Perancangan dan Implementasi Kontroler PID untuk Pengaturan Waktu Injeksi dan Waktu Pengapian Saat Kecepatan Stasioner pada Spark Ignition Engine

Ukuran: px
Mulai penontonan dengan halaman:

Download "Perancangan dan Implementasi Kontroler PID untuk Pengaturan Waktu Injeksi dan Waktu Pengapian Saat Kecepatan Stasioner pada Spark Ignition Engine"

Transkripsi

1 Perancangan dan Implementasi Kontroler PID untuk Pengaturan Waktu dan Waktu Pengapian Saat Kecepatan Stasioner pada Spark Ignition Engine M. Luqman Hakim 1) Ari Santoso 2) Joko Susila 3) 1) Jurusan Teknik Elektro ITS, Surabaya 60111, 2) Jurusan Teknik Elektro ITS, Surabaya 60111, 3) Jurusan Teknik Elektro ITS, Surabaya 60111, Abstrak - Perkembangan dunia otomotif saat ini dituntut untuk menghasilkan mesin dengan kadar emisi yang rendah dan hemat bahan bakar serta kenyamanan dalam menggunakannya. Untuk menjaga agar konsumsi bahan bakar menjadi efektif dapat diperoleh dengan cara mengatur waktu injeksi bahan bakar, sudut pengapian serta menjaga kecepatan stasioner dibawah seribu. Oleh karena itu, diperlukan kontrol terhadap waktu injeksi dan sudut pengapian agar diperoleh kecepatan yang diinginkan. Pada tugas akhir ini dirancang sistem pengaturan kecepatan pada saat stasioner yang memiliki banyak masukan antara lain waktu injeksi, sudut pengapian, dan bukaan idle dengan menggunakan kontroler PID. Dari pengujian kontroler PID pada sistem pengaturan kecepatan mesin pengapian busi, dapat diperoleh kecepatan putaran mesin sesuai dengan yang diinginkan. Dengan masukan referensi yang sama pada bukaan idle 15%, dan 20% memiliki overshoot sebesar 3.07% dan 3.27%, akan tetapi secara keseluruhan sistem mampu mengikuti referensi yang diberikan. Kata kunci: Mesin pengapian busi, Pengaturan kecepatan, PID 1. PENDAHULUAN Perkembangan teknologi otomotif saat ini tak akan lepas dari sistem mesin pengapian busi. Salah satu bidang yang selalu diteliti peneliti dan praktisi adalah pengaturan kecepatan saat stasioner. Hal ini selalu diteliti karena alasan konsumsi bahan bakar mesin pengapian busi saat stasioner, kecepatan putaran mesin ketika dalam kondisi tidak bergerak, akselerasi, dan deselerasi yaitu berkisar antara rpm, dapat menghabiskan sekitar 30% kapasitas bahan bakar dan persentase ini akan semakin meningkat seiring dengan peningkatan jumlah kendaraan yang ada di jalanan kota. Oleh karena itu, perkembangan teknologi otomotif terutama dalam bidang kontrol dan elektronik cepat berkembang akibat kebutuhan tersebut. Untuk mengatur kecepatan dalam kondisi stasioner dibutuhkan variabel-variabel yang dapat mempengaruhi sistem antara lain besarnya sudut pengapian(spark advance), Jumlah bahan bakar yang diinjeksikan, dan bukaan idle. Ketiga masukan ini dapat mempengaruhi kecepatan putaran 1 mesin secara signifikan. Untuk masukan sudut pengapian digunakan untuk menentukan waktu pengapian, untuk masukan waktu injeksi digunakan untuk mengatur banyaknya bahan bakar yang masuk ke dalam ruang bakar, dan untuk bukaan idle speed valve digunakan sebagai variabel gangguan terhadap sistem. Perubahan masukan berupa sudut pengapian dan waktu injeksi yang efektif dapat menyebabkan kecepatan putaran mesin menjadi lebih baik. Perubahan idle menyebabkan parameterparameter sistem berubah sehingga mempengaruhi kecepatan yang dihasilkan sistem. Untuk mengatur kecepatan pada mesin pengapian busi terlebih dahulu mendapatkan model dari mesin pengapian busi. Model dari mesin pengapian busi saat ini masih didominasi oleh sistem SISO (Single Input Single Output), yaitu masukannya berupa sudut pengapian (spark advance position) atau dapat berupa duty cycle dari waktu injeksi bahan bakar terhadap keluaran kecepatan putaran mesin. Secara riil, model dari mesin pengapian busi merupakan model MIMO (Multiple Input Multiple Output) dimana terdapat banyak masukan dan banyak keluaran. Setiap keluaran dari subsistem dapat mempengaruhi subsistem lainnya. Setelah mendapatkan model matematika yang dapat merepresentasikan sistem mesin pengapian busi, maka dapat digunakan berbagai macam metode kontrol yang selama ini telah banyak diterapkan. Metode kontrol yang digunakan pada penelitian Tugas Akhir ini adalah PID. Kontroler PID yang saat ini dianggap sebagai kontroler konvensional dapat diimplementasikan ke dalam sistem MIMO dari mesin pengapian busi untuk mengendalikan kecepatan putaran mesin. Penanaman kontroler PID ini menggunakan perangkat keras berupa mikrokontroler serta terhubung ke beberapa komponen rangkaian-rangkaian driver aktuator antara lain driver pengapian, driver injeksi, dan driver bukaan idle oleh motor stepper. Semua rangkaian driver ini tergabung di dalam suatu modul yang disebut sebagai ECU (Engine Control Unit). 2. DASAR TEORI 2.1. Prinsip Kerja Spark Ignition Engine Spark ignition engine atau Otto Cycle adalah mesin pengubah energi yang terkandung dalam bahan

2 bakar menjadi energi kinetik dengan bantuan pengapian dari luar. Spark ignition engine memanfaatkan campuran bahan bakar dan udara dari luar ruang bakar sebagai unjuk kerjanya, ketika piston bergerak turun campuran antara bahan bakar dan udara masuk dalam ruang bakar dan terjadi kompresi ketika piston bergerak ke atas. Sumber pengapian dipicu pada interval tertentu dan dengan menggunakan spark plug campuran yang terkompresi dibakar. Panas yang dihasilkan pada proses pembakaran menaikkan tekanan silinder, sehingga piston tertekan ke bawah mendorong crankshaft menghasilkan energi yang diinginkan. setelah langkah pembakaran pada silinder terjadi, gas sisa pembakaran dikeluarkan dari ruang bakar dan campuran bahan bakar yang baru masuk ke dalam ruang bakar untuk proses berikutnya. Pada umumnya peristiwa pergantian gas hasil pembakaran pada ruang bakar mesin mobil terjadi dalam empat langkah dengan dua kali putaran crankshaft dalam tiap satu siklus. Mesin dengan sistem empat langkah terjadi empat kondisi pengaturan katup masuk dan keluar, yaitu pada langkah induksi(1 st stroke), langkah kompresi(2 nd stroke), dan pengapian, langkah pembakaran dan kerja(3 rd stroke) serta langkah pengeluaran(4 th stroke). Langkah induksi terjadi ketika piston bergerak turun sehingga menjadikan volume efektif silinder bertambah. Pada saat bersamaan katup pemasukan membuka sehingga campuran bahan bakar dan udara masuk kedalam ruang bakar. Ketika piston bergerak ke atas, volume efektif dari silinder ruang bakar berkurang sehingga menekan campuran antara bahan bakar dan udara. Sebelum piston mencapai titik mati atas (Top Dead Center, TDC), spark plug mengeluarkan bunga api untuk membakar campuran bahan bakar dan udara yang terkompresi. Prinsip kerja sistem EFI adalah bahan bakar yang disuplai oleh pompa bensin diinjeksikan ke keseluruhan perintah yang diberikan oleh ECU. Jumlah bahan bakar yang diberikan sesuai dengan kondisi mesin saat itu. Proses kerjanya berawal dari udara yang masuk melalui throttle, air intake plenum, dan intake manifold, dan pada akhirnya masuk ke dalam ruang pembakaran. Udara yang masuk ke dalam intake manifold diukur oleh sensor MAP (Manifold Air Pressure) yang kemudian data pengukuran dikirimkan ke ECU. Sensor CAS (Crank Angle Sensor) mengukur sudut-sudut crank saat itu dan dikirimkan ke ECU untuk diolah lebih lanjut. Dari data-data sensor tersebut digunakan sebagai dasar waktu aktivasi injektor atau yang biasa disebut waktu injeksi. Pada Gambar 2.2 merupakan gambar penjelasan sistem injeksi EFI. Gambar 2.2 Sistem injeksi EFI 2.3. Sistem Pengapian Pada sistem pengapian mesin Mitsubishi Eterna 4G63 merupakan sistem pengapian distributorless. Urutan kerja sistem pengapian dapat dijelaskan pada Gambar 2.3. Awal mula sensor-sensor memberikan sinyal masukan kepada ECU, kemudian ECU akan mengeluarkan sinyal aksi berdasarkan algoritma yang telah ditanamkan. Power Transistor Unit (PTU) memberikan aksi switching yang akan mengrounding-kan coil yang telah dalam proses charging. Akibat adanya grounding tersebut maka coil mengalami proses discharge sehingga tegangan yang telah terkumpul dalam coil dibangkitkan dalam jumlah yang besar sekitar volt DC. Gambar 2.1 Empat langkah kerja mesin pengapian busi 2.2. Sistem EFI(Electronic Fuel Injection) Model Pada mesin Mitsubishi Eterna 2000cc DOHC memiliki sistem injeksi yang disebut sebagai ECI-Multi (Electronically Controlled- Multi Point Fuel Injection) atau atau pada merek mobil lain disebut EFI (Electronic Fuel Injection) dimana memiliki injector pada tiap silindernya dan keseluruhannya diatur oleh ECU. 2 Gambar 2.3 Urutan proses timbulnya pengapian 2.4. Engine Control Unit (ECU) Engine Control Unit (ECU) merupakan suatu komponen elektronika pengontrol keseluruhan sistem kerja di dalam mobil. Salah satu contoh fungsi ECU adalah untuk mengontrol waktu injeksi dan waktu pengapian. ECU bekerja dengan cara mengaktifkan

