1) di mana T 1 -T 2 adalah selisih temperatur dimana panas tersebut mengalir. 9

6 Secara eksperimen ditemukan bahwa laju aliran panas sebanding dengan luas penampang melintang dan gradien temperatur. Untuk perpindahan panas antara dua buah titik dengan mode konveksi, hokum pendinginan Newton menyatakan: = h( ) (2.2) di mana h adalah koefisien perpindahan panas. Resistansi termis untuk mode perpindahan panas ini dengan demikian sama dengan 1/Ah. b. Kapasitansi termis Kapasitansi termis (lihat gambar 2.1 (b)) merupakan ukuran untuk energi internal yang tersimpan dalam sistem. Jika laju aliran panas kedalam sistem q 1 dan laju aliran keluarnya adalah q 2, maka laju perubahan energi internal sistem adalah q 1 -q 2. Pertambahan energi internal ( U) mengakibatkan perubahan temperatur ( T) : U= T (2.3) di mana m adalah massa dan c adalah kapasitas panas spesifik. oleh karena itu kemudian dapat ditulis: = (2.4) Persamaan ini dapat dituliskan menjadi: = (2.5) di mana kapasitansi C=mc. 10

7 4. Sistem Temperatur Kolam Berikut adalah tinjauan teoritis terhadap model matematis sistem temperatur kolam. Model kolam yang ditinjau digambarkan pada gambar 2.2. dengan asumsi Diasumsikan bahwa air dalam ruangan memiliki temperatur seragam yaitu T. jika air dalam kolam memiliki kapasitas termal c, dan laju energi untuk memanaskan ruangan adalah q 1 -q 2, maka: = dan, = Maka diperoleh fungsi alih sistem: + = (2.5) Setelah dirubah dalam domain s fungsi laplace maka fungsi alihnya ditulis: ( ) = = ( ) (2.6) ( ) ( ) Miasalkan input pemanas merupakan masukan tangga satuan (1/s) maka: ( )= 1/ ( ) ( )= ( ) sehingga didapat T(t) melalui table laplace: 11

8 ( )= (1 ) (2.7) To q2 T q1 Gambar 2.2 Sistem temperatur ruangan Jika model sistem ruangan ini memiliki: Volume air = 95 liter Massa air = 95 kg Konduktifitas air (paul A. Tipler,FISIKA) = W/m K Kapasitas jenis air (paul A. Tipler, FISIKA) = 4.18 Kj/kg K R= 1/Ak dimana, A=48x30=1440 cm 2, L= 66 cm R= Cair = m.c = 95x4.18 = /RC = Dengan mesubtitusikan nilai-nilai ini ke persamaan 2.7 maka didapat: ( )=14.40(1. ) (2.8) 12

9 Dengan bantuan wolfram alfa diplot grafik respon sistem seperti yang diperlihatkan gambar 2.3. sistem ini menggunakan daya pemanas 150 W. Gambar 2.3 respon sistem temperatur kolam 95 liter terhadap masukan tangga satuan (sumber: 13

10 B. SISTEM KONTROL Istilah Otomasi digunakan untuk mendiskripsikan operasi atau kontrol otomatis dari sebuah proses. Sistem kontrol dapat dipandang sebgai sistem dimana temperatur masukan atau beberapa masukan tertentu digunakan untuk mengontrol keluaran pada nilai tertentu. Sistem kontrol ada dua macam yaitu sistem kontrol loop terbuka dan sistem kontrol loop tertutup. 1. Sistem kontrol loop terbuka Gambar 2.5 mengilustrasikan sistem kontrol loop terbuka. Temperatur ruangan hanya dikendalikan oleh sebuah keputusan awal dan tidak akan ada penyesuaian atau pengaturan lebih jauh yang diperlukan. Tidak ada informasi yang diumpankan kembali ke elemen pemanas untuk melakukan penyesuaian agar dapat mempertahankan temperatur konstan. Masukan Pemilihan saklar Proses Pemanasan keluaran Temperatur ruang Gambar 2.4 Sistem kontrol loop terbuka 2. Sistem kontrol loop tertutup Pada sistem kontrol loop tertutup, keluaran dari sistem memberikan efek terhadap proses yang sedang berlangsung, dalam hal ini sinyal masukan yang akan memodifikasinya untuk mempertahankan sinyal keluaran pada titik yang dikehendaki. Cara untuk mengumpankan sinyal keluaran atau kondisi sebenarnya 14

11 yang dicapai untuk memodifikasi sinyal suatu proses disebut Umpan balik. Sedangkan pada sistem kontrol loop terbuka keluaran dari sistem tidak memiliki efek pada sinyal masukan. Keluaran sepenuhnya ditentukan oleh pengaturan awal. Gambar 2.5 Sistem kontrol loop tertutup Berikut diuraikan fungsi-fungsi dari masing-masing elemen tersebut di atas: 1. Elemen Pembanding Elemen ini berfungsi untuk membandingkan nilai yang dikehendaki dari variabel yang sedang dikontrol dengan nilai terukur yang diperoleh dan menghasilkan sebuah sinyal eror. 2. Elemen implementasi kontrol Elemen kotrol akan melakukan aksi atau tindakan apa yang diambil bila diterima sinyal eror. 3. Elemen koreksi Elemen koreksi akan menghasilkan suatu perubahan di dalam proses, yang bertujuan untuk mengubah kondisi yang dikontrol. 4. Proses Proses adalah sistem dimana terdapat sebuah variabel yang dikontrol. 5. Elemen pengukuran 15

12 Elemen pengukuran menghasilkan sebuah sinyal yang berhubungan dengan kondisi variabel dari proses yang sedang dikontrol. Hasil pengukuran dari blok Sensor/Transmitter akan dibandingkan dengan set point. Galat atau error adalah perbedaan antara variabel proses yang diinginkan (set point) dengan variabel proses yang terjadi. Galat tersebut kemudian akan dikalkulasi oleh blok kontrol dan hasilnya akan dimanifestasikan dengan perintah terhadap blok elemen koreksi (contoh: control valve, elemen pemanas, dll). Perubahan pada elemen koreksi ini akan mengubah blok Proses dan hasilnya akan diukur kembali oleh blok Sensor/Transmitter, begitu seterusnya sampai galat menjadi sekecil mungkin. C. PENGONTROL PROSES Pengontrol proses (process controller) adalah komponen-komponen sistem kontrol yang pada dasarnya memiliki sebuah masukan berupa sinyal error, yaitu selisih antara sinyal dengan nilai yang diinginkan dan sinyal umpan balik, serta keluaran berupa sinyal untuk memodifikasi sistem. Cara dimana pengontrol bereaksi terhadap perubahan dikenal sebagai mode kontrol atau kontrol saja. Kontrol paling sederhana adalah kontrol on-off. Selain itu ada tiga mode pengontrol dasar yaitu: proporsional (P), Integral (I), dan Derivatif (D). 1. Kontrol on-off Dengan kontrol on-off, pada intinya pengontrol merupakan sebuah saklar yang diaktivasi oleh sinyal error dan hanya menyuplai sinyal pengoreksi on-off. 16

13 Keluaran pengontrol hanya memiliki dua nilai yang mungkin, yang ekuivalen dengan kondisi on dan off. Karenanya, pengontrolon-off sering dikenal dengan istilah pengontrol dua-langkah. Kontrol on-off merupakan mode kontrol yang sederhana dan murah, dan sering kali digunakan di mana osilasi dapat direduksi hingga level yang dapat diterima. 2. Kontrol Proporsional Dengan metode kontrol on-off, keluaran pengontrol adalah sinyal on atau off sehingga keluaran tidak memiliki relasi dengan besarnya error yang muncul. Dengan kontrol proporsional, besarnya keluaran pengontrol adalah proporsional dengan error yang terjadi. Dapat ditulis dalam relasi matematis: Keluaran pengontrol = Kp x Masukan pengontrol Dimana Kp adalah konstanta yang disebut gain (peroleh). Adapun karakteristik kontrol ini adalah: a. Memiliki overshot yang tinggi b. Waktu penetapan besar c. Periode osilasi sedang d. Adanya offset/droop/steady-state error Semua sistem kontrol proporsional memiliki error keadaan tunak. Mode kontrol proporsional cenderung dipakai dalam proses-proses dimana gain Kp dapat dibuat cukup besar untuk mereduksi error keadaan tunak hingga level yang dapat diterima. Namun, semakin besar gain, maka semakin besar pula peluang 17

14 sistem berosilasi. Osilasi terjadi karena ketertinggalan atau jeda waktu pada sistem, dimana semakin besar gain, maka semakin besar aksi pengontrolan untuk suatu nilai error tertentu, sehingga akan semakin besar peluang bahwa sistem akan melewati nilai pengaturan dan osilasi terjadi. 3. Kontrol derivatif Dengan kontrol derivatif, perubahan keluaran pengontrol dari titik pengaturan akan berbanding lurus dengan laju perubahan terhadap waktu dan sinyal error. Keluaran pengontrol biasanya dinyatakan dalam bentuk presentase terhadap jangkauan penuh keluaran, dan error juga dinyatakan sebagai persentase terhadap jangkauan penuh. Kd adalah konstanta proporsionalitas dan lebih dikenal sebagai derivative/turunan terhadap waktu dengan satuan waktu. Keluaran pengontrol = Kd x Masukan pengontrol Kontrol derivative member respon terhadap sinyal-sinyal error yang erubah terhadap waktu, tetapi tidak terhadap sinyal-sinyal error konstan, karena untuk sinyal-sinyal konstan, laju perubahan error tehadap waktuadalah sama dengan nol. Berdasarkan alas an ini, kontrol derivative dikombinasikan dengan kontrol proporsional membentuk kontrol PD (proporsional derivatif) = ( + h Kd/Kp dikenal sebagai waktu aksi derivatif. Pengontrol PD dapat menangani perubahan-perubahan proses yang cepat secara lebih baik dibandingkan dengan kontrol P saja. Kontrol ini tetap memerlukan error keadaan 18

15 tunak untuk mengatasi perubahan konstan pada kondisi-kondisi masukan atau perubahan pada nilai yang ditetapkan. 4. Kontrol Integral Kontrol integral merupakan mode kontrol dimana keluaran pengontrol berbanding lurus dengan integral error terhadap waktu. = h Dimana Ki adalah konstanta proporsionalitas dengan satuan s -1. Kontrol mode integral saja tidak umum digunakan, tetapi digunakan bersama-sama dengan mode proporsional sehingga membentuk ombinasi kontrol PI. Karena tidak terdapat error keadaan tunak, kontrol PI dapat digunakan dalam aplikasi-aplikasi dimana terjadi perubahan besar dalam variabel proses. Meskipun demikian karena bagian integrasi kontrol memerlukan waktu tertentu, maka perubahan yang terjadi haruslah relatif lambat untuk mencegah terjadinya osilasi. = ( + ) Penggabungan dari ketiga mode kontrol (proporsional,integral, dan derivatif) memungkinkan untuk mendapatkan sebuah pengontrol yang tidak mempunyai error keadaan tunak serta dapat mereduksi terjadinya osilasi. Pengontrol ini dikenal sebagai pengontrol tiga mode atau pengontrol PID = + + h 19

16 Kp adalah konstanta proporsionalita, Ki adalah konstanta integral, dan Kd adalah konstanta derivatif. Persamaan diatas dapat juga ditulis dalam bentuk: = ( h pengontrol PID dapat dilihat sebagai pengontrol proporsional yang memiliki kontrol integral untuk mengeliminasi error offset dan kontrol derivatif untuk mereduksi ketertinggalan atau waktu jeda. D. PEMBUDIDAYAAN IKAN BLACK GHOST Ikan Black Ghost, atau ikan hantu (ikan setan) demikian sebutannya di Indonesia, merupakan ikan hias yang berasal dari sungai Amazon, Brazil, Amerika Selatan. Ikan ini memiliki bentuk tubuh pipih dengan panjang antara 26 cm hingga 48 cm, warna tubuh biru / ungu tua hingga kehitaman. Keunikan terdapat pada goresan warna putih yang terdapat sepanjang bagian dorsal (dimulai dari bagian kepala hingga dorsal tengah) serta dua garis berwarna putih pada bagian ekornya dan bersatunya sirip dada dan sirip perutnya. Bersatunya sirip dada dan sirip perut ini menyebabkan pada saat berenang dan terdapat arus air, siripnya akan berkibar-kibar sehingga menjadi daya tarik bagi ikan ini (Anonim 1, 2008). Dalam proses pembudidayaan ikan ada banyak faktor lingkungan yang bisa mempengaruhi hasil diantaranya adalah temperatur air, salinitas, kadar oksigen terlarut, posfat, dan ph. Faktor yang paling penting dalam hal pertumbuhan adalah temperatur dan makanan. Kedua faktor tesebut tidak dapat 20

17 dibedakan mana yang lebih penting karena larva ikan yang hidup di temperatur terlalu rendah atau terlalu tinggi tidak mau makan, meskipun diberi pakan yang banyak sehingga tidak mau tumbuh. 1. Pemijahan Pada proses pemijahan temperatur air harus dijaga konstan pada daerah 26 sampai dengan 28 derajat Celcius dengan kisaran ph antara 6 6,8 (Yuono, 2006). Pemijahan dengan cara set pasang dilakukan di akuarium ukuran cm dapat diisi dengan 7 ekor induk dengan perbandingan 3 induk jantan dan 4 ekor induk betina. Akar pakis yang telah berisi telur ikan Black Ghost diambil dan dipindahkan ke akuarium untuk pembenihan (ukuran cm). 2. Temperatur untuk Budidaya Air yang baik dipergunakan untuk budidaya ini adalah air dengan temperatur antara 26 0 C 27 0 C dengan ph sekitar 6 7. Kelayakan air akuarium untuk kegiatan pembudidayaan ini dapat dilihat dari reaksi ikan pada saat dimasukkan ke dalam akuarium (Anonim, 2007). Kegiatan budidaya ini dapat dilakukan di akuarium dengan ukuran cm, dalam akuarium dengan ukuran ini dapat diisi dengan 200 hingga 250 ekor ikan Black Ghost berusia 3-4 hari. 21

Sensor Thermal. M. Khairudin. Jogjakarta State University

Sensor Thermal. M. Khairudin. Jogjakarta State University Sensor Thermal Sensor Thermal Pada aplikasi pendeteksian atau pengukuran tertentu, dapat dipilih salah satu tipe sensor dengan pertimbangan : 1. Penampilan (Performance) 2. Kehandalan (Reliable) dan 3.

Lebih terperinci

Gambar 11 Sistem kalibrasi dengan satu sensor.

Gambar 11 Sistem kalibrasi dengan satu sensor. 7 Gambar Sistem kalibrasi dengan satu sensor. Besarnya debit aliran diukur dengan menggunakan wadah ukur. Wadah ukur tersebut di tempatkan pada tempat keluarnya aliran yang kemudian diukur volumenya terhadap

Lebih terperinci

Fisika Panas 2 SKS. Adhi Harmoko S, M.Kom

Fisika Panas 2 SKS. Adhi Harmoko S, M.Kom Fisika Panas 2 SKS Adhi Harmoko S, M.Kom Apa yang dapat diterangkan dari fenomena ini? Mengapa? Ban atau balon dapat meletus bila panas? Mengapa? Gelas menjadi panas setelah dituangi kopi panas? Pertanyaan?

Lebih terperinci

pengendali Konvensional Time invariant P Proportional Kp

pengendali Konvensional Time invariant P Proportional Kp Strategi Dalam Teknik Pengendalian Otomatis Dalam merancang sistem pengendalian ada berbagai macam strategi. Strategi tersebut dikatakan sebagai strategi konvensional, strategi modern dan strategi berbasis

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN BAB IV HASIL DAN PEMBAHASAN A. PENGUJIAN ADC Program BASCOM AVR pada mikrokontroler: W=get ADC V=W/1023 V=V*4.25 V=V*10 Lcd V Tujuan dari program ini adalah untuk menguji tampilan hasil konversi dari tegangan

Lebih terperinci

FISIKA TERMAL Bagian I

FISIKA TERMAL Bagian I FISIKA TERMAL Bagian I Temperatur Temperatur adalah sifat fisik dari materi yang secara kuantitatif menyatakan tingkat panas atau dingin. Alat yang digunakan untuk mengukur temperatur adalah termometer.

Lebih terperinci

Ditemukan pertama kali oleh Daniel Gabriel Fahrenheit pada tahun 1744

Ditemukan pertama kali oleh Daniel Gabriel Fahrenheit pada tahun 1744 A. Suhu dan Pemuaian B. Kalor dan Perubahan Wujud C. Perpindahan Kalor A. Suhu Kata suhu sering diartikan sebagai suatu besaran yang menyatakan derajat panas atau dinginnya suatu benda. Seperti besaran

Lebih terperinci

BAB II TEORI ALIRAN PANAS 7 BAB II TEORI ALIRAN PANAS. benda. Panas akan mengalir dari benda yang bertemperatur tinggi ke benda yang

BAB II TEORI ALIRAN PANAS 7 BAB II TEORI ALIRAN PANAS. benda. Panas akan mengalir dari benda yang bertemperatur tinggi ke benda yang BAB II TEORI ALIRAN PANAS 7 BAB II TEORI ALIRAN PANAS 2.1 Konsep Dasar Perpindahan Panas Perpindahan panas dapat terjadi karena adanya beda temperatur antara dua bagian benda. Panas akan mengalir dari

Lebih terperinci

DASAR PENGUKURAN LISTRIK

DASAR PENGUKURAN LISTRIK DASAR PENGUKURAN LISTRIK OUTLINE 1. Objektif 2. Teori 3. Contoh 4. Simpulan Objektif Teori Tujuan Pembelajaran Mahasiswa mampu: Menjelaskan dengan benar mengenai prinsip RTD. Menjelaskan dengan benar mengenai

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Dasar Dasar Perpindahan Kalor Perpindahan kalor terjadi karena adanya perbedaan suhu, kalor akan mengalir dari tempat yang suhunya tinggi ke tempat suhu rendah. Perpindahan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Sejarah dan Pengenalan Fenomena termoelektrik pertama kali ditemukan tahun 1821 oleh seorang ilmuwan Jerman, Thomas Johann Seebeck. Ia menghubungkan tembaga dan besi dalam sebuah

Lebih terperinci

FISIKA TERMAL(1) Yusron Sugiarto

FISIKA TERMAL(1) Yusron Sugiarto FISIKA TERMAL(1) Yusron Sugiarto MENU HARI INI TEMPERATUR KALOR DAN ENERGI DALAM PERUBAHAN FASE Temperatur adalah sifat fisik dari materi yang secara kuantitatif menyatakan tingkat panas atau dingin. Alat

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 1.1 Metode Pengasapan Cold Smoking Ikan asap merupakan salah satu makanan khas dari Indonesia. Terdapat dua jenis pengasapan yang dapat dilakukan pada bahan makanan yaitu hot smoking

Lebih terperinci

BAB II LANDASAN TEORI. Sistem kontrol adalah proses pengaturan ataupun pengendalian

BAB II LANDASAN TEORI. Sistem kontrol adalah proses pengaturan ataupun pengendalian BAB II LANDASAN TEORI II.1. Sistem Kontrol Sistem kontrol adalah proses pengaturan ataupun pengendalian terhadap satu atau beberapa besaran (variabel, parameter) sehingga berada pada suatu harga atau dalam

Lebih terperinci

BAB II TINJAUAN PUSTAKA Tinjauan tentang aplikasi sistem pengabutan air di iklim kering

BAB II TINJAUAN PUSTAKA Tinjauan tentang aplikasi sistem pengabutan air di iklim kering 15 BAB II TINJAUAN PUSTAKA 2.1. Tinjauan Pustaka 2.1.1. Tinjauan tentang aplikasi sistem pengabutan air di iklim kering Sebuah penelitian dilakukan oleh Pearlmutter dkk (1996) untuk mengembangkan model

Lebih terperinci

Xpedia Fisika. Kapita Selekta Set Energi kinetik rata-rata dari molekul dalam sauatu bahan paling dekat berhubungan dengan

Xpedia Fisika. Kapita Selekta Set Energi kinetik rata-rata dari molekul dalam sauatu bahan paling dekat berhubungan dengan Xpedia Fisika Kapita Selekta Set 07 Doc. Name: XPFIS0107 Doc. Version : 2011-06 halaman 1 01. Energi kinetik rata-rata dari molekul dalam sauatu bahan paling dekat berhubungan dengan... (A) Panas (B) Suhu

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI 10 BAB II LANDASAN TEORI 2.1 PSIKROMETRI Psikrometri adalah ilmu yang mengkaji mengenai sifat-sifat campuran udara dan uap air yang memiliki peranan penting dalam menentukan sistem pengkondisian udara.

Lebih terperinci

KEGIATAN BELAJAR 6 SUHU DAN KALOR

KEGIATAN BELAJAR 6 SUHU DAN KALOR KEGIATAN BELAJAR 6 SUHU DAN KALOR A. Pengertian Suhu Suhu atau temperature adalah besaran yang menunjukkan derajat panas atau dinginnya suatu benda. Pengukuran suhu didasarkan pada keadaan fisis zat (

Lebih terperinci

Gelas menjadi panas setelah dituangi air panas

Gelas menjadi panas setelah dituangi air panas BAB- 11 TERMODINAMIKA Apa yang dapat Anda terangkan dari fenomena ini? Mengapa? Gelas menjadi panas setelah dituangi air panas Mengapa? Bongkahan es mengecil lalu bertahan pada ukurannya Es Batu Apa yang

Lebih terperinci

DASAR PENGUKURAN LISTRIK

DASAR PENGUKURAN LISTRIK DASAR PENGUKURAN LISTRIK OUTLINE 1. Objektif 2. Teori 3. Contoh 4. Simpulan Objektif Teori Contoh Simpulan Tujuan Pembelajaran Mahasiswa mampu: Menjelaskan dengan benar mengenai energi panas dan temperatur.

Lebih terperinci

Fisika Dasar I (FI-321)

Fisika Dasar I (FI-321) Fisika Dasar I (FI-321) Topik hari ini (minggu 15) Temperatur Skala Temperatur Pemuaian Termal Gas ideal Kalor dan Energi Internal Kalor Jenis Transfer Kalor Termodinamika Temperatur? Sifat Termometrik?

Lebih terperinci

12/3/2013 FISIKA THERMAL I

12/3/2013 FISIKA THERMAL I FISIKA THERMAL I 1 Temperature Our senses, however, are unreliable and often mislead us Jika keduanya sama-sama diambil dari freezer, apakah suhu keduanya sama? Mengapa metal ice tray terasa lebih dingin?

Lebih terperinci

MARDIANA LADAYNA TAWALANI M.K.

MARDIANA LADAYNA TAWALANI M.K. KALOR Dosen : Syafa at Ariful Huda, M.Pd MAKALAH Diajukan untuk memenuhi salah satu syarat pemenuhan nilai tugas OLEH : MARDIANA 20148300573 LADAYNA TAWALANI M.K. 20148300575 Program Studi Pendidikan Matematika

Lebih terperinci

KATA PENGANTAR. Tangerang, 24 September Penulis

KATA PENGANTAR. Tangerang, 24 September Penulis KATA PENGANTAR Puji serta syukur kami panjatkan atas kehadirat Allah SWT, karena dengan rahmat dan ridhonya kami bisa menyelesaikan makalah yang kami beri judul suhu dan kalor ini tepat pada waktu yang

Lebih terperinci

PENGUKURAN DAN INSTRUMENTASI THERMINOLOGY TEMPERATURE / SUHU

PENGUKURAN DAN INSTRUMENTASI THERMINOLOGY TEMPERATURE / SUHU THERMINOLOGY PENGUKURAN DAN INSTRUMENTASI THERMAL SENSOR TEMPERATURE / SUHU 1) The degree of hotness or coldness of a body or environment. 2) A measure of the average kinetic energy of the particles in

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Transformasi Laplace Salah satu cara untuk menganalisis gejala peralihan (transien) adalah menggunakan transformasi Laplace, yaitu pengubahan suatu fungsi waktu f(t) menjadi

Lebih terperinci

PERPINDAHAN PANAS DAN MASSA

PERPINDAHAN PANAS DAN MASSA DIKTAT KULIAH PERPINDAHAN PANAS DAN MASSA JURUSAN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS DARMA PERSADA 009 DIKTAT KULIAH PERPINDAHAN PANAS DAN MASSA Disusun : ASYARI DARAMI YUNUS Jurusan Teknik Mesin,

Lebih terperinci

Makalah Seminar Kerja Praktek KONTROL TEMPERATUR PADA RICH SOLUTION HEATER (101-E) DI CO 2 REMOVAL PLANT SUBANG

Makalah Seminar Kerja Praktek KONTROL TEMPERATUR PADA RICH SOLUTION HEATER (101-E) DI CO 2 REMOVAL PLANT SUBANG Makalah Seminar Kerja Praktek KONTROL TEMPERATUR PADA RICH SOLUTION HEATER (101-E) DI CO 2 REMOVAL PLANT SUBANG Lilik Kurniawan (L2F008053) Jurusan Teknik Elektro Fakultas Teknik Universitas Diponegoro

Lebih terperinci

Tabel 1. Parameter yang digunakan pada proses Heat Exchanger [1]

Tabel 1. Parameter yang digunakan pada proses Heat Exchanger [1] 1 feedback, terutama dalam kecepatan tanggapan menuju keadaan stabilnya. Hal ini disebabkan pengendalian dengan feedforward membutuhkan beban komputasi yang relatif lebih kecil dibanding pengendalian dengan

Lebih terperinci

Lampiran 1 Nilai awal siswa No Nama Nilai Keterangan 1 Siswa 1 35 TIDAK TUNTAS 2 Siswa 2 44 TIDAK TUNTAS 3 Siswa 3 32 TIDAK TUNTAS 4 Siswa 4 36 TIDAK

Lampiran 1 Nilai awal siswa No Nama Nilai Keterangan 1 Siswa 1 35 TIDAK TUNTAS 2 Siswa 2 44 TIDAK TUNTAS 3 Siswa 3 32 TIDAK TUNTAS 4 Siswa 4 36 TIDAK Lampiran 1 Nilai awal siswa No Nama Nilai Keterangan 1 Siswa 1 35 TIDAK TUNTAS 2 Siswa 2 44 TIDAK TUNTAS 3 Siswa 3 32 TIDAK TUNTAS 4 Siswa 4 36 TIDAK TUNTAS 5 Siswa 5 40 TIDAK TUNTAS 6 Siswa 6 40 TIDAK

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Penelitian sebelumnya berjudul Feedforward Feedback Kontrol Sebagai

BAB II TINJAUAN PUSTAKA. Penelitian sebelumnya berjudul Feedforward Feedback Kontrol Sebagai BAB II TINJAUAN PUSTAKA 2.1 Studi Pustaka Penelitian sebelumnya berjudul Feedforward Feedback Kontrol Sebagai Pengontrol Suhu Menggunakan Proportional Integral berbasis Mikrokontroler ATMEGA 8535 [3].

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Pada bab ini akan dibahas secara singkat mengenai teori dasar yang digunakan dalam merealisasikan suatu alat yang memanfaatkan energi terbuang dari panas setrika listrik untuk disimpan

Lebih terperinci

Termodinamika. Energi dan Hukum 1 Termodinamika

Termodinamika. Energi dan Hukum 1 Termodinamika Termodinamika Energi dan Hukum 1 Termodinamika Energi Energi dapat disimpan dalam sistem dengan berbagai macam bentuk. Energi dapat dikonversikan dari satu bentuk ke bentuk yang lain, contoh thermal, mekanik,

Lebih terperinci

SUHU DAN KALOR OLEH SAEFUL KARIM JURUSAN PENDIDIKAN FISIKA FPMIPA UPI

SUHU DAN KALOR OLEH SAEFUL KARIM JURUSAN PENDIDIKAN FISIKA FPMIPA UPI SUHU DAN KALOR OLEH SAEFUL KARIM JURUSAN PENDIDIKAN FISIKA FPMIPA UPI SUHU DAN PENGUKURAN SUHU Untuk mempelajari KONSEP SUHU dan hukum ke-nol termodinamika, Kita perlu mendefinisikan pengertian sistem,

Lebih terperinci

SUMBER BELAJAR PENUNJANG PLPG

SUMBER BELAJAR PENUNJANG PLPG SUMBER BELAJAR PENUNJANG PLPG 2016 MATA PELAJARAN/PAKET KEAHLIAN FISIKA BAB V PERPINDAHAN KALOR Prof. Dr. Susilo, M.S KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN DIREKTORAT JENDERAL GURU DAN TENAGA KEPENDIDIKAN

Lebih terperinci

BAB II DASAR TEORI. Gambar 2.1 Sensor Ultrasonik HCSR04. Gambar 2.2 Cara Kerja Sensor Ultrasonik.

BAB II DASAR TEORI. Gambar 2.1 Sensor Ultrasonik HCSR04. Gambar 2.2 Cara Kerja Sensor Ultrasonik. BAB II DASAR TEORI Pada bab ini akan dibahas beberapa teori pendukung yang digunakan sebagai acuan dalam merealisasikan sistem. Teori-teori yang digunakan dalam pembuatan skripsi ini terdiri dari sensor

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Sistem Kendali Lup[1] Sistem kendali dapat dikatakan sebagai hubungan antara komponen yang membentuk sebuah konfigurasi sistem, yang akan menghasilkan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI II.1. Temperatur Temperatur adalah suatu penunjukan nilai panas atau nilai dingin yang dapat diperoleh/diketahui dengan menggunakan suatu alat yang dinamakan termometer. Termometer

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang

BAB I PENDAHULUAN Latar Belakang 1 BAB I PENDAHULUAN 1.1. Latar Belakang Pemakaian sistem kendali otomatis saat ini merupakan kebutuhan yang sangat utama untuk menjaga agar proses produksi berjalan seperti yang direncanakan, mengurangi

Lebih terperinci

TEMPERATUR. Air dingin. Air hangat. Fisdas1_Temperatur, Sabar Nurohman, M.Pd

TEMPERATUR. Air dingin. Air hangat. Fisdas1_Temperatur, Sabar Nurohman, M.Pd TEMPERATUR A. TEMPERATUR; Sebuah Kuantitas Makroskopis Secara kualitatif, temperatur dari sebuah objek (benda) dapat diketahui dengan merasakan sensasii panas atau dinginnya benda tersebut pada saat disentuh.

Lebih terperinci

Horizontal. Kedalaman. Laut. Lintang. Permukaan. Suhu. Temperatur. Vertikal

Horizontal. Kedalaman. Laut. Lintang. Permukaan. Suhu. Temperatur. Vertikal Temperatur Air Laut Dalam oseanografi dikenal dua istilah untuk menentukan temperatur air laut yaitu temperatur insitu (selanjutnya disebut sebagai temperatur saja) dan temperatur potensial. Temperatur

Lebih terperinci

BAB II LANDASAN TEORI. berefisiensi tinggi agar menghasilkan produk dengan kualitas baik dalam jumlah

BAB II LANDASAN TEORI. berefisiensi tinggi agar menghasilkan produk dengan kualitas baik dalam jumlah BAB II LANDASAN TEORI 2.1 Umum Didalam dunia industri, dituntut suatu proses kerja yang aman dan berefisiensi tinggi agar menghasilkan produk dengan kualitas baik dalam jumlah banyak serta dengan waktu

Lebih terperinci

HIDROMETEOROLOGI Tatap Muka Kelima (SUHU UDARA)

HIDROMETEOROLOGI Tatap Muka Kelima (SUHU UDARA) HIDROMETEOROLOGI Tatap Muka Kelima (SUHU UDARA) Dosen : DR. ERY SUHARTANTO, ST. MT. JADFAN SIDQI FIDARI, ST., MT 1. Perbedaan Suhu dan Panas Panas umumnya diukur dalam satuan joule (J) atau dalam satuan

Lebih terperinci

BAB II LANDASAN TEORI. membandingkan tersebut tiada lain adalah pekerjaan pengukuran atau mengukur.

BAB II LANDASAN TEORI. membandingkan tersebut tiada lain adalah pekerjaan pengukuran atau mengukur. BAB II LANDASAN TEORI II.I. Pengenalan Alat Ukur. Pengukuran merupakan suatu aktifitas dan atau tindakan membandingkan suatu besaran yang belum diketahui nilainya atau harganya terhadap besaran lain yang

Lebih terperinci

Oleh Marojahan Tampubolon,ST STMIK Potensi Utama

Oleh Marojahan Tampubolon,ST STMIK Potensi Utama Oleh Marojahan Tampubolon,ST STMIK Potensi Utama Sensor Sensor merupakan suatu alat/device yang berfungsi mengubah suatu besaran fisik (kecepatan,suhu,intensitas cahaya) dan besaran kimia (molaritas, mol)

Lebih terperinci

SUHU DAN PANAS. Apakah itu hari musim panas?atau musim dingin malam beku. Tubuh perlu disimpan dengan suhu yang konstan.

SUHU DAN PANAS. Apakah itu hari musim panas?atau musim dingin malam beku. Tubuh perlu disimpan dengan suhu yang konstan. SUHU DAN PANAS SUHU DAN PANAS Apakah itu hari musim panas?atau musim dingin malam beku. Tubuh perlu disimpan dengan suhu yang konstan. SUHU DAN KESETIMBANGAN TERMAL Konsep suhu berakar pada ide-ide kualitatif

Lebih terperinci

BAB II TINJAUAN TEORITIS

BAB II TINJAUAN TEORITIS BAB II TINJAUAN TEORITIS 2.1. Pengertian Sistem Kontrol Sistem kontrol adalah proses pengaturan atau pengendalian terhadap satu atau beberapa besaran (variable, parameter) sehingga berada pada suatu harga

Lebih terperinci

PENGENDALIAN PROSES EVAPORASI PADA PABRIK UREA MENGGUNAKAN KENDALI JARINGAN SARAF TIRUAN

PENGENDALIAN PROSES EVAPORASI PADA PABRIK UREA MENGGUNAKAN KENDALI JARINGAN SARAF TIRUAN PENGENDALIAN PROSES EVAPORASI PADA PABRIK UREA MENGGUNAKAN KENDALI JARINGAN SARAF TIRUAN Nazrul Effendy 1), Masrul Solichin 2), Teuku Lukman Nur Hakim 3), Faisal Budiman 4) Jurusan Teknik Fisika, Fakultas

Lebih terperinci

T P = T C+10 = 8 10 T C +10 = 4 5 T C+10. Pembahasan Soal Suhu dan Kalor Fisika SMA Kelas X. Contoh soal kalibrasi termometer

T P = T C+10 = 8 10 T C +10 = 4 5 T C+10. Pembahasan Soal Suhu dan Kalor Fisika SMA Kelas X. Contoh soal kalibrasi termometer Soal Suhu dan Kalor Fisika SMA Kelas X Contoh soal kalibrasi termometer 1. Pipa kaca tak berskala berisi alkohol hendak dijadikan termometer. Tinggi kolom alkohol ketika ujung bawah pipa kaca dimasukkan

Lebih terperinci

ELEKTRONIKA DASAR. Oleh : ALFITH, S.Pd, M.Pd

ELEKTRONIKA DASAR. Oleh : ALFITH, S.Pd, M.Pd ELEKTRONIKA DASAR Oleh : ALFITH, S.Pd, M.Pd Komponen pasif adalah komponen elektronika yang dalam pengoperasiannya tidak memerlukan sumber tegangan atau sumber arus tersendiri. Komponen pasif menggunakan

Lebih terperinci

HEAT TRANSFER METODE PENGUKURAN KONDUKTIVITAS TERMAL

HEAT TRANSFER METODE PENGUKURAN KONDUKTIVITAS TERMAL HEAT TRANSFER METODE PENGUKURAN KONDUKTIVITAS TERMAL KELOMPOK II BRIGITA O.Y.W. 125100601111030 SOFYAN K. 125100601111029 RAVENDIE. 125100600111006 JATMIKO E.W. 125100601111006 RIYADHUL B 125100600111004

Lebih terperinci

PEMANASAN BUMI BAB. Suhu dan Perpindahan Panas. Skala Suhu

PEMANASAN BUMI BAB. Suhu dan Perpindahan Panas. Skala Suhu BAB 2 PEMANASAN BUMI S alah satu kemampuan bahasa pemrograman adalah untuk melakukan kontrol struktur perulangan. Hal ini disebabkan di dalam komputasi numerik, proses perulangan sering digunakan terutama

Lebih terperinci

Implementasi Modul Kontrol Temperatur Nano-Material ThSrO Menggunakan Mikrokontroler Digital PIC18F452

Implementasi Modul Kontrol Temperatur Nano-Material ThSrO Menggunakan Mikrokontroler Digital PIC18F452 Implementasi Modul Kontrol Temperatur Nano-Material ThSrO Menggunakan Mikrokontroler Digital PIC18F452 Moh. Hardiyanto 1,2 1 Program Studi Teknik Industri, Institut Teknologi Indonesia 2 Laboratory of

Lebih terperinci

WATER TO WATER HEAT EXCHANGER BENCH BAB I PENDAHULUAN. 1.1 Tujuan Pengujian

WATER TO WATER HEAT EXCHANGER BENCH BAB I PENDAHULUAN. 1.1 Tujuan Pengujian 1.1 Tujuan Pengujian WATER TO WATER HEAT EXCHANGER BENCH BAB I PENDAHULUAN a) Mempelajari formulasi dasar dari heat exchanger sederhana. b) Perhitungan keseimbangan panas pada heat exchanger. c) Pengukuran

Lebih terperinci

Pemodelan Distribusi Suhu pada Tanur Carbolite STF 15/180/301 dengan Metode Elemen Hingga

Pemodelan Distribusi Suhu pada Tanur Carbolite STF 15/180/301 dengan Metode Elemen Hingga Pemodelan Distribusi Suhu pada Tanur Carbolite STF 15/180/301 dengan Metode Elemen Hingga Wafha Fardiah 1), Joko Sampurno 1), Irfana Diah Faryuni 1), Apriansyah 1) 1) Program Studi Fisika Fakultas Matematika

Lebih terperinci

BAB VIII SISTEM KENDALI

BAB VIII SISTEM KENDALI BAB VIII SISTEM KENDALI VIII.1 Struktur Sistem Kendali Sistem kendali proses dapat didefinisikan sebagai fungsi dan operasi yang perlu untuk mengubah bahan baik secara fisik maupun kimia. Kendali proses

Lebih terperinci

BAB II TEORI. 2.1 Pengertian Sistem Pengaturan

BAB II TEORI. 2.1 Pengertian Sistem Pengaturan BAB II TEORI 2.1 Pengertian Sistem Pengaturan Pengertian kontrol atau pengaturan adalah proses atau upaya untuk mencapai tujuan. Sebagai contoh sederhana dan akrab dengan aktivitas sehari-hari dari konsep

Lebih terperinci

W = p V= p(v2 V1) Secara umum, usaha dapat dinyatakan sebagai integral tekanan terhadap perubahan volume yang ditulis sebagai

W = p V= p(v2 V1) Secara umum, usaha dapat dinyatakan sebagai integral tekanan terhadap perubahan volume yang ditulis sebagai Termodinamika Termodinamika adalah kajian tentang kalor (panas) yang berpindah. Dalam termodinamika kamu akan banyak membahas tentang sistem dan lingkungan. Kumpulan benda-benda yang sedang ditinjau disebut

Lebih terperinci

LAPORAN PRAKTIKUM INSTRUMENTASI & PENGENDALIAN PROSES

LAPORAN PRAKTIKUM INSTRUMENTASI & PENGENDALIAN PROSES LAPORAN PRAKTIKUM INSTRUMENTASI & PENGENDALIAN PROSES PENGENDALIAN TEMPERATUR Nama : Abdul Hari NIM : 103242015 Kelas : 2 Migas Pembimbing : Ir. Syafruddin. Msi NIP : 196508191998021001 JURUSAN TEKNIK

Lebih terperinci

PENGUKURAN KONDUKTIVITAS TERMAL

PENGUKURAN KONDUKTIVITAS TERMAL PENGUKURAN KONDUKTIVITAS TERMAL A. TUJUAN 1. Mengukur konduktivitas termal pada isolator plastisin B. ALAT DAN BAHAN Peralatan yang digunakan dalam kegiatan pengukuran dapat diperhatikan pada gambar 1.

Lebih terperinci

LAMPIRAN I. Tes Hasil Belajar Observasi Awal

LAMPIRAN I. Tes Hasil Belajar Observasi Awal 64 LAMPIRAN I Tes Hasil Belajar Observasi Awal 65 LAMPIRAN II Hasil Observasi Keaktifan Awal 66 LAMPIRAN III Satuan Pembelajaran Satuan pendidikan : SMA Mata pelajaran : Fisika Pokok bahasan : Kalor Kelas/Semester

Lebih terperinci

TUGAS AKHIR RESUME PID. Oleh: Nanda Perdana Putra MN / 2010 Teknik Elektro Industri Teknik Elektro. Fakultas Teknik. Universitas Negeri Padang

TUGAS AKHIR RESUME PID. Oleh: Nanda Perdana Putra MN / 2010 Teknik Elektro Industri Teknik Elektro. Fakultas Teknik. Universitas Negeri Padang TUGAS AKHIR RESUME PID Oleh: Nanda Perdana Putra MN 55538 / 2010 Teknik Elektro Industri Teknik Elektro Fakultas Teknik Universitas Negeri Padang PROPORSIONAL INTEGRAL DIFERENSIAL (PID) Pendahuluan Sistem

Lebih terperinci

II. TINJAUAN PUSTAKA. 2.1 Pembenihan Ikan. 2.2 Pengaruh Suhu Terhadap Ikan

II. TINJAUAN PUSTAKA. 2.1 Pembenihan Ikan. 2.2 Pengaruh Suhu Terhadap Ikan II. TINJAUAN PUSTAKA 2.1 Pembenihan Ikan Pemeliharaan larva atau benih merupakan kegiatan yang paling menentukan keberhasilan suatu pembenihan ikan. Hal ini disebabkan sifat larva yang merupakan stadia

Lebih terperinci

MATERI, ENERGI DAN GELOMBANG. Konsep Dasar IPA

MATERI, ENERGI DAN GELOMBANG. Konsep Dasar IPA MATERI, ENERGI DAN GELOMBANG Konsep Dasar IPA Apa yang kalian ketahui tentang Energi? Energi Listrik Energi Cahaya Energi Gerak Energi Panas Dsb. Energi tidak dapat diciptakan dan tidak dapat dimusnahkan.

Lebih terperinci

BAB IV ANALISA DAN PERHITUNGAN

BAB IV ANALISA DAN PERHITUNGAN BAB IV ANALISA DAN PERHITUNGAN 4.1. Hot Water Heater Pemanasan bahan bakar dibagi menjadi dua cara, pemanasan yang di ambil dari Sistem pendinginan mesin yaitu radiator, panasnya di ambil dari saluran

Lebih terperinci

Perpindahan Panas. Perpindahan Panas Secara Konduksi MODUL PERKULIAHAN. Fakultas Program Studi Tatap Muka Kode MK Disusun Oleh 02

Perpindahan Panas. Perpindahan Panas Secara Konduksi MODUL PERKULIAHAN. Fakultas Program Studi Tatap Muka Kode MK Disusun Oleh 02 MODUL PERKULIAHAN Perpindahan Panas Secara Konduksi Fakultas Program Studi Tatap Muka Kode MK Disusun Oleh Teknik Teknik Mesin 02 13029 Abstract Salah satu mekanisme perpindahan panas adalah perpindahan

Lebih terperinci

Syahrir Abdussamad, Simulasi Kendalian Flow Control Unit G.U.N.T Tipe 020 dengan Pengendali PID

Syahrir Abdussamad, Simulasi Kendalian Flow Control Unit G.U.N.T Tipe 020 dengan Pengendali PID Syahrir Abdussamad, Simulasi Kendalian Control Unit G.U.N.T Tipe dengan Pengendali PID MEDIA ELEKTRIK, Volume 4 Nomor, Juni 9 SIMULASI KENDALIAN FLOW CONTROL UNIT G.U.N.T TIPE DENGAN PENGENDALI PID Syahrir

Lebih terperinci

PENGARUH SUHU TERHADAP PERPINDAHAN PANAS PADA MATERIAL YANG BERBEDA. Idawati Supu, Baso Usman, Selviani Basri, Sunarmi

PENGARUH SUHU TERHADAP PERPINDAHAN PANAS PADA MATERIAL YANG BERBEDA. Idawati Supu, Baso Usman, Selviani Basri, Sunarmi Jurnal Dinamika, April 2016, halaman 62-73 ISSN 2087-7889 Vol. 07. No. 1 PENGARUH SUHU TERHADAP PERPINDAHAN PANAS PADA MATERIAL YANG BERBEDA Idawati Supu, Baso Usman, Selviani Basri, Sunarmi Pogram Studi

Lebih terperinci

PERCOBAAN PENENTUAN KONDUKTIVITAS TERMAL BERBAGAI LOGAM DENGAN METODE GANDENGAN

PERCOBAAN PENENTUAN KONDUKTIVITAS TERMAL BERBAGAI LOGAM DENGAN METODE GANDENGAN PERCOBAAN PENENTUAN KONDUKTIVITAS TERMA BERBAGAI OGAM DENGAN METODE GANDENGAN A. Tujuan Percobaan. Memahami konsep konduktivitas termal. 2. Menentukan nilai konduktivitas termal berbagai logam dengan metode

Lebih terperinci

Xpedia Fisika. Soal Zat dan Kalor

Xpedia Fisika. Soal Zat dan Kalor Xpedia Fisika Soal Zat dan Kalor Doc. Name: XPPHY0399 Version: 2013-04 halaman 1 01. Jika 400 g air pada suhu 40 C dicampur dengan 100 g air pada 30 C, suhu akhir adalah... (A) 13 C (B) 26 C (C) 36 C (D)

Lebih terperinci

SISTEM KENDALI DIGITAL

SISTEM KENDALI DIGITAL SISTEM KENDALI DIGITAL Sistem kendali dapat dikatakan sebagai hubungan antara komponen yang membentuk sebuah konfigurasi sistem, yang akan menghasilkan tanggapan sistem yang diharapkan. Jadi harus ada

Lebih terperinci

SUHU DAN KALOR DEPARTEMEN FISIKA IPB

SUHU DAN KALOR DEPARTEMEN FISIKA IPB SUHU DAN KALOR DEPARTEMEN FISIKA IPB Pendahuluan Dalam kehidupan sehari-hari sangat banyak didapati penggunaan energi dalambentukkalor: Memasak makanan Ruang pemanas/pendingin Dll. TUJUAN INSTRUKSIONAL

Lebih terperinci

PEMBUATAN ALAT UKUR KONDUKTIVITAS PANAS BAHAN PADAT UNTUK MEDIA PRAKTEK PEMBELAJARAN KEILMUAN FISIKA

PEMBUATAN ALAT UKUR KONDUKTIVITAS PANAS BAHAN PADAT UNTUK MEDIA PRAKTEK PEMBELAJARAN KEILMUAN FISIKA Edu Physic Vol. 3, Tahun 2012 PEMBUATAN ALAT UKUR KONDUKTIVITAS PANAS BAHAN PADAT UNTUK MEDIA PRAKTEK PEMBELAJARAN KEILMUAN FISIKA Vandri Ahmad Isnaini, S.Si., M.Si Program Studi Pendidikan Fisika IAIN

Lebih terperinci

KALOR SEBAGAI ENERGI B A B B A B

KALOR SEBAGAI ENERGI B A B B A B Kalor sebagai Energi 143 B A B B A B 7 KALOR SEBAGAI ENERGI Sumber : penerbit cv adi perkasa Perhatikan gambar di atas. Seseorang sedang memasak air dengan menggunakan kompor listrik. Kompor listrik itu

Lebih terperinci

BAB II DASAR TEORI. ke tempat yang lain dikarenakan adanya perbedaan suhu di tempat-tempat

BAB II DASAR TEORI. ke tempat yang lain dikarenakan adanya perbedaan suhu di tempat-tempat BAB II DASAR TEORI 2.. Perpindahan Panas Perpindahan panas adalah proses berpindahnya energi dari suatu tempat ke tempat yang lain dikarenakan adanya perbedaan suhu di tempat-tempat tersebut. Perpindahan

Lebih terperinci

BAB 3 METODOLOGI PENELITIAN

BAB 3 METODOLOGI PENELITIAN BAB 3 METODOLOGI PENELITIAN 3.1 Diagram Alir Penelitian Berikut adalah diagram alir penelitian konduksi pada arah radial dari pembangkit energy berbentuk silinder. Gambar 3.1 diagram alir penelitian konduksi

Lebih terperinci

steady/tunak ( 0 ) tidak dipengaruhi waktu unsteady/tidak tunak ( 0) dipengaruhi waktu

steady/tunak ( 0 ) tidak dipengaruhi waktu unsteady/tidak tunak ( 0) dipengaruhi waktu Konduksi Tunak-Tak Tunak, Persamaan Fourier, Konduktivitas Termal, Sistem Konduksi-Konveksi dan Koefisien Perpindahan Kalor Menyeluruh Marina, 006773263, Kelompok Kalor dapat berpindah dari satu tempat

Lebih terperinci

Momentum, Vol. 9, No. 1, April 2013, Hal ISSN ANALISA KONDUKTIVITAS TERMAL BAJA ST-37 DAN KUNINGAN

Momentum, Vol. 9, No. 1, April 2013, Hal ISSN ANALISA KONDUKTIVITAS TERMAL BAJA ST-37 DAN KUNINGAN Momentum, Vol. 9, No. 1, April 213, Hal. 13-17 ISSN 216-7395 ANALISA KONDUKTIVITAS TERMAL BAJA ST-37 DAN KUNINGAN Sucipto, Tabah Priangkoso *, Darmanto Jurusan Teknik Mesin Fakultas TeknikUniversitas Wahid

Lebih terperinci

Gambar 2.1 Sebuah modul termoelektrik yang dialiri arus DC. ( https://ferotec.com. (2016). www. ferotec.com/technology/thermoelectric)

Gambar 2.1 Sebuah modul termoelektrik yang dialiri arus DC. ( https://ferotec.com. (2016). www. ferotec.com/technology/thermoelectric) BAB II. TINJAUAN PUSTAKA Modul termoelektrik adalah sebuah pendingin termoelektrik atau sebagai sebuah pompa panas tanpa menggunakan komponen bergerak (Ge dkk, 2015, Kaushik dkk, 2016). Sistem pendingin

Lebih terperinci

Strategi Pengendalian

Strategi Pengendalian Strategi Pengendalian Strategi apa yang dapat kita gunakan dalam pengendalian proses? Feedback (berumpan-balik) Feedforward (berumpan-maju) 1 Feedback control untuk kecepatan 1. Mengukur kecepatan aktual

Lebih terperinci

SENSOR DAN TRANDUSER. Aktuator C(s) Sensor / Tranduser

SENSOR DAN TRANDUSER. Aktuator C(s) Sensor / Tranduser SENSOR DAN TRANDUSER PENGANTAR Pada sistem pengaturan loop tertutup, terkadang bentuk energi dari sinyal keluaran plant tidak sama dengan bentuk energi dari sinyal masukan sehingga tidak dapat dibandingkan,

Lebih terperinci

Fisika Umum (MA101) Kalor Temperatur Pemuaian Termal Gas ideal Kalor jenis Transisi fasa

Fisika Umum (MA101) Kalor Temperatur Pemuaian Termal Gas ideal Kalor jenis Transisi fasa Fisika Umum (MA101) Topik hari ini: Kalor Temperatur Pemuaian Termal Gas ideal Kalor jenis Transisi fasa Kalor Hukum Ke Nol Termodinamika Jika benda A dan B secara terpisah berada dalam kesetimbangan termal

Lebih terperinci

METODOLOGI PENELITIAN. Waktu dan Tempat Penelitian. Alat dan Bahan Penelitian. Prosedur Penelitian

METODOLOGI PENELITIAN. Waktu dan Tempat Penelitian. Alat dan Bahan Penelitian. Prosedur Penelitian METODOLOGI PENELITIAN Waktu dan Tempat Penelitian Penelitian ini telah dilaksanakan dari bulan Januari hingga November 2011, yang bertempat di Laboratorium Sumber Daya Air, Departemen Teknik Sipil dan

Lebih terperinci

SISTEM KENDALI POSISI MOTOR DC Oleh: Ahmad Riyad Firdaus Politeknik Batam

SISTEM KENDALI POSISI MOTOR DC Oleh: Ahmad Riyad Firdaus Politeknik Batam SISTEM KENDALI POSISI MOTOR DC Oleh: Ahmad Riyad Firdaus Politeknik Batam I. Tujuan 1. Mampu melakukan analisis kinerja sistem pengaturan posisi motor arus searah.. Mampu menerangkan pengaruh kecepatan

Lebih terperinci

Secara matematis faktor-faktor di atas dirumuskan menjadi: H= Q / t = (k x A x T) / l

Secara matematis faktor-faktor di atas dirumuskan menjadi: H= Q / t = (k x A x T) / l SUHU DAN KALOR A. Perpindahan Kalor Kalor juga dapat berpindah dari satu tempat ke tempat yang lain. Proses inilah yang disebut perpindahan kalor/ panas/ energi. Ada tiga jenis perpindahan kalor, yaitu:

Lebih terperinci

IV. HASIL DAN PEMBAHASAN

IV. HASIL DAN PEMBAHASAN IV. HASIL DAN PEMBAHASAN A. Karakteristik Termal Kayu Meranti (Shorea Leprosula Miq.) Karakteristik termal menunjukkan pengaruh perlakuan suhu pada bahan (Welty,1950). Dengan mengetahui karakteristik termal

Lebih terperinci

BAB II PENERAPAN HUKUM THERMODINAMIKA

BAB II PENERAPAN HUKUM THERMODINAMIKA BAB II PENERAPAN HUKUM THERMODINAMIKA 2.1 Konsep Dasar Thermodinamika Energi merupakan konsep dasar termodinamika dan merupakan salah satu aspek penting dalam analisa teknik. Sebagai gagasan dasar bahwa

Lebih terperinci

Institut Teknologi Sepuluh Nopember Surabaya. MATERI Sensor dan Tranduser

Institut Teknologi Sepuluh Nopember Surabaya. MATERI Sensor dan Tranduser Institut Teknologi Sepuluh Nopember Surabaya MATERI Sensor dan Tranduser Contoh Soal Ringkasan Latihan Assessment Pada sistem pengendalian loop tertutup, terkadang bentuk energi dari sinyal keluaran plant

Lebih terperinci

9/17/ KALOR 1

9/17/ KALOR 1 9. KALOR 1 1 KALOR SEBAGAI TRANSFER ENERGI Satuan kalor adalah kalori (kal) Definisi kalori: Kalor yang dibutuhkan untuk menaikkan temperatur 1 gram air sebesar 1 derajat Celcius. Satuan yang lebih sering

Lebih terperinci

II. TINJAUAN PUSTAKA 2.1 Ikan Hias Air Tawar di Indonesia 1. Angelfish ( Pterophyllum Scalare 2. Blackghost ( Apteronotus Albifrons

II. TINJAUAN PUSTAKA 2.1 Ikan Hias Air Tawar di Indonesia 1. Angelfish ( Pterophyllum Scalare 2. Blackghost ( Apteronotus Albifrons II. TINJAUAN PUSTAKA 2.1 Ikan Hias Air Tawar di Indonesia Indonesia kaya akan keanekaragaman spesies ikan hias. Indonesia memiliki 400 spesies ikan air tawar dari 1.100 jenis ikan hias air tawar yang ada

Lebih terperinci

II. TINJAUAN PUSTAKA

II. TINJAUAN PUSTAKA II. TINJAUAN PUSTAKA A. Radiator Radiator memegang peranan penting dalam mesin otomotif (misal mobil). Radiator berfungsi untuk mendinginkan mesin. Pembakaran bahan bakar dalam silinder mesin menyalurkan

Lebih terperinci

KALOR. Dari hasil percobaan yang sering dilakukan besar kecilnya kalor yang dibutuhkan

KALOR. Dari hasil percobaan yang sering dilakukan besar kecilnya kalor yang dibutuhkan KALOR A. Pengertian Kalor Kalor didefinisikan sebagai energi panas yang dimiliki oleh suatu zat. Secara umum untuk mendeteksi adanya kalor yang dimiliki oleh suatu benda yaitu dengan mengukur suhu benda

Lebih terperinci

3. besarnya gaya yang bekerja pada benda untuk tiap satuan luas, disebut... A. Elastis D. Gaya tekan B. Tegangan E. Gaya C.

3. besarnya gaya yang bekerja pada benda untuk tiap satuan luas, disebut... A. Elastis D. Gaya tekan B. Tegangan E. Gaya C. LATIHAN SOAL PERSIAPAN UJIAN KENAIKAN KELAS BAB 1 ELASTISITAS A. Soal Konsep 1. Sifat benda yan dapat kembali ke bentuk semula setelah gaya yang bekerja pada benda dihilangkan merupakan penjelasan dari...

Lebih terperinci

BAB III DINAMIKA PROSES

BAB III DINAMIKA PROSES BAB III DINAMIKA PROSES Tujuan Pembelajaran Umum: Setelah membaca bab ini diharapkan mahasiswa dapat memahami Dinamika Proses dalam Sistem Kendali. Tujuan Pembelajaran Khusus: Setelah mengikuti kuiah ini

Lebih terperinci

2. Pengendalian otomat dengan tenaga hydroulic

2. Pengendalian otomat dengan tenaga hydroulic 2. Pengendalian otomat dengan tenaga hydroulic Keuntungan : Pengontrolan mudah dan responnya cukup cepat Menghasilkan tenaga yang besar Dapat langsung menghasilkan gerakan rotasi dan translasi 1 P a g

Lebih terperinci

BAB VII METODE OPTIMASI PROSES

BAB VII METODE OPTIMASI PROSES BAB VII METODE OPTIMASI PROSES Tujuan Pembelajaran Umum: Setelah membaca bab ini diharapkan mahasiswa dapat memahami Metode Optimasi Proses Pengendalian dalam Sistem Kendali. Tujuan Pembelajaran Khusus:

Lebih terperinci

Bab IV Kalor dan Konservasi Energi

Bab IV Kalor dan Konservasi Energi Bab IV Kalor dan Konservasi Energi Sumber : Ilmu Pengetahuan Populer 5 Energi matahari diubah menjadi energi termal kalor - dengan menggunakan kolektor parabolik matahari. Fisika SMA/MA X 105 Peta Konsep

Lebih terperinci

KALOR. hogasaragih.wordpress.com

KALOR. hogasaragih.wordpress.com KALOR Ketika satu ketel air dingin diletakkan di atas kompor, temperatur air akan naik. Kita katakan bahwa kalor mengalir dari kompor ke air yang dingin. Ketika dua benda yang temperaturnya berbeda diletakkan

Lebih terperinci

BAB 2 ENERGI DAN HUKUM TERMODINAMIKA I

BAB 2 ENERGI DAN HUKUM TERMODINAMIKA I BAB 2 ENERGI DAN HUKUM TERMODINAMIKA I Bab ini hanya akan membahas Sistem Tertutup (Massa Atur). Energi Energi: konsep dasar Termodinamika. Energi: - dapat disimpan, di dalam sistem - dapat diubah bentuknya

Lebih terperinci

ANALISIS PENERAPAN PID CONTROLLER PADA AVR (AUTOMATIC VOLTAGE REGULATOR)

ANALISIS PENERAPAN PID CONTROLLER PADA AVR (AUTOMATIC VOLTAGE REGULATOR) ANALISIS PENERAPAN PID CONTROLLER PADA AVR (AUTOMATIC VOLTAGE REGULATOR) Indar Chaerah Gunadin Dosen Jurusan Teknik Elektro Universitas Hasanuddin Abstrak Perubahan daya reaktif yang disuplai ke beban

Lebih terperinci