BAB 2 LANDASAN TEORI

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB 2 LANDASAN TEORI"

Transkripsi

1 BAB 2 LANDASAN TEORI 2.1 Citra Digital Citra digital dapat didefenisikan sebagai fungsi f(x,y), berukuran M baris dan N kolom, dengan x dan y adalah koordinat spasial dan amplitudo f di titik kordinat f(x,y) dinamakan intensitas atau tingkat keabuan dari citra pada titik tersebut. Apabila nilai x, y dan nilai amplitudo f secara keseluruhan berhingga (finite) dan nilai bernilai diskrit maka dapat dikatakan bahwa citra tersebut adalah citra digital [6]. Kordinat citra digital dapat dilihat pada Gambar 2.1. Koordinat asal M N-1 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * Sebuah piksel Gambar 2.1 Koordinat citra digital Teknologi dasar untuk menciptakan dan menampilkan warna pada citra digital berdasarkan pada penelitian bahwa sebuah warna merupakan kombinasi dari tiga warna dasar, yaitu merah, hijau,dan biru (Red, Green, Blue-RGB) [9]. RGB adalah suatu model warna yang terdiri dari merah, hijau, dan biru, digabungkan dalam membentuk suatu susunan warna yang luas. Setiap warna dasar, misalnya merah, dapat diberi rentang-nilai. Untuk monitor komputer, nilai rentangnya

2 paling kecil = 0 dan paling besar = 255. Pilihan skala 256 ini didasarkan pada cara mengungkap 8 digit bilangan biner yang digunakan oleh mesin komputer. Dengan cara ini, akan diperoleh warna campuran sebanyak 256 x 256 x 256 = jenis warna. Sebuah jenis warna, dapat dibayangkan sebagai sebuah vektor di ruang 3 dimensi yang biasanya dipakai dalam matematika, koordinatnya dinyatakan dalam bentuk tiga bilangan, yaitu komponen-x, komponen-y dan komponen-z. Misalkan sebuah vektor dituliskan sebagai r = (x,y,z). Untuk warna, komponen-komponen tersebut digantikan oleh komponen R(ed), G(reen), B(lue). Jadi, sebuah jenis warna dapat dituliskan sebagai berikut: warna = RGB (30, 75, 255). Putih = RGB (255,255,255), sedangkan untuk hitam = RGB (0,0,0) [6] Representasi Warna Digital Warna digital adalah kombinasi dari tiga warna primer yaitu merah, hijau, dan biru (RGB). Setiap warna dapat dispesifikasikan sebagai triplet nilai intensitas RGB, dengan setiap intensitas berkisar antara 0 sampai 255, yaitu: Red : RGB (255, 0, 0).... (2.1) Green : RGB (0, 255, 0)... (2.2) Blue : RGB (0, 0, 255)... (2.3) Dari nilai triplet RGB persamaan (2.1) sampai (2.3) di atas dapat dikonversikan ke dalam nilai desimal seperti dibawah ini: Red : 255* * *256 2 = = (2.4) Green : 0* * *256 2 = , = 65,280 (2.5) Blue : 0* * *256 2 = ,711,680 = 16,711,680. (2.6) Rumus dasar mencari nilai RGB citra adalah: R = COLOR And RGB(255, 0, 0).... (2.7) G = (COLOR And RGB(0, 255, 0)) / (2.8) B = ((COLOR And RGB(0, 0, 255)) / 256) / (2.9) Dari persamaan (2.4) sampai (2.6) diatas, rumus RGB pada persamaan (2.7) sampai (2.9) menjadi:

3 Nilai R = c and (2.10) Nilai G = (c and 65,280)/ (2.11) Nilai B = ((c and 16,711,680)/256)/ (2.12) Format Citra Bitmap Pada format bitmap, citra disimpan sebagai suatu matriks di mana masing masing elemennya digunakan untuk menyimpan informasi warna untuk setiap piksel. Jumlah warna yang dapat disimpan ditentukan dengan satuan bit-per-piksel. Semakin besar ukuran bit-per-piksel dari suatu bitmap, semakin banyak pula jumlah warna yang dapat disimpan. Format bitmap ini cocok digunakan untuk menyimpan citra digital yang memiliki banyak variasi dalam bentuknya maupun warnanya, seperti foto, lukisan, dan frame video. Format file yang menggunakan format bitmap ini antara lain adalah BMP, DIB, PCX, GIF, dan JPG. Format yang menjadi standar dalam system operasi Microsoft Windows adalah format bitmap BMP atau DIB. Karakteristik lain dari bitmap yang juga penting adalah jumlah warna yang dapat disimpan dalam bitmap tersebut. Ini ditentukan oleh banyaknya bit yang digunakan untuk menyimpan setiap titik dari bitmap yang menggunakan satuan bpp (bit per piksel). Dalam Windows dikenal bitmap dengan 1, 4, 8, 16, dan 24 bit per piksel. Jumlah warna maksimum yang dapat disimpan dalam suatu bitmap adalah sebanyak 2 n, dimana n adalah banyaknya bit yang digunakan untuk menyimpan satu titik dari bitmap [5]. Berikut ini tabel yang menunjukkan hubungan antara banyaknya bit per piksel dengan jumlah warna maksimum yang dapat disimpan dalam bitmap, dapat dilihat pada Tabel 2.1.

4 Tabel 2.1 Hubungan antara bit per piksel dengan jumlah warna maksimum pada bitmap No Jumlah bit per piksel Maksimum Warna Citra Format PNG (Portable Network Graphics) Citra berformat PNG dikembangkan sebagai alternatif lain untuk GIF, yang menggunakan paten dari LZW algoritma kompresi. PNG adalah format citra yang sangat baik untuk grafis internet, karena mendukung transparansi didalam perambah (browser) dan memiliki keindahan tersendiri yang tidak bisa diberikan GIF atau bahkan JPG. Format PNG menggunakan teknik kompresi Loseless dan mendukung kedalaman warna 48 bit dengan tingkat ketelitian sampling: 1,2,4,8, dan 16 bit. Format ini memiliki alpha channel untuk mengkontrol transparency [10]. 2.2 Kompresi Data Kompresi Citra adalah aplikasi kompresi data yang dilakukan terhadap citra digital dengan tujuan untuk mengurangi redundansi dari data-data yang terdapat dalam citra sehingga dapat disimpan atau ditransmisikan secara efisien. Kompresi data dalam bidang ilmu komputer, ilmu pengetahuan dan seni adalah sebuah penyajian informasi ke dalam bentuk yang lebih sederhana. Kompresi data dapat di artikan juga sebagai proses yang dapat mengubah sebuah aliran data masukan (sumber atau data asli) ke dalam aliran data yang lain (keluaran atau data yang dikompresi) yang memiliki ukuran yang lebih kecil [4]. Kompresi data sangat populer sekarang ini karena dua alasan yaitu :