3 modul-modul dalam sistem kontrol mesin sebagai contoh modul kontrol pengapian dan modul kontrol injeksi. Gambar 3.1 Arsitektur sistem pengaturan kecepatan stasioner pada mesin pengapian busi Gambar 2.4 ECU sebagai kontrol utama keseluruhan sistem mobil 2.5. Kontroler Proporsional Integral Derivatif (PID) Kontoler PID merupakan sebuah kontroler yang merupakan gabungan dari beberapa kontroler antara lain proporsional, integral, dan derivatif. Kontroler ini dapat dijelaskan pada Persamaan 2.1. u t = K e t + 1 T i t de (t) e τ dτ + T 0 d dt (2.1) Aksi kontrol proporsional berupa aksi kontrol yang proporsional terhadap sinyal error, aksi control integral memberikan aksi yang proporsional pada waktu integral dari error. Hal ini memastikan error steady state menjadi nol. Aksi kontrol derivatif adalah proporsional terhadap waktu derivatif dari error. Hal ini dapat memastikan prediksi error yang akan datang. Kontroler PID secara substansial mampu meningkatkan performa dan tingkat operabilitas. 3. PERANCANGAN SISTEM Pada bab ini dibahas mengenai perancangan sistem yang terbagi menjadi lima bagian yaitu kebutuhan arsitektur sistem, Mitsubishi Eterna 4G63 DOHC, identifikasi sistem, pemodelan sistem, dan perancangan kontroler PID. 3.1 Kebutuhan Arsitektur Arsitektur sistem pengaturan kecepatan stasioner pada mesin pengapian busi yang dibangun memiliki beberapa komponen yaitu plant berupa mesin pengapian busi, perangkat keras untuk mengontrol mesin, dan perangkat lunak untuk monitoring dan pengambilan data mesin. Gambaran secara detail dijelaskan pada Gambar Komputer Komputer yang digunakan memiliki spesifikasi sebagai berikut. - Jenis : Personal Computer (PC) - Processor : Intel Celeron TM 2.80 GHz - RAM : DDR 512 MB - VGA : 64 MB, on board - Monitor : BenQ T52WA, 15 LCD Monitor Advantech PCI DAQ 1711 Card Peralatan DAQ (Data Acquisition) PCI Card yang digunakan adalah merek Advantech dengan tipe PCI Card ini berfungsi sebagai pengubah sinyal analog ke sinyal digital dalam satuan volt serta dapat berfungsi sebaliknya Engine Control Unit Engine Control Unit yang dibangun memiliki empat komponen penting antara lain mikrokontroler sebagai central processing unit, driver sistem pengapaian yang bekerja mengatur pengapian tiap silinder secara grouping dan driver sistem injeksi yang bekerja mengatur waktu injeksi pada keseluruhan silinder secara simultan, Rangkaian debouncher yang berfungsi sebagai perangkat penghalus pembacaan sensor TDC dan CAS, dan driver motor stepper yang berfungsi sebagai pengatur pergerakan motor stepper yang digunakan sebagai pembuka dan penutup valve udara untuk kecepatan stasioner. Rangkaian ECU yang telah dibangun dapat dijelaskan pada Gambar 3.2. Gambar 3.2 Rangkaian ECU yang telah dibangun 3

4 3.1.4 Sensor Induktif Sensor induktif merupakan sensor yang bekerja sesuai dengan prinsip induksi, yaitu setiap perubahan flux magnet akan menginduksi EMF (Electromotive Force) dalam kumparan. Untuk pengolahan secara digital, sensor ini tidak bisa digunakan secara langsung pada mikrokontroler, akan tetapi terlebih dahulu diubah besarannya yaitu dari frekuensi menjadi tegangan dengan menggunakan rangkaian Frequency to Voltage (F to V) menggunakan IC LM Sensor Top Dead Center (TDC) dan Crank Angle (CAS) Sensor ini merupakan sensor yang bekerja berdasarkan prinsip kerja optocoupler. Sensor TDC berfungsi sebagai penentu posisi piston 1 dan 4 atau 2 dan 3 ketika berada di puncak ruang bakar. Sensor CAS berfungsi sebagai penentu sudut crank. Komponen perangkat keras ini terdiri dari dua hal yaitu bagian piringan dan bagian sensor. Pada lubang bagian terluar digunakan sebagai sensor posisi sudut crank yaitu sepanjang sudut crank 75-5 derajat, sedangkan pada bagian dalam digunakan sebagai sensor posisi TDC dimana terdiri dari dua macam lubang dengan panjang yang berbeda yaitu derajat (untuk lubang panjang) Before Top Dead Center (BTDC) dan derajat (untuk lubang pendek) BTDC Perangkat Lunak Dalam penelitian ini diperlukan beberapa perangkat lunak sebagai penghubung antara data keluaran plant dengan pemroses data yaitu komputer. Perangkat lunak ini digunakan sebagai sistem monitoring dan pemberi setpoin pada plant serta digunakan sebagai media pemrograman mikrokontroler sebagai pengatur jalannya mesin. Perangkat lunak tersebut adalah LabView 7.1 yang merupakan produk dari National Instrumens dan CodeVision AVR 2.03 yang merupakan produk dari HP InfoTech. 3.2 Mitsubishi Eterna (4G63) DOHC Plant yang digunakan pada penelitian ini adalah plant mesin pengapian busi dengan merek dagang Mitsubishi Eterna dengan spesifikasi sebagai berikut. Model number : 4G63 Tipe : In-line, DOHC Banyaknya silinder : 4 Displacement :1,997 lt (121.9) 4. IDENTIFIKASI SISTEM 4.1 Identifikasi Sistem Identifikasi yang dilakukan pada tugas akhir ini adalah identifikasi dinamis dan identifikasi statis, Sebelum melakukan identifikasi baik statis maupun 4 dinamis, terlebih dahulu dilakukan pencarian titik kerja sudut pengapian dan waktu injeksi paling efektif dari plant. Untuk memastikan titik kerja paling efektif yaitu dengan memperhatikan kecepatan putaran mesin. Mesin dikatakan bekerja paling efektif yaitu ketika kecepatan putarannya dalam keadaan paling tinggi. Pada Tabel 4.2 menjelaskan mengenai titik kerja sudut pengapian paling efektif dengan variasi bukaan idle dari 0%, 10%, dan 20%. Sedangkan pada Tabel 4.1 menjelaskan mengenai titik kerja waktu injeksi paling efektif dengan bukaan idle yang sama dengan pencarian titik kerja sudut pengapian. Tabel 4.1 Titik kerja waktu injeksi Sudut Pengapian (deg BTDC) 10 (%) Minimal Efektif Maksimal ms rpm ms rpm ms rpm Tabel 4.2 Titik kerja sudut pengapian 4 (%) Sudut Pengapian Minimal Efektif Maksimal deg rpm deg rpm deg rpm Identifikasi Statis Sebelum melakukan identifikasi dinamis terlebih dahulu dilakukan identifikasi statis utuk mengetahui karakteristik respon waktu dari tiap-tiap bukaan idle. Karakteristik respon waktu yang diamati adalah rise time. Untuk mendapatkan rise time tiap-tiap respon kecepatan baik itu akibat pengaruh waktu injeksi dan sudut pengapian dapat dilakukan dengan cara memperhitungkan nilai τ sehingga karakteristik rise time dapat diperoleh sesuai dengan Persamaan 4.1 tr 5% 95% = τ ln 19 (4.1) Dari Persamaan dapat diperoleh rise time dengan variasi bukaan idle seperti pada Tabel 4.3 dan Tabel 4.4.

