PENGARUH FORMULASI EMULSI TERHADAP HASIL ENKAPSULASI NANOPARTIKEL MAGNETIK Fe 3 DENGAN POLY(LACTIC ACID)

Ukuran: px
Mulai penontonan dengan halaman:

Download "PENGARUH FORMULASI EMULSI TERHADAP HASIL ENKAPSULASI NANOPARTIKEL MAGNETIK Fe 3 DENGAN POLY(LACTIC ACID)"

Transkripsi

1 Akreditasi LIPI Nomor : 536/D/2007 Tanggal 26 Juni 2007 PENGARUH FORMULASI EMULSI TERHADAP HASIL ENKAPSULASI NANOPARTIKEL MAGNETIK DENGAN POLY(LACTIC ACID) ABSTRAK EviYulianti 1, Sudaryanto 1,YokiYulizar 2 Mujamilah 1 1 Pusat Teknologi Bahan Industri Nuklir (PTBIN) - BATAN Kawasan Puspiptek, Serpong 15314, Tangerang 2 Departemen Kimia, FMIPA - UI Kampus Baru UI, Depok PENGARUH FORMULASI EMULSI TERHADAP HASIL ENKAPSULASI NANOPARTIKEL MAGNETIK DENGAN POLY(LACTIC ACID). Telah dilakukan penelitian untuk mengetahui pengaruh formulasi emulsi terhadap hasil enkapsulasi nanopartikel magnetik denganpoly(lactic Acid) (). Proses enkapsulasi dilakukan dengan metode mikroemulsi dilanjutkan dengan penguapan pelarut. Pada metode ini sistem emulsi dibuat dengan menggunakan ultrasonik probe. Parameter divariasikan adalah formulasi emulsi dengan mengubah volume fasa minyak pada sistem emulsi minyak dalam air (o/w) dari 6 ml, 8 ml, 10 ml, 12 ml 14 ml, segkan volume fasa air dibuat tetap (55 ml). Karakterisasi dilakukan menggunakan Scanning Electron Microscope (SEM) untuk mengetahui morfologi ukuran sampel dihasilkan. Difraktomer Sinar-X untuk mengidentifikasi fasa, Vibrating Sample Magnetometer (VSM) untuk mengetahui kemagnetannya serta Neutron Activation Analysis (NAA) untuk mengetahui tingkat keberhasilan proses enkapsulasi. Hasil SEM menunjukkan formulasi emulsi m/a = 14/55 menghasilkan nanosfir dengan ukuran rata-rata terkecil yaitu 382 nm. Nilai magnetisasi jenuh nanosfir + tertinggi adalah 2,556 emu/g dengan persen enkapsulasi 24,94%. Kata kunci : Formulasi emulsi,, Poly(Lactic Acid) (), Nanopartikel magnetik, Enkapsulasi ABSTRACT THE EFFECT OF EMULSION FORMULATION TO ENCAPSULATION OF MAGNETIC NANOPARTICLE WITH POLY(LACTIC ACID). The research to study the effect of emulsion formulation to encapsulation magnetic nanoparticle with Poly(Lactic Acid) () has been done. Microemulsion by ultrasonic probe is used in encapsulation process and continued by solvent evaporation. Emulsion formulation has been varied by changing oil phase volume in the oil in water (o/w) emulsion system from 6 ml, 8 ml, 10 ml, 12 ml and 14 ml, whereas water phase volume is constant (55 ml). Sample characterization is carried on by Scanning Electron Microscope (SEM) to know the morphology and sample size. X-Ray Diffractometer (XRD) is used to identify the phase, Vibrating Sample Magnetometer (VSM) is used to measure magnetic saturation while Neutron Activation Analysis (NAA) is used to measure encapsulation percentage of with. The smallest nanosphere is resulted by emulsion formulation (o/w) of 14/55 with the main sample size 382 nm. The maximum magnetic saturation of + nanosphere is emu/g and encapsulation percentage is 24.94%. Key words : Emulsion formulation,, Poly(Lactic Acid) (), Magnetic nanoparticle, Encapsulation PENDAHULUAN Penelitian tentang nanopartikel magnet membuka peluang sangat menjanjikan untuk diaplikasikan dalam berbagai big, khususnya dalam penelitian biomedis teknologi perlindungan lingkungan (contoh : pengolahan senyawa berbahaya dari air limbah). Di big biomedis, nanopartikel magnet digunakan di big kesehatan antara lain untuk treatment hyperthermia untuk menyembuhkan penyakit tumor, drug delivery system, sebagai contrast agent dalam diagnosa penyakit menggunakan Magnetic Resonance Imaging (MRI) pelabelan sel [1,2]. Agar bisa diaplikasikan nanopartikel magnetik harus bersifat superparamagnetik, bisa terdispersi atau membentuk koloid stabil dalam air berlingkungan ph netral garam fisiologis. Kestabilan partikel 228

2 Pengaruh Formulasi Emulsi Terhadap Hasil Enkapsulasi Nanopartikel Magnetik dengan Poly(Lactic Acid) (Evi Yulianti) magnetik di dalam air bergantung pada beberapa faktor diantaranya ukuran partikel, muatan kimia permukaan. Semakin kecil ukuran partikel, pengaruh gaya gravitasi semakin dapat diabaikan. Segkan peningkatan muatan kimia permukaan memungkinkan aya gaya tolak menolak antar partikel sehingga partikel dapat terdispersi dengan stabil dalam cairan tubuh. Demikian pula sifat superparamagnetik akan dapat dicapai bila ukuran partikel magnet makin kecil mengakibatkan makin kecil pula interaksi antar partikel [3,4]. Untuk itu disamping upaya pembuatan partikel berskala nanometer, enkapsulasi (pengungkungan) partikel magnetik dengan polimer organik dalam bentuk mikrosfer atau nanosfir merupakan cara efektif untuk memenuhi berbagai tuntutan penggunaan big medis tersebut. Berbagai metode telah dilaporkan untuk pembuatan nanopartikel magnetik proses enkapsulasi (pengungkungan) nanopartikel untuk membentuk mikro atau nanosfir. Pembuatan nanopartikel magnet dengan reaksi pengendapan, di samping telah diteliti juga metode mikroemulsi, serta teknik penghalusan dengan high energy milling [5]. Segkan proses enkapsulasi telah dikembangkan telah melakukan nanokapsulasi polimer menggunakan sistem emulsi air-minyak-air (w/o/w) dalam bentuk mikrosfir albumin, pati partikel magnet [6]. Telah disintesis nanokapsul PLGA nanopartikel besi oksida dengan teknik emulsifikasi difusi [7]. Berbagai teknik lain juga telah dikembangkan antara lain penguapan pelarut, polimerisasi emulsi polimerisasi disperse [1]. Di antara metode tersebut, mikroemulsi merupakan metode relatif sederhana memungkinkan untuk melakukan pelapisan partikel magnet dengan polimer biodegradable. Metode mikroemulsi pada prinsipnya adalah pemanfaatan sistem emulsi air dalam minyak (w/o) atau minyak dalam air (o/w) distabilkan oleh surfaktan [8]. Dalam metode ini partikel magnet terjebak dalam kavitasi (gelembung) ditimbulkan dalam proses pengadukan distabilkan oleh surfaktan. Bentuk ukuran kavitasi akan sangat menentukan bentuk ukuran partikel magnetik terlapis polimer sebagai hasil akhirnya. Ada banyak cara untuk mendapatkan kavitasi berukuran kecil. Penelitian dilakukan sebelumnya membandingkan penggunaan teknik pengadukan berkecepatan tinggi dengan penggunaan ultrasonik probe untuk pembuatan mikrosfir - [9]. Penggunaan ultrasonik probe ternyata menghasilkan mikrosfir jauh lebih kecil seragam. Selain itu lamanya proses pengadukan juga mempengaruhi ukuran kavitasi pada akhirnya mempengaruhi ukuran mikrosfir dihasilkan[10]. Pada makalah ini akan dilaporkan pengaruh formulasi emulsi terhadap hasil enkapsulasi nanopartikel magnetik (magnetit) menggunakan polimer biodegradable poli laktat (). Proses enkapsulasi dilakukan dengan metode mikroemulsi memanfaatkan ultrasonik probe atau proses sonikasi. Variasi formulasi emulsi dilakukan dengan mengubah volume fasa minyak dalam sistem emulsi minyak dalam air (o/w), segkan fasa air dibuat tetap. METODE PERCOBAAN Bahan Alat Bahan-bahan kimia digunakan pada penelitian ini adalah : polimer biodegradable poli laktat () dengan BM Da, kloroform untuk melarutkan dengan standar pro analisis, Polyvinyl Alcohol (PVA) dengan BM Da sebagai surfaktan. Partikel magnetik murni berukuran 20 nm diperoleh dari Aldrich. Peralatan digunakan adalah Ultrasonik tipe probe (Sonics & Material, INC., USA, Model VCX 750, Ti Horn, 20 khz). Peralatan pendukung lain digunakan dalam penelitian adalah peralatan gelas biasa digunakan dalam laboratorium kimia, pengaduk magnet pengaduk biasa, centrifuge oven. Cara Kerja Pada prinsipnya proses pengungkungan (enkapsulasi) dilakukan dengan tiga tahap yaitu pembasahan partikel magnetik dengan larutan agar terdispersi dengan merata, proses emulsifikasi penguapan pelarut kloroform dalam air. Pertama disiapkan larutan dalam kloroform dengan konsentrasi tertentu. Ke dalam larutan ditambahkan serbuk magnet disonikasi selama 1 menit. Campuran hasil sonikasi kemudian dituangkan ke dalam aquadest di dalamnya telah terlarut PVA. Kemudian disonikasi kembali selama 2 menit Setelah proses sonikasi, emulsi terbentuk dituangkan ke dalam gelas beaker berisi 500 ml air sambil diaduk selama 1 jam dengan kecepatan 1000 rpm. Serbuk terbentuk selanjutnya dipisahkan dengan cara sentrifugasi selama 30 menit pada kecepatan 4000 rpm. Serbuk dicuci lagi dengan 300 ml aquadest disentrifugasi. Serbuk dihasilkan kemudian dikeringkan pada suhu ruang, selanjutnya dilakukan pengeringan dalam oven pada suhu 50 C selama 1 jam. Sampel dalam bentuk serbuk kering selanjutnya dikarakterisasi dengan Scanning Electron Microscope (SEM) untuk menentukan bentuk, ukuran mikrosfir X-Ray Difractometry (XRD), Vibrating Sampel Magnetometry (VSM) Neutron 229