5 1. Orang orang lebih suka mengumpulkan data. Tidak peduli seberapa besar media penyimpanan yang dimilikinya. Akan tetapi cepat atau lambat akan terjadi overflow. 2. Orang orang benci menunggu waktu yang lama untuk memindahkan data. Misalnya ketika duduk di depan komputer untuk menunggu halaman Web terbuka atau men-download sebuah file. Rasio kompresi data adalah ukuran persentase data yang telah berhasil dikompres. Secara matematis rasio kompresi data ditulis sebagai berikut: Rasio kompresi = ( ukuran file asli ukuran file terkompresi ukuran file asli x 100 % ) Metode kompresi data dapat dikelompokkan dalam dua kelompok besar yaitu metode lossless dan metode lossy yaitu: 1. Metode lossless Pada teknik ini tidak ada kehilangan data atau informasi. Jika data dikompres secara lossless, data asli dapat direkonstruksi kembali sama persis dari data yang telah dikompresi, dengan kata lain data asli tetap sama sebelum dan sesudah kompresi. Secara umum teknik lossless digunakan untuk penerapan yang tidak bisa mentoleransi setiap perbedaan antara data asli dan data yang telah direkonstruksi. Data berbentuk tulisan misalnya file teks, harus dikompresi menggunakan teknik lossless, karena kehilangan sebuah karakter saja dapat mengakibatkan kesalapahaman. Lossless compression disebut juga dengan reversible compression karena data asli bisa dikembalikan dengan sempurna. Akan tetapi rasio kompresinya sangat rendah, misalnya pada data teks, gambar seperti GIF dan PNG. Contoh metode ini adalah Shannon-Fano Coding, Run Length Encoding, Arithmetic Coding dan lain sebagainya. 2. Metode lossy Pada teknik ini akan terjadi kehilangan sebagian informasi atau data. Data yang telah dikompresi dengan teknik ini secara umum tidak bisa direkonstruksi sama persis dari data aslinya. Di dalam banyak penerapan, rekonstruksi yang tepat bukan suatu masalah. Sebagai contoh, ketika sebuah sample suara ditransmisikan, nilai

6 eksak dari setiap sample suara belum tentu diperlukan. Tergantung pada yang memerlukan kualitas suara yang direkonstruksi, sehingga banyaknya jumlah informasi yang hilang di sekitar nilai dari setiap sample dapat ditoleransi. Umumnya teknik kompresi lossy membuang bagian-bagian data yang sebenarnya tidak berguna seperti data yang tidak dapat dilihat maupun didengar oleh manusia. Contoh metode ini adalah transform Coding, Wavelet dan lain-lain. Lossy compression disebut juga irreversible compression karena data asli mustahil untuk dikembalikan seperti semula. Kelebihan teknik ini adalah rasio kompresi yang tinggi dibanding metode lossless. Keuntungan dari metode lossy atas lossless adalah dalam beberapa kasus metode lossy menghasilkan file kompresi yang lebih kecil dibandingkan dengan metode lossless. Metode lossy sering digunakan untuk mengkompresi suara, gambar dan video karena data tersebut dimaksudkan kepada human interpretation dimana pikiran dapat dengan mudah mengisi bagian-bagian yang kosong atau melihat kesalahan yang sangat kecil atau inkonsistensi. Sedangkan lossless digunakan untuk mengkompresi data untuk diterima ditujuan dalam kondisi asli seperti dokumen teks. Lossy akan mengalami generation loss pada data sedangkan pada lossless tidak terjadi karena data yang hasil dekompresi sama dengan data asli. 2.3 Dekompresi Sebuah data yang sudah dikompres tentunya harus dapat dikembalikan lagi kebentuk aslinya, prinsip ini dinamakan dekompresi. Untuk dapat merubah data yang terkompres diperlukan cara yang berbeda seperti pada waktu proses kompres dilaksanakan. Jadi pada saat dekompresi catatan header yang berupa byte-byte tersebut terdapat catatan isi mengenai isi dari file tersebut [4]. Catatan header akan menuliskan kembali mengenai isi dari file tersebut, jadi isi dari file sudah tertulis oleh catatan header sehingga hanya tinggal menuliskan kembali pada saat proses dekompres. Proses dekompresi sempurna (kembali kebentuk aslinya). Secara umum proses kompresi dan dekompresi dapat dilihat pada Gambar 2.2.

7 Citra Asli (PNG, BMP) Kompresi Dekompresi Citra Hasil Kompresi (.sf,rle) Gambar 2.2 Alur kompresi Lossless 2.4 Algoritma Shannon-Fano Pada dasarnya cara kerja dari algoritma Shannon- Fano ini membentuk sebuah pohon, kemudian meng-encoding dan yang terakhir adalah mengembalikannya dalam bentuk karakter teks atau decoding. Pembuatan pohon pada Shannon-Fano dibuat berdasarkan proses dari atas ke bawah. Sebuah pohon Shannon-Fano dibangun sesuai dengan spesifikasi yang dirancang untuk mendefinisikan tabel kode yang efektif [1]. Secara umum langkah langkah yang dilakukan sebelum melakukan kompresi file citra dengan metode Shannon-Fano adalah sebagai berikut [5]: 1. Baca header untuk mendapatkan informasi format citra. 2. Baca nilai piksel. 3. Hitung nilai RGB setiap piksel. 4. Hitung nilai Grayscale setiap piksel 5. Ambil nilai piksel citra ke 1 sampai ke n. 6. Hitung frekuensi kemunculan setiap nilai piksel. Contoh menunjukkan pembangunan kode Shannon-Fano alfabet kecil. Kelima simbol-simbol yang dapat dikodekan memiliki frekuensi berikut: A = 15 ; B = 7 ; C = 6 ; D = 6 ; E = 5 Semua simbol-simbol yang diurutkan berdasarkan frekuensi, dari kiri ke kanan yang ditunjukkan pada Gambar 2.3 a. Menempatkan garis pemisah antara simbol-simbol B dan C menghasilkan total 22 di kelompok kiri dan total 17 di kelompok yang tepat. Ini meminimalkan perbedaan total antara dua kelompok. Dengan pembagian ini, A dan B akan masing-masing memiliki kode yang dimulai dengan 0 bit, dan C, D, dan E kode akan semua mulai dengan 1, seperti ditunjukkan pada Gambar 2.3.b. Kemudian, di