5 Tabel 4.3 Rise time kecepatan putaran mesin terhadap waktu injeksi Bukaan Sudut idle Rise Masukan Step Pengapian speed Time valve (deg BTDC) (%) (s) Minimal Maksimal Tabel 4.4 Rise time kecepatan putaran mesin terhadap sudut pengapian Bukaan idle Rise speed Time Masukan Step valve (%) (s) Minimum (deg) Efektif (deg) Identifikasi Dinamis Dari hasil identifikasi statis, diperoleh karakteristik rise time untuk respon kecepatan terhadap waktu injeksi yang berkisar antara 0.97 detik hingga 1.82 detik, sehingga diambil nilai rise time terbesar yaitu 1.82 detik. Dari nilai rise time ini maka dapat diperoleh waktu sampling untuk masukan PRBS yaitu Ts 0.3 detik. N. Ts > tr 6. Ts > 1.82 Ts > 0.3 (4.2) Untuk memperoleh Ts masukan PRBS pada respon kecepatan terhadap sudut pengapian dapat diperoleh seperti perhitungan Ts masukan PRBS pada respon kecepatan terhadap waktu injeksi. Diperoleh Ts 0.08 detik. N. Ts > tr 6. Ts > 0.5 Ts > 0.08 (4.3) Tabel 4.5 Fungsi alih injeksi Fungsi alih RMSE 0% s % s % s Tabel 4.6 Fungsi alih pengapian Fungsi alih 0% s % s % s RMSE Model orde 1 yang telah diperoleh dapat digambarkan seperti persamaan 4.4 dengan parameter A dan B diubah menjadi suatu persamaan yang menghubungkan parameter model untuk bukaan idle yang berubah dari 0% hingga 20%. Y ( s) A U ( s) S B (4.4) Untuk mendapatkan parameter model injeksi terlebih dahulu dilakukan plotting pada Matlab dan dilakukan pendekatan dengan menggunakan polinomial orde 2. Pada Gambar 4.1 dan 4.2 adalah plotting untuk mencari persamaan polynomial orde 2 untuk parameter A dan B pada sistem injeksi, sedangkan pada Gambar 4.3 dan 4.4 adalah plotting untuk mencari persamaan polynomial orde 2 untuk parameter A dan B pada sistem pengapian. 4.2 Pemodelan Sistem Dari data hasil identifikasi dinamis maka dapat diperoleh model sistem dengan menggunakan ARX, dimana fungsi alih yang diperoleh merupakan fungsi alih kecepatan putaran mesin terhadap waktu injeksi dan sudut pengapian. Fungsi alih tersebut dapat dijelaskan seperti pada Tabel di bawah ini. 5 Gambar 4.1 Pendekatan quadratic polynomial untuk parameter A fungsi alih kecepatan putaran mesin terhadap injeksi

Sistem Pengaturan Kecepatan Stasioner dengan Pengapian Multispark Menggunakan Kontroler PID. Primadani Kurniawan

Sistem Pengaturan Kecepatan Stasioner dengan Pengapian Multispark Menggunakan Kontroler PID. Primadani Kurniawan Sistem Pengaturan Kecepatan Stasioner dengan Pengapian Multispark Menggunakan Kontroler PID Primadani Kurniawan 2207100041 Macet Berhenti sejenak Stasioner Sebagian besar kendaraan menggunakan mesin bensin

Lebih terperinci

Sistem Pengaturan Injeksi Bahan Bakar Mesin Mitsubishi 4G63 menggunakan Metode Fuzzy Adaptif

Sistem Pengaturan Injeksi Bahan Bakar Mesin Mitsubishi 4G63 menggunakan Metode Fuzzy Adaptif Sistem Pengaturan Injeksi Bahan Bakar Mesin Mitsubishi 4G63 menggunakan Metode Fuzzy Adaptif Agoeng Ramadhan, Joko Susila, Imam Arifin Jurusan Teknik Elektro, Fakultas Teknologi Industri, Institut Teknologi

Lebih terperinci

Sistem Pengaturan Injeksi Bahan Bakar Mesin Mitsubishi 4g63 Menggunakan Metode Fuzzy

Sistem Pengaturan Injeksi Bahan Bakar Mesin Mitsubishi 4g63 Menggunakan Metode Fuzzy Sistem Pengaturan Injeksi Bahan Bakar Mesin Mitsubishi 4g63 Menggunakan Metode Fuzzy Indra Permana Putra, Ali Fatoni, Joko Susila Jurusan Teknik Elektro, Fakultas Teknologi Industri, Institut Teknologi

Lebih terperinci

Sistem Pengaturan Kecepatan Stasioner Mesin Bensin Menggunakan Kontroler PID

Sistem Pengaturan Kecepatan Stasioner Mesin Bensin Menggunakan Kontroler PID Sistem Pengaturan Kecepatan Stasioner Mesin Bensin Menggunakan Kontroler PID Primadani Kurniawan, 2207100041 Jurusan Teknik Elektro, Fakultas Teknologi Industri, Institut Teknologi Sepuluh Nopember, kampus

Lebih terperinci

Disusun Oleh : Billy Santoso Dewanda ( )

Disusun Oleh : Billy Santoso Dewanda ( ) Identifikasi Model Mesin secara Eksperimental dengan Masukan SudutPengapian dan Durasi Injeksi Bahan Bakar pada Mesin Mitsubishi 4g63 Disusun Oleh : Billy Santoso Dewanda (2207100151) Pembimbing : Ir.

Lebih terperinci

Desain dan Implementasi Sistem Pengaturan Fuzzy untuk Waktu Pengapian pada Mesin Pengapian Busi

Desain dan Implementasi Sistem Pengaturan Fuzzy untuk Waktu Pengapian pada Mesin Pengapian Busi Desain dan Implementasi Sistem Pengaturan Fuzzy untuk Waktu Pengapian pada Mesin Pengapian Busi Mohamad Abdul Hady, Ari Santoso, Imam Arifin Jurusan Teknik Elektro, Fakultas Teknologi Industri, Insitut

Lebih terperinci

Identifikasi Model Putaran Mesin Secara Eksperimental Dengan Masukan Sudut Pengapian Dan Besar Injeksi Bahan Bakar Pada Mesin Mitsubishi 4g63

Identifikasi Model Putaran Mesin Secara Eksperimental Dengan Masukan Sudut Pengapian Dan Besar Injeksi Bahan Bakar Pada Mesin Mitsubishi 4g63 Identifikasi Model Putaran Mesin Secara Eksperimental Dengan Masukan Sudut Pengapian Dan Besar Injeksi Bahan Bakar Pada Mesin Mitsubishi 4g63 Billy Santoso, Rushdianto Effendi, Ali fatoni Jurusan Teknik

Lebih terperinci

Gambar 3. Posisi katup ISC pada engine

Gambar 3. Posisi katup ISC pada engine ANALISA SISTEM KERJA EMS (ENGINE MANAGEMENT SYSTEM) DENGAN VARIASI TEMPERATUR AIR PENDINGIN DAN BEBAN KERJA PADA KONDISI STASIONER (ISC) KENDARAAN DAIHATSU XENIA Waluyo Abstrak EMS adalah sistem pengaturan

Lebih terperinci

PERANCANGAN ENGINE CONTROL UNIT BERBASIS KNOWLEDGE BASED UNTUK PENGATURAN SISTEM INJEKSI DAN SISTEM PENGAPIAN MOTOR BAKAR

PERANCANGAN ENGINE CONTROL UNIT BERBASIS KNOWLEDGE BASED UNTUK PENGATURAN SISTEM INJEKSI DAN SISTEM PENGAPIAN MOTOR BAKAR TUGAS AKHIR RE 1599 PERANCANGAN ENGINE CONTROL UNIT BERBASIS KNOWLEDGE BASED UNTUK PENGATURAN SISTEM INJEKSI DAN SISTEM PENGAPIAN MOTOR BAKAR SUHENDI 2203 109 504 Dosen Pembimbing Ir. Ali Fatoni, MT. Ir.

Lebih terperinci

Teknologi Injeksi Pada Sepeda Motor (Konstruksi Dasar Injection Suzuki Fl 125 FI)

Teknologi Injeksi Pada Sepeda Motor (Konstruksi Dasar Injection Suzuki Fl 125 FI) Teknologi Injeksi Pada Sepeda Motor (Konstruksi Dasar Injection Suzuki Fl 125 FI) Sepeda motor Suzuki di Indonesia memulai teknologi fuel injection sesuai dengan perkembanganya maka faktor yang menentukan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Definisi Motor Bakar Motor bakar adalah mesin atau peswat tenaga yang merupakan mesin kalor dengan menggunakan energi thermal dan potensial untuk melakukan kerja mekanik dengan

Lebih terperinci

BAB I PENDAHULUAN. I.1 Latar Belakang

BAB I PENDAHULUAN. I.1 Latar Belakang BAB I PENDAHULUAN I.1 Latar Belakang Dengan perkembangannya ilmu teknologi membuat manusia untuk menciptakan hal baru dalam teknologi seperti pergembangan teknologi kendaraan sistem EFI (Elektronik Fuel

Lebih terperinci

PENGENDALIAN KECEPATAN PUTARAN GAS ENGINE

PENGENDALIAN KECEPATAN PUTARAN GAS ENGINE 1 PENGENDALIAN KECEPATAN PUTARAN GAS ENGINE PADA RC AIRPLANE MENGGUNAKAN KONTROLER PROPORSIONAL INTEGRAL DEFERENSIAL (PID) BERBASIS MIKROKONTROLER ATMEGA 328 Ferditya Krisnanda, Pembimbing 1: Purwanto,

Lebih terperinci

OPTIMALISASI WAKTU PADA SAAT AKSELERASI MESIN TOYOTA 4 AFE DENGAN MEMANIPULASI MANIFOLD ABSOLUTE PRESSURE (MAP)

OPTIMALISASI WAKTU PADA SAAT AKSELERASI MESIN TOYOTA 4 AFE DENGAN MEMANIPULASI MANIFOLD ABSOLUTE PRESSURE (MAP) OPTIMALISASI WAKTU PADA SAAT AKSELERASI MESIN TOYOTA 4 AFE DENGAN MEMANIPULASI MANIFOLD ABSOLUTE PRESSURE (MAP) Nova R. Ismail Adalah Dosen Fakultas Teknik Universitas Widyagama Malang ABSTRAK Pada sistem

Lebih terperinci

Teknologi Motor Injeksi YMJET-FI

Teknologi Motor Injeksi YMJET-FI Teknologi Motor Injeksi YMJET-FI Apakah YMJET-FI itu? YMJET FI singkatan dari Yamaha Mixture JET-Fuel Injection adalah teknologi Fuel Injection yang yang dimiliki Yamaha Motor dalam mengembangkan teknologi

Lebih terperinci

Motor diesel dikategorikan dalam motor bakar torak dan mesin pembakaran dalam merubah energi kimia menjadi energi mekanis.

Motor diesel dikategorikan dalam motor bakar torak dan mesin pembakaran dalam merubah energi kimia menjadi energi mekanis. A. Sebenernya apa sih perbedaan antara mesin diesel dengan mesin bensin?? berikut ulasannya. Motor diesel dikategorikan dalam motor bakar torak dan mesin pembakaran dalam (internal combustion engine) (simplenya

Lebih terperinci

BAB I PENDAHULUAN. I.1 Latar Belakang

BAB I PENDAHULUAN. I.1 Latar Belakang BAB I PENDAHULUAN I.1 Latar Belakang Dengan perkembangannya ilmu teknologi membuat manusia untuk menciptakan hal baru dalam teknologi seperti pergembangan teknologi kendaraan sistem EFI (Elektronik Fuel

Lebih terperinci

BAB I PENDAHULUAN. menggerakan belt conveyor, pengangkat beban, ataupun sebagai mesin

BAB I PENDAHULUAN. menggerakan belt conveyor, pengangkat beban, ataupun sebagai mesin 1 BAB I PENDAHULUAN 1.1. Latar Belakang Motor DC atau motor arus searah yaitu motor yang sering digunakan di dunia industri, biasanya motor DC ini digunakan sebagai penggerak seperti untuk menggerakan

Lebih terperinci

SISTEM BAHAN BAKAR INJEKSI PADA SEPEDA MOTOR HONDA (HONDA PGM-FI)

SISTEM BAHAN BAKAR INJEKSI PADA SEPEDA MOTOR HONDA (HONDA PGM-FI) SISTEM BAHAN BAKAR INJEKSI PADA SEPEDA MOTOR HONDA (HONDA PGM-FI) Gambar Komponen sistem EFI pada sepeda mesin Honda Supra X 125 A. Sistem Bahan Bakar Komponen-komponen yang digunakan untuk menyalurkan

Lebih terperinci

Analisis Distribusi Tegangan Listrik ke Busi dari Rangkaian Electronic Ignition Berdasarkan Kecepatan Putar Flywheel Mesin

Analisis Distribusi Tegangan Listrik ke Busi dari Rangkaian Electronic Ignition Berdasarkan Kecepatan Putar Flywheel Mesin Analisis Distribusi Tegangan Listrik ke Busi dari Rangkaian Electronic Ignition Berdasarkan Kecepatan Putar Flywheel Mesin Parlindungan P. Marpaung 1* 1 Institut Teknologi Indonesia, Jln. Raya Puspiptek

Lebih terperinci

STUDI KARAKTERISTIK TEKANAN INJEKSI DAN WAKTU INJEKSI PADA TWO STROKE GASOLINE DIRECT INJECTION ENGINE

STUDI KARAKTERISTIK TEKANAN INJEKSI DAN WAKTU INJEKSI PADA TWO STROKE GASOLINE DIRECT INJECTION ENGINE STUDI KARAKTERISTIK TEKANAN INJEKSI DAN WAKTU INJEKSI PADA TWO STROKE GASOLINE DIRECT INJECTION ENGINE Darwin R.B Syaka 1*, Ragil Sukarno 1, Mohammad Waritsu 1 1 Program Studi Pendidikan Teknik Mesin,

Lebih terperinci

Mesin Diesel. Mesin Diesel

Mesin Diesel. Mesin Diesel Mesin Diesel Mesin Diesel Mesin diesel menggunakan bahan bakar diesel. Ia membangkitkan tenaga yang tinggi pada kecepatan rendah dan memiliki konstruksi yang solid. Efisiensi bahan bakarnya lebih baik

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang 1.2 Rumusan Masalah

BAB I PENDAHULUAN 1.1 Latar Belakang 1.2 Rumusan Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Dalam perkembangan teknologi yang terjadi saat ini banyak sekali inovasi baru yang tercipta khususnya di dalam dunia otomotif. Dalam perkembanganya banyak orang yang

Lebih terperinci

PRINSIP KERJA MOTOR DAN PENGAPIAN

PRINSIP KERJA MOTOR DAN PENGAPIAN PRINSIP KERJA MOTOR DAN PENGAPIAN KOMPETENSI 1. Menjelaskan prinsip kerja motor 2 tak dan motor 4 tak. 2. Menjelaskan proses pembakaran pada motor bensin 3. Menjelaskan dampak saat pengapian yang tidak

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 5 BAB II TINJAUAN PUSTAKA 2.1 PENDAHULUAN Pada bab ini akan membahas semua teori yang bisa dijadikan dasar teori pengujian injektor kendaraan Grand Livina Nissan 1500cc tahun 2010 yang telah dilengkapi

Lebih terperinci

PERANCANGAN REMOTE TERMINAL UNIT (RTU) PADA SIMULATOR PLANT TURBIN DAN GENERATOR UNTUK PENGENDALIAN FREKUENSI MENGGUNAKAN KONTROLER PID

PERANCANGAN REMOTE TERMINAL UNIT (RTU) PADA SIMULATOR PLANT TURBIN DAN GENERATOR UNTUK PENGENDALIAN FREKUENSI MENGGUNAKAN KONTROLER PID Oleh: Mahsun Abdi / 2209106105 Dosen Pembimbing: 1. Dr.Ir. Mochammad Rameli 2. Ir. Rusdhianto Effendie, MT. Tugas Akhir PERANCANGAN REMOTE TERMINAL UNIT (RTU) PADA SIMULATOR PLANT TURBIN DAN GENERATOR

Lebih terperinci

Desain dan Implementasi Kontroler Prediktif Logika Fuzzy untuk Pengaturan Injeksi Bahan Bakar Ignition Engine

Desain dan Implementasi Kontroler Prediktif Logika Fuzzy untuk Pengaturan Injeksi Bahan Bakar Ignition Engine JURNAL TEKNIK ITS Vol., (Sept, 22) ISSN: 23-927 A-64 Desain dan Implementasi Kontroler Prediktif Logika Fuzzy untuk Pengaturan Injeksi Bahan Bakar Ignition Engine Tri Wahyudi Puthut S ) Rusdhianto Effendie

Lebih terperinci

DIGITAL FUEL FLOW CONSUMPTION METER BERBASIS µc AT89C4051

DIGITAL FUEL FLOW CONSUMPTION METER BERBASIS µc AT89C4051 DIGITAL FUEL FLOW CONSUMPTION METER BERBASIS µc AT89C4051 Oleh : Roli Ananda Putra Rusli Dosen Pembimbing : Dr. Ir Feri Yusivar, M.Eng Teknik Elektro Fakutas Teknik Universitas Indonesia ABSTRAK Persaingan

Lebih terperinci

Desain dan Realisasi Sistem Kontrol Proses Melalui Jaringan Menggunakan Distributed Control System Centum CS 3000

Desain dan Realisasi Sistem Kontrol Proses Melalui Jaringan Menggunakan Distributed Control System Centum CS 3000 Desain dan Realisasi Sistem Kontrol Proses Melalui Jaringan Menggunakan Distributed Control System Centum CS 3000 D I S U S U N O L E H : F a t w a C a h y o K u s u m o 2 2 0 6. 1 0 0. 1 3 7 DOSEN PEMBIMBING:

Lebih terperinci

ELECTRONIC CONTROL SYSTEM AGUS DWI PPUTRA ARI YUGA ASWARA ASTRI DAMAYANTI

ELECTRONIC CONTROL SYSTEM AGUS DWI PPUTRA ARI YUGA ASWARA ASTRI DAMAYANTI ELECTRONIC CONTROL SYSTEM AGUS DWI PPUTRA ARI YUGA ASWARA ASTRI DAMAYANTI ECU/ECM berfungsi untuk mengontrol besarnya penginjeksian bensin dan mengontrol seluruh aktifitas elektronik. Pada mesin terdapat