3 Activation Analysis (NAA) untuk menentukan keberadaan. Formulasi emulsi dibuat dapat dilihat pada Tabel 1. Tabel 1. Komposisi bahan dalam proses enkapsulasi dengan No. Sampel Lar 5% (ml) Lar PVA 5% (ml) Air (g) HASIL DAN PEMBAHASAN m/a : :55 5: :55 5: :55 5: :55 5: :55 5:1 Analisis Bentuk Ukuran Nanosfir + dengan SEM Hasil analisis SEM untuk mengetahui pengaruh variasi perbandingan fasa minyak (kloroform) fasa air terhadap morfologi ukuran hasil enkapsulasi dengan ditunjukkan pada Gambar 1. Pengukuran dengan SEM dilakukan dengan perbesaran X. Serbuk hasil enkapsulasi dengan berbentuk bulat dengan ukuran di bawah 1 mikron. (a) Tabel 2 menunjukkan peningkatan perbandingan fasa minyak terhadap air dari 6/55-14/55 menyebabkan ukuran nanosfir mengecil dari rata-rata 573 nm menjadi 382 nm. Tabel 2. Ukuran serbuk hasil enkapsulasi dengan variasi formulasi emulsi No. Hal ini dapat dilihat dari foto SEM (Gambar 1) bahwa makin tinggi volume fasa minyak maka distribusi ukuran nanosfir semakin merata terlihat dari nilai standar deviasi makin kecil. Peningkatan volume fasa minyak menyebabkan sistem emulsi menjadi lebih encer, akibatnya tetesan lebih mudah dipecah menjadi tetesan lebih kecil, sehingga menghasilkan nanosfir lebih kecil [7]. Selain itu, dalam sistem emulsi minyak dalam air (o/w), penambahan fasa minyak akan mempengaruhi kestabilan emulsi. Untuk mempertahankan kestabilan, (b) Formulasi emulsi (m/a) Ukuran rata-rata Standar deviasi 1 6/ / / / / (c) (d) (e) Gambar 1. Hasil SEM + variasi formulasi emulsi (a). m/a = 6/55 (b). m/a = 8/55 (c). m/a = 10/55 (d). m/a = 12/55 (e). m/a = 14/55 230

4 Pengaruh Formulasi Emulsi Terhadap Hasil Enkapsulasi Nanopartikel Magnetik dengan Poly(Lactic Acid) (Evi Yulianti) tetesan-tetesan emulsi harus lebih kecil dengan ukuran seragam [8]. Grafik Perubahan ukuran sebagai fungsi volume fasa minyak hasil analisis dari foto SEM ditampilkan pada Gambar 2. Analisis Fasa Nanosfir + Pola difraksi sinar-x + dihasilkan pada berbagai formulasi emulsi ditunjukkan pada Gambar 3. Gambar 3 (a) menunjukkan pola difraksi sinar-x sebelum dienkapsulasi, segkan Gambar 3(b), Gambar 3(c), Gambar 3(d), Gambar 3(e) Gambar 3(f) menunjukkan pola difraksi sudah dienkapsulasi dengan. Untuk polimer polilaktat, puncak difraksi terbentuk pada sudut 16,49, 19,04 23, segkan serbuk membentuk beberapa puncak difraksi antara lain pada sudut 31,25 36, (a) Volume fasa minyak (ml) Gambar 2. Grafik perubahan ukuran serbuk akibat perubahan formulasi emulsi (f) (e) (d) (c) (b) (a) Fe3O4 (b) Fe3O4 + (m/a= 6/55) (c) Fe3O4 + (m/a=8/55) (d) Fe3O4 + (m/a=10/55) (e) Fe3O4 + (m/a=12/55) (f) Fe3O4 + (m/a=14/55 ) Fe3O theta Gambar 3. Pola difraksi sinar-x telah dienkapsulasi dengan variasi formulasi emulsi Intensitas puncak difraksi pada sudut 36,82 ( ) meningkat dengan makin besarnya perbandingan fasa minyak air menunjukkan peningkatan keberadaan dalam serbuk. Perubahan perbandingan volume fasa minyak terhadap pada perbandingan : tetap (5 : 1) menunjukkan perubahan pola difraksi maupun (Gambar 3 (b) sampai dengan Gambar 3 (f))). Puncak difraksi makin nyata pada perbandingan fasa minyak terhadap fasa air makin tinggi. Hal ini menunjukkan bertambahnya kecenderungan terbentuknya fasa kristalin polilaktat. Makin tinggi kadar kloroform dalam sistem emulsi (w/o), maka proses penguapan kloroform dalam air pada tahap akhir proses enkapsulasi makin lambat. Dengan demikian memberi kesempatan kepada molekul-molekul untuk menata diri membentuk struktur kristalin teratur. Analisis Sifat Kemagnetan Tingkat Keberhasilan Proses Enkapsulasi Keberadaan dalam sistem nanosfir + selain teridentifikasi pada profil XRD (Gambar 3), juga dipastikan dengan pengukuran VSM. Kurva histeresis dari partikel sudah terenkapsulasi diperlihatkan pada Gambar 4. Terlihat terbentuknya struktur superparamagnetik dengan nilai saturasi magnetisasi semakin besar dengan bertambahnya volume fasa minyak dari 6 ml hingga 14 ml. Sumbu Y menyatakan momen magnetik dimiliki oleh 1 gram nanopartikel magnet terlapis. Nilai magnetisasi saturasi (M s ) akibat perubahan volume fasa minyak dapat dilihat pada Gambar Me H (Tesla) m/a = 14/55 m/a = 12/55 m/a = 8/55 m/a= 6/55 Gambar 4. Kurva histeresis + variasi formulasi emulsi Mengacu pada pengamatan selama proses enkapsulasi, terlihat bahwa tidak semua nanopartikel magnetik dapat terkungkung oleh. Nilai magnetisasi saturasi tanpa dienkapsulasi adalah 72 emu/gram.[9]. Secara teori apabila semua ditambahkan berhasil dienkapsulasi maka nilai magnetisasi saturasi sampel serbuk dihasilkan adalah 12 emu/gram karena komposisi awal dalam serbuk adalah 1 : 5. Nilai magnetisasi saturasi serbuk akan sebanding dengan makin banyaknya berhasil dienkapsulasi. Untuk mengkonfirmasi tingkat keberhasilan enkapsulasi partikel dengan dilakukan analisis kuantitatif dengan menggunakan metode Neutron Activation Analysis (NAA) dengan mengukur kadar Fe total terkandung dalam serbuk. Hasil analisis kadar Fe dalam bentuk dengan NAA dapat dilihat pada Tabel 3. Makin besar volume fasa minyak maka nano partikel terenkapsulasi juga semakin banyak. Semakin banyak kloroform, pendispersian partikel magnetik terjadi lebih efektif, karena ruang untuk mendispersikan nanopartikel magnet juga semakin besar. 231

5 Tabel 3. Pengaruh formulasi emulsi terhadap %enkapsulasi dengan KESIMPULAN Dari penelitian ini diperoleh kesimpulan bahwa formulasi emulsi mempengaruhi hasil enkapsulasi nanopartikel magnet dengan. Makin besar perbandingan fasa minyak terhadap fasa air maka ukuran nanosfir dihasilkan makin kecil seragam dengan ukuran rata-rata terkecil 382 nm. Selain itu makin besar volume fasa minyak (kloroform) maka kemagnetan serta persen enkapsulasi juga semakin meningkat. Nilai magnetisasi jenuh tertinggi dari nanosfir dihasilkan adalah 2,556 emu/g sampel segkan persen enkapsulasi tertinggi adalah 24,94%. DAFTAR ACUAN [1]. HORAK, D., LEDNICKY F., PETROVSKY E., KAPICKA A., J. Macromolecular Materials and Engineering, 289 (2004) [2]. PANKHURST, Q.A., CONNOLYJ, JONES S.K., and DOBSON, J. Phys. D: Appl. Phys., 36 (2003) R167-R181 [3]. JOHNSON, J., Magnetic Targeted Carriers : An Innovative Drug Delivery Technology, Magnetic Magazine, (2004) [4]. GUPTA, A. K., GUPTA, M., Biomaterials, 26 (2005) [5]. SULUNGBUDI, G.T., MUJAMILAH RIDWAN, Jurnal Sains Materi Indonesia, 9 (1) (2007) [6]. GUERRO, DG., et al., Pharmaceut. Res., 15 (1998) 1056 [7]. LEE, S.J., et.al., Journal Colloids and Surface A: Physicochemical Engineering Aspects, (2005) [8]. ROSEN, M.J., Surfactant and Interfacial Phenomena, John Wiley & Sons, Inc., New York, (1978) [9]. SUDARYANTO, MUJAMILAH, WAHYU DIANINGSIH, HANDAYANI, A., RIDWAN MUTALIB, A., Jurnal Sains Materi Indonesia, 8 (2)(2007) [10]. AFFANDI, S., MUJAMILAH, KURNIATI, M. SUDARYANTO, Efek Kondisi Pembasahan dalam Pembentukan Nanosfir berbasis Oksida Besi, Jurnal Sains Materi Indonesia, 9 (1) (2007) Kadar No. m/a Awal ( : = 5/1 Setelah enkapsulasi % enkapsulasi 1. 6/55 166,7 14,40 8, /55 166,7 27,90 16, /55 166,7 29,74 17, /55 166,7 28,57 17, /55 166,7 41,58 24,94

HASIL DAN PEMBAHASAN Sintesis Partikel Magnetik Terlapis Polilaktat (PLA)

HASIL DAN PEMBAHASAN Sintesis Partikel Magnetik Terlapis Polilaktat (PLA) 10 1. Disiapkan sampel yang sudah dikeringkan ± 3 gram. 2. Sampel ditaburkan ke dalam holder yang berasal dari kaca preparat dibagi dua, sampel ditaburkan pada bagian holder berukuran 2 x 2 cm 2, diratakan

Lebih terperinci

SINTESIS NANOSFER BERBASIS FERROFLUID DAN POLY LACTIC ACID DENGAN METODE SONIKASI

SINTESIS NANOSFER BERBASIS FERROFLUID DAN POLY LACTIC ACID DENGAN METODE SONIKASI Sintesis Nanosfer Berbasis Ferrofluid dan Polylactic Acid dengan Metode Sonikasi (B.W. Hapsari) Akreditasi LIPI Nomor : 536/D/2007 Tanggal 26 Juni 2007 SINTESIS NANOSFER BERBASIS FERROFLUID DAN POLY LACTIC

Lebih terperinci

Enkapsulasi Nanopartikel Magnetik Fe 3 O 4 Menggunakan. Polimer Poli Asam Laktat Dengan Ultrasonik Probe

Enkapsulasi Nanopartikel Magnetik Fe 3 O 4 Menggunakan. Polimer Poli Asam Laktat Dengan Ultrasonik Probe Enkapsulasi Nanopartikel Magnetik Fe 3 O 4 Menggunakan Polimer Poli Asam Laktat Dengan Ultrasonik Probe oleh : Evi Yulianti 0606001701 UNIVERSITAS INDONESIA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM

Lebih terperinci

Tabel 2. Sifat kristal dan magnetik dari -Fe 2 O 3 dan Fe 3 O 4. (Harris, 2002)

Tabel 2. Sifat kristal dan magnetik dari -Fe 2 O 3 dan Fe 3 O 4. (Harris, 2002) 3 2. Menganalisis sifat magnetik sebelum dan sesudah dipadukan dengan polimer PLA. 3. Mempelajari efek parameter berupa waktu proses sonikasi (emulsifikasi). Hasil yang diharapkan adalah terbentuknya nanosfer

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Nanopartikel magnetik adalah partikel yang bersifat magnetik, berukuran dalam kisaran 1 nm sampai 100 nm. Ukuran partikel dalam skala nanometer hingga mikrometer identik

Lebih terperinci

Pengaruh Polietilen Glikol (PEG) Terhadap Ukuran Partikel Magnetit (Fe 3 O 4 ) yang Disintesis dengan Menggunakan Metode Kopresipitasi

Pengaruh Polietilen Glikol (PEG) Terhadap Ukuran Partikel Magnetit (Fe 3 O 4 ) yang Disintesis dengan Menggunakan Metode Kopresipitasi Pengaruh Polietilen Glikol (PEG) Terhadap Ukuran Partikel Magnetit (Fe 3 O 4 ) yang Disintesis dengan Menggunakan Metode Kopresipitasi Irfan Nursa*, Dwi Puryanti, Arif Budiman Jurusan Fisika FMIPA Universitas

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang 1 BAB I PENDAHULUAN 1.1. Latar Belakang Riset bidang material skala nanometer sangat pesat dilakukan di seluruh dunia saat ini. Jika diamati, hasil akhir dari riset tersebut adalah mengubah teknologi yang

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang

BAB I PENDAHULUAN Latar Belakang 1 BAB I PENDAHULUAN 1.1. Latar Belakang Perkembangan ilmu pengetahuan dan teknologi memicu terjadinya pencemaran lingkungan, seperti: air, tanah dan udara. Pencemaran lingkungan hidup, terutama logam berat

Lebih terperinci

BAB I PENDAHULUAN I.1 Latar Belakang Masalah

BAB I PENDAHULUAN I.1 Latar Belakang Masalah BAB I PENDAHULUAN I.1 Latar Belakang Masalah Perkembangan nanoteknologi telah mendapat perhatian besar dari para ilmuwan dan peneliti. Nanoteknologi secara umum dapat didefinisikan sebagai teknologi perancangan,

Lebih terperinci

PENGARUH TEMPERATUR TERHADAP UKURAN PARTIKEL FE3O4 DENGAN TEMPLATE PEG-2000 MENGGUNAKAN METODE KOPRESIPITASI

PENGARUH TEMPERATUR TERHADAP UKURAN PARTIKEL FE3O4 DENGAN TEMPLATE PEG-2000 MENGGUNAKAN METODE KOPRESIPITASI PENGARUH TEMPERATUR TERHADAP UKURAN PARTIKEL FE3O4 DENGAN TEMPLATE PEG-2000 MENGGUNAKAN METODE KOPRESIPITASI Santi Dewi Rosanti, Dwi Puryanti Jurusan Fisika FMIPA Universitas Andalas Kampus Unand, Limau

Lebih terperinci

SINTESIS NANOPARTIKEL FERIT UNTUK BAHAN PEMBUATAN MAGNET DOMAIN TUNGGAL DENGAN MECHANICAL ALLOYING

SINTESIS NANOPARTIKEL FERIT UNTUK BAHAN PEMBUATAN MAGNET DOMAIN TUNGGAL DENGAN MECHANICAL ALLOYING Akreditasi LIPI Nomor : 536/D/27 Tanggal 26 Juni 27 SINTESIS NANOPARTIKEL FERIT UNTUK BAHAN PEMBUATAN MAGNET DOMAIN TUNGGAL DENGAN MECHANICAL ALLOYING Suryadi 1, Budhy Kurniawan 2, Hasbiyallah 1,Agus S.

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang 1 BAB I PENDAHULUAN 1.1. Latar Belakang Nanopartikel merupakan suatu partikel dengan ukuran nanometer, yaitu sekitar 1 100 nm (Hosokawa, dkk. 2007). Nanopartikel menjadi kajian yang sangat menarik, karena

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Saat ini penggunaan magnetic nanoparticles (MNPs) sebagai perangkat elektronik semakin banyak diminati. Hal ini didasarkan pada keunikan sifat kemagnetan yang dimilikinya.

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Perkembangan teknologi rekayasa zat dalam skala nano selalu menjadi daya tarik di kalangan peneliti. Hal ini dikarenakan nanoteknologi akan sangat berpengaruh terhadap

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang

BAB I PENDAHULUAN Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Pencemaran lingkungan oleh logam berat menjadi masalah yang cukup serius seiring dengan penggunaan logam berat dalam bidang industri yang semakin meningkat. Keberadaan

Lebih terperinci

PASI NA R SI NO L SI IK LI A KA

PASI NA R SI NO L SI IK LI A KA NANOSILIKA PASIR Anggriz Bani Rizka (1110 100 014) Dosen Pembimbing : Dr.rer.nat Triwikantoro M.Si JURUSAN FISIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang 1 BAB I PENDAHULUAN 1.1 Latar Belakang Nanoteknologi memiliki jangkauan keilmuan yang bersifat interdisipliner. Satu bidang kajian terkait dengan bidang kajian lainnya. Sebagai contoh, ilmu fisika terkait

Lebih terperinci

IDENTIFIKASI Fase KOMPOSIT OKSIDA BESI - ZEOLIT ALAM

IDENTIFIKASI Fase KOMPOSIT OKSIDA BESI - ZEOLIT ALAM IDENTIFIKASI Fase KOMPOSIT OKSIDA BESI - ZEOLIT ALAM HASIL PROSES MILLING Yosef Sarwanto, Grace Tj.S., Mujamilah Pusat Teknologi Bahan Industri Nuklir - BATAN Kawasan Puspiptek Serpong, Tangerang 15314.

Lebih terperinci

Bab III Metodologi Penelitian

Bab III Metodologi Penelitian Bab III Metodologi Penelitian Penelitian ini dilaksanakan di Laboratorium Penelitian Kimia Analitik, Program Studi Kimia FMIPA ITB sejak September 2007 sampai Juni 2008. III.1 Alat dan Bahan Peralatan

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Akhir-akhir ini banyak dikembangkan penelitian tentang nanopartikel spinel ferrit. Hal ini dikarenakan bidang aplikasinya yang sangat luas yaitu dalam sistem penyimpanan

Lebih terperinci

PENGARUH WAKTU PEMANASAN TERHADAP SINTESIS NANOPARTIKEL FE3O4

PENGARUH WAKTU PEMANASAN TERHADAP SINTESIS NANOPARTIKEL FE3O4 PENGARUH WAKTU PEMANASAN TERHADAP SINTESIS NANOPARTIKEL FE3O4 Astuti, Aso Putri Inayatul Hasanah Jurusan Fisika. FMIPA. Universitas Andalas Email: tuty_phys@yahoo.com ABSTRAK Nanopartikel magnetik Fe 3O

Lebih terperinci

SINTESIS NANOSFER BERBASIS FERROFLUID DAN POLY LACTIC ACID (PLA) DENGAN METODE SONIKASI BRIGITA WIDYA HAPSARI

SINTESIS NANOSFER BERBASIS FERROFLUID DAN POLY LACTIC ACID (PLA) DENGAN METODE SONIKASI BRIGITA WIDYA HAPSARI SINTESIS NANOSFER BERBASIS FERROFLUID DAN POLY LACTIC ACID (PLA) DENGAN METODE SONIKASI BRIGITA WIDYA HAPSARI DEPARTEMEN FISIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR 2009

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Nanoteknologi terus mengalami perkembangan dengan semakin besar manfaat yang dapat dihasilkan seperti untuk kepentingan medis (pengembangan peralatan baru untuk

Lebih terperinci

BAB 3 METODOLOGI PENELITIAN

BAB 3 METODOLOGI PENELITIAN 23 BAB 3 METODOLOGI PENELITIAN 3.1 Tempat dan Waktu Penelitian 3.1.1 Tempat Penelitian Penelitian ini dilakukan di Laboratorium Pusat Penelitian Fisika- Lembaga Ilmu Pengetahuan Indonesia (PPF-LIPI) Kawasan

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Hasil-hasil penelitian bidang nanoteknologi telah diaplikasikan diberbagai bidang kehidupan, seperti industri, teknologi informasi, lingkungan, pertanian dan kesehatan.

Lebih terperinci

ENKAPSULASI NANOPARTIKEL MAGNESIUM FERRITE (MgFe2O4) PADA ADSORPSI LOGAM Cu(II), Fe(II) DAN Ni(II) DALAM LIMBAH CAIR

ENKAPSULASI NANOPARTIKEL MAGNESIUM FERRITE (MgFe2O4) PADA ADSORPSI LOGAM Cu(II), Fe(II) DAN Ni(II) DALAM LIMBAH CAIR ENKAPSULASI NANOPARTIKEL MAGNESIUM FERRITE (MgFe2O4) PADA ADSORPSI LOGAM Cu(II), Fe(II) DAN Ni(II) DALAM LIMBAH CAIR Dibuat Untuk Memenuhi Tugas Mata Kuliah Pilihan Teknologi Nano Oleh : Nama : Dwi Tri

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang 1 BAB I PENDAHULUAN 1.1 Latar Belakang Pertumbuhan kebutuhan manusia disegala bidang selain membawa kemajuan terhadap kehidupan manusia, tetapi juga akan memberikan dampak negatif kepada lingkungan. Industrialisasi

Lebih terperinci

BAB 1 PENDAHULUAN. Universitas Sumatera Utara

BAB 1 PENDAHULUAN. Universitas Sumatera Utara BAB 1 PENDAHULUAN 1.1 Latar Belakang Pasir besi umumnya ditambang di areal sungai dasar atau tambang pasir (quarry) di pegunungan, tetapi hanya beberapa saja pegunungan di Indonesia yang banyak mengandung

Lebih terperinci

III. METODOLOGI PENELITIAN. Penelitian ini dilakukan pada bulan Mei-Juli 2013 di Laboratorium Kimia

III. METODOLOGI PENELITIAN. Penelitian ini dilakukan pada bulan Mei-Juli 2013 di Laboratorium Kimia 27 III. METODOLOGI PENELITIAN A. Waktu dan Tempat Penelitian Penelitian ini dilakukan pada bulan Mei-Juli 2013 di Laboratorium Kimia Anorganik Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas

Lebih terperinci

PENGARUH SUHU PADA PROSES SONIKASI TERHADAP MORFOLOGI PARTIKEL DAN KRISTALINITAS NANOPARTIKEL Fe 3 O 4

PENGARUH SUHU PADA PROSES SONIKASI TERHADAP MORFOLOGI PARTIKEL DAN KRISTALINITAS NANOPARTIKEL Fe 3 O 4 PENGARUH SUHU PADA PROSES SONIKASI TERHADAP MORFOLOGI PARTIKEL DAN KRISTALINITAS NANOPARTIKEL Fe 3 O 4 Hari Gusti Firnando, Astuti Jurusan Fisika FMIPA Universitas Andalas, Padang Kampus Unand Limau Manis,

Lebih terperinci

Bab III Metodologi Penelitian

Bab III Metodologi Penelitian Bab III Metodologi Penelitian III. 1. Tahap Penelitian Penelitian ini terbagai dalam empat tahapan kerja, yaitu: a. Tahapan kerja pertama adalah persiapan bahan dasar pembuatan LSFO dan LSCFO yang terdiri

Lebih terperinci

ANALISIS FASA MINOR DENGAN TEKNIK DIFRAKSI NEUTRON

ANALISIS FASA MINOR DENGAN TEKNIK DIFRAKSI NEUTRON Urania Vol. 20 No. 3, Oktober 2014 : 110-162 ISSN 0852-4777 ANALISIS FASA MINOR DENGAN TEKNIK DIFRAKSI NEUTRON Engkir Sukirman, Herry Mugirahardjo Pusat Sains dan Teknologi Bahan Maju - BATAN Kawasan Puspiptek,

Lebih terperinci

HASIL DAN PEMBAHASAN. didalamnya dilakukan karakterisasi XRD. 20%, 30%, 40%, dan 50%. Kemudian larutan yang dihasilkan diendapkan

HASIL DAN PEMBAHASAN. didalamnya dilakukan karakterisasi XRD. 20%, 30%, 40%, dan 50%. Kemudian larutan yang dihasilkan diendapkan 6 didalamnya dilakukan karakterisasi XRD. 3.3.3 Sintesis Kalsium Fosfat Sintesis kalsium fosfat dalam penelitian ini menggunakan metode sol gel. Senyawa kalsium fosfat diperoleh dengan mencampurkan serbuk

Lebih terperinci

Sintesa dan Karakterisasi Partikel Magnetik Submikron Berbasis Oksida Fe dan Polimer Polilaktat (PLA) SONNY AFANDI G

Sintesa dan Karakterisasi Partikel Magnetik Submikron Berbasis Oksida Fe dan Polimer Polilaktat (PLA) SONNY AFANDI G Sintesa dan Karakterisasi Partikel Magnetik Submikron Berbasis Oksida Fe dan Polimer Polilaktat (PLA) SONNY AFANDI G741231 DEPARTEMEN FISIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN

Lebih terperinci

Research and Development on Nanotechnology in Indonesia, Vol.2, No.2, 2015, pp ISSN :

Research and Development on Nanotechnology in Indonesia, Vol.2, No.2, 2015, pp ISSN : Research and Development on Nanotechnology in Indonesia, Vol.2, No.2, 2015, pp. 91-98 ISSN : 2356-3303 ENKAPSULASI NANOPARTIKEL SUPERPARAMAGNETIK Fe 3 O 4 MENGGUNAKAN KITOSAN DAN ALGINAT YANG DIIMPREGNASI

Lebih terperinci

HASIL DAN PEMBAHASAN

HASIL DAN PEMBAHASAN HASIL DAN PEMBAHASAN BaTiO 3 merupakan senyawa oksida keramik yang dapat disintesis dari senyawaan titanium (IV) dan barium (II). Proses sintesis ini dipengaruhi oleh beberapa faktor seperti suhu, tekanan,

Lebih terperinci

Sintesis Nanopartikel ZnO dengan Metode Kopresipitasi

Sintesis Nanopartikel ZnO dengan Metode Kopresipitasi Sintesis Nanopartikel ZnO dengan Metode Kopresipitasi NURUL ROSYIDAH Jurusan Fisika Fakultas Matematika dan Ilmu Pengetahuan Alam Institut Teknologi Sepuluh Nopember Pendahuluan Kesimpulan Tinjauan Pustaka

Lebih terperinci

BAB III METODE PENELITIAN. Kegiatan penelitian ini dilaksanakan selama 6 bulan, dimulai dari bulan

BAB III METODE PENELITIAN. Kegiatan penelitian ini dilaksanakan selama 6 bulan, dimulai dari bulan 25 BAB III METODE PENELITIAN 3.1 Tempat dan Waktu Penelitian Kegiatan penelitian ini dilaksanakan selama 6 bulan, dimulai dari bulan Januari 2011. Penelitian dilakukan di Laboratorium Fisika Material jurusan

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Nanomaterial memiliki sifat unik yang sangat cocok untuk diaplikasikan dalam bidang industri. Sebuah material dapat dikatakan sebagai nanomaterial jika salah satu

Lebih terperinci

III. METODOLOGI PENELITIAN. Penelitian ini dilakukan di Laboratorium Kimia Anorganik Fakultas Matematika

III. METODOLOGI PENELITIAN. Penelitian ini dilakukan di Laboratorium Kimia Anorganik Fakultas Matematika 23 III. METODOLOGI PENELITIAN A. Waktu dan Tempat Penelitian Penelitian ini dilakukan di Laboratorium Kimia Anorganik Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Lampung pada bulan April

Lebih terperinci

III. METODOLOGI PENELITIAN. analisis komposisi unsur (EDX) dilakukan di. Laboratorium Pusat Teknologi Bahan Industri Nuklir (PTBIN) Batan Serpong,

III. METODOLOGI PENELITIAN. analisis komposisi unsur (EDX) dilakukan di. Laboratorium Pusat Teknologi Bahan Industri Nuklir (PTBIN) Batan Serpong, III. METODOLOGI PENELITIAN A. Tempat dan Waktu Penelitian Penelitian ini dilakukan di Laboratorium Biomassa, Lembaga Penelitian Universitas Lampung. permukaan (SEM), dan Analisis difraksi sinar-x (XRD),

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN A. Metode Penelitian Metode penelitian yang dilakukan adalah metode eksperimen secara kualitatif dan kuantitatif. Metode penelitian ini menjelaskan proses degradasi fotokatalis

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Perkembangan nanoteknologi terus dilakukan oleh para peneliti dari dunia akademik maupun dari dunia industri. Para peneliti seolah berlomba untuk mewujudkan karya

Lebih terperinci

BAB III METODE PENELITIAN. Penelitian ini dilakukan di Laboratorium Pusat Teknologi Farmasi dan

BAB III METODE PENELITIAN. Penelitian ini dilakukan di Laboratorium Pusat Teknologi Farmasi dan BAB III METODE PENELITIAN Penelitian ini dilakukan di Laboratorium Pusat Teknologi Farmasi dan Medika Badan Pengkajian dan Penerapan Teknologi di kawasan Puspitek Serpong, Tangerang. Waktu pelaksanaannya

Lebih terperinci

SINTESIS NANOSFER BERBASIS FERROFLUID DAN POLY LACTIC ACID (PLA) DENGAN METODE SONIKASI BRIGITA WIDYA HAPSARI

SINTESIS NANOSFER BERBASIS FERROFLUID DAN POLY LACTIC ACID (PLA) DENGAN METODE SONIKASI BRIGITA WIDYA HAPSARI SINTESIS NANOSFER BERBASIS FERROFLUID DAN POLY LACTIC ACID (PLA) DENGAN METODE SONIKASI BRIGITA WIDYA HAPSARI DEPARTEMEN FISIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR 2009

Lebih terperinci

PENGARUH PENAMBAHAN POLYETHYLENE GLYCOL (PEG) TERHADAP SIFAT MAGNETIK MAGHEMIT (γ-fe 2 O 3 ) YANG DISINTESIS DARI MAGNETIT BATUAN BESI (Fe 3 O 4 )

PENGARUH PENAMBAHAN POLYETHYLENE GLYCOL (PEG) TERHADAP SIFAT MAGNETIK MAGHEMIT (γ-fe 2 O 3 ) YANG DISINTESIS DARI MAGNETIT BATUAN BESI (Fe 3 O 4 ) PENGARUH PENAMBAHAN POLYETHYLENE GLYCOL (PEG) TERHADAP SIFAT MAGNETIK MAGHEMIT (γ-fe 2 O 3 ) YANG DISINTESIS DARI MAGNETIT BATUAN BESI (Fe 3 O 4 ) Muhammad Ikhsan*, Dwi Puryanti, Arif Budiman Jurusan Fisika

Lebih terperinci

SINTESIS DAN KARAKTERISASI MAGNESIUM OKSIDA (MgO) DENGAN VARIASI MASSA PEG-6000

SINTESIS DAN KARAKTERISASI MAGNESIUM OKSIDA (MgO) DENGAN VARIASI MASSA PEG-6000 SINTESIS DAN KARAKTERISASI MAGNESIUM OKSIDA (MgO) DENGAN VARIASI MASSA PEG-6000 Peni Alpionita, Astuti Jurusan Fisika FMIPA Universitas Andalas, Padang Kampus Unand Limau Manis, Pauh Padang 25163 e-mail:

Lebih terperinci

BAB 4 HASIL PERCOBAAN DAN PEMBAHASAN

BAB 4 HASIL PERCOBAAN DAN PEMBAHASAN BAB 4 HASIL PERCOBAAN DAN PEMBAHASAN Mikroemulsi merupakan emulsi jernih yang terbentuk dari fasa lipofilik, surfaktan, kosurfaktan dan air. Dispersi mikroemulsi ke dalam air bersuhu rendah akan menyebabkan

Lebih terperinci

BAB 3 METODE PENELITIAN

BAB 3 METODE PENELITIAN BAB 3 METODE PENELITIAN 3.1. Alat - Panci tahan panas Cosmo - Cawan porselen - Oven Gallenkamp - Tanur Thermolyne - Hotplate stirrer Thermo Scientific - Magnetic bar - Tabung reaksi - Gelas ukur Pyrex

Lebih terperinci

III. METODOLOGI PENELITIAN. Penelitian ini dilaksanakan pada bulan Mei Agustus 2014 di Laboratorium

III. METODOLOGI PENELITIAN. Penelitian ini dilaksanakan pada bulan Mei Agustus 2014 di Laboratorium 30 III. METODOLOGI PENELITIAN A. Waktu dan Tempat Penelitian Penelitian ini dilaksanakan pada bulan Mei Agustus 2014 di Laboratorium Kimia Anorganik Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Saat ini peran nanoteknologi begitu penting dalam pengembangan ilmu pengetahuan dan teknologi untuk kesejahteraan kehidupan manusia. Nanoteknologi merupakan bidang

Lebih terperinci

3 Percobaan. 3.1 Bahan Penelitian. 3.2 Peralatan

3 Percobaan. 3.1 Bahan Penelitian. 3.2 Peralatan 3 Percobaan 3.1 Bahan Penelitian Bahan-bahan yang digunakan untuk percobaan adalah polimer PMMA, poli (metil metakrilat), ditizon, dan oksina. Pelarut yang digunakan adalah kloroform. Untuk larutan bufer

Lebih terperinci

BAB III BAHAN, ALAT DAN CARA KERJA

BAB III BAHAN, ALAT DAN CARA KERJA BAB III BAHAN, ALAT DAN CARA KERJA Penelitian ini dilakukan di Laboratorium Farmasi Fisik, Kimia, dan Formulasi Tablet Departemen Farmasi FMIPA UI, Depok. Waktu pelaksanaannya adalah dari bulan Februari

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN Penelitian ini didahului dengan perlakuan awal bahan baku untuk mengurangi pengotor yang terkandung dalam abu batubara. Penentuan pengaruh parameter proses dilakukan dengan cara

Lebih terperinci

Erfan Handoko 1, Iwan Sugihartono 1, Zulkarnain Jalil 2, Bambang Soegijono 3

Erfan Handoko 1, Iwan Sugihartono 1, Zulkarnain Jalil 2, Bambang Soegijono 3 SINTESIS DAN KARAKTERISASI MATERIAL MAGNET HIBRIDA BaFe 12 O 19 - Sm 2 Co 17 Erfan Handoko 1, Iwan Sugihartono 1, Zulkarnain Jalil 2, Bambang Soegijono 3 1 Jurusan Fisika, Fakultas Matematika dan Ilmu

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Pencemaran logam berat sangat berbahaya bagi lingkungan. Banyak laporan yang memberikan fakta betapa berbahayanya pencemaran lingkungan terutama oleh logam berat pada

Lebih terperinci

BAB III METODOLOGI PENELITIAN. Metode yang digunakan dalam penelitian ini adalah metoda eksperimen.

BAB III METODOLOGI PENELITIAN. Metode yang digunakan dalam penelitian ini adalah metoda eksperimen. BAB III METODOLOGI PENELITIAN A. Metode Penelitian Metode yang digunakan dalam penelitian ini adalah metoda eksperimen. Penelitian dilakukan dengan beberapa tahapan yang digambarkan dalam diagram alir

Lebih terperinci

BAB III METODE PENELITIAN 3.1 Bahan dan Alat

BAB III METODE PENELITIAN 3.1 Bahan dan Alat BAB III METODE PENELITIAN 3.1 Bahan dan Alat 3.1.1 Bahan Pada penelitian ini digunakan bahan diantaranya deksametason natrium fosfat farmasetis (diperoleh dari Brataco), PLGA p.a (Poly Lactic-co-Glycolic

Lebih terperinci

Gambar 4.1 Hasil Formulasi Nanopartikel Polimer PLGA Sebagai Pembawa Deksametason Natrium Fosfat.

Gambar 4.1 Hasil Formulasi Nanopartikel Polimer PLGA Sebagai Pembawa Deksametason Natrium Fosfat. BAB IV HASIL DAN PEMBAHASAN 4.1 Organoleptis Nanopartikel Polimer PLGA Uji organoleptis dilakukan dengan mengamati warna, bau, dan bentuk nanopartikel PLGA pembawa deksametason natrium fosfat. Uji organoleptis

Lebih terperinci

BAB III METODOLOGI PENELITIAN. Mulai. Persiapan alat dan bahan. Meshing AAS. Kalsinasi + AAS. Pembuatan spesimen

BAB III METODOLOGI PENELITIAN. Mulai. Persiapan alat dan bahan. Meshing AAS. Kalsinasi + AAS. Pembuatan spesimen BAB III METODOLOGI PENELITIAN 3.1 Diagram Alir Penelitian berikut: Pada penelitian ini langkah-langkah pengujian mengacu pada diagram alir Mulai Persiapan alat dan bahan Meshing 100 + AAS Kalsinasi + AAS

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN 3.1 DIAGRAM ALIR PENELITIAN Gambar 3.1 di bawah ini memperlihatkan diagram alir dalam penelitian ini. Surfaktan P123 2 gr Penambahan Katalis HCl 60 gr dengan variabel Konsentrasi

Lebih terperinci

Sintesis Komposit TiO 2 /Karbon Aktif Berbasis Bambu Betung (Dendrocalamus asper) dengan Menggunakan Metode Solid State Reaction

Sintesis Komposit TiO 2 /Karbon Aktif Berbasis Bambu Betung (Dendrocalamus asper) dengan Menggunakan Metode Solid State Reaction Sintesis Komposit TiO 2 /Karbon Aktif Berbasis Bambu Betung (Dendrocalamus asper) dengan Menggunakan Metode Solid State Reaction Yuliani Arsita *, Astuti Jurusan Fisika Universitas Andalas * yulianiarsita@yahoo.co.id

Lebih terperinci

BAB IV HASIL PENELITIAN DAN PEMBAHASAN

BAB IV HASIL PENELITIAN DAN PEMBAHASAN A. Hasil Penelitian 1. Hasil Ekstasi BAB IV HASIL PENELITIAN DAN PEMBAHASAN Ekstrasi menggunakan metode maserasi dengan pelarut etanol diikuti dengan penguapan menghasilkan ekstrak kental berwarna coklat

Lebih terperinci

polutan. Pada dasarnya terdapat empat kelas bahan nano yang telah dievaluasi sebagai bahan fungsional untuk pemurnian air yaitu nanopartikel

polutan. Pada dasarnya terdapat empat kelas bahan nano yang telah dievaluasi sebagai bahan fungsional untuk pemurnian air yaitu nanopartikel 1 BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Air merupakan kebutuhan mendasar bagi makhluk hidup. Namun, kualitas air terus menurun karena pertumbuhan penduduk maupun industrialisasi yang menghasilkan

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Permasalahan

BAB I PENDAHULUAN Latar Belakang Permasalahan BAB I PENDAHULUAN Latar Belakang Permasalahan Seiring dengan meningkatnya kebutuhan manusia maka kemajuan dibidang teknologi mutlak adanya guna menyokong kebutuhan manusia. Efek daripada hal tersebut kini

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang Permasalahan

BAB I PENDAHULUAN 1.1 Latar Belakang Permasalahan BAB I PENDAHULUAN 1.1 Latar Belakang Permasalahan Nanoteknologi adalah ilmu dan rekayasa dalam menciptakan material, struktur fungsional, maupun piranti dalam skala nanometer. Perkembangan nanoteknologi

Lebih terperinci

Bab III Metoda Penelitian

Bab III Metoda Penelitian 28 Bab III Metoda Penelitian III.1 Lokasi Penelitian Sintesis senyawa target dilakukan di Laboratorium Kimia Anorganik dan Laboratorium Kimia Fisik-Material Departemen Kimia, Pengukuran fotoluminesens

Lebih terperinci

Bab III Metodologi Penelitian

Bab III Metodologi Penelitian Bab III Metodologi Penelitian Penelitian yang dilakukan ini menggunakan metode eksperimen. Eksperimen dilakukan di beberapa tempat yaitu Laboratorium Kemagnetan Bahan, Jurusan Fisika, FMIPA Universitas

Lebih terperinci

SINTESIS DAN KARAKTERISASI PARTIKEL NANO Fe 3 O 4 DENGAN TEMPLATE PEG- 1000

SINTESIS DAN KARAKTERISASI PARTIKEL NANO Fe 3 O 4 DENGAN TEMPLATE PEG- 1000 SINTESIS DAN KARAKTERISASI PARTIKEL NANO Fe 3 O 4 DENGAN TEMPLATE PEG- 1000 Febie Angelia Perdana Jurusan Fisika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Institut Teknologi Sepuluh Nopember Kampus

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Nanoteknologi adalah istilah untuk rentang teknologi, teknik dan proses yang menyangkut manipulasi materi pada tingkat molekul (kelompok atom), sistemsistem yang memiliki

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang Permasalahan

BAB I PENDAHULUAN 1.1 Latar Belakang Permasalahan BAB I PENDAHULUAN 1.1 Latar Belakang Permasalahan Nanoteknologi merupakan salah satu bidang yang menarik perhatian para peneliti dunia saat ini. Nanoteknologi adalah teknik rekayasa atau sintesis (kombinasi

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN 3.1 Waktu dan Lokasi Penelitian Penelitian ini dilakukan dari bulan Februari sampai dengan bulan Oktober 2013 di Laboratorium Kimia Riset Material dan Makanan serta di Laboratorium

Lebih terperinci

BAB III METODE PENELITIAN. bulan Agustus 2011 sampai bulan Januari tahun Tempat penelitian

BAB III METODE PENELITIAN. bulan Agustus 2011 sampai bulan Januari tahun Tempat penelitian 32 BAB III METODE PENELITIAN 3.1 Tempat dan Waktu Penelitian Kegiatan penelitian ini dilaksanakan selama 6 bulan dimulai pada bulan Agustus 2011 sampai bulan Januari tahun 2012. Tempat penelitian dilaksanakan

Lebih terperinci

BAB 3METODOLOGI PENELITIAN

BAB 3METODOLOGI PENELITIAN BAB 3METODOLOGI PENELITIAN 3.1 Tempat dan Waktu Penelitian 3.1.1 Tempat Penelitian Pusat PenelitianPengembangan Fisika (P2F) Lembaga Ilmu PengetahuanIndonesia (LIPI) PUSPITEK, Serpong. 3.1.2 Waktu Penelitian

Lebih terperinci

θ HASIL DAN PEMBAHASAN. oksida besi yang terkomposit pada struktur karbon aktif.

θ HASIL DAN PEMBAHASAN. oksida besi yang terkomposit pada struktur karbon aktif. Intensitas 5 selama 24 jam. Setelah itu, filtrat dipisahkan dari sampel C, D, dan E dengan cara mendekatkan batang magnet permanen pada permukaan Erlenmeyer. Konsentrasi filtrat ditentukan menggunakan

Lebih terperinci

3 Metodologi penelitian

3 Metodologi penelitian 3 Metodologi penelitian 3.1 Peralatan dan Bahan Peralatan yang digunakan pada penelitian ini mencakup peralatan gelas standar laboratorium kimia, peralatan isolasi pati, peralatan polimerisasi, dan peralatan

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3.1 Waktu dan Tempat Penelitian Penelitian konversi lignoselulosa jerami jagung (corn stover) menjadi 5- hidroksimetil-2-furfural (HMF) dalam media ZnCl 2 dengan co-catalyst zeolit,

Lebih terperinci

PENGARUH VARIASI PENAMBAHAN H 2 SO 4 PADA SINTESIS TONER TERHADAP BENTUK, UKURAN PARTIKEL DAN SUSEPTIBILITAS MAGNETIK

PENGARUH VARIASI PENAMBAHAN H 2 SO 4 PADA SINTESIS TONER TERHADAP BENTUK, UKURAN PARTIKEL DAN SUSEPTIBILITAS MAGNETIK PENGARUH VARIASI PENAMBAHAN H 2 SO 4 PADA SINTESIS TONER TERHADAP BENTUK, UKURAN PARTIKEL DAN SUSEPTIBILITAS MAGNETIK Yuni Chairun Nisa 1, Siti Zulaikah, Nandang Mufti Jurusan Fisika, Universitas Negeri

Lebih terperinci

3 Metodologi Percobaan

3 Metodologi Percobaan 3 Metodologi Percobaan 3.1 Waktu dan Tempat Penelitian Penelitian tugas akhir ini dilakukan di Laboratorium Penelitian Kimia Analitik, Program Studi Kimia, FMIPA Institut Teknologi Bandung. Waktu penelitian

Lebih terperinci

3 Metodologi Penelitian

3 Metodologi Penelitian 3 Metodologi Penelitian 3.1 Lokasi Penelitian Penelitian ini dilakukan di laboratorium Kelompok Keilmuan (KK) Kimia Analitik, Program Studi Kimia FMIPA Institut Teknologi Bandung. Penelitian dimulai dari

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN Metode yang digunakan dalam penelitian ini adalah eksperimen laboratorium yang meliputi dua tahap. Tahap pertama dilakukan identifikasi terhadap komposis kimia dan fase kristalin

Lebih terperinci

KARAKTERISASI SIFAT MAGNETIK DAN SERAPAN GELOMBANG MIKRO BARIUM M-HEKSAFERIT BaFe 12 O 19

KARAKTERISASI SIFAT MAGNETIK DAN SERAPAN GELOMBANG MIKRO BARIUM M-HEKSAFERIT BaFe 12 O 19 KARAKTERISASI SIFAT MAGNETIK DAN SERAPAN GELOMBANG MIKRO BARIUM M-HEKSAFERIT BaFe 12 O 19 NOER AF IDAH 1109201712 DOSEN PEMBIMBING Prof. Dr. Darminto, MSc Pendahuluan: Smart magnetic materials Barium M-Heksaferit

Lebih terperinci

Pengaruh Suhu Polimerisasi Terhadap Sifat Transpor dan Struktur Polianilina Berbentuk Garam Emeraldine

Pengaruh Suhu Polimerisasi Terhadap Sifat Transpor dan Struktur Polianilina Berbentuk Garam Emeraldine Research and Development on Nanotechnology in Indonesia, Vol.1, No.2, 2014, pp. 48-52 ISSN : 2356-3303 Pengaruh Suhu Polimerisasi Terhadap Sifat Transpor dan Struktur Polianilina Berbentuk Garam Emeraldine

Lebih terperinci

SINTESIS DAN KARAKTERISASI NANOPARTIKEL TITANIUM DIOKSIDA (TiO 2 ) MENGGUNAKAN METODE SONOKIMIA

SINTESIS DAN KARAKTERISASI NANOPARTIKEL TITANIUM DIOKSIDA (TiO 2 ) MENGGUNAKAN METODE SONOKIMIA SINTESIS DAN KARAKTERISASI NANOPARTIKEL TITANIUM DIOKSIDA (TiO 2 ) MENGGUNAKAN METODE SONOKIMIA Astuti * dan Sulastriya Ningsi Laboratrium Fisika Material, Jurusan Fisika FMIPA Universitas Andalas Kampus

Lebih terperinci

@Dhadhang_WK Laboratorium Farmasetika Unsoed 4/16/2013 1

@Dhadhang_WK Laboratorium Farmasetika Unsoed 4/16/2013 1 NANOPARTIKEL: PENGHANTARAN OBAT @Dhadhang_WK Laboratorium Farmasetika Unsoed 4/16/2013 1 Keunikan Sifat dalam Dimensi Nanometer Partikel tembaga yang memiliki diameter 6 nm menunjukkan kekerasan 5 kali

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang 1 BAB I PENDAHULUAN 1.1 Latar Belakang Ilmu yang mempelajari fenomena dan manipulasi material pada skala atomik, molekular, dan makromolekular disebut sebagai nanosains. Hal ini diklasifikasikan sendiri

Lebih terperinci

PENGARUH KONSENTRASI MEDIA NH 4 OH TERHADAP BENTUK FASE GEL DAN KARAKTERISASI SETELAH PEMANASAN

PENGARUH KONSENTRASI MEDIA NH 4 OH TERHADAP BENTUK FASE GEL DAN KARAKTERISASI SETELAH PEMANASAN ISSN 14106957 Akreditasi No. 129/AkredLIPI/P2MBI/06/2008 PENGARUH KONSENTRASI MEDIA NH 4 OH TERHADAP BENTUK FASE GEL DAN KARAKTERISASI SETELAH PEMANASAN Indra Suryawan, Sri Rinanti Susilowati Pusat Teknologi

Lebih terperinci

SINTESIS BAHAN MAGNETIK KOMPOSIT Fe-C DENGAN HIGH ENERGY MILLING SPEX 8000M DAN HIGH ENERGY MILLING E3D

SINTESIS BAHAN MAGNETIK KOMPOSIT Fe-C DENGAN HIGH ENERGY MILLING SPEX 8000M DAN HIGH ENERGY MILLING E3D Sintesa Bahan Magnetik Komposit Fe-C(grafit) dengan High Energy Milling (HEM) SPEX 8M dan HEM- E3D-LIPI (Setyo Purwanto) SINTESIS BAHAN MAGNETIK KOMPOSIT Fe-C DENGAN HIGH ENERGY MILLING SPEX 8M DAN HIGH

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Pencemaran lingkungan baik udara, tanah, ataupun air banyak terjadi akibat dari aktivitas manusia. Menurut UU No.32 tahun 2009, yang dimaksud dengan pencemaran adalah

Lebih terperinci

METODOLOGI PENELITIAN

METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN 3.1 Tahapan Penelitian Tahapan penelitian yang dilakukan dalam tugas akhir ini secara umum adalah sebagai berikut Gambar 3.1 Tahapan Penelitian 3.2 Bahan dan Peralatan Bahan

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Nanoteknologi adalah ilmu dan rekayasa dalam penciptaan material dan struktur fungsional dalam skala nanometer. Perkembangan nanoteknologi selalu dikaitkan

Lebih terperinci

BAB III METODE PENELITIAN. Subjek penelitian ini adalah temu kunci (Boesenbergia pandurata)

BAB III METODE PENELITIAN. Subjek penelitian ini adalah temu kunci (Boesenbergia pandurata) BAB III METODE PENELITIAN A. Subjek dan Objek Penelitian 1. Subjek Penelitian Subjek penelitian ini adalah temu kunci (Boesenbergia pandurata) 2. Objek Penelitian Objek penelitian ini adalah nanopartikel

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang

BAB I PENDAHULUAN Latar Belakang 1 BAB I PENDAHULUAN 1.1. Latar Belakang Material berukuran nano atau yang dikenal dengan istilah nanomaterial merupakan topik yang sedang ramai diteliti dan dikembangkan di dunia sains dan teknologi. Material

Lebih terperinci

BAB I PENDAHULUAN. Universitas Indonesia

BAB I PENDAHULUAN. Universitas Indonesia 1 BAB I PENDAHULUAN 1.1 Latar Belakang Beragam jenis produk minyak dan luasnya penggunaan minyak bumi pada berbagai sektor kehidupan membuat pencemaran lingkungan karena tumpahan minyak dapat menjadi masalah,

Lebih terperinci

PENGARUH WAKTU MILLING TERHADAP SIFAT FISIS, SIFAT MAGNET DAN STRUKTUR KRISTAL PADA MAGNET BARIUM HEKSAFERIT SKRIPSI EKA F RAHMADHANI

PENGARUH WAKTU MILLING TERHADAP SIFAT FISIS, SIFAT MAGNET DAN STRUKTUR KRISTAL PADA MAGNET BARIUM HEKSAFERIT SKRIPSI EKA F RAHMADHANI PENGARUH WAKTU MILLING TERHADAP SIFAT FISIS, SIFAT MAGNET DAN STRUKTUR KRISTAL PADA MAGNET BARIUM HEKSAFERIT SKRIPSI EKA F RAHMADHANI 130801041 DEPARTEMEN FISIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN

Lebih terperinci

Sintesis dan Enkapsulasi Partikel Nanomagnetik Nikel dengan Alginat-Kitosan dan Senyawa Aktif Mangosteen

Sintesis dan Enkapsulasi Partikel Nanomagnetik Nikel dengan Alginat-Kitosan dan Senyawa Aktif Mangosteen Research and Development on Nanotechnology in Indonesia, Vol.1, No.2, 2014, pp. 58-63 ISSN : 2356-3303 Sintesis dan Enkapsulasi Partikel Nanomagnetik Nikel dengan Alginat-Kitosan dan Senyawa Aktif Mangosteen

Lebih terperinci

III. METODOLOGI PENELITIAN. Penelitian ini telah dilakukan di Laboratorium Kimia Anorganik/Fisik Fakultas

III. METODOLOGI PENELITIAN. Penelitian ini telah dilakukan di Laboratorium Kimia Anorganik/Fisik Fakultas 32 III. METODOLOGI PENELITIAN A. Waktu dan Tempat Penelitian Penelitian ini telah dilakukan di Laboratorium Kimia Anorganik/Fisik Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Lampung pada

Lebih terperinci

BAB 1 PENDAHULUAN Latar Belakang

BAB 1 PENDAHULUAN Latar Belakang 13 BAB 1 PENDAHULUAN 1.1. Latar Belakang Molekul-molekul pada permukaan zat padat atau zat cair mempunyai gaya tarik kearah dalam, karena tidak ada gaya-gaya lain yang mengimbangi. Adanya gayagaya ini

Lebih terperinci

BAB IV HASIL PENELITIAN DAN ANALISIS

BAB IV HASIL PENELITIAN DAN ANALISIS BAB IV HASIL PENELITIAN DAN ANALISIS 4.1 Analisis Hasil Pengujian TGA - DTA Gambar 4.1 memperlihatkan kuva DTA sampel yang telah di milling menggunakan high energy milling selama 6 jam. Hasil yang didapatkan

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Nanoteknologi merupakan ilmu dan rekayasa dalam penciptaan material, struktur fungsional, maupun piranti dalam skala nanometer (Abdullah & Khairurrijal, 2009). Material

Lebih terperinci