8 sebelah kiri setengah dari pohon mendapat divisi baru antara A dan B, yang menempatkan A pada daun dengan kode 00 dan B pada daun dengan kode 01. Setelah empat divisi prosedur, pohon hasil kode. Pohon di final, tiga simbol dengan frekuensi tertinggi semuanya telah ditugaskan 2-bit kode, dan dua simbol dengan tuntutan yang lebih rendah memiliki 3-bit kode seperti ditunjukkan Gambar 2.3. Gambar 2.3 Pohon Biner Shannon-Fano Setelah pohon jadi, maka proses selanjutnya adalah sama yaitu encoding dan decoding. Pada pohon Shannon-Fano, semua karakter dikelompokkan berurutan dari kiri ke kanan dari frekuensi yang sering muncul ke frekuensi yang umum. Untuk mempermudah dapat lihat dari contoh kasus yang direpresentasikan pada pohon berikut ini. Misal terdapat lima karakter A; B; C; D; E. Tabel 2.2 Tabel Frekuensi Kemunculan Karakter A B C D E Kemunculan Total Kemunculan 100

9 Dari data frekuensi diatas maka dapat diilustrasikan dengan angka skala 100, misalnya total dari seluruh kemunculan karakter tersebut adalah 100, maka data di atas menjadi : Frek A : 0,45 Frek B : 0,15 Frek C : 0,15 Frek D : 0,13 Frek E : 0,12. Melihat dari hasil pembentukan bit baru hasil encoding, karakter A yang sering muncul (probabilitas hingga 0,45) hanya memiliki satu bit saja yaitu 00. Kompresi seperti ini membuat algoritma menjadi lebih efektif karena pohon terbentuk dari bawah (probabilitas kecil atau umum) ke atas (probabilitas besar atau sering) [9]. Maka pohon Shannon-Fano akan terbentuk seperti pada Gambar Gambar 2.4 Pohon Shannon-Fano Berdasarkan pohon Shannon-Fano, maka proses encoding menjadi: Tabel 2.3 Kode Shannon-Fano Karakter A B C D E Shannon-Fano Code Dengan perhitungan jumlah kapasitas memori yang sama seperti di atas, maka didapat untuk total memori yaitu:

10 45x2bit + 15x2bit + 15x2bit + 13x3bit + 12x3bit = 225 bit. 2.5 Run Length Encoding Algoritma Run Length Encoding adalah melakukan kompresi dengan memindahkan pengulangan byte yang sama berturut-turut atau secara terus menerus. Algoritma ini digunakan untuk mengompresi citra yang memiliki kelompok-kelompok piksel yang berderajat keabuan yang sama. Pada metode ini dilakukan pembuatan rangkaian pasangan nilai (P,Q) untuk setiap baris piksel, dimana nilai P menyatakan nilai derajat keabuan, sedangkan nilai Q menyatakan jumlah piksel berurutan yang memiliki derajat keabuan tersebut [4]. Sebagai contoh sebuah citra dengan nilai piksel 120, 120, 120, 120, 150, 200, 200, 200, 200, 150, 150, 150, 150, 120, 150, 150, 150, 150, nilai piksel pertama 120, kedua 120, karakter ketiga 120, karakter keempat 120, dan karakter kelima 150, dikarenakan pada nilai piksel kelima tidak sama dengan sebelumnya, sehingga 4 nilai piksel pertama yang mengalami perulangan akan dijumlahkan semuanya dan nilai yang dijumlahkan adalah banyaknya nilai piksel yang akan diulang, sehingga output keempat nilai piksel yang pertama setelah dikompresi adalah hanya sebuah nilai piksel dan diikuti dengan nilai perulangan yaitu 120,4, setelah dilakukan kompresi 4 piksel pertama akan dilanjutkan ke nilai berikutnya yaitu nilai kelima 150, kemudian nilai keenam 200, dikarenakan nilai piksel keenam tidak sama dengan nilai piksel kelima, dan nilai piksel kelima tidak mengalami perulangan sehingga nilai piksel yang tidak mengalami perulangan akan ditambahkan kepada nilai piksel 120,4, sehingga menjadi 120,4150, dan seterusnya sehingga nilai piksel citra 120, 120, 120, 120, 150, 200, 200, 200, 200, 150, 150, 150, 150, 120, 150, 150, 150, 150 setelah dikompresi akan menjadi (120,4) (150,1) (200,4) (150,4) (120,1) (150,4). Dapat diperhatikan bahwa nilai piksel 120, 120, 120, 120, 150, 200, 200, 200, 200, 150, 150, 150, 150, 120, 150, 150, 150, 150 yang berukuran 18 byte / nilai piksel dapat dilihat dari Tabel 2.4.

11 Tabel 2.4. Metode Kompresi RLE No Simbol Masukan Simbol Keluaran Total Frekuensi 1 120, 120, 120, , 200, 200, , 150, 150, , 150, 150, Dekompresi metode RLE adalah dengan menguraikan nilai angka menjadi nilai piksel yang diikuti nilai angka sebanyak nilai angka tersebut, misalnya pesan (120,4) (150,1), nilai 4 menyatakan banyaknya nilai piksel 120 yang diulang, sehingga setelah didekompresi pesan (120,4) (150,1) akan menjadi 120, 120, 120, 120, 150 yang dapat dilihat dari Tabel 2.5. Tabel 2.5 Metode Dekompresi RLE No Simbol Masukan Simbol Keluaran Total Frekuensi , 120, 120, , 200, 200, , 150, 150, , 150, 150, 150 Untuk mencatat tiap-tiap byte nilai yang diikuti maka digunakan suatu counter (pencatat jumlah banyaknya data yang keluar), counter menandakan berapa banyak pengulangan byte yang tercatat. Algoritma kompresi Run Length Encoding mempunyai suatu hasil yang baik untuk file yang besar, sehingga untuk mengkompresi data yang kecil tidak menguntungkan. Algoritma kompresi RLE hanya efisien dengan data yang berisi kelompok data (byte / karakter) yang berulang dan