Lebih terperinci

PENGGUNAAN IGNITION BOOSTER

PENGGUNAAN IGNITION BOOSTER PENGGUNAAN IGNITION BOOSTER DAN VARIASI JENIS BUSI TERHADAP TORSI DAN DAYA MESIN PADA YAMAHA MIO SOUL TAHUN 2010 Ilham Fahrudin, Husin Bugis, dan Ngatou Rohman Fakultas Keguruan dan Ilmu Pendidikan Universitas

Lebih terperinci

SISTEM PENGATURAN MOTOR DC MENGGUNAKAN PROPOTIONAL IINTEGRAL DEREVATIVE (PID) KONTROLER

SISTEM PENGATURAN MOTOR DC MENGGUNAKAN PROPOTIONAL IINTEGRAL DEREVATIVE (PID) KONTROLER SISTEM PENGATURAN MOTOR DC MENGGUNAKAN PROPOTIONAL IINTEGRAL DEREVATIVE (PID) KONTROLER Nursalim Jurusan Teknik Elektro, Fakultas Sains dan Teknik, Universitas Nusa Cendana Jl. Adisucipto-Penfui Kupang,

Lebih terperinci

PENGARUH PENGGUNAAN INJECTOR VIXION DAN ECU RACING PADA SEPEDA MOTOR YAMAHA MIO J TERHADAP DAYA MOTOR

PENGARUH PENGGUNAAN INJECTOR VIXION DAN ECU RACING PADA SEPEDA MOTOR YAMAHA MIO J TERHADAP DAYA MOTOR JURNAL TEKNIK MESIN, TAHUN 24, NO. 2, OKTOBER 2016 1 PENGARUH PENGGUNAAN INJECTOR VIXION DAN ECU RACING PADA SEPEDA MOTOR YAMAHA MIO J TERHADAP DAYA MOTOR Oleh: Virjiawan Tristianto, Paryono, Sumarli Jurusan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1. Mikrokontroller AVR Mikrokontroller adalah suatu alat elektronika digital yang mempunyai masukan serta keluaran serta dapat di read dan write dengan cara khusus. Mikrokontroller

Lebih terperinci

ANALISA EMISI GAS BUANG MESIN EFI DAN MESIN KONVENSIONAL PADA KENDARAAN RODA EMPAT

ANALISA EMISI GAS BUANG MESIN EFI DAN MESIN KONVENSIONAL PADA KENDARAAN RODA EMPAT NO. 2, TAHUN 9, OKTOBER 2011 130 ANALISA EMISI GAS BUANG MESIN EFI DAN MESIN KONVENSIONAL PADA KENDARAAN RODA EMPAT Muhammad Arsyad Habe, A.M. Anzarih, Yosrihard B 1) Abstrak: Tujuan penelitian ini ialah

Lebih terperinci

ELECTRONIC FUEL INJECTION

ELECTRONIC FUEL INJECTION ELECTRONIC FUEL INJECTION KOMPONEN KOMPONEN SISTIM EFI TYPE TYPE INJECTION YANG DIKONTROL SECARA ELECTRONIC D Jetronic ( Druck Jetronic ) L Jetronic ( Luft Jetronic ) TYPE TYPE INJECTION YANG DIKONTROL

Lebih terperinci

BAB IV PENGUJIAN ALAT

BAB IV PENGUJIAN ALAT 25 BAB IV PENGUJIAN ALAT Pembuatan alat pengukur sudut derajat saat pengapian pada mobil bensin ini diharapkan nantinya bisa digunakan bagi para mekanik untuk mempermudah dalam pengecekan saat pengapian

Lebih terperinci

Oleh : Dia Putranto Harmay Dosen Pembimbing : Ir. Witantyo, M.Eng. Sc

Oleh : Dia Putranto Harmay Dosen Pembimbing : Ir. Witantyo, M.Eng. Sc Oleh : Dia Putranto Harmay 2105.100.145 Dosen Pembimbing : Ir. Witantyo, M.Eng. Sc Latar Belakang Usman Awan dkk, 2001 Merancang dan membuat dynamometer jenis prony brake dengan menggunakan strain gauge

Lebih terperinci

Oleh: Nuryanto K BAB I PENDAHULUAN

Oleh: Nuryanto K BAB I PENDAHULUAN Pengaruh penggantian koil pengapian sepeda motor dengan koil mobil dan variasi putaran mesin terhadap konsumsi bahan bakar pada sepeda motor Honda Supra x tahun 2002 Oleh: Nuryanto K. 2599038 BAB I PENDAHULUAN

Lebih terperinci

BAB III PERANCANGAN DAN PEMBUATAN SISTEM. Gambar 3. 1 Diagram Blok Sistem Kecepatan Motor DC

BAB III PERANCANGAN DAN PEMBUATAN SISTEM. Gambar 3. 1 Diagram Blok Sistem Kecepatan Motor DC BAB III PERANCANGAN DAN PEMBUATAN SISTEM Bab ini menjelaskan tentang perancangan dan pembuatan sistem kontrol, baik secara software dan hardware yang akan digunakan untuk mendukung keseluruhan sistem yang

Lebih terperinci

PEMODELAN DINAMIS PENGATURAN FREKUENSI MOTOR AC BERBEBAN MENGGUNAKAN PID

PEMODELAN DINAMIS PENGATURAN FREKUENSI MOTOR AC BERBEBAN MENGGUNAKAN PID PEMODELAN DINAMIS PENGATURAN FREKUENSI MOTOR AC BERBEBAN MENGGUNAKAN PID Oleh : 1.Eka Agung Renata S 6907040019 2.Nurul Mahabbah 6907040023 LATAR BELAKANG Penggunaan motor AC 3 fasa saat ini banyak digunakan

Lebih terperinci

FAKULTAS TEKNIK UNIVERSITAS NEGERI YOGYAKARTA

FAKULTAS TEKNIK UNIVERSITAS NEGERI YOGYAKARTA No. JST/OTO/OTO410/14 Revisi: 03 Tgl: 22 Agustus 2016 Hal 1 dari 9 I. Kompetensi: Setelah melaksanakan praktek, mahasiswa diharapkan dapat: 1. Menggunakan Carman Hi-Scan Pro dengan prosedur yang benar.

Lebih terperinci

Karakterisasi dan Pengembangan Awal Sistem Kontrol pada Mesin Otto Satu Silinder Empat Langkah Berkapasitas 65 cc

Karakterisasi dan Pengembangan Awal Sistem Kontrol pada Mesin Otto Satu Silinder Empat Langkah Berkapasitas 65 cc Karakterisasi dan Pengembangan Awal Sistem Kontrol pada Mesin Otto Satu Silinder Empat Langkah Berkapasitas 65 cc Gema Perwira Putra, Gandjar Kiswanto 1) Mahasiswa S-1, Departemen Teknik Mesin. Fakultas

Lebih terperinci

KONTROL SISTEM BAHAN BAKAR PADA ELECTRONIC FUEL INJECTION (EFI) Oleh Sutiman, M.T

KONTROL SISTEM BAHAN BAKAR PADA ELECTRONIC FUEL INJECTION (EFI) Oleh Sutiman, M.T KONTROL SISTEM BAHAN BAKAR PADA ELECTRONIC FUEL INJECTION (EFI) Oleh Sutiman, M.T Pendahuluan Tujuan dari penggunaan sistem kontrol pada engine adalah untuk menyajikan dan memberikan daya mesin yang optimal

Lebih terperinci

UJI PERFORMANSI PADA SISTEM KONTROL LEVEL AIR DENGAN VARIASI BEBAN MENGGUNAKAN KONTROLER PID

UJI PERFORMANSI PADA SISTEM KONTROL LEVEL AIR DENGAN VARIASI BEBAN MENGGUNAKAN KONTROLER PID UJI PERFORMANSI PADA SISTEM KONTROL LEVEL AIR DENGAN VARIASI BEBAN MENGGUNAKAN KONTROLER PID Joko Prasetyo, Purwanto, Rahmadwati. Abstrak Pompa air di dunia industri sudah umum digunakan sebagai aktuator

Lebih terperinci

BAB III TINJAUAN PUSTAKA

BAB III TINJAUAN PUSTAKA BAB III TINJAUAN PUSTAKA 3.1 Mesin Bensin Nissan HR15DE dengan ECCS Mesin bensin HR15DE merupakan jenis mesin bensin empat langkah berkapasitas 1500cc keluaran pabrikan Nissan yang dengan dilengkapi teknologi

Lebih terperinci

FAKULTAS TEKNIK UNIVERSITAS NEGERI YOGYAKARTA

FAKULTAS TEKNIK UNIVERSITAS NEGERI YOGYAKARTA No. JST/OTO/OTO410/13 Revisi: 03 Tgl: 22 Agustus 2016 Hal 1 dari 10 I. Kompetensi: Setelah melaksanakan praktik, mahasiswa diharapkan dapat: 1. Mengidentifikasi komponen sistem bahan bakar, kontrol udara

Lebih terperinci

TUGAS AKHIR ANALISIS SISTEM PENGAPIAN DIRECT IGNITION SYSTEM PADA MESIN 1 TR-FE TOYOTA KIJANG INNOVA

TUGAS AKHIR ANALISIS SISTEM PENGAPIAN DIRECT IGNITION SYSTEM PADA MESIN 1 TR-FE TOYOTA KIJANG INNOVA TUGAS AKHIR ANALISIS SISTEM PENGAPIAN DIRECT IGNITION SYSTEM PADA MESIN 1 TR-FE TOYOTA KIJANG INNOVA Disusun untuk Memenuhi Salah Satu Persyaratan Diploma III Guna Menyandang Gelar Ahli Madya Oleh: PRASETYO

Lebih terperinci

PERANCANGAN KONTROLER PI ANTI-WINDUP BERBASIS MIKROKONTROLER ATMEGA 32 PADA KONTROL KECEPATAN MOTOR DC

PERANCANGAN KONTROLER PI ANTI-WINDUP BERBASIS MIKROKONTROLER ATMEGA 32 PADA KONTROL KECEPATAN MOTOR DC Presentasi Tugas Akhir 5 Juli 2011 PERANCANGAN KONTROLER PI ANTI-WINDUP BERBASIS MIKROKONTROLER ATMEGA 32 PADA KONTROL KECEPATAN MOTOR DC Pembimbing: Dr.Ir. Moch. Rameli Ir. Ali Fatoni, MT Dwitama Aryana

Lebih terperinci

BAB III TINJAUAN PUSTAKA

BAB III TINJAUAN PUSTAKA 15 BAB III TINJAUAN PUSTAKA 3.1 PENDAHULUAN Mesin diesel FAW FD 280 CG (Cargo) merupakan jenis mesin diesel empat langkah berkapasitas 280 Hp keluaran pabrik FAW yang menggunakan teknologi mesin diesel

Lebih terperinci

PENGARUH SUDUT PEDAL GAS TERHADAP BUKAAN THROTTLE SIMULATOR THROTTLE-BY-WIRE

PENGARUH SUDUT PEDAL GAS TERHADAP BUKAAN THROTTLE SIMULATOR THROTTLE-BY-WIRE PENGARUH SUDUT PEDAL GAS TERHADAP BUKAAN THROTTLE SIMULATOR THROTTLE-BY-WIRE Deni Adi Wijaya 1, Nurhadi 2 1.2 JurusanTeknik Mesin, Politeknik Negeri Malang 1 deny.penutt@gmail.com, 2 nurhadiabuzaka@gmail.com

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Kebutuhan akan kendaraan pada saat sekarang ini sangatlah tinggi demi menunjang aktivitas dan kegiatan sehar-hari. Kendaraan diharapkan dapat membantu perjalanan seseorang

Lebih terperinci

Implementasi Modul Kontrol Temperatur Nano-Material ThSrO Menggunakan Mikrokontroler Digital PIC18F452

Implementasi Modul Kontrol Temperatur Nano-Material ThSrO Menggunakan Mikrokontroler Digital PIC18F452 Implementasi Modul Kontrol Temperatur Nano-Material ThSrO Menggunakan Mikrokontroler Digital PIC18F452 Moh. Hardiyanto 1,2 1 Program Studi Teknik Industri, Institut Teknologi Indonesia 2 Laboratory of

Lebih terperinci

FAKULTAS TEKNIK UNIVERSITAS NEGERI YOGYAKARTA

FAKULTAS TEKNIK UNIVERSITAS NEGERI YOGYAKARTA No. JST/OTO/OTO410/14 Revisi : 02 Tgl : 6 Februari 2014 Hal 1 dari 10 I. Kompetensi : Setelah melaksanakan praktik, mahasiswa diharapkan dapat : 1. Mengidentifikasi komponen sistem bahan bakar, kontrol

Lebih terperinci

REZAN NURFADLI EDMUND NIM.

REZAN NURFADLI EDMUND NIM. MEKATRONIKA Disusun oleh : REZAN NURFADLI EDMUND NIM. 125060200111075 KEMENTERIAN PENDIDIKAN NASIONAL UNIVERSITAS BRAWIJAYA FAKULTAS TEKNIK MALANG 2014 BAB I PENDAHULUAN A. Latar Belakang Respon berasal

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3.1 Tempat Penelitian Tempat penelitian yang digunakan dalam penelitian ini berada di Motocourse Technology (Mototech) Jl. Ringroad Selatan, Kemasan, Singosaren, Banguntapan,

Lebih terperinci

BAB II TINJAUAN LITERATUR

BAB II TINJAUAN LITERATUR BAB II TINJAUAN LITERATUR Motor bakar merupakan motor penggerak yang banyak digunakan untuk menggerakan kendaraan-kendaraan bermotor di jalan raya. Motor bakar adalah suatu mesin yang mengubah energi panas

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN. memperbaiki kerusakan pada Honda Beat PGM-FI. Adapun diperoleh hasil

BAB IV HASIL DAN PEMBAHASAN. memperbaiki kerusakan pada Honda Beat PGM-FI. Adapun diperoleh hasil 59 BAB IV HASIL DAN PEMBAHASAN 4.1 Hasil Proses Analisis Sistem EFI Honda Beat. Setelah melakukan proses analisis dilakukan dengan membongkar komponen-komponen dari sistem EFI mengidentifikasi kerusakan

Lebih terperinci

DESAIN KONTROL PID UNTUK MENGATUR KECEPATAN MOTOR DC PADA ELECTRICAL CONTINUOUSLY VARIABLE TRANSMISSION (ECVT)

DESAIN KONTROL PID UNTUK MENGATUR KECEPATAN MOTOR DC PADA ELECTRICAL CONTINUOUSLY VARIABLE TRANSMISSION (ECVT) DESAIN KONTROL PID UNTUK MENGATUR KECEPATAN MOTOR DC PADA ELECTRICAL CONTINUOUSLY VARIABLE TRANSMISSION (ECVT) Oleh : Raga Sapdhie Wiyanto Nrp 2108 100 526 Dosen Pembimbing : Dr. Ir. Bambang Sampurno,

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3.1 Tempat Penelitian Tempat penelitian yang digunakan dalam penelitian ini berada di Motocourse Technology (Mototech) Jl. Ringroad Selatan, Kemasan, Singosaren, Banguntapan,

Lebih terperinci

BAB III PERANCANGAN DAN PEMBUATAN SISTEM

BAB III PERANCANGAN DAN PEMBUATAN SISTEM BAB III PERANCANGAN DAN PEMBUATAN SISTEM Pada bab ini menjelaskan tentang perancangan dan pembuatan sistem kontrol, baik secara software maupun hardware yang digunakan untuk mendukung keseluruhan sistem

Lebih terperinci

Traction Control pada Parallel Hybrid Electric Vehicle (HEV) dengan Menggunakan Metode Kontrol Neuro-Fuzzy Prediktif

Traction Control pada Parallel Hybrid Electric Vehicle (HEV) dengan Menggunakan Metode Kontrol Neuro-Fuzzy Prediktif JURNAL TEKNIK POMITS Vol. 3, No., (24) ISSN: 2337-3539 (23-927 Print) E-25 Traction Control pada Parallel Hybrid Electric Vehicle (HEV) dengan Menggunakan Metode Kontrol Neuro-Fuzzy Prediktif Bayu Prasetyo

Lebih terperinci

BAB I PENDAHULUAN...1

BAB I PENDAHULUAN...1 DAFTAR ISI Halaman Judul...i Lembar Nomor Persoalan...ii Lembar Pengesahan...iii Lembar Pernyataan...iv Lembar Persembahan...v Motto...vi Kata Pengantar...vii Abstract...ix Intisari...x Daftar Isi...xi

Lebih terperinci

DuFI (Durux Fuel Injection)

DuFI (Durux Fuel Injection) DuFI (Durux Fuel Injection) created at: april 28 2017 by sugiarto Tentang DuFI DuFI adalah sebuah ECU (Electronic Control Unit) experimental yang digunakan untuk mengatur sistem bahan bakar kendaraan secara

Lebih terperinci

ANALISIS PENGARUH VARIASI CDI TERHADAP PERFORMA DAN KONSUMSI BAHAN BAKAR HONDA VARIO 110cc

ANALISIS PENGARUH VARIASI CDI TERHADAP PERFORMA DAN KONSUMSI BAHAN BAKAR HONDA VARIO 110cc Jurnal Teknik Mesin (JTM): Vol., No., Oktober ANALISIS PENGARUH VARIASI CDI TERHADAP PERFORMA DAN KONSUMSI BAHAN BAKAR HONDA VARIO cc Sachrul Ramdani Program Studi Teknik Mesin, Fakultas Teknik, Universitas

Lebih terperinci

BAB II DASAR TEORI 2.1 Kajian Pustaka

BAB II DASAR TEORI 2.1 Kajian Pustaka BAB II DASAR TEORI 2.1 Kajian Pustaka 2.1.1 Fenomena Cyclone Pada proses pembakaran yang terjadi di dalam mesin bensin bergantung pada campuran antara bahan bakar dan udara yang masuk ke dalam ruang bakar.

Lebih terperinci

TKC306 - Robotika. Eko Didik Widianto. Sistem Komputer - Universitas Diponegoro

TKC306 - Robotika. Eko Didik Widianto. Sistem Komputer - Universitas Diponegoro TKC306 - ika Eko Didik Sistem Komputer - Universitas Diponegoro Review Kuliah Prinsip dasar dan mekanisme kontrol robot Implementasi kendali ke dalam rangkaian berbasis mikroprosesor Low-level dan High-level

Lebih terperinci

Identifikasi Self Tuning PID Kontroler Metode Backward Rectangular Pada Motor DC

Identifikasi Self Tuning PID Kontroler Metode Backward Rectangular Pada Motor DC Identifikasi Self Tuning PID Kontroler Metode Backward Rectangular Pada Motor DC Andhyka Vireza, M. Aziz Muslim, Goegoes Dwi N. 1 Abstrak Kontroler PID akan berjalan dengan baik jika mendapatkan tuning

Lebih terperinci

BAB II KAJIAN TEORI. Ali Imron (2013) dalam tugas akhir yang berjudul troubleshooting sistem

BAB II KAJIAN TEORI. Ali Imron (2013) dalam tugas akhir yang berjudul troubleshooting sistem BAB II KAJIAN TEORI 2.1. Kajian Pustaka Ali Imron (2013) dalam tugas akhir yang berjudul troubleshooting sistem EPI (Electronic Petrol Injection) pada mesin Suzuki Carry Futura 1.5 G15A menjelaskan prinsip

Lebih terperinci

DISCLAIMER. Rosyid W. Zatmiko rosyidwz.wordpress.com Tahun 2014 tidak dipublikasikan.

DISCLAIMER. Rosyid W. Zatmiko rosyidwz.wordpress.com Tahun 2014 tidak dipublikasikan. 1 DISCLAIMER Artikel ini bukan murni karangan penulis. Isi dalam artikel ini merupakan gabungan beberapa materi dari literatur/referensi relevan yang tercantum dalam daftar pustaka. Silakan menggunakan

Lebih terperinci

Pengaturan Putaran Engine Saat Kecepatan Idle Berdasarkan Suhu Udara Masuk Berbasis Metode Fuzzy pada Motor Bensin

Pengaturan Putaran Engine Saat Kecepatan Idle Berdasarkan Suhu Udara Masuk Berbasis Metode Fuzzy pada Motor Bensin 10 Pengaturan Putaran Engine Saat Kecepatan Idle Berdasarkan Suhu Udara Masuk Berbasis Metode Fuzzy pada Motor Bensin Intanto Oktavian, M. Aziz Muslim, Goegoes Dwi Nusantoro Abstract Along with the development

Lebih terperinci

Materi. Motor Bakar Turbin Uap Turbin Gas Generator Uap/Gas Siklus Termodinamika

Materi. Motor Bakar Turbin Uap Turbin Gas Generator Uap/Gas Siklus Termodinamika Penggerak Mula Materi Motor Bakar Turbin Uap Turbin Gas Generator Uap/Gas Siklus Termodinamika Motor Bakar (Combustion Engine) Alat yang mengubah energi kimia yang ada pada bahan bakar menjadi energi mekanis

Lebih terperinci

RANCANG BANGUN CATU DAYA TENAGA SURYA UNTUK PERANGKAT AUDIO MOBIL

RANCANG BANGUN CATU DAYA TENAGA SURYA UNTUK PERANGKAT AUDIO MOBIL RANCANG BANGUN CATU DAYA TENAGA SURYA UNTUK PERANGKAT AUDIO MOBIL Sutedjo ¹, Rusiana², Zuan Mariana Wulan Sari 3 1 Dosen Jurusan Teknik Elektro Industri ² Dosen Jurusan Teknik Elektro Industri 3 Mahasiswa

Lebih terperinci

ANALISA DAN PEMBUATAN SISTEM WATER COOLANT INJECTION PADA MOTOR BENSIN TERHADAP PERFORMA DAN EMISI GAS BUANG

ANALISA DAN PEMBUATAN SISTEM WATER COOLANT INJECTION PADA MOTOR BENSIN TERHADAP PERFORMA DAN EMISI GAS BUANG ANALISA DAN PEMBUATAN SISTEM WATER COOLANT INJECTION PADA MOTOR BENSIN TERHADAP PERFORMA DAN EMISI GAS BUANG Rocky Alexander Winoto 1), Philip Kristanto Tedjasaputra 2) Program Otomotif Program Studi Teknik

Lebih terperinci

ELEKTRONIC FUEL INJECTION

ELEKTRONIC FUEL INJECTION ELEKTRONIC FUEL INJECTION 1 Pada zaman dahulu sistim supply bahan bakar pada mesin masih convensional (manual) yang dikenal dengan sistim Carburator, kemudian setelah tahun 1960-an ditemukan Electronic

Lebih terperinci

BAB II DASAR TEORI 2.1 Motor Bakar 2.2 Prinsip Kerja Mesin Bensin

BAB II DASAR TEORI 2.1 Motor Bakar 2.2 Prinsip Kerja Mesin Bensin 4 BAB II DASAR TEORI 2.1 Motor Bakar Motor bakar merupakan salah satu alat (mesin) yang mengubah tenaga panas menjadi tenaga mekanik, motor bakar umumnya terdapat dalam beberapa macam antara lain : mesin

Lebih terperinci

Pengaruh Penggunaan Enviropurge Kit

Pengaruh Penggunaan Enviropurge Kit Pengaruh Penggunaan Enviropurge Kit PENGARUH PENGGUNAAN ENVIROPURGE KIT TERHADAP PERFORMA MESIN SEPEDA MOTOR 4 LANGKAH Wahyu Supriyadi S-1 Pendidikan Teknik Mesin Fakultas Teknik Universitas Negeri Surabaya

Lebih terperinci

Sistem Pengaturan Kecepatan Motor DC Pada Alat Penyiram Tanaman Menggunakan Kontoler PID

Sistem Pengaturan Kecepatan Motor DC Pada Alat Penyiram Tanaman Menggunakan Kontoler PID Sistem Pengaturan Kecepatan Motor DC Pada Alat Penyiram Tanaman Menggunakan Kontoler PID 1 Ahmad Akhyar, Pembimbing 1: Purwanto, Pembimbing 2: Erni Yudaningtyas. Abstrak Alat penyiram tanaman yang sekarang

Lebih terperinci

TUGAS. MAKALAH TENTANG Gasoline Direct Injection (GDI) Penyusun : 1. A an fanna fairuz (01) 2. Aji prasetyo utomo (03) 3. Alfian alfansuri (04)

TUGAS. MAKALAH TENTANG Gasoline Direct Injection (GDI) Penyusun : 1. A an fanna fairuz (01) 2. Aji prasetyo utomo (03) 3. Alfian alfansuri (04) TUGAS MAKALAH TENTANG Gasoline Direct Injection (GDI) Penyusun : 1. A an fanna fairuz (01) 2. Aji prasetyo utomo (03) 3. Alfian alfansuri (04) 4. Fajar setyawan (09) 5. M. Nidzar zulmi (20) Kelas : XII

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN 3.1 Tempat dan Waktu Penelitian Tempat penelitian yang digunakan dalam penelitian ini berada di Motocourse Technology (Mototech) Jl. Ringroad Selatan, Kemasan, Singosaren,

Lebih terperinci

STUDI SIMULASI KONVERSI MOTOR BAKAR OTTO MENGGUNAKAN BAHAN BAKAR CNG DENGAN VARIASI AIR FUEL RATIO DAN IGNITION TIMING

STUDI SIMULASI KONVERSI MOTOR BAKAR OTTO MENGGUNAKAN BAHAN BAKAR CNG DENGAN VARIASI AIR FUEL RATIO DAN IGNITION TIMING JURNAL TEKNIK POMITS Vol. 2, No. 1, (2013) ISSN: 2337-3539 (2301-9271 Print) 1 STUDI SIMULASI KONVERSI MOTOR BAKAR OTTO MENGGUNAKAN BAHAN BAKAR CNG DENGAN VARIASI AIR FUEL RATIO DAN IGNITION TIMING Ahmad

Lebih terperinci

BAB III TINJAUAN PUSTAKA

BAB III TINJAUAN PUSTAKA BAB III TINJAUAN PUSTAKA 3.1 MOTOR DIESEL Motor diesel adalah motor pembakaran dalam (internal combustion engine) yang beroperasi dengan menggunakan minyak gas atau minyak berat sebagai bahan bakar dengan

Lebih terperinci

Adaptive Fuzzy Untuk Menala Parameter PID pada Sistem Pengaturan Berjaringan. Nastiti Puspitosari L/O/G/O NETWORKED CONTROL SYSTEM (NCS)

Adaptive Fuzzy Untuk Menala Parameter PID pada Sistem Pengaturan Berjaringan. Nastiti Puspitosari L/O/G/O NETWORKED CONTROL SYSTEM (NCS) L/O/G/O NETWORKED CONTROL SYSTEM (NCS) Adaptive Fuzzy Untuk Menala Parameter PID pada Sistem Pengaturan Berjaringan Nastiti Puspitosari 2208100039 BIDANG STUDI TEKNIK SISTEM PENGATURAN - ITS TOPIK PEMBAHASAN

Lebih terperinci

BAB III METODE PENGUJIAN

BAB III METODE PENGUJIAN BAB III METODE PENGUJIAN Pengujian ini dilakukan untuk mengetahui kemampuan dan pengaruh dari penggunaan Piston standard dan Piston Cavity pada mesin mobil mazda biante. Pengujian ini dilakukan untuk membandingkan

Lebih terperinci

BAB II TINJAUAN PUSTAKA DAN DASAR TEORI

BAB II TINJAUAN PUSTAKA DAN DASAR TEORI BAB II TINJAUAN PUSTAKA DAN DASAR TEORI 2.1. Tinjauan Pustaka Nurdianto dan Ansori, (2015), meneliti pengaruh variasi tingkat panas busi terhadap performa mesin dan emisi gas buang sepeda motor 4 tak.

Lebih terperinci

BAB IV PENGOLAHAN DAN ANALISA DATA

BAB IV PENGOLAHAN DAN ANALISA DATA BAB IV PENGOLAHAN DAN ANALISA DATA 4.1 Data Hasil Penelitian Mesin Supra X 125 cc PGM FI yang akan digunakan sebagai alat uji dirancang untuk penggunaan bahan bakar bensin. Mesin Ini menggunakan sistem

Lebih terperinci

KAJIAN EKSPERIMENTAL TENTANG PENGGUNAAN PORT FUEL INJECTION (PFI) SEBAGAI SISTEM SUPLAI BAHAN BAKAR MOTOR BENSIN DUA-LANGKAH SILINDER TUNGGAL

KAJIAN EKSPERIMENTAL TENTANG PENGGUNAAN PORT FUEL INJECTION (PFI) SEBAGAI SISTEM SUPLAI BAHAN BAKAR MOTOR BENSIN DUA-LANGKAH SILINDER TUNGGAL KAJIAN EKSPERIMENTAL TENTANG PENGGUNAAN PORT FUEL INJECTION (PFI) SEBAGAI SISTEM SUPLAI BAHAN BAKAR MOTOR BENSIN DUA-LANGKAH SILINDER TUNGGAL Teddy Nurcahyadi 1, Purnomo 2, Tri Agung Rohmad 2, Alvin Sahroni

Lebih terperinci

RANCANG BANGUN RANGKAIAN PENGENDALI UNTUK VALVE YANG DIGUNAKAN SEBAGAI SALURAN MASUK GAS N 2 DAN O 2 PADA ALAT KALIBRASI SENSOR OKSIGEN

RANCANG BANGUN RANGKAIAN PENGENDALI UNTUK VALVE YANG DIGUNAKAN SEBAGAI SALURAN MASUK GAS N 2 DAN O 2 PADA ALAT KALIBRASI SENSOR OKSIGEN JURNAL TEKNIK POMITS Vol. 1, No. 2, (2014) ISSN: 2301-9271 1 RANCANG BANGUN RANGKAIAN PENGENDALI UNTUK VALVE YANG DIGUNAKAN SEBAGAI SALURAN MASUK GAS N 2 DAN O 2 PADA ALAT KALIBRASI SENSOR OKSIGEN Hasan

Lebih terperinci

Sistem Pengaturan Kecepatan Motor DC pada Alat Ektraktor Madu Menggunakan Kontroler PID

Sistem Pengaturan Kecepatan Motor DC pada Alat Ektraktor Madu Menggunakan Kontroler PID 1 Sistem Pengaturan Kecepatan Motor DC pada Alat Ektraktor Madu Menggunakan Kontroler PID Rievqi Alghoffary, Pembimbing 1: Purwanto, Pembimbing 2: Bambang siswoyo. Abstrak Pengontrolan kecepatan pada alat

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 1.1 Metode Pengasapan Cold Smoking Ikan asap merupakan salah satu makanan khas dari Indonesia. Terdapat dua jenis pengasapan yang dapat dilakukan pada bahan makanan yaitu hot smoking

Lebih terperinci

IMPLEMENTASI SENSOR KAPASITIF DALAM SISTEM KONTROL KADAR ETANOL

IMPLEMENTASI SENSOR KAPASITIF DALAM SISTEM KONTROL KADAR ETANOL TE 091399 IMPLEMENTASI SENSOR KAPASITIF DALAM SISTEM KONTROL KADAR ETANOL Peter Chondro 2210100136 Dosen Pembimbing: Dr. M. Rivai, ST., MT. Suwito, ST., MT. Bidang Studi Elektronika Jurusan Teknik Elektro

Lebih terperinci

Kata kunci : ECU BRT, Remot Juken, STD, Performa, Efesiensi.

Kata kunci : ECU BRT, Remot Juken, STD, Performa, Efesiensi. PENGARUH TIMING INJECTION DAN TIMING PENGAPIAN PADA MOTOR 4 LANGKAH 100 CC BAHAN BAKAR PERTAMAX Solikin 20120130168 Universitas Muhammadiyah Yogyakarta, Fakultas Teknik,Jurusan Teknik Mesin,Yogyakarta,

Lebih terperinci

Studi Eksperimental Kinerja Mesin Kompresi Udara Satu Langkah Dengan Variasi Sudut Pembukaan Selenoid

Studi Eksperimental Kinerja Mesin Kompresi Udara Satu Langkah Dengan Variasi Sudut Pembukaan Selenoid Studi Eksperimental Kinerja Mesin Kompresi Udara Satu Langkah Dengan Variasi Sudut Pembukaan Selenoid Darwin Rio Budi Syaka, Furqon Bastian dan Ahmad Kholil Universitas Negeri Jakarta, Fakultas Teknik,

Lebih terperinci

PERANCANGAN SISTEM PENGENDALIAN PEMBAKARAN PADA DUCTBURNER WASTE HEAT BOILER (WHB) BERBASIS LOGIC SOLVER

PERANCANGAN SISTEM PENGENDALIAN PEMBAKARAN PADA DUCTBURNER WASTE HEAT BOILER (WHB) BERBASIS LOGIC SOLVER PERANCANGAN SISTEM PENGENDALIAN PEMBAKARAN PADA DUCTBURNER WASTE HEAT BOILER (WHB) BERBASIS LOGIC SOLVER Oleh : AMRI AKBAR WICAKSONO (2406 100 002) Pembimbing: IBU RONNY DWI NORIYATI & BAPAK TOTOK SOEHARTANTO

Lebih terperinci

PEMANFAATAN ON BOARD DIAGNOSTIC (OBD) PADA KENDARAAN BERBASIS ENGINE MANAGEMENT SYSTEM. Oleh : Sutiman Otomotif, FT UNY

PEMANFAATAN ON BOARD DIAGNOSTIC (OBD) PADA KENDARAAN BERBASIS ENGINE MANAGEMENT SYSTEM. Oleh : Sutiman Otomotif, FT UNY 1 PEMANFAATAN ON BOARD DIAGNOSTIC (OBD) PADA KENDARAAN BERBASIS ENGINE MANAGEMENT SYSTEM Oleh : Sutiman Otomotif, FT UNY Pendahuluan Elektronik Control Unit (ECU) atau Electronic Control Modul (ECM) pada

Lebih terperinci

BAB I PENDAHULUAN. Saat ini mobil telah menjadi lebih penting, mobil telah menjadi faktor

BAB I PENDAHULUAN. Saat ini mobil telah menjadi lebih penting, mobil telah menjadi faktor BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Saat ini kemajuan dalam bidang otomotif kian berkambang. Berbagai terobosan-terobosan dikembangkan serta diupayakan guna menciptakan sebuah mesin yang memiliki

Lebih terperinci

UJI KERJA INJEKTOR TERHADAP PUTARAN DAN JENIS SEMPROTAN MENGGUNAKAN ALAT UJI INJEKTOR ABSTRAK

UJI KERJA INJEKTOR TERHADAP PUTARAN DAN JENIS SEMPROTAN MENGGUNAKAN ALAT UJI INJEKTOR ABSTRAK UJI KERJA INJEKTOR TERHADAP PUTARAN DAN JENIS SEMPROTAN MENGGUNAKAN ALAT UJI INJEKTOR Sugeng Riyadi 1, Agus Suyatno 2, Naif Fuhaid 3 ABSTRAK Dengan perkembangan teknologi EFI (Electronic Fuel Injection)

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang

BAB I PENDAHULUAN Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Saat ini sumber energi yang paling banyak digunakan di dunia adalah energi fosil yang berupa bahan bakar minyak. Indonesia sendiri saat ini masih sangat tergantung

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3.1 Diagram Aliran Pengujian Proses pengambilan data yang diperlukan dalam penelitian ini terdiri dari 3 bagian yang dapat ditunjukan pada gambar gambar dibawah ini : A. Diagram

Lebih terperinci

- 1 - Ignition timing (advanced angle) High. Engine speed. Amount of intake air (Manifold pressure) High. ESA map

- 1 - Ignition timing (advanced angle) High. Engine speed. Amount of intake air (Manifold pressure) High. ESA map Deskripsi timing (advanced angle) Deskripsi Sistem ESA (Electronic Spark Advance) adalah sistem yang menggunakan ECU mesin untuk menentukan waktu pengapian berdasarkan sinyal dari barbagai sensor. ECU

Lebih terperinci