BAB II TINJAUAN PUSTAKA

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB II TINJAUAN PUSTAKA"

Transkripsi

1 BAB II TINJAUAN PUSTAKA 2.1. Sekilas mengenai Struktur Cangkang Cangkang adalah bentuk structural tiga dimensional yang kaku dan tipis yang mempunyai permukaan lengkung. Permukaan cangkang dapat mempunyai sembarang bentuk. Bentuk yang umum adalah permukaan yang berasal dari kurva yang diputar terhadap satu sumbu (misalnya, permukaan bola, elips, kerucut, dan parabola), permukaan translasional yang dibentuk dengan menggeserkan kurva bidang di atas kurva bidang lainnya (misalnya permukaan parabola eliptik dan silindris), permukaan yang dibentuk dengan menggeserkan dua ujung segmen garis pada dua kurva bidang (misalnya permukaan hiperbolik paraboloid dan konoid), dan berbagai bentuk yang merupakan kombinasi dari yang telah disebutkan di atas. spherical surface eliptical surface parabolic surface (a) Permukaan rotasional

2 cylindrical surface eliptic paraboloid (b) Permukaan translasional hyperbolic paraboloid conoid (c) Permukaan ruled Gambar 2.1 Contoh-contoh berbagai jenis permukaan cangkang menerus Beban-beban yang bekerja pada permukaan cangkang diteruskan ke tanah dengan menimbulkan tegangan geser, tarik, dan tekan pada arah dalam bidang (in-plane) permukaan tersebut. Tipisnya permukaan cangkang menyebabkan tidak adanya tahanan momen yang berarti. Struktur cangkang tipis khususnya cocok digunakan untuk memikul beban terbagi rata pada atap gedung. Struktur ini tidak cocok untuk memikul beban terpusat. Sebagai akibat cara elemen struktur ini memikul beban dalam-bidang (terutama dengan cara tarik dan tekan), struktur cangkang dapat sangat tipis

3 dan mempunyai bentang relatif besar. Perbandingan bentang-tebal sebesar 400 atau 500 dapat saja digunakan [misalnya tebal 3 in. (8 cm) mungkin saja digunakan untuk kubah yang berbentang 100 sampai 125 ft (30 sampai 38 m)]. Cangkang setipis ini menggunakan material yang relatif baru dikembangkan, misalnya beton bertulang yang didesain khusus untuk membuat permukaan cangkang. Bentuk-bentuk tiga dimensional lain, misalnya kubah pasangan (bata), mempunyai ketebalan lebih besar, dan tidak dapat dikelompokkan sebagai struktur yang hanya memikul tegangan dalambidang karena pada struktur tebal seperti ini, momen lentur sudah mulai dominan. Bentuk-bentuk tiga dimensional juga dapat dibuat dari batang-batang kaku dan pendek. Struktur seperti ini pada hakikatnya adalah struktur cangkang karena perilaku strukturalnya dapat dikatakan sama dengan permukaan cangkang menerus, hanya saja tegangannya tidak lagi menerus seperti pada permukaan cangkang, tetapi terpusat pada setiap batang. Struktur demikian baru pertama kali digunakan pada awal abad XIX. Kubah Schwedler, yang terdiri atas jaring-jaring batang bersendi tak teratur, misalnya, diperkenalkan pertama kali oleh Schwedler di Berlin pada tahun 1863, pada saat itu mendesain kubah dengan bentang 132 ft (48 m). struktur baru yang lain adalah yang menggunakan batang-batang yang diletakkan pada kurva yang dibentuk oleh garis membujur dan melintang dari suatu permukaan putar. Banyak kubah besar di dunia ini yang menggunakan cara yang demikian.

4 Gambar 2.2 Beberapa contoh permukaan jala (reticulated surface) Untuk menghindari kesulitan konstruksi yang ditimbulkan dari penggunaan batang-batang yang berbeda dalam membentuk permukaan cangkang, kita dapat menggunakan cara-cara yang lain yang menggunakan batang-batang yang panjangnya sama. Salah satu diantaranya adalah kubah geodesic yang diperkenalkan oleh Buckminster Fuller. Karena permukaan bola tidak dapat dibuat, maka banyaknya pola berulang identik yang akan dipakai untuk membuat bagian dari permukaan bola itu terbatas. Icosohedron bola, misalnya, terdiri atas 20 segitiga yang dibentuk dengan menghubungkan lingkaran-lingkaran besar yang mengelilingi bola. Tinjauan geometris yang

5 demikian inilah yang digunakan oleh Fuller. Kita harus berhati-hati dalam menggunakan cara seperti ini karena sifat strukturalnya dapat membingungkan. Keuntungan structural yang didapat tidak selalu lebih besar daripada bentuk kubah lainnya. Bentuk-bentuk lain yang bukan merupakan permukaan putaran juga dapat dibuat dengan menggunakan elemen-elemen batang. Beberapa diantaranya adalah atap barrel ber-rib ddan atap Lamella yang terbuat dari grid miring seperti pelengkung yang membentuk elemen-elemen diskret. Bentuk yang disebut terakhir ini dari material kayu sangat banyak dijumpai, tetapi baja maupun beton bertulang juga dapat digunakan. Dengan system Lamella, kita dapat mempunyai bentang yang sangat besar Prinsip-prinsip umum cangkang Aksi membran Cara yang baik untuk mempelajari perilaku permukaan cangkang yang dibebani adalah memandangnya sebagai analogi dari membran, yaitu elemen permukaan yang sedemikian tipisnya hingga hanya gaya tarik yang timbul padanya. Gelembung sabun atau lembaran tipis dari karet adalah contoh-conton membran. Membran yang memikul beban tegak lurus dari permukaannya akan berdeformasi secara tiga dimensional disertai terjadinya gaya tarik pada permukaan membran. Aksi pikul bebannya serupa dengan yang ada pada system kabel menyilang. Mekanisme pikul beban dasar dari cangkang kaku yang geometrinya sama, analog dengan yang ada pada membran terbalik. Yang penting adalah adanya dua kumpulan gaya internal

6 pada permukaan membran yang mempunyai arah saling tegak lurus. Hal yang juga penting adalah adanya tegangan geser tangensial pada permukaan membran, yang juga berfungsi memikul beban Struktur cangkang yang mempunyai permukaan rotasional Adanya dua kumpulan gaya pada arah yang saling tegak lurus di dalam permukaan cangkang menjadikan cangkang berperilaku seperti struktur pelat dua arah. Gaya geser yang bekerja di antara jalur-jalur pelat yang bersebelahan pada struktur pelat planar mempunyai kontribusi dalam memberikan kapasitas pikul beban pelat. Hal yang sama juga terjadi pada struktur cangkang. Adanya dua karakteristik inilah, yaitu adanya gaya geser dan dua kumpulan gaya aksial, yang membedakan perilaku struktur cangkang dan perilaku struktur yang dibentuk dari pelengkung yang dirotasikan terhadap satu titik hingga didapat bentuk seperti cangkang. Pada pelengkung tidak ada momen lentur apabila bentuk pelngkungnya adalah funicular untuk beban tersebut. Apabila beban yang bekerja hanya sebagian (parsial), pada pelengkung akan timbul momen lentur. Pada cangkang gaya-gaya dalam-bidang (in-plane forces) yang berarah meridional (disebut gaya meridional) diakibatkan oleb beban penuh. Ini sama dengan yang terjadi pada pelengkung analoginya. Pada kondisi beban sebagian, bagaimanapun, aksi cangkang sangat berbeda dengan yang terjadi pada pelengkung karena cangkang ada aksi dalam arah melingkar. Gaya melingkar (hoop forces) ini berarah tegak lurus dengan gaya meridional. Gaya melingkar menahan jalur meridional dari gerakan ke arah

7 keluar bidang yang cenderung terjadi untuk kondisi pembebanan sebagian (lentur pada pelengkung terjadi disertai gerakan seperti ini). Pada cangkang, tekanan yang diberikan oleh gaya-gaya melingkar tidak menyebabkan timbulnya momen lentur dalam arah meridional (juga dalam arah melingkar untuk kasus ini). Dengan demikian, cangkang dapat memikul variasi beban cukup dengan tegangan-tegangan dalam-bidang. Geser pelat yang telah disebutkan di atas juga memberikan kontribusi dalam memikul beban. Variasi pola beban yang ada, bagaimanapun, harus merupakan transisi perlahan (perubahan halus dari kondisi beban penuh ke kondisi sebagian agar momen lentur tidak timbul). Diskontinuitas tajam pada pola beban (misalnya beban terpusat) dapat menyebabkan timbulnya momen lentur. Pada pelengkung, beban seperti ini dapat menimbulkan tegangan lentur yang sangat besar, sedangkan pada cangkang, lentur dengan cepat dihilangkan dengan adanya aksi melingkar. Jadi, beban yang sembarang pada pelengkung, misalnya gangguan tepi yang diasosiasikan dengan tumpuan-tumpuannya, dapat menyebabkan timbulnya momen lentur di seluruh bagian pelengkung. Pada cangkang hal ini dapat dilokalisasi. Gambar 2.3 Gaya aksial dalam-bidang (in-plane) pada cangkang bola tipis

8 Cangkang adalah struktur yang unik. Cangkang dapat disebut bekerja secara funicular untuk banyak jenis beban yang berbeda meskipun bentuknya tidak benar-benar funicular. Pada contoh yang telah dibahas di atas, bentuk funicular untuk pelengkung yang memikul beban terbagi rata adalah parabolic. Cangkang berbentuk segmen bola (tidak parabolic) dapat juga memikul beban hanya dengan gaya-gaya dalam-bidang. Dalam hal ini gaya melingkar terjadi, meskipun bebannya penuh, karena bentuk strukturnya tidak benar-benar funicular. Gaya meridional pada cangkang yang mengalami beban vertical penuh selalu adalah gaya tekan (analog dengan gaya yang terjadi pada pelengkung). Sedangkan gaya melingkar dapat berupa tarik maupun tekan, bergantung pada lokasi cangkang yang ditinjau (lihat gambar 2.4). Gambar 2.4 Gaya meridional dan melingkar pada cangkang bola

9 Pada cangkang setengah lingkaran, atau cangkang tinggi, ada kecenderungan pada jalur meridional bawah umtuk berdeformasi ke arah luar. Jadi, jelas gaya-gaya melingkar yang terjadi adalah tarik. Di dekat puncak cangkang tersebut, jalur meridional cenderung berdeformasi ke dalam, yang berarti gaya melingkarnya adalah tekan. Tegangan yang diasosiasikan engan gaya melingkar dan meridional umumnya kecil untuk kondisi beban terbagi rata. Beban terpusat pada umumnya menyebabkan terjadinya tegangan yang sangat besar, karena itu sebaiknya dihindari pada permukaan cangkang. Tinjauan desain utama pada cangkang putar (shell of revolution) adalah masalah di tumpuannya atau di tepi-tepinya. Sama halnya dengan penggunaan batang pengikat pada pelengkung (untuk menahan gaya horizontal), kita juga harus melakukan cara-cara khusus untuk mengatasi gaya tendangan horizontal yang diasosiasikan dengan gaya dalam-bidang di tepi bawah cangkang. Pada kubah, misalnya, system penyokong melingkar perlu digunakan. Alternative lain adalah menggunakan cincin lingkaran, yang disebut dengan cincin tarik, di dasar kubah sehingga dapat menahan komponen keluar dari gaya meridional. Karena gaya yang disebut terakhir ini selalu tekan, maka komponen horizontal selalu berarah keluar. Karena itulah cincin containment selalu mengalami gaya tarik. Seandainya pada puncak cangkang terdapat lubang, maka komponen gaya meridional di dasar cangkang akan berarah ke dalam sehingga gaya pada cincin adalah gaya tekan.

10 Lubang pada permukaan cangkang seperti disebutkan di atas mungkin saja ada, tetapi sebaiknya dihindari karena hal ini mengganggu kontinuitas juga mengurangi efisiensi permukaan cangkang. Apabila memang harus ada lubang, cangkang harus secara khusus diperkuat di tepi lubang tersebut. Masalah lain pada desain cangkang adalah derajat kelengkungannya. Pada cangkang berprofil rendah, atau permukaannya yang relative datar, permukaannya mudah mengalami tekuk ke dalam. Tekuk adalah jenis keruntuhan yang termasuk ke dalam masalah stabilitas, sama halnya dengan kolom langsing panjang. Tekuk dapat terjadi secara lokal (hanya pada sebagian kecil permukaan cangkang), dapat pula terjadi secara menyeluruh. Cangkang dengan kelengkungan besar relative lebih sulit mengalami tekuk, karena itulah sebaiknya cangkang yang demikianlah yang digunakan Struktur cangkang yang mempunyai permukaan translasional Perilaku bentuk-bentuk structural yang didefenisikan oleh permukaanpermukaan translasional sangat dipengaruhi oleh proporsi relative cangkang dan kondisi tumpuannya. Perhatikan permukaan silindris yang terletak di atas dinding seperti terlihat pada gambar 2.5(a). Struktur ini, yang umum disebut terowongan (vault), dapat dipandang sebagai permukaan yang terdiri atas sederetan pelengkung sejajar asalkan dinding penumpu tersebut dapat memberikan reaksi yang diperlukan. Apabila permukaan itu kaku (misalnya terbuat dari beton bertulang), maka permukaan tersebut juga dapat menunjukkan aksi pelat (ada gaya geser di antara jalur-jalur yang bersebelahan) yang dibutuhkan dalam memikul beban tidak merata. Janis aksi yang sama juga

11 akan terjadi apabila permukaan dipikul oleh balok yang sangat kaku. Balok ini pada gilirannya meneruskan beban ke tumpuannya secara melentur. (a)terowongan:terowongan di- tumpu menerus di sepanjang tepi longitudinalnya. Gaya transversal internal mempunyai perilaku seperti aksi pelengkung. (b)cangkang pendek dengan balok tepi kaku: Balok tepi pada dasarnya berfungsi seperti dinding pada terowongan apabila cukup kaku. Aksi seperti pelengkung meneruskan beban permukaan ke balok. Balok ini memikulnya secara melentur dan meneruskan ke tumpuannya. (c)cangkang barrel panjang: Apabila cangkang tidak mempunyai balok tepi kaku, maka aksi seperti pelengkung

12 tidak dapat timbul pada arah transversal. Oleh karena itu, beban dipikul dengan aksi lentur yang serupa dengan yang ada pada balok. Gambar 2.5 Cangkang silindris Perilaku cangkang yang sangat pendek, sangat berbeda dengan perilaku cangkang yang telah disebutkan di atas apabila pengaku ujung transversal digunakan. Beban permukaan dapat diteruskan secara langsung ke pengaku-pengaku ujung secara aksi pelat longitudinal. Pada cangkang yang panjang dibandingkan dengan bentang transversalnya ada aksi yang sangat berbeda dengan cangkang pendek, khususnya apabila balok tepi tidak digunakan atau apabila digunakan, balok tersebut sangat fleksibel. Perlu diingat bahwa setiap balok tepi akan menjadi fleksibel apabila panjangnya bertambah. Dengan demikian, cangkang silindris akan mulai cenderung berperilaku seperti pelengkung dalam arah transversal. Balok tepi fleksibel (atau tidak ada balok tepi) tidak dapat memberikan tahanan terhadap gaya tendangan horizontal. Sebagai akibatnya, tidak ada aksi seperti pelengkung pada arah ini. Hal ini berarti apabila tidak ada balok tepi, tepi bebas longitudinal akan berdefleksi ke arah dalam, bukan ke luar, pada kondisi beban penuh. Oleh karena itu, harus ada jenis lain mekanisme pikul beban. Struktur seperti ini disebut cangkang barrel. Aksi utama pada cangkang demikian adalah dalam arah longitudinal, bukan

13 transversal. Lentur longitudinal terjadi dan analog dengan yang terjadi pada balok sederhana atau pelat lipat. Tegangan tekan pada arah longitudinal dapat terjadi di dkat puncak dari permukaan lengkung dan tegangan tarik di bagian bawah. Analogi dengan stuktur pelat lipat sangat berguna karena banyak prinsip desain yang sama. Pengaku transversal, misalnya, sangat berguna dalam meningkatkan kapasitas pikul beban cangkang barrel. Jika semakin banyak pengaku digunakan atau apabila cangkang barrel yang ditinjau merupakan satu di antara sederetan cangkang yang bersebelahan, maka perilaku seperti balok dapat digunakan. Cangkang barrel yang panjangnya sekitar tiga kali (atau lebih) dari bentang transversalnya dapat menunjukkan perilaku longitudinal dengan jelas Struktur cangkang yang mempunyai permukaan ruled Permukaan ruled biasanya membutuhkan analisis yang lebih rumit. Pada umumnya, perilaku cangkang demikian dapat dipelajari dengan memandangnya sebagai kelengkungan yang dibentuk dari garis-garis lurus. Apabila kondisi tepi dapat memberikan tahanan (misalnya dengan menggunakan fondasi atau balok tepi yang sangat kaku), aka ada aksi seperti pelengkung di daerah yang cembung, dan aksi seperti kabel di daerah yang cekung. Adanya gaya tekan atau tarik pada permukaan tersebut bergantung pada aksi yang ada. Apabila permukaan mempunyai kelengkungan kecil, maka aksi pelat (momen lentur dominan) akan ada, yang berarti membutuhkan penampang yang lebih tebal. Apabila tepi cangkang tidak ditumpu, maka perilaku balok dapat terjadi.

14 Permukaan ruled yang dibuat dengan menggerakkan dua ujung dari suatu garis lurus pada dua garis lurus sejajar, tetapi terpuntir (jadi bukan bentuk yang kompleks), diperlihatkan pada gambar 2.6. Bentuk ini dapat dipandang pula sebagai permukaan tranlasional yang dibentuk dengan menggerakkan parabola cekung pada parabola cembung. Struktur seperti ini menunjukkan aksi seperti pelengkung pada arah kelengkungan cembung dan aksi seperti kabel pada arah cekung (tegak lurus dari arah cembung). Dengan demikian, medan tegangan pada pelat adalah tarik pada satu arah dan tekan pada arah tegak lurusnya. Kedua arah ini membentuk sudut 45º dengan garis lurus pembentuk cangkang tersebut. Gambar 2.6 Permukaan ruled yang dibuat dengan menggerakkan dua ujung dari suatu garis lurus sejajar dan terpuntir

15 2.3. Deformasi dinding cangkang (shell) tanpa lenturan Pada pembahasan tentang deformasi dan tegangan dalam cangkang (shell) berikut ini system notasinya sama dengan yang dipergunakan pada pembahasan pelat. Kita tandai ketebalan cangkang dengan h, dimana besarnya selalu dianggap kecil dibandingkan dengan besaran lain dari cangkang dan dengan jari-jari kelengkungannya. Permukaan yang membagi ketebalan pelat sama besar disebut permukaan tengah (middle surface). Dengan menspesifikasikan bentuk permukaan tengah dan ketebalan cangkang pada setiap titik, maka suatu cangkang ditentukan sepenuhnya secara geometris. Untuk menganalisis gaya-gaya dalam, kita potong suatu elemen yang kecilnya tak terhingga dari cangkang itu yang dibentuk oleh dua pasang bidang yang berdekatan dan tegak lurus terhadap permukaan tengah dari cangkang itu, dan yang memiliki kelengkungan utamanya. Kita ambil sumbusumbu koordinat x dan y yang menyinggung garis kelengkungan utama pada titik 0 dan sumbu z yang tegak lurus pada permukaan tengah, seperti yang diperlihatkan pada gambar 2.7. Jari-jari utama kelengkungan yang terletak pada bidang xz dan yz ditandai masing-masing oleh dan. Tegangan yang bekerja pada permukaan bidang elemen itu diuraikan dalam arah sumbusumbu koordinat, dan komponen tegangan ditunjukkan oleh simbol, =,. Dengan notasi ini, gaya resultan per satuan panjang penampang melintang normal seperti pada gambar adalah

16 (a) (b) (c) Gambar 2.7 Potongan elemen cangkang yang kecilnya tak terhingga Besaran z/ dan z/ yang kecil tampak pada persamaan (a), (b), (c), karena sisi-sisi lateral elemen yang diperlihatkan pada gambar 2.7a memiliki bentuk trapesium yang disebabkan oleh kelengkungan cangkang. Hal ini akan menyebabkan tidak samanya gaya geser Nxy dan Nyx satu dengan lainnya, meskipun di sini masih berlaku bahwa =. Pada pembahasan selanjutnya, kita harus mengasumsikan bahwa ketebalan h adalah sangat kecil dibandingkan dengan jari-jari, dan mengabaikan suku-suku z/ dan

17 z/ pada persamaan-persamaan (a), (b), (c). Kemudian, Nxy = Nyx dan resultan gaya geser dinyatakan oleh persamaan yang sama seperti pada pelat. Momen lentur dan puntir per satuan panjang penampang normal dituliskan dengan persamaan berikut ini (d) (e) di mana penentuan arah momennya mempergunakan aturan yang sama seperti yang dipergunakan pada pelat. Pada pembahasan selanjutnya, kita abaikan lagi besaran z/ dan z/ yang kecil, yang disebabkan oleh kelengkungan cangkang, dan untuk momennya, digunakan persamaan yang sama dengan yang dipergunakan pada pembahasan pelat. Dalam membahas lenturan cangkang diasumsikan bahwa elemen linear, seperti AD dan BC (Gambar 2.7a), yang tegak lurus pada permukaan tengah, tetap lurus dan menjadi tegak lurus terhadap permukaan tengah cangkang yang dideformasikan. Suatu kasus yang sederhana di mana, selama pelenturan, permukaan lateral/melintang elemen ABCD hanya berotasi terhadap garis-garis perpotongannya dengan permukaan tengah. Jika dan merupakan besaran jari-jari kelengkungan setelah deformasi, maka perpanjangan satuan suatu belahan tipis (lamina) pada jarak z dari permukaan tengah (gambar 2.7a) adalah

18 (f) Jika, selain rotasi, sisi-sisi lateral elemen berpindah tempat parallel terhadap dirinya sendiri akibat meregangnya permukaan tengah, dan jika perpanjangan satuan bagian tengah permukaan yang bersangkutan pada x dan y ditandai masing-masing dengan dan, maka perpanjangan dari belahan yang ditinjau di atas seperti yang terlihat pada gambar 2.7c adalah Dengan mensubstitusikan (menyulihkan) Diperoleh (g) Persamaan yang serupa dapat diperoleh untuk pertambahan panjang. Pada pembahasan selanjutnya, ketebalan cangkang h akan selalu dianggap kecil bila dibandingkan dengan jari-jari kelengkungannya. Dalam hal seperti ini, besaran z/ dan z/ dapat diabaikan, bila dibandingkan dengan satu. Kita harus mengabaikan juga pengaruh pertambahan panjang dan pada kelengkungan. Oleh karena itu, sebagai pengganti persamaan (g) di atas, didapat

19 , dimana dan menunjukkan perubahan lengkungan. Dengan mempergunakan persamaan untuk menghitung komponen regangan suatu belahan ini dan dengan menganggap bahwa tidak ada tegangan normal antara belahan ( ), maka diperolehlah persamaan untuk menghitung komponen tegangan seperti berikut ini Dengan mensubstitusikan persamaan ini ke dalam persamaan (a) dan (b) dengan mengabaikan besaran z/rx dan z/ry yang kecil dibandingkan dengan angka satu, maka diperoleh (1), menunjukkan ketegaran lentur cangkang. Kasus yang lebih umum tentang deformasi elemen pada gambar 2.7 akan dapat diperoleh bila dianggap bahwa, selain tegangan normal, tegangan gesernya juga bekerja pada sisi-sisi lateral dari elemen. Bila regangan geser pada permukaan tengah cangkang ditandai dengan γ, dan

20 rotasi tepi BC relative terhadap Oz sekitar sumbu x (gambar 2.7a) ditandai dengan maka diperoleh Dengan mensubstitusikan persamaan ini ke dalam persamaan (b) dan (e) dengan mempergunakan penyederhanaan, maka diperoleh (2) Jadi, dengan menganggap bahwa selama pelenturan suatu cangkang, elemen linear yang tegak lurus pada permukaan tengah adalah tetap lurus dan menjadi tegak lurus pada pemukaan tengah yang mengalami deformasi, maka dapat dinyatakan gaya resultan per satuan panjang Nx, Ny, dan Nxy serta momen-momen Mx, My, dan Mxy atas suku-suku yang terdiri atas enam buah besaran : tiga buah komponen regangan, dan β dari permukaan tengah cangkang dan tiga buah besaran Xx, Xy, dan Xxy yang menggambarkan perubahan kelengkungan serta puntiran permukaan tengah. Pada banyak persoalan deformasi cangkang, tegangan lentur dapat diabaikan, dan hanya tegangan yang disebabkan oleh regangan pada permukaan tengah cangkang saja yang diperhitungkan. Sebagai contoh, diambil suatu wadah berbentuk bola yang mengalami pengaruh tekanan dalam yang terbagi secara merata dan tegak lurus pada permukaan cangkang.

21 Di bawah pengaruh ini, permukaan tengah cangkang mengalami suatu regangan terbagi rata; dan karena ketebalan cangkang ternyata kecil, tegangan tarik dapat dianggap terbagi secara merata ke seluruh tebalnya. Contoh yang serupa disuguhkan oleh suatu tabung silinder bundar yang tipis di mana suatu gas atau cairan ditekan dengan menggunakan piston yang bergerak bebas sepanjang sumbu silinder. Di bawah pengaruh tekanan dalam yang merata ini, tegangan lingkar (loop stress) yang dihasilkan dalam cangkang silindris ternyata terbagi rata ke seluruh ketebalannya. Jika ujung silinder dijepit (dibangun menyatu) sepanjang tepinya, dinding ini tak lagi bebas mengembang secara lateral, dan pasti terjadi sesuatu lenturan di dekat tepi yang dijepit itu jika dikenakan tekanan dalam ini. Namun, penelitian yang lebih lengkap memperlihatkan bahwa lenturan ini hanya setempat dan bagian cangkang pada suatu jarak tertentu dari ujung-ujungnya tetap silindris dan hanya mengalami regangan pada permukaan tengahnya tanpa lenturan yang berarti. Jika kondisi cangkang sedemikian rupa sehingga lenturan dapat diabaikan, permasalahan analisis tegangan dapat dibuat menjadi sangat sederhana, karena momen resultan (d) dan (e) serta resultan gaya geser (c) hilang. Jadi, yang belum diketahui adalah tiga buah besaran Nx, Ny, dan Nxy=Nyx, yang dapat ditetapkan dari kondisi keseimbangan suatu elemen, seperti yang diperlihatkan pada gambar 2.7. Oleh karena itu, permasalahannya menjadi statis tertentu bila semua gaya yang bekerja pada cangkang telah diketahui. Gaya-gaya Nx, Ny, dan Nxy yang diperoleh dengan cara ini acapkali disebut gaya selaput tipis, dan teori cangkang yang

22 berdasarkan pada pengabaian tegangan lentur disebut teori selaput tipis. Penerapan teori ini untuk kasus atap cangkang berbentuk cylindrical surface akan dibahas pada bab berikut.

BAB II TINJAUAN PUSTAKA. dan perilakunya. Struktur membran cenderung dapat menyesuaikan diri

BAB II TINJAUAN PUSTAKA. dan perilakunya. Struktur membran cenderung dapat menyesuaikan diri BAB II TINJAUAN PUSTAKA 2.1 Pendahuluan 2.1.1. Struktur Membran Membran adalah struktur permukaan fleksibel tipis yang memikul beban dengan mengalami terutama tegangan tarik. Gelembung sabun adalah contoh

Lebih terperinci

STRUKTUR CANGKANG I. PENDAHULULUAN

STRUKTUR CANGKANG I. PENDAHULULUAN STRUKTUR CANGKANG I. PENDAHULULUAN Cangkang adalah bentuk struktural berdimensi tiga yang kaku dan tipis serta yang mempunyai permukaan lengkung. Permukaan cangkang dapat mempunyai bentuk sembarang. Bentuk

Lebih terperinci

BAB II TINJAUAN PUSTAKA. yang biasanya dari struktur cangkang terbagi tiga, yaitu : a) Permukaan Rotasional, yaitu bentuk permukaan yang berasal dari

BAB II TINJAUAN PUSTAKA. yang biasanya dari struktur cangkang terbagi tiga, yaitu : a) Permukaan Rotasional, yaitu bentuk permukaan yang berasal dari BAB II TINJAUAN PUSTAKA 2.1. Struktur Cangkang Menurut (Schodeck, 1998), pengertian cangkang merupakan suatu bentuk struktur berdimensi tiga yang tipis dan kaku serta memiliki permukaan lengkung. Permukaan

Lebih terperinci

ELEMEN-ELEMEN STRUKTUR BANGUNAN

ELEMEN-ELEMEN STRUKTUR BANGUNAN ELEMEN-ELEMEN BANGUNAN Struktur bangunan adalah bagian dari sebuah sistem bangunan yang bekerja untuk menyalurkan beban yang diakibatkan oleh adanya bangunan di atas tanah. Fungsi struktur dapat disimpulkan

Lebih terperinci

PENGANTAR KONSTRUKSI BANGUNAN BENTANG LEBAR

PENGANTAR KONSTRUKSI BANGUNAN BENTANG LEBAR Pendahuluan POKOK BAHASAN 1 PENGANTAR KONSTRUKSI BANGUNAN BENTANG LEBAR Struktur bangunan adalah bagian dari sebuah sistem bangunan yang bekerja untuk menyalurkan beban yang diakibatkan oleh adanya bangunan

Lebih terperinci

APLIKASI STRUKTUR SHELL PADA ROYAN MARKET HALL, ROYAN

APLIKASI STRUKTUR SHELL PADA ROYAN MARKET HALL, ROYAN APLIKASI STRUKTUR SHELL PADA ROYAN MARKET HALL, ROYAN PERANCIs Abstraksi Struktur adalah sebuah sarana untuk menyalurkan beban ke atas tanah. Bangunan modern biasanya menggunakan struktur advance untuk

Lebih terperinci

APLIKASI STRUKTUR SHELL PADA ROYAN MARKET HALL, ROYAN PERANCIS

APLIKASI STRUKTUR SHELL PADA ROYAN MARKET HALL, ROYAN PERANCIS Ruang Terbuka dalam Perancangan Kota APLIKASI STRUKTUR SHELL PADA ROYAN MARKET HALL, ROYAN PERANCIS Abstraksi Struktur adalah sebuah sarana untuk menyalurkan beban ke atas tanah. Bangunan modern biasanya

Lebih terperinci

plat lengkung atau plat lipat yang tebalnya kecil dibandingkan dengan dimensi

plat lengkung atau plat lipat yang tebalnya kecil dibandingkan dengan dimensi BAB II TINJAUAN PUSTAKA 2.1 Umum Struktur cangkang telah banyak dikenal dalam penggunaan untuk pesawat terbang, peti kemas dan pada bangunan (atap, pondasi dan silo). Kekuatan cangkang untuk struktur tidak

Lebih terperinci

I.1 Latar Belakang I-1

I.1 Latar Belakang I-1 Bab I Pendahuluan I.1 Latar Belakang Berbagai jenis struktur, seperti terowongan, struktur atap stadion, struktur lepas pantai, maupun jembatan banyak dibentuk dengan menggunakan struktur shell silindris.

Lebih terperinci

STRUKTURAL FUNICULAR: KABEL DAN PELENGKUNG

STRUKTURAL FUNICULAR: KABEL DAN PELENGKUNG STRUKTURAL FUNICULAR: KABEL DAN PELENGKUNG 1.1 PENGANTAR STRUKTUR FUNICULAR Ada jenis-jenis struktur yang telah banyak digunakan oleh perencana gedung yaitu struktur pelengkung dan struktur kabel menggantung.

Lebih terperinci

PUNTIRAN. A. pengertian

PUNTIRAN. A. pengertian PUNTIRAN A. pengertian Puntiran adalah suatu pembebanan yang penting. Sebagai contoh, kekuatan puntir menjadi permasalahan pada poros-poros, karena elemen deformasi plastik secara teori adalah slip (geseran)

Lebih terperinci

ANALISIS SHELL YANG BERBENTUK CYLINDRICAL SURFACE BERDASARKAN RADIAN YANG VARIATIF DIBANDINGKAN DENGAN PROGRAM ANSYS ZAINAL AZHARI

ANALISIS SHELL YANG BERBENTUK CYLINDRICAL SURFACE BERDASARKAN RADIAN YANG VARIATIF DIBANDINGKAN DENGAN PROGRAM ANSYS ZAINAL AZHARI ANALISIS SHELL YANG BERBENTUK CYLINDRICAL SURFACE BERDASARKAN RADIAN YANG VARIATIF DIBANDINGKAN DENGAN PROGRAM ANSYS TUGAS AKHIR ZAINAL AZHARI 06 0404 020 BIDANG STUDI STRUKTUR DEPARTEMEN TEKNIK SIPIL

Lebih terperinci

BAB II STUDI PUSTAKA

BAB II STUDI PUSTAKA BAB II STUDI PUSTAKA II.1 Umum dan Latar Belakang Kolom merupakan batang tekan tegak yang bekerja untuk menahan balok-balok loteng, rangka atap, lintasan crane dalam bangunan pabrik dan sebagainya yang

Lebih terperinci

BAB II TEORI DASAR. dengan bangunan adalah bahwa struktur merupakan sarana untuk menyalurkan

BAB II TEORI DASAR. dengan bangunan adalah bahwa struktur merupakan sarana untuk menyalurkan BAB II TEORI DASAR 2.1 Umum Pengertian yang paling sederhana tentang struktur dalam hubungannya dengan bangunan adalah bahwa struktur merupakan sarana untuk menyalurkan beban akibat penggunaan dan atau

Lebih terperinci

2.5.c Konsep Selembar kertas tipis dan datar tidak dapat menahan beban sendiri.

2.5.c Konsep Selembar kertas tipis dan datar tidak dapat menahan beban sendiri. Struktur Plat Lipat 2.4.a Pengertian Plat adalah struktur planar kaku yang secara khas terbuat dari material monolit yang tingginya lebih kecil dibandingkan dengan dimensi-dimensi lainnya. Struktur plat

Lebih terperinci

BAB II STUDI LITERATUR

BAB II STUDI LITERATUR BAB II STUDI LITERATUR. PENDAHULUAN Pada struktur pelat satu-arah beban disalurkan ke balok kemudian beban disalurkan ke kolom. Jika balok menyatu dengan ketebalan pelat itu sendiri, menghasilkan sistem

Lebih terperinci

BAB I PENDAHULUAN. segi estetika dari bangunan tersebut. Salah satu bangunan yang direncanakan

BAB I PENDAHULUAN. segi estetika dari bangunan tersebut. Salah satu bangunan yang direncanakan BAB I PENDAHULUAN 1.1. Latar Belakang Seiring dengan berkembangnya teknologi yang didasari dengan kemajuan ilmu pengetahuan di beberapa bidang, diantaranya bidang konstruksi, membuat negara-negara yang

Lebih terperinci

Bab 11 STRUKTUR MEMBRAN 11.1 PENDAKULUAN

Bab 11 STRUKTUR MEMBRAN 11.1 PENDAKULUAN Bab STRUKTUR MEMBRAN. PENDAKULUAN Mambran adalah struktur permukaan fleksibel tipis yang memikul beban dengan mengalami terutama tegangan tarik. Gelembung sabun adlah contoh klasik yang dapat dipakai untuk

Lebih terperinci

STRUKTUR PERMUKAAN BIDANG

STRUKTUR PERMUKAAN BIDANG STRUKTUR PERMUKAAN BIDANG 1. STRUKTUR LIPATAN Bentuk lipatan ini mempunyai kekakuan yang lebih dibandingkan dengan bentuk-bentuk yang datar dengan luas yang sama dan dari bahan yang sama pula. Karena momen

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA A. Deskripsi umum Desain struktur merupakan salah satu bagian dari keseluruhan proses perencanaan bangunan. Proses desain merupakan gabungan antara unsur seni dan sains yang membutuhkan

Lebih terperinci

1. Struktur Bentang Lebar

1. Struktur Bentang Lebar 1. Struktur Bentang Lebar Struktur bentang lebar diperlukan untuk mengakomodasi aktivitas yang memerlukan ruang luas dan tidak terhalang oleh kolom, misalnya auditorium, bioskop, stadion, gedung peribadatan.

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Menurut PBI 1983, pengertian dari beban-beban tersebut adalah seperti yang. yang tak terpisahkan dari gedung,

BAB II TINJAUAN PUSTAKA. Menurut PBI 1983, pengertian dari beban-beban tersebut adalah seperti yang. yang tak terpisahkan dari gedung, BAB II TINJAUAN PUSTAKA 2.1. Pembebanan Dalam perencanaan suatu struktur bangunan harus memenuhi peraturanperaturan yang berlaku untuk mendapatkan suatu struktur bangunan yang aman secara kontruksi. Struktur

Lebih terperinci

Bab 5 Puntiran. Gambar 5.1. Contoh batang yang mengalami puntiran

Bab 5 Puntiran. Gambar 5.1. Contoh batang yang mengalami puntiran Bab 5 Puntiran 5.1 Pendahuluan Pada bab ini akan dibahas mengenai kekuatan dan kekakuan batang lurus yang dibebani puntiran (torsi). Puntiran dapat terjadi secara murni atau bersamaan dengan beban aksial,

Lebih terperinci

BAB II STUDI PUSTAKA

BAB II STUDI PUSTAKA BAB II STUDI PUSTAKA 2.1 Teori Dasar Beton Prategang Menurut ACI (American Concrete Institute) Beton prategang adalah beton yang mengalami tegangan internal dengan besar dan distribusi sedemikian rupa

Lebih terperinci

Kuliah ke-6. UNIVERSITAS INDO GLOBAL MANDIRI FAKULTAS TEKNIK Jalan Sudirman No. 629 Palembang Telp: , Fax:

Kuliah ke-6. UNIVERSITAS INDO GLOBAL MANDIRI FAKULTAS TEKNIK Jalan Sudirman No. 629 Palembang Telp: , Fax: Kuliah ke-6 Bar (Batang) digunakan pada struktur rangka atap, struktur jembatan rangka, struktur jembatan gantung, pengikat gording dn pengantung balkon. Pemanfaatan batang juga dikembangkan untuk sistem

Lebih terperinci

STRUKTUR LIPATAN. Dengan bentuk lipatan ini,gaya-gaya akibat benda sendiri dan gaya-gaya luar dapat di tahan oleh bentuk itu sendiri

STRUKTUR LIPATAN. Dengan bentuk lipatan ini,gaya-gaya akibat benda sendiri dan gaya-gaya luar dapat di tahan oleh bentuk itu sendiri STRUKTUR LIPATAN Bentuk lipatan ini mempunyai kekakuan yang lebih dibandingkan dengan bentuk-bentuk yang datar dengan luas yang sama dan dari bahan yang sama pula. Karena momen energia yang didapat dari

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 5 BAB II TINJAUAN PUSTAKA 2.1. Pembebanan Struktur Dalam perencanaan suatu struktur bangunan gedung bertingkat tinggi sebaiknya mengikuti peraturan-peraturan pembebanan yang berlaku untuk mendapatkan suatu

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Pembebanan Struktur bangunan yang aman adalah struktur bangunan yang mampu menahan beban-beban yang bekerja pada bangunan. Dalam suatu perancangan struktur harus memperhitungkan

Lebih terperinci

POKOK BAHASAN 7 STRUKTUR CANGKANG (SHELL STRUCTURE)

POKOK BAHASAN 7 STRUKTUR CANGKANG (SHELL STRUCTURE) POKOK BAHASAN 7 STRUKTUR CANGKANG (SHELL STRUCTURE) Pengertian Shell Menurut Joedicke (1963) struktur shell adalah plat yang melengkung ke satu arah atau lebih yang tebalnya jauh lebih kecil daripada bentangnya.

Lebih terperinci

PLATE GIRDER A. Pengertian Pelat Girder

PLATE GIRDER A. Pengertian Pelat Girder PLATE GIRDER A. Pengertian Pelat Girder Dalam penggunaan profil baja tunggal (seperti profil I) sebagai elemen lentur jika ukuran profilnya masih belum cukup memenuhi karena gaya dalam (momen dan gaya

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Pembebanan Dalam perencanaan suatu struktur bangunan harus memenuhi peraturanperaturan yang berlaku untuk mendapatkan suatu struktur bangunan yang aman secara konstruksi berdasarkan

Lebih terperinci

ANALISIS PERBANDINGAN PERHITUNGAN STRUKTUR CANGKANG KUBAH (DOME) MATERIAL BETON DAN MATERIAL BAJA DENGAN PROGRAM TUGAS AKHIR

ANALISIS PERBANDINGAN PERHITUNGAN STRUKTUR CANGKANG KUBAH (DOME) MATERIAL BETON DAN MATERIAL BAJA DENGAN PROGRAM TUGAS AKHIR ANALISIS PERBANDINGAN PERHITUNGAN STRUKTUR CANGKANG KUBAH (DOME) MATERIAL BETON DAN MATERIAL BAJA DENGAN PROGRAM TUGAS AKHIR Diajukan Untuk Melengkapi Syarat Penyelesaian Pendidikan Sarjana Teknik Sipil

Lebih terperinci

03. Semua komponen struktur diproporsikan untuk mendapatkan kekuatan yang. seimbang yang menggunakan unsur faktor beban dan faktor reduksi.

03. Semua komponen struktur diproporsikan untuk mendapatkan kekuatan yang. seimbang yang menggunakan unsur faktor beban dan faktor reduksi. BAB II TINJAUAN PUSTAKA 2.1 Pendahuluan Perancangan struktur suatu bangunan gedung didasarkan pada besarnya kemampuan gedung menahan beban-beban yang bekerja padanya. Disamping itu juga harus memenuhi

Lebih terperinci

BAB I PENDAHULUAN. pesat yaitu selain awet dan kuat, berat yang lebih ringan Specific Strength yang

BAB I PENDAHULUAN. pesat yaitu selain awet dan kuat, berat yang lebih ringan Specific Strength yang BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Konstruksi Baja merupakan suatu alternatif yang menguntungkan dalam pembangunan gedung dan struktur yang lainnya baik dalam skala kecil maupun besar. Hal ini

Lebih terperinci

STRUKTUR DAN KONSTRUKSI BANGUNAN IV

STRUKTUR DAN KONSTRUKSI BANGUNAN IV STRUKTUR DAN KONSTRUKSI BANGUNAN IV STRUKTUR PLAT LIPAT AZRATIH HAIRUN FRILYA YOLANDA EFRIDA UMBU NDAKULARAK AGRIAN RIZKY RINTO HARI MOHAMMAD GIFARI A. PENGERTIAN STRUKTUR PLAT LIPAT Pelat adalah struktur

Lebih terperinci

BAB II DASAR-DASAR DESAIN BETON BERTULANG. Beton merupakan suatu material yang menyerupai batu yang diperoleh dengan

BAB II DASAR-DASAR DESAIN BETON BERTULANG. Beton merupakan suatu material yang menyerupai batu yang diperoleh dengan BAB II DASAR-DASAR DESAIN BETON BERTULANG. Umum Beton merupakan suatu material yang menyerupai batu yang diperoleh dengan membuat suatu campuran yang mempunyai proporsi tertentudari semen, pasir, dan koral

Lebih terperinci

Struktur Beton. Ir. H. Armeyn, MT. Fakultas Teknik Sipil dan Perencanaan Jurusan Teknik Sipil dan Geodesi Institut Teknologi Padang

Struktur Beton. Ir. H. Armeyn, MT. Fakultas Teknik Sipil dan Perencanaan Jurusan Teknik Sipil dan Geodesi Institut Teknologi Padang Penerbit Universiras SematangISBN. 979. 9156-22-X Judul Struktur Beton Struktur Beton Ir. H. Armeyn, MT Fakultas Teknik Sipil dan Perencanaan Jurusan Teknik Sipil dan Geodesi Institut Teknologi Padang

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Umum. Berkembangnya kemajuan teknologi bangunan bangunan tinggi disebabkan

BAB I PENDAHULUAN. 1.1 Umum. Berkembangnya kemajuan teknologi bangunan bangunan tinggi disebabkan BAB I PENDAHULUAN 1.1 Umum Berkembangnya kemajuan teknologi bangunan bangunan tinggi disebabkan oleh kebutuhan ruang yang selalu meningkat dari tahun ke tahun. Semakin tinggi suatu bangunan, aksi gaya

Lebih terperinci

PLATE GIRDER A. Pengertian Pelat Girder

PLATE GIRDER A. Pengertian Pelat Girder PLATE GIRDER A. Pengertian Pelat Girder Dalam penggunaan profil baja tunggal (seperti profil I) sebagai elemen lentur jika ukuran profilnya masih belum cukup memenuhi karena gaya dalam (momen dan gaya

Lebih terperinci

BAB II TINJAUAN PUSTAKA. gedung dalam menahan beban-beban yang bekerja pada struktur tersebut. Dalam. harus diperhitungkan adalah sebagai berikut :

BAB II TINJAUAN PUSTAKA. gedung dalam menahan beban-beban yang bekerja pada struktur tersebut. Dalam. harus diperhitungkan adalah sebagai berikut : 4 BAB II TINJAUAN PUSTAKA 2.1.Pembebanan Struktur Perencanaan struktur bangunan gedung harus didasarkan pada kemampuan gedung dalam menahan beban-beban yang bekerja pada struktur tersebut. Dalam Peraturan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Baja Baja merupakan bahan konstruksi yang sangat baik, sifat baja antara lain kekuatannya yang sangat besar dan keliatannya yang tinggi. Keliatan (ductility) ialah kemampuan

Lebih terperinci

BAB II TINJAUAN PUSTAKA. pembebanan yang berlaku untuk mendapatkan suatu struktur bangunan

BAB II TINJAUAN PUSTAKA. pembebanan yang berlaku untuk mendapatkan suatu struktur bangunan BAB II TINJAUAN PUSTAKA 2.1.Pembebanan Struktur Dalam perencanaan struktur bangunan harus mengikuti peraturanperaturan pembebanan yang berlaku untuk mendapatkan suatu struktur bangunan yang aman. Pengertian

Lebih terperinci

BAB I PENDAHULUAN Umum. Pada dasarnya dalam suatu struktur, batang akan mengalami gaya lateral

BAB I PENDAHULUAN Umum. Pada dasarnya dalam suatu struktur, batang akan mengalami gaya lateral 1 BAB I PENDAHULUAN 1. 1 Umum Pada dasarnya dalam suatu struktur, batang akan mengalami gaya lateral dan aksial. Suatu batang yang menerima gaya aksial desak dan lateral secara bersamaan disebut balok

Lebih terperinci

BAB 4 Tegangan dan Regangan pada Balok akibat Lentur, Gaya Normal dan Geser

BAB 4 Tegangan dan Regangan pada Balok akibat Lentur, Gaya Normal dan Geser BAB 4 Tegangan dan Regangan pada Balok akibat Lentur, Gaya Normal dan Geser 4.1 Tegangan dan Regangan Balok akibat Lentur Murni Pada bab berikut akan dibahas mengenai respons balok akibat pembebanan. Balok

Lebih terperinci

ANALISIS LINIER STRUKTUR CANGKANG PADA SILO SEMEN DENGAN METODE ELEMEN HINGGA

ANALISIS LINIER STRUKTUR CANGKANG PADA SILO SEMEN DENGAN METODE ELEMEN HINGGA ANALISIS LINIER STRUKTUR CANGKANG PADA SILO SEMEN DENGAN METODE ELEMEN HINGGA Andina Prima Putri Jurusan Teknik Sipil, Fakultas Teknik, Universitas 17 Agustus 1945 andina.putri@uta45jakarta.ac.id Cantya

Lebih terperinci

BAB II DASAR-DASAR PERENCANAAN STRUKTUR GEDUNG BERTINGKAT

BAB II DASAR-DASAR PERENCANAAN STRUKTUR GEDUNG BERTINGKAT BAB II DASAR-DASAR PERENCANAAN STRUKTUR GEDUNG BERTINGKAT 2.1 KONSEP PERENCANAAN STRUKTUR GEDUNG RAWAN GEMPA Pada umumnya struktur gedung berlantai banyak harus kuat dan stabil terhadap berbagai macam

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pembebanan Komponen Struktur Pada perencanaan bangunan bertingkat tinggi, komponen struktur direncanakan cukup kuat untuk memikul semua beban kerjanya. Pengertian beban itu

Lebih terperinci

BAB III ANALISA PERENCANAAN STRUKTUR

BAB III ANALISA PERENCANAAN STRUKTUR BAB III ANALISA PERENCANAAN STRUKTUR 3.1. ANALISA PERENCANAAN STRUKTUR PELAT Struktur bangunan gedung pada umumnya tersusun atas komponen pelat lantai, balok anak, balok induk, dan kolom yang merupakan

Lebih terperinci

Pengertian struktur. Macam-macam struktur. 1. Struktur Rangka. Pengertian :

Pengertian struktur. Macam-macam struktur. 1. Struktur Rangka. Pengertian : Pengertian struktur Struktur adalah sarana untuk menyalurkan beban dalam bangunan ke dalam tanah. Fungsi struktur dalam bangunan adalah untuk melindungi suatu ruang tertentu terhadap iklim, bahayabahaya

Lebih terperinci

ANALISA BALOK SILANG DENGAN GRID ELEMEN PADA STRUKTUR JEMBATAN BAJA

ANALISA BALOK SILANG DENGAN GRID ELEMEN PADA STRUKTUR JEMBATAN BAJA ANALISA BALOK SILANG DENGAN GRID ELEMEN PADA STRUKTUR JEMBATAN BAJA Tugas Akhir Diajukan untuk melengkapi tugas-tugas dan memenuhi Syarat untuk menempuh ujian sarjana Teknik Sipil Disusun oleh: SURYADI

Lebih terperinci

Struktur Baja 2. Kolom

Struktur Baja 2. Kolom Struktur Baja 2 Kolom Perencanaan Berdasarkan LRFD (Load and Resistance Factor Design) fr n Q i i R n = Kekuatan nominal Q = Beban nominal f = Faktor reduksi kekuatan = Faktor beban Kombinasi pembebanan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Umum Pengertian yang paling sederhana tentang struktur dalam hubungannya dengan bangunan adalah bahwa struktur merupakan sarana untuk menyalurkan beban akibat penggunaan dan

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3.1 Kerangka Berfikir Sengkang merupakan elemen penting pada kolom untuk menahan beban gempa. Selain menahan gaya geser, sengkang juga berguna untuk menahan tulangan utama dan

Lebih terperinci

BAB II DASAR TEORI. 2.1 Pengertian rangka

BAB II DASAR TEORI. 2.1 Pengertian rangka BAB II DASAR TEORI 2.1 Pengertian rangka Rangka adalah struktur datar yang terdiri dari sejumlah batang-batang yang disambung-sambung satu dengan yang lain pada ujungnya, sehingga membentuk suatu rangka

Lebih terperinci

BAB II TINJAUAN PUSTAKA. geser membentuk struktur kerangka yang disebut juga sistem struktur portal.

BAB II TINJAUAN PUSTAKA. geser membentuk struktur kerangka yang disebut juga sistem struktur portal. BAB II TINJAUAN PUSTAKA 2.1 Sistem Struktur Bangunan Suatu sistem struktur kerangka terdiri dari rakitan elemen struktur. Dalam sistem struktur konstruksi beton bertulang, elemen balok, kolom, atau dinding

Lebih terperinci

Fasilitas Olah Raga dan Rekreasi di Jakarta BAB III TINJAUAN KHUSUS PROYEK

Fasilitas Olah Raga dan Rekreasi di Jakarta BAB III TINJAUAN KHUSUS PROYEK BAB III TINJAUAN KHUSUS PROYEK III.1 Tema Sebagaimana kita ketahui struktur merupakan suatu bagian dalam bangunan yang memiliki fungsi penahan beban vertical dan horizontal tetapi bersamaan dengan berkembangnya

Lebih terperinci

sejauh mungkin dari sumbu netral. Ini berarti bahwa momen inersianya

sejauh mungkin dari sumbu netral. Ini berarti bahwa momen inersianya BABH TINJAUAN PUSTAKA Pada balok ternyata hanya serat tepi atas dan bawah saja yang mengalami atau dibebani tegangan-tegangan yang besar, sedangkan serat di bagian dalam tegangannya semakin kecil. Agarmenjadi

Lebih terperinci

Meliputi pertimbangan secara detail terhadap alternatif struktur yang

Meliputi pertimbangan secara detail terhadap alternatif struktur yang BAB II TINJAUAN PIISTAKA 2.1 Pendahuluan Pekerjaan struktur secara umum dapat dilaksanakan melalui 3 (tiga) tahap (Senol,Utkii,Charles,John Benson, 1977), yaitu : 2.1.1 Tahap perencanaan (Planningphase)

Lebih terperinci

UJI PEMBEBANAN PADA SISTEM STRUKTUR CYLINDRICAL SHELL DITOPANG KOLOM

UJI PEMBEBANAN PADA SISTEM STRUKTUR CYLINDRICAL SHELL DITOPANG KOLOM UJI PEMBEBANAN PADA SISTEM STRUKTUR CYLINDRICAL SHELL DITOPANG KOLOM Oleh: Yohana Nursruwening Wita Widyandini ABSTRAK Bentuk struktur permukaan bidang yang merupakan struktur cangkang atau shell, di alam

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Pembebanan Pembebanan merupakan faktor penting dalam merancang stuktur bangunan. Oleh karena itu, dalam merancang perlu diperhatikan beban-bean yang bekerja pada struktur agar

Lebih terperinci

Bab 6 Defleksi Elastik Balok

Bab 6 Defleksi Elastik Balok Bab 6 Defleksi Elastik Balok 6.1. Pendahuluan Dalam perancangan atau analisis balok, tegangan yang terjadi dapat diteritukan dan sifat penampang dan beban-beban luar. Untuk mendapatkan sifat-sifat penampang

Lebih terperinci

Struktur Lipatan. Struktur Lipatan 1

Struktur Lipatan. Struktur Lipatan 1 Struktur Lipatan Pengertian Struktur lipatan adalah bentuk yang terjadi pada lipatan bidang-bidang datar dimana kekakuan dan kekuatannya terletak pada keseluruhan bentuk itu sendiri. Bentuk lipatan ini

Lebih terperinci

berupa penuangan ide atau keinginan dari pemilik yang dijadikan suatu pedoman

berupa penuangan ide atau keinginan dari pemilik yang dijadikan suatu pedoman BAB II TINJAUAN PUSTAKA 2.1 Pendahuluan Perencanaan merupakan langkah awal dari suatu pembangunan fisik berupa penuangan ide atau keinginan dari pemilik yang dijadikan suatu pedoman oleh perencana agar

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Pembebanan Struktur Dalam perencaaan struktur bangunan harus mengikuti peraturan pembebanan yang berlaku untuk mendapatkan struktur bangunan yang aman. Pengertian beban adalah

Lebih terperinci

BAB I PENDAHULUAN. Dinding ( wall ) adalah suatu struktur padat yang membatasi dan melindungi

BAB I PENDAHULUAN. Dinding ( wall ) adalah suatu struktur padat yang membatasi dan melindungi BAB I PENDAHULUAN I.1 Umum Dinding ( wall ) adalah suatu struktur padat yang membatasi dan melindungi suatu area pada konstruksi seperti rumah, gedung bertingkat, dan jenis konstruksi lainnya. Umumnya,

Lebih terperinci

BAB 1 PENDAHULUAN Latar Belakang Isi Laporan

BAB 1 PENDAHULUAN Latar Belakang Isi Laporan BAB 1 PENDAHULUAN 1.1. Latar Belakang Dengan semakin pesatnya perkembangan dunia teknik sipil di Indonesia saat ini menuntut terciptanya sumber daya manusia yang dapat mendukung dalam bidang tersebut.

Lebih terperinci

L p. L r. L x L y L n. M c. M p. M g. M pr. M n M nc. M nx M ny M lx M ly M tx. xxi

L p. L r. L x L y L n. M c. M p. M g. M pr. M n M nc. M nx M ny M lx M ly M tx. xxi DAFTAR SIMBOL a tinggi balok tegangan persegi ekuivalen pada diagram tegangan suatu penampang beton bertulang A b luas penampang bruto A c luas penampang beton yang menahan penyaluran geser A cp luasan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Pembebanan Komponen Struktur Pada perencanaan bangunan bertingkat tinggi, komponen struktur direncanakan cukup kuat untuk memikul semua beban kerjanya. Pengertian beban itu

Lebih terperinci

KAJIAN TEORI MEMBRAN PADA ANALISIS PLAT CANGKANG TIPIS PADA STRUKTUR TANGKI STORAGE SILINDRIS

KAJIAN TEORI MEMBRAN PADA ANALISIS PLAT CANGKANG TIPIS PADA STRUKTUR TANGKI STORAGE SILINDRIS KAJIAN TEORI MEMBRAN PADA ANALISIS PLAT CANGKANG TIPIS PADA STRUKTUR TANGKI STORAGE SILINDRIS Sri Haryono Abstrak Teori membran biasanya relatif lebih praktis dalam menetukan respon struktur yang terjadi

Lebih terperinci

2. Kolom bulat dengan tulangan memanjang dan tulangan lateral berupa sengkang

2. Kolom bulat dengan tulangan memanjang dan tulangan lateral berupa sengkang BAB II TINJAUAN PUSTAKA 2.1. Pendahuiuan Menurut Nawi, (1990) kolom adalah batang tekan vertikal dari rangka (frame) struktur yang memikul beban dari balok, kolom meneruskan beban-beban dari elevasi atas

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA. karbon, baja paduan rendah mutu tinggi, dan baja paduan. Sifat-sifat mekanik dari

BAB 2 TINJAUAN PUSTAKA. karbon, baja paduan rendah mutu tinggi, dan baja paduan. Sifat-sifat mekanik dari BAB 2 TINJAUAN PUSTAKA II.1. Material baja Baja yang akan digunakan dalam struktur dapat diklasifikasikan menjadi baja karbon, baja paduan rendah mutu tinggi, dan baja paduan. Sifat-sifat mekanik dari

Lebih terperinci

BAB II TINJAUAN PUSTAKA. yang lebih bawah hingga akhirnya sampai ke tanah melalui fondasi. Karena

BAB II TINJAUAN PUSTAKA. yang lebih bawah hingga akhirnya sampai ke tanah melalui fondasi. Karena BAB II TINJAUAN PUSTAKA Kolom adalah batang tekan vertikal dari rangka struktural yang memikul beban dari balok. Kolom meneruskan beban-beban dari elevasi atas ke elevasi yang lebih bawah hingga akhirnya

Lebih terperinci

DAFTAR ISI. LEMBAR JUDUL... i KATA PENGANTAR... UCAPAN TERIMA KASIH... iii. DAFTAR ISI... iv DAFTAR TABEL... DAFTAR GAMBAR... ABSTRAK...

DAFTAR ISI. LEMBAR JUDUL... i KATA PENGANTAR... UCAPAN TERIMA KASIH... iii. DAFTAR ISI... iv DAFTAR TABEL... DAFTAR GAMBAR... ABSTRAK... DAFTAR ISI HALAMAN LEMBAR JUDUL... i KATA PENGANTAR...... ii UCAPAN TERIMA KASIH......... iii DAFTAR ISI...... iv DAFTAR TABEL...... v DAFTAR GAMBAR...... vi ABSTRAK...... vii BAB 1PENDAHULUAN... 9 1.1.Umum...

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pembebanan Komponen Struktur Pada perencanaan bangunan bertingkat tinggi, komponen struktur direncanakan cukup kuat untuk memikul semua beban kerjanya. Pengertian beban itu

Lebih terperinci

Pengenalan Kolom. Struktur Beton II

Pengenalan Kolom. Struktur Beton II Bahan Kuliah Ke-I Pengenalan Kolom Struktur Beton II Jurusan Teknik Sipil Fakultas Teknik Universitas Malikussaleh September 2008 Materi Kuliah Definisi Pembuatan Kolom Apa yang dimaksud dengan Kolom?

Lebih terperinci

BAB II TINJAUAN PUSTAKA. kekuatannya yang besar dan keliatannya yang tinggi. Keliatan (ductility) ialah

BAB II TINJAUAN PUSTAKA. kekuatannya yang besar dan keliatannya yang tinggi. Keliatan (ductility) ialah 5 BAB II TINJAUAN PUSTAKA Baja merupakan bahan konstruksi yang sangat baik, sifat baja antara lain kekuatannya yang besar dan keliatannya yang tinggi. Keliatan (ductility) ialah kemampuan untuk berdeformasi

Lebih terperinci

BAB II PELENGKUNG TIGA SENDI

BAB II PELENGKUNG TIGA SENDI BAB II PELENGKUNG TIGA SENDI 2.1 UMUM Struktur balok yang ditumpu oleh dua tumpuan dapat menahan momen yang ditimbulkan oleh beban-beban yang bekerja pada struktur tersebut, ini berarti sebagian dari penempangnya

Lebih terperinci

BAB II LANDASAN TEORI CORE WALL

BAB II LANDASAN TEORI CORE WALL BAB II LANDASAN TEORI CORE WALL.1. Karakterisitik Bentuk dan Letak Core Wall Struktur core wall yang bisa dijumpai dalam aplikasi konstruksi bangunan tinggi dewasa ini ada bermacam-macam. Antara lain adalah

Lebih terperinci

BAB I PENDAHULUAN. balok, dan batang yang mengalami gabungan lenturan dan beban aksial; (b) struktur

BAB I PENDAHULUAN. balok, dan batang yang mengalami gabungan lenturan dan beban aksial; (b) struktur BAB I PENDAHULUAN I.1 Latar Belakang Masalah Struktur baja dapat dibagi atas tiga kategori umum: (a) struktur rangka (framed structure), yang elemennya bisa terdiri dari batang tarik dan tekan, kolom,

Lebih terperinci

BAB III LANDASAN TEORI. A. Pembebanan Pada Pelat Lantai

BAB III LANDASAN TEORI. A. Pembebanan Pada Pelat Lantai 8 BAB III LANDASAN TEORI A. Pembebanan Pada Pelat Lantai Dalam penelitian ini pelat lantai merupakan pelat persegi yang diberi pembebanan secara merata pada seluruh bagian permukaannya. Material yang digunakan

Lebih terperinci

Respect, Professionalism, & Entrepreneurship. Mata Kuliah : Mekanika Bahan Kode : TSP 205. Kolom. Pertemuan 14, 15

Respect, Professionalism, & Entrepreneurship. Mata Kuliah : Mekanika Bahan Kode : TSP 205. Kolom. Pertemuan 14, 15 Mata Kuliah : Mekanika Bahan Kode : TS 05 SKS : 3 SKS Kolom ertemuan 14, 15 TIU : Mahasiswa dapat melakukan analisis suatu elemen kolom dengan berbagai kondisi tumpuan ujung TIK : memahami konsep tekuk

Lebih terperinci

LENTUR PADA BALOK PERSEGI ANALISIS

LENTUR PADA BALOK PERSEGI ANALISIS LENTUR PADA BALOK PERSEGI ANALISIS Ketentuan Perencanaan Pembebanan Besar beban yang bekerja pada struktur ditentukan oleh jenis dan fungsi dari struktur tersebut. Untuk itu, dalam menentukan jenis beban

Lebih terperinci

BAB II TINJAUAN PUSTAKA. desain untuk pembangunan strukturalnya, terutama bila terletak di wilayah yang

BAB II TINJAUAN PUSTAKA. desain untuk pembangunan strukturalnya, terutama bila terletak di wilayah yang BAB II TINJAUAN PUSTAKA 2.1 Umum Struktur bangunan bertingkat tinggi memiliki tantangan tersendiri dalam desain untuk pembangunan strukturalnya, terutama bila terletak di wilayah yang memiliki faktor resiko

Lebih terperinci

BAB I PENDAHULUAN. fisik menuntut perkembangan model struktur yang variatif, ekonomis, dan aman. Hal

BAB I PENDAHULUAN. fisik menuntut perkembangan model struktur yang variatif, ekonomis, dan aman. Hal BAB I PENDAHULUAN 1.1 Umum Ilmu pengetahuan yang berkembang pesat dan pembangunan sarana prasarana fisik menuntut perkembangan model struktur yang variatif, ekonomis, dan aman. Hal tersebut menjadi mungkin

Lebih terperinci

USU Medan 2 Staff Pengajar Departemen Teknik Sipil, Universitas Sumatera Utara, Jl. Perpustakaan

USU Medan   2 Staff Pengajar Departemen Teknik Sipil, Universitas Sumatera Utara, Jl. Perpustakaan ANALISIS PERBANDINGAN PERHITUNGAN STRUKTUR YANG BERBETUK CYLINDRICAL SURFACE PADA STRUKTUR BETON DAN BAJA Sri Wahyuni Sebayang 1, Johannes Tarigan 2 1 Departemen Teknik Sipil, Universitas Sumatera Utara,

Lebih terperinci

BAB II TINJAUAN PUSTAKA. komponen struktur yang harus diperhatikan. penggunaan suatu gedung, dan ke dalamnya termasuk beban-beban pada lantai

BAB II TINJAUAN PUSTAKA. komponen struktur yang harus diperhatikan. penggunaan suatu gedung, dan ke dalamnya termasuk beban-beban pada lantai BAB II TINJAUAN PUSTAKA 2.1. Pembebanan Struktur Perencanaan suatu struktur bangunan harus mengikuti peraturan-peraturan pembebanan yang berlaku. Hal ini dimaksudkan supaya mendapatkan struktur bangunan

Lebih terperinci

Pertemuan I,II I. Struktur Statis Tertentu dan Struktur Statis Tak Tentu

Pertemuan I,II I. Struktur Statis Tertentu dan Struktur Statis Tak Tentu Pertemuan I,II I. Struktur Statis Tertentu dan Struktur Statis Tak Tentu I.1 Golongan Struktur Sebagian besar struktur dapat dimasukkan ke dalam salah satu dari tiga golongan berikut: balok, kerangka kaku,

Lebih terperinci

BAB II TINJAUAN PUSTAKA. nyata baik dalam tegangan maupun dalam kompresi sebelum terjadi kegagalan

BAB II TINJAUAN PUSTAKA. nyata baik dalam tegangan maupun dalam kompresi sebelum terjadi kegagalan BAB II TINJAUAN PUSTAKA 2.1 Profil C Baja adalah salah satu alternatif bahan dalam dunia konstruksi. Baja digunakan sebagai bahan konstruksi karena memiliki kekuatan dan keliatan yang tinggi. Keliatan

Lebih terperinci

BAB 2. TINJAUAN PUSTAKA

BAB 2. TINJAUAN PUSTAKA BAB 2. TINJAUAN PUSTAKA Teori garis leleh ini dikemukakan oleh A.Ingerslev (1921-1923) kemudian dikembangkan oleh K.W. Johansen (1940). Teori garis leleh ini popular dipakai di daerah asalnya yaitu daerah

Lebih terperinci

d b = Diameter nominal batang tulangan, kawat atau strand prategang D = Beban mati atau momen dan gaya dalam yang berhubungan dengan beban mati e = Ek

d b = Diameter nominal batang tulangan, kawat atau strand prategang D = Beban mati atau momen dan gaya dalam yang berhubungan dengan beban mati e = Ek DAFTAR NOTASI A g = Luas bruto penampang (mm 2 ) A n = Luas bersih penampang (mm 2 ) A tp = Luas penampang tiang pancang (mm 2 ) A l =Luas total tulangan longitudinal yang menahan torsi (mm 2 ) A s = Luas

Lebih terperinci

BAB II TINJAUAN PUSTAKA. pergesekan lempeng tektonik (plate tectonic) bumi yang terjadi di daerah patahan

BAB II TINJAUAN PUSTAKA. pergesekan lempeng tektonik (plate tectonic) bumi yang terjadi di daerah patahan BAB II TINJAUAN PUSTAKA 2.1 Umum Gempa adalah fenomena getaran yang diakibatkan oleh benturan atau pergesekan lempeng tektonik (plate tectonic) bumi yang terjadi di daerah patahan (fault zone). Besarnya

Lebih terperinci

BAB III PEMODELAN STRUKTUR

BAB III PEMODELAN STRUKTUR BAB III Dalam tugas akhir ini, akan dilakukan analisis statik ekivalen terhadap struktur rangka bresing konsentrik yang berfungsi sebagai sistem penahan gaya lateral. Dimensi struktur adalah simetris segiempat

Lebih terperinci

BAB I PENDAHULUAN. Dalam pembangunan prasarana fisik di Indonesia saat ini banyak pekerjaan

BAB I PENDAHULUAN. Dalam pembangunan prasarana fisik di Indonesia saat ini banyak pekerjaan BAB I PENDAHULUAN 1.1. Latar Belakang Dalam pembangunan prasarana fisik di Indonesia saat ini banyak pekerjaan konstruksi bangunan menggunakan konstruksi baja sebagai struktur utama. Banyaknya penggunaan

Lebih terperinci

menopang dan memperkuat suatu konsep arsitektural. Sedangkan konstruksi adalah pembuatan atau rancang

menopang dan memperkuat suatu konsep arsitektural. Sedangkan konstruksi adalah pembuatan atau rancang A. Pengertian Struktur dan Konstruksi Sebelum mengenal lebih jauh struktur bentang lebar, perlu dipahami dulu kata-kata yang selalu mengikut di depannya, yaitu kata Struktur sederhana, dan namun kesalahpahaman

Lebih terperinci

MENGGAMBAR RENCANA PELAT LANTAI BANGUNAN

MENGGAMBAR RENCANA PELAT LANTAI BANGUNAN MENGGAMBAR RENCANA PELAT LANTAI BANGUNAN mbaran konstruksi beton untuk keperluan pelaksanaan pembangunan gedung sangat berperan. Untuk itu perlu dikuasai oleh seseorang yang berkecimpung dalam pelaksanaan

Lebih terperinci

Tegangan Dalam Balok

Tegangan Dalam Balok Mata Kuliah : Mekanika Bahan Kode : TSP 05 SKS : SKS Tegangan Dalam Balok Pertemuan 9, 0, TIU : Mahasiswa dapat menghitung tegangan yang timbul pada elemen balok akibat momen lentur, gaya normal, gaya

Lebih terperinci

Analisis Perbandingan Perhitungan Struktur Yang Berbentuk Cylindrical Surface Pada Struktur Beton Dan Baja

Analisis Perbandingan Perhitungan Struktur Yang Berbentuk Cylindrical Surface Pada Struktur Beton Dan Baja Analisis Perbandingan Perhitungan Struktur Yang Berbentuk Cylindrical Surface Pada Struktur Beton Dan Baja Tugas Akhir Diajukan untuk melengkapi syarat penyelesaian pendidikan sarjana teknik sipil Oleh

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang

BAB I PENDAHULUAN Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Batang tekan merupakan batang yang mengalami tegangan tekan aksial. Dengan berbagai macam sebutan, tiang, tonggak dan batang desak, batang ini pada hakekatnya jarang

Lebih terperinci

PERANCANGAN JEMBATAN

PERANCANGAN JEMBATAN TEORI DASAR PERANCANGAN JEMBATAN RANGKA BAJA Pengertian umum - Defenisi Rangka Baja Suatu konstruksi rangka didefenisikan sebagai sebuah struktur datar yang terdiri dari sejumlah batang batang yang disambung

Lebih terperinci

BAB III METODOLOGI PERANCANGAN

BAB III METODOLOGI PERANCANGAN BAB III METODOLOGI PERANCANGAN 3.1 Langkah Kerja Dalam tugas akhir tentang perencanaan gedung beton bertulang berlantai banyak dengan menngunakan sistem perkakuan menggunakan shearwall silinder berongga

Lebih terperinci