12 dapat digunakan pada file teks dimana file teks berisi banyak kelompok data yang berupa spasi atau tabulator, dan juga dapat diterapkan untuk citra (gambar) yang berisi area hitam atau putih yang besar. Metode kompresi Run Length Encoding digunakan untuk format file TIFF (.tiff), PDF (.pdf) dan Bitmap dengan area B/W yang besar (.bmp) [6]. 2.6 Pembacaan File Citra Pada citra warna 24-bit (true color) tidak terdapat palet RGB, karena nilai RGB langsung diuraikan dalam data bitmap berbentuk biner. Untuk membaca nilai RGBnya, dilakukan mencari header-header serta data bitmap yang berisi informasi dimensi, format dan nilai piksel citra. Setiap elemen data bitmap panjangnya 3 byte, masing-masing byte menyatakan komponen R, G, dan B. Setiap byte data merepresentasikan 8 bit, jadi pada citra warna ada 3 byte x 8 bit = 24 bit kandungan warna. Pada citra warna, tiap pixel-nya mengandung 24-bit kandungan warna atau 8- bit untuk masing-masing warna dasar (R, G, dan B), dengan kisaran nilai kandungan antara 0 ( ) sampai 255 ( ) untuk tiap warna. Sebagai contoh suatu nilai pixel sebuah citra warna seperti pada Gambar 2.5. <Header> <data bitmap> Piksel 1 Piksel Piksel n Gambar 2.5 Contoh Nilai Piksel Citra Warna Pada contoh citra Gambar 2.5 di atas, data pertama adalah header yang berisi informasi nama file, jenis format dan dimensi citra. Di bawah data bitmap terdapat pixel pertama (f(x,y)) bernilai (biner).

13 Misalkan diberikan citra warna dengan dimensi 300 x 200 piksel yang dihasilkan dari alat perekam digital. Tujuan yang hendak dicapai adalah mengelompokkan pola-pola yang sama agar diperoleh bagian-bagian yang mempunyai pola yang lebih tegas dan jelas. Citra warna 300 x 200 piksel dapat dilihat pada Gambar 2.6. Gambar 2.6 Citra Warna 300 x 200 piksel. Pada bagian pola yang teratur berisi nilai piksel dengan komponen warna (RGB) yang hampir sama dengan piksel tetangganya (berdekatan) sedangkan pada bagian pola yang tidak teratur berisi nilai piksel dengan komponen warna yang berbeda jauh dengan piksel tetangganya. Bagian citra Gambar 3.2 di atas yang akan diproses dengan segmentasi dengan terlebih dahulu menurunkan kualitas warna menjadi citra grayscale seperti dapat dilihat pada Gambar 2.7. Piksel Citra 1 blok Gambar 2.7 Citra Grayscale Untuk mendapatkan citra grayscale setiap piksel, terlebih dahulu dihitung nilai RGB setiap piksel. Selanjutnya nilai grayscale diperoleh dengan menggunakan rumus: i=3 f(i,j) = j 1 (R + G + B)/3... (2.13)

14 ket : f(i,j) = nilai piksel pada koordinat i,j R = nilai warna merah G = nilai warna hijau B = nilai warna hijau 2.7 Nilai Grayscale Citra Matriks citra warna pada Gambar 2.6 di atas dikonversikan menjadi citra grayscale dengan menghitung rata-rata warna Red, Green dan Blue [7]. Secara matematis penghitungannya adalah sebagai berikut. f 0 (x,y) = fr (x,y)+ f G (x,y)+ f B (x,y)..... (2.14) 3 ket : f(x,y) = nilai piksel pada koordinat x,y f R f G = nilai warna merah = nilai warna hijau Bf B = nilai warna hijau 2.8 UML (Unified Modeling Language) Unified Modeling Language adalah sebuah bahasa grafis yang telah menjadi standar dalam industri untuk visualisasi, merancang dan mendokumentasikan sistem piranti lunak [2]. UML merupakan dasar fundamental dari teknik analisis berorientasi objek, berbentuk diagram diagram yang digunakan untuk menampilkan konstruksi dari sistem berorientasi objek, seperti cetak biru (blue print) suatu pembangunan gedung yang menggambarkan konstruksi bangunan tersebut [2] Use-case Diagram Use-case diagram menggambarkan secara grafis perilaku perangkat lunak. Diagram ini memberikan gambaran menurut perspektif pengguna perangkat lunak. Sebuah usecase diagram mengandung actor, use-case dan interaksi antara actor dengan use-case. [2] Actor

15 Actor merupakan segala sesuatu yang perlu berinteraksi dengan sistem untuk pertukaran informasi. Actor memberikan suatu gambaran jelas tentang apa yang harus dilakukan perangkat lunak. Actor dinotasikan seperti pada gambar berikut: Gambar 2.9 Actor Use case Use case merupakan hasil penyusunan kembali lingkup fungsionalitas sistem menjadi banyak pernyataaan fungsionalitas sistem yang lebih kecil. Sebuah use case merepresentasikan satu tujuan tunggal dari sistem dan menggambarkan satu rangkaian kegiatan dan interaksi pengguna untuk mencapai tujuan [2]. Use case menggambarkan fungsi fungsi sistem dari sudut pandang pengguna eksternal. Diagram ini juga dapat diartikan sebagai urutan transaksi berkaitan yang dilakukan satu actor dengan perangkat lunak. Use case dinotasikan seperti pada Gambar 2.10 berikut: Gambar 2.10 Use case Interaksi Actor dengan Use-case Interaksi Actor dengan Use case dinotasikan seperti pada gambar berikut: Gambar 2.11 Use-case Diagram

16 2.8.2 Activity Diagram Activity diagram memodelkan alur kerja (workflow) sebuah proses bisnis dan urutan aktifitas dalam suatu proses. Diagram ini sangat mirip dengan sebuah flowchart karena kita dapat memodelkan sebuah alur kerja dari satu aktifitas ke aktifitas lainnya atau dari satu aktifitas ke dalam keadaan sesaat (state) [2]. Activity diagram menggambarkan aliran aktifitas dari sistem yang sedang dirancang, bagaimanan masing masing aliran berawal, decision yang mungkin terjadi, dan bagaimana mereka berakhir. Diagram ini juga dapat menggambarkan proses parallel yang mungkin terjadi pada beberapa eksekusi. Contoh activity diagram diperlihatkan pada gambar berikut: Class Diagram Gambar 2.12 Activity Diagram

17 Class diagram merupakan struktur kelas kelas dari suatu sistem yang memperlihatkan hubungan antar kelas dan penjelasan tiap tiap kelas. Pada diagram ini terdapat nama kelas, atribut dan operasi kelas tersebut. Selama proses analisis, class diagram memperlihatkan aturan aturan dan tanggung jawab entitas yang menentukan perilaku sistem. Selama tahap desain, diagram ini berperan dalam menangkap struktur dari semua kelas yang membentuk arsitektur sistem yang dibuat [2]. Contoh class diagram diperlihatkan pada Gambar berikut: Gambar 2.13 Class Diagram Sequence Diagram Sequence diagram menjelaskan interaksi objek yang disusun dalam suatu urutan waktu. Diagram ini memperlihatkan tahap demi tahap apa yang harus terjadi untuk menghasilkan sesuatu di dalam use-case. Sequence diagram secara khusus berinteraksi dengan use-case. Masing-masing sequence diagram menggambarkan aliran pada suatu use case. Sequence diagram dapat dibaca dengan melihat pada objek-objek dan pesan-pesan (message). Objek-objek yang berperan dalam aliran diperlihatkan pada kotak empat persegi panjang yang melintas pada bagian atas diagram. Setiap objek memiliki garis hidup (lifeline), yang digambarkan sebagai garis vertikal di bawah nama suatu objek. Notasi sequence diagram digambarkan sebagai berikut:

18 Gambar 2.14 Sequence Diagram Package Diagram Sebuah package adalah sebuah bentuk pengelompokkan yang memungkinkan pembangun untuk mengambil setiap bentuk di UML dan mengelompokkan elemen elemennya dalam tingkatan unit yang lebih tinggi [2]. Diagram ini merupakan mekanisme pengelompokan yang digunakan untuk menandakan pengelompokan elemel elemen model. Sebuah package dapat mengandung beberapa paket lain di dalamnya. Diagram ini digunakan untuk memudahkan mengorganisasi elemen elemen model. Notasi package diagram digambarkan sebagai berikut:

19 Gambar 2.15 Packege Diagram Deployment Diagram Deployment diagram menunjukkan susunan fisik sebuah sistem, menunjukkan bagian perangkat lunak yang berjalan pada perangkat keras [2]. Diagram ini adalah diagram dengan tipe implementasi yang digunakan untuk secara grafis menggambarkan arsitektur fisik dari perangkat lunak sistem. Diagram ini dapat digunakan untuk menunjukkan ketergantungan di antara komponen-komponen penyusun sistem. Deployment diagram menggambarkan bagaimana komponen dibangun dalam infrastruktur sistem, di mana suatu komponen (pada mesin, server atau perangkat keras apa), bagaimana kemampuan jaringan pada lokasi tersebut, spesifikasi server. Sebuah node adalah server, workstation atau perangkat keras lain yang digunakan untuk membangun komponen dalam lingkungan sebenarnya. Contoh deployment diagram diperlihatkan pada gambar berikut: Gambar 2.16 Deployment Diagram Analisis Persyaratan dengan UML

20 Analisis persyaratan meliputi usaha untuk mengetahui apa kemampuan sebuah sistem yang diinginkan pengguna dan pelanggan dari sebuah pembuat perangkat lunak [2]. Analisis ini dilakukan untuk mendapatkan informasi atau persyaratan cukup untuk mempersiapkan model yang menggambarkan apa yang diperlukan dari perspektif pengguna. Diagram yang digunakan dalam analisis persyaratan yaitu: 1. Use case diagram yang digunakan untuk menunjukkan fungsionalitas suatu sistem dan bagaimana sistem berinterakasi dengan dunia luar. 2. Activity diagram yang menunjukkan alur kerja (work flow) sebuah proses bisnis dan urutan aktivitas dalam suatu proses. 3. Class diagram yang membantu dalam visualisasi struktur sistem yang mendeskripsikan jenis-jenis objek dalam suatu sistem dan hubungan yang terdapat diantara objek tersebut. 4. Package diagram yang digunakan untuk mengelompokkan elemen-elemen model atau kelas Desain dengan UML Saat membuat desain adalah saat untuk berpikir secara teknis dalam menggambarkan diagram-diagram UML. Diagram yang digunakan dalam mendesain sistem yaitu: Class diagram dalam sudut pandang perangkat lunak, untuk menunjukkan class yang terdapat di dalam perangkat lunak dan bagaimana mereka saling berhubungan. 1. Sequence diagram untuk menjelaskan interaksi objek yang disusun dalam suatu urutan waktu. 2. Package diagram yang digunakan untuk mengelompokkan elemen-elemen model atau kelas. 3. Deployment diagram yang menunjukkan arsitektur fisik sebuah sistem. 2.9 Flowchart Flowchart adalah bagan alir yang menggambarkan arus data dari program. Fungsi dari bagan alir ini adalah untuk memudahkan programmer di dalam perancangan program

21 aplikasi [11]. Simbol-simbol yang digunakan pada bagan flowchart ini antara lain seperti pada Tabel 2.6. Simbol Tabel 2.6 Simbol-simbol Flowchart Program [11] Fungsi Terminator Menunjukkan awal dan akhir suatu proses. Data Digunakan untuk mewakili data input/output. Process Digunakan untuk mewakili proses. Decision Digunakan untuk suatu seleksi kondisi didalam program. Predefined Process Menunjukkan suatu operasi yang rinciannya ditunjukkan di tempat lain. Preparation Digunakan untuk memberi nilai awal variabel. Flow Lines Symbol Menunjukkan arah dari proses. Connector Menunjukkan penghubung ke halaman yang sama. Menunjukkan penghubung ke halaman yang baru.

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1. Citra Digital Citra digital adalah citra yang terdiri dari sinyal-sinyal frekuensi elektromagnetis yang sudah di-sampling sehingga dapat ditentukan ukuran titik gambar tersebut

Lebih terperinci

BAB II TEORI DASAR PENGOLAHAN CITRA DIGITAL

BAB II TEORI DASAR PENGOLAHAN CITRA DIGITAL BAB II TEORI DASAR PENGOLAHAN CITRA DIGITAL 2.1 Citra Secara harafiah, citra adalah representasi (gambaran), kemiripan, atau imitasi pada bidang dari suatu objek. Ditinjau dari sudut pandang matematis,

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Citra Digital Citra adalah suatu representasi, kemiripan atau imitasi dari suatu objek atau benda, misal: foto seseorang mewakili entitas dirinya sendiri di depan kamera. Sedangkan

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Citra merupakan representasi digital dari objek gambar, yang tidak lepas dari kebutuhan manusia. Pada umumnya representasi citra membutuhkan memori yang cukup besar,

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA Bab ini membahas landasan teori yang bersifat ilmiah untuk mendukung penulisan penelitian ini. Teori-teori yang dibahas mengenai pengertian citra, jenis-jenis citra digital, metode

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Pada bab ini akan membahas landasan atas teori-teori ilmiah untuk mendukung penelitian ini. Teori-teori yang dibahas mengenai pengertian citra, kompresi citra, algoritma dan jenisnya,

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Peningkatan teknologi komputer memberikan banyak manfaat bagi manusia di berbagai aspek kehidupan, salah satu manfaatnya yaitu untuk menyimpan data, baik data berupa

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1. Kompresi File Pada dasarnya semua data itu merupakan rangkaian bit 0 dan 1. Yang membedakan antara suatu data tertentu dengan data yang lain adalah ukuran dari rangkaian bit dan

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1. Kompresi Data Kompresi data adalah proses mengkodekan informasi menggunakan bit atau information-bearing unit yang lain yang lebih rendah daripada representasi data yang tidak

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Pada bab ini akan membahas landasan atas teori-teori ilmiah untuk mendukung penelitian ini. Teori-teori yang dibahas mengenai pengertian citra, kompresi citra, algoritma dan jenisnya,

Lebih terperinci

BAB 1 PENDAHULUAN Latar Belakang

BAB 1 PENDAHULUAN Latar Belakang 1 BAB 1 PENDAHULUAN 1.1. Latar Belakang Kompresi data adalah suatu proses untuk mengubah sebuah input data stream (stream sumber atau data mentah asli) ke dalam aliran data yang lain yang berupa output

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Citra (image) adalah kombinasi antara titik, garis, bidang, dan warna untuk menciptakan suatu imitasi dari suatu obyek, biasanya obyek fisik atau manusia. Citra dapat

Lebih terperinci

BAB II TEORI DASAR PENGOLAHAN CITRA DIGITAL. foto, bersifat analog berupa sinyal sinyal video seperti gambar pada monitor

BAB II TEORI DASAR PENGOLAHAN CITRA DIGITAL. foto, bersifat analog berupa sinyal sinyal video seperti gambar pada monitor BAB II TEORI DASAR PENGOLAHAN CITRA DIGITAL 2.1 Pendahuluan Citra adalah suatu representasi, kemiripan, atau imitasi dari suatu objek. Citra sebagai keluaran suatu sistem perekaman data dapat bersifat

Lebih terperinci

IMPLEMENTASI DAN ANALISIS KINERJA ALGORITMA SHANNON- FANO UNTUK KOMPRESI FILE TEXT

IMPLEMENTASI DAN ANALISIS KINERJA ALGORITMA SHANNON- FANO UNTUK KOMPRESI FILE TEXT IMPLEMENTASI DAN ANALISIS KINERJA ALGORITMA SHANNON- FANO UNTUK KOMPRESI FILE TEXT Sutardi Staf Pengajar Jurusan Pendidikan Teknik Informatika Fakultas Teknik Universitas Halu Oleo Kampus Hijau Bumi Tridarma

Lebih terperinci

Penerapan Pohon Biner Huffman Pada Kompresi Citra

Penerapan Pohon Biner Huffman Pada Kompresi Citra Penerapan Pohon Biner Huffman Pada Kompresi Citra Alvin Andhika Zulen (3507037) Program Studi Teknik Informatika, Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jalan Ganesha No 0 Bandung,

Lebih terperinci

PEMAMPATAN CITRA (IMA

PEMAMPATAN CITRA (IMA PEMAMPATAN CITRA (IMAGE COMPRESSION) PENGERTIAN Kompresi Citra adalah aplikasi kompresi data yang dilakukan terhadap citra digital dengan tujuan untuk mengurangi redundansi dari data-data yang terdapat

Lebih terperinci

APLIKASI PENGAMANAN DATA TEKS PADA CITRA BITMAP DENGAN MENERAPKAN METODE LEAST SIGNIFICANT BIT (LSB)

APLIKASI PENGAMANAN DATA TEKS PADA CITRA BITMAP DENGAN MENERAPKAN METODE LEAST SIGNIFICANT BIT (LSB) APLIKASI PENGAMANAN DATA TEKS PADA CITRA BITMAP DENGAN MENERAPKAN METODE LEAST SIGNIFICANT BIT (LSB) Mesran dan Darmawati (0911319) Dosen Tetap STMIK Budi Darma Medan Jl. Sisingamangaraja No. 338 Simpang

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Pengertian Citra Citra adalah suatu representasi (gambaran), kemiripan, atau imitasi suatu objek. Citra sebagai keluaran suatu sistem perekaman data dapat bersifat optik berupa

Lebih terperinci

Implementasi Metode Run Length Encoding (RLE) untuk Kompresi Citra

Implementasi Metode Run Length Encoding (RLE) untuk Kompresi Citra 249 Implementasi Metode Run Length Encoding (RLE) untuk Kompresi Citra Ahmad Jalaluddin 1, Yuliana Melita 2 1) Univers itas Islam Lamongan 2) Sekolah Tinggi Teknik Surabaya Odden.85@gmail.com, ymp@stts.edu

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB 1 PENDAHULUAN. 1.1 Latar Belakang Masalah BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah Perkembangan teknologi informasi ternyata berdampak pada perkembangan ilmu pengetahuan yang lain. Semuanya merupakan informasi yang sangat penting. Oleh karena

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1. Kompresi Data Kompresi data adalah proses mengubah sebuah aliran data input menjadi aliran data baru yang memiliki ukuran lebih kecil. Aliran yang dimaksud adalah berupa file

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Citra adalah gambar bidang dua dimensi yang juga merupakan keluaran data. Artinya suatu data atau informasi tidak hanya direpresentasikan dalam bentuk teks, namun juga

Lebih terperinci

IMPLEMENTASI DAN ANALISIS KINERJA ALGORITMA ARIHTMETIC CODING DAN SHANNON-FANO PADA KOMPRESI CITRA BMP

IMPLEMENTASI DAN ANALISIS KINERJA ALGORITMA ARIHTMETIC CODING DAN SHANNON-FANO PADA KOMPRESI CITRA BMP IMPLEMENTASI DAN ANALISIS KINERJA ALGORITMA ARIHTMETIC CODING DAN SHANNON-FANO PADA KOMPRESI CITRA BMP Syahfitri Kartika Lidya 1) Mohammad Andri Budiman 2) Romi Fadillah Rahmat 3) Jurusan Teknologi Informasi

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 4 BAB II TINJAUAN PUSTAKA 2.1 Gambar Digital Gambar digital merupakan suatu matriks dimana indeks baris dan kolomnya menyatakan suatu titik pada gambar tersebut dan elemen matriksnya menyatakan tingkat

Lebih terperinci

Implementasi Algoritma Kompresi Shannon Fano pada Citra Digital

Implementasi Algoritma Kompresi Shannon Fano pada Citra Digital Implementasi Algoritma Kompresi Shannon Fano pada Citra Digital Muhammad Khoiruddin Harahap Politeknik Ganesha Medan choir.harahap@yahoo.com Abstrak Algoritma kompresi Shannon-Fano merupakan salah satu

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Citra Citra adalah suatu representasi (gambaran), kemiripan, atau imitasi dari suatu objek. Citra sebagai keluaran suatu system perekaman data dapat bersifat optik berupa foto,

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Kompresi 2.1.1 Sejarah kompresi Kompresi data merupakan cabang ilmu komputer yang bersumber dari Teori Informasi. Teori Informasi sendiri adalah salah satu cabang Matematika yang

Lebih terperinci

TUGAS AKHIR IMPLEMENTASI ALGORITMA METODE HUFFMAN PADA KOMPRESI CITRA

TUGAS AKHIR IMPLEMENTASI ALGORITMA METODE HUFFMAN PADA KOMPRESI CITRA TUGAS AKHIR IMPLEMENTASI ALGORITMA METODE HUFFMAN PADA KOMPRESI CITRA Disusun sebagai Salah Satu Syarat Menyelesaikan Program Studi Strata 1 Jurusan Elektro Fakultas Teknik Universitas Muhammadiyah Surakarta

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA 5 BAB 2 TINJAUAN PUSTAKA Setelah membaca bab ini maka pembaca akan memahami pengertian tentang kompresi, pengolahan citra, kompresi data, Teknik kompresi, Kompresi citra. 2.1 Defenisi Data Data adalah

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Perkembangan teknologi yang pesat, sangat berperan penting dalam pertukaran informasi yang cepat. Pada pengiriman informasi dalam bentuk citra masih mengalami kendala,

Lebih terperinci

PROGRAM STUDI S-1 ILMU KOMPUTER DEPARTEMEN ILMU KOMPUTER FAKULTAS ILMU KOMPUTER DAN TEKNOLOGI INFORMASI UNIVERSITAS SUMATERA UTARA MEDAN 2012

PROGRAM STUDI S-1 ILMU KOMPUTER DEPARTEMEN ILMU KOMPUTER FAKULTAS ILMU KOMPUTER DAN TEKNOLOGI INFORMASI UNIVERSITAS SUMATERA UTARA MEDAN 2012 ANALISIS DAN PERBANDINGAN TEKNIK KOMPRESI MENGGUNAKAN ALGORITMA SHANNON-FANO DAN RUN LENGTH ENCODING PADA CITRA BERFORMAT BMP DAN PNG SKRIPSI ROHANI NASUTION 081401059 PROGRAM STUDI S-1 ILMU KOMPUTER DEPARTEMEN

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Definisi Citra Citra adalah suatu representasi (gambaran), kemiripan, atau imitasi dari suatu objek. Citra sebagai keluaran suatu sistem perekaman data dapat bersifat optik berupa

Lebih terperinci

KOMPRESI CITRA. lain. Proses mengubah citra ke bentuk digital bisa dilakukan dengan beberapa perangkat,

KOMPRESI CITRA. lain. Proses mengubah citra ke bentuk digital bisa dilakukan dengan beberapa perangkat, KOMPRESI CITRA Dalam kesempatan ini saya mencoba untuk menjelaskan apa itu kompresi citra dan bagaimana cara-cara format citra dengan menggunakan BMP, PNG, JPEG, GIF, dan TIFF. Kompresi citra itu adalah

Lebih terperinci

Implementasi Metode HUFFMAN Sebagai Teknik Kompresi Citra

Implementasi Metode HUFFMAN Sebagai Teknik Kompresi Citra Jurnal Elektro ELEK Vol. 2, No. 2, Oktober 2011 ISSN: 2086-8944 Implementasi Metode HUFFMAN Sebagai eknik Kompresi Citra Irmalia Suryani Faradisa dan Bara Firmana Budiono Jurusan eknik Elektro, Institut

Lebih terperinci

PERANCANGAN APLIKASI KOMPRESI CITRA DENGAN METODE RUN LENGTH ENCODING UNTUK KEAMANAN FILE CITRA MENGGUNAKAN CAESAR CHIPER

PERANCANGAN APLIKASI KOMPRESI CITRA DENGAN METODE RUN LENGTH ENCODING UNTUK KEAMANAN FILE CITRA MENGGUNAKAN CAESAR CHIPER PERANCANGAN APLIKASI KOMPRESI CITRA DENGAN METODE RUN LENGTH ENCODING UNTUK KEAMANAN FILE CITRA MENGGUNAKAN CAESAR CHIPER Dwi Indah Sari (12110425) Mahasiswa Program Studi Teknik Informatika, Stmik Budidarma

Lebih terperinci

Teknik Kompresi Citra Menggunakan Metode Huffman

Teknik Kompresi Citra Menggunakan Metode Huffman SEMINAR NASIONAL MATEMATIKA DAN PENDIDIKAN MATEMATIKA UNY 26 A-5 Teknik Kompresi Citra Menggunakan Metode Huffman Tri Rahmah Silviani, Ayu Arfiana Program Pascasarjana Universitas Negeri Yogyakarta Email:

Lebih terperinci

BAB 2 TINJAUAN TEORETIS

BAB 2 TINJAUAN TEORETIS BAB 2 TINJAUAN TEORETIS 2. Citra Digital Menurut kamus Webster, citra adalah suatu representasi, kemiripan, atau imitasi dari suatu objek atau benda. Citra digital adalah representasi dari citra dua dimensi

Lebih terperinci

PENERAPAN METODE HUFFMAN DALAM PEMAMPATAN CITRA DIGITAL

PENERAPAN METODE HUFFMAN DALAM PEMAMPATAN CITRA DIGITAL PENERPN MEODE HUFFMN DLM PEMMPN CIR DIGIL Edy Victor Haryanto Universitas Potensi Utama, Jl. K.L. os Sudarso Km. 6,5 No. 3 j Mulia Medan edy@potensi-utama.ac.id, edyvictor@gmail.com abstrak Citra adalah

Lebih terperinci

BAB 2 LANDASAN TEORI. 2.1 Pengenalan Citra

BAB 2 LANDASAN TEORI. 2.1 Pengenalan Citra BAB 2 LANDASAN TEORI 2.1 Pengenalan Citra Citra merupakan representasi (gambaran) dari sebuah objek nyata yang dihasilkan oleh alat digital. Citra sebagai keluaran suatu sistem perekaman data dapat bersifat

Lebih terperinci

Pemampatan Citra. Esther Wibowo Erick Kurniawan

Pemampatan Citra. Esther Wibowo Erick Kurniawan Pemampatan Citra Esther Wibowo esther.visual@gmail.com Erick Kurniawan erick.kurniawan@gmail.com Mengapa? MEMORI Citra memerlukan memori besar. Mis. Citra 512x512 pixel 256 warna perlu 32 KB (1 pixel =

Lebih terperinci

KOMPRESI CITRA. Pertemuan 12 Mata Pengolahan Citra

KOMPRESI CITRA. Pertemuan 12 Mata Pengolahan Citra KOMPRESI CITRA Pertemuan 12 Mata Pengolahan Citra PEMAMPATAN CITRA Semakin besar ukuran citra semakin besar memori yang dibutuhkan. Namun kebanyakan citra mengandung duplikasi data, yaitu : Suatu piksel

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA 6 BAB 2 TINJAUAN PUSTAKA 2.1. Citra Citra adalah suatu representasi (gambaran), kemiripan, atau imitasi dari suatu objek. Citra sebagai keluaran suatu sistem perekaman data dapat bersifat optik berupa

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Citra Citra merupakan salah satu komponen multimedia yang memegang peranan sangat penting sebagai bentuk informasi visual. Meskipun sebuah citra kaya akan informasi, namun sering

Lebih terperinci

BAB 1 PENDAHULUAN. Universitas Sumatera Utara

BAB 1 PENDAHULUAN. Universitas Sumatera Utara BAB 1 PENDAHULUAN Pada bab ini akan dibahas mengenai hal-hal yang menjadi latar belakang pembuatan tugas akhir, rumusan masalah, tujuan, manfaat, dan metodologi penelitian serta sistematika penulisan dari

Lebih terperinci

IMPLEMENTASI ALGORITMA RUN LENGTH ENCODING UNTUK PERANCANGANAPLIKASI KOMPRESI DAN DEKOMPRESI FILE CITRA

IMPLEMENTASI ALGORITMA RUN LENGTH ENCODING UNTUK PERANCANGANAPLIKASI KOMPRESI DAN DEKOMPRESI FILE CITRA IMPLEMENTASI ALGORITMA RUN LENGTH ENCODING UNTUK PERANCANGANAPLIKASI KOMPRESI DAN DEKOMPRESI FILE CITRA Cut Try Utari Program Studi Magister Teknik Informatika Fakultas Ilmu Komputer dan Teknik Informatika

Lebih terperinci

Citra Digital. Petrus Paryono Erick Kurniawan Esther Wibowo

Citra Digital. Petrus Paryono Erick Kurniawan Esther Wibowo Citra Digital Petrus Paryono Erick Kurniawan erick.kurniawan@gmail.com Esther Wibowo esther.visual@gmail.com Studi Tentang Pencitraan Raster dan Pixel Citra Digital tersusun dalam bentuk raster (grid atau

Lebih terperinci

TEKNIK PENGOLAHAN CITRA. Kuliah 13 Kompresi Citra. Indah Susilawati, S.T., M.Eng.

TEKNIK PENGOLAHAN CITRA. Kuliah 13 Kompresi Citra. Indah Susilawati, S.T., M.Eng. TEKNIK PENGOLAHAN CITRA Kuliah 13 Kompresi Citra Indah Susilawati, S.T., M.Eng. Program Studi Teknik Informatika/Sistem Informasi Fakultas Teknologi Informasi Universitas Mercu Buana Yogyakarta 2015 KULIAH

Lebih terperinci

Pertemuan 2 Representasi Citra

Pertemuan 2 Representasi Citra /29/23 FAKULTAS TEKNIK INFORMATIKA PENGOLAHAN CITRA DIGITAL ( DIGITAL IMAGE PROCESSING ) Pertemuan 2 Representasi Citra Representasi Citra citra Citra analog Citra digital Matrik dua dimensi yang terdiri

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Citra Citra (image) atau yang secara umum disebut gambar merupakan representasi spasial dari suatu objek yang sebenarnya dalam bidang dua dimensi yang biasanya ditulis dalam

Lebih terperinci

NASKAH PUBLIKASI KOMPRESI CITRA DENGAN METODE ARITHMETIC CODING DALAM KAWASAN ENTROPY CODING

NASKAH PUBLIKASI KOMPRESI CITRA DENGAN METODE ARITHMETIC CODING DALAM KAWASAN ENTROPY CODING NASKAH PUBLIKASI KOMPRESI CITRA DENGAN METODE ARITHMETIC CODING DALAM KAWASAN ENTROPY CODING Disusun Sebagai Salah Satu Syarat Menyelesaikan Program Studi Strata 1 Jurusan Elektro Fakultas Teknik Universitas

Lebih terperinci

LANDASAN TEORI. 2.1 Citra Digital Pengertian Citra Digital

LANDASAN TEORI. 2.1 Citra Digital Pengertian Citra Digital LANDASAN TEORI 2.1 Citra Digital 2.1.1 Pengertian Citra Digital Citra dapat didefinisikan sebagai sebuah fungsi dua dimensi, f(x,y) dimana x dan y merupakan koordinat bidang datar, dan harga fungsi f disetiap

Lebih terperinci

Penerapan Algoritma Huffman dalam Kompresi Gambar Digital

Penerapan Algoritma Huffman dalam Kompresi Gambar Digital Penerapan Algoritma Huffman dalam Kompresi Gambar Digital David Theosaksomo 13515131 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung

Lebih terperinci

DIGITAL IMAGE CODING. Go green Aldi Burhan H Chandra Mula Fitradi Mardiyah

DIGITAL IMAGE CODING. Go green Aldi Burhan H Chandra Mula Fitradi Mardiyah DIGITAL IMAGE CODING Go green Aldi Burhan H Chandra Mula Fitradi Mardiyah KOMPRESI LOSSLESS Teknik kompresi lossless adalah teknik kompresi yang tidak menyebabkan kehilangan data. Biasanya digunakan jika

Lebih terperinci

STMIK GI MDP. Program Studi Teknik Informatika Skripsi Sarjana Komputer Semester Ganjil Tahun 2010/2011

STMIK GI MDP. Program Studi Teknik Informatika Skripsi Sarjana Komputer Semester Ganjil Tahun 2010/2011 STMIK GI MDP Program Studi Teknik Informatika Skripsi Sarjana Komputer Semester Ganjil Tahun 2010/2011 ANALISIS METODE HUFFMAN UNTUK KOMPRESI DATA CITRA DAN TEKS PADA APLIKASI KOMPRESI DATA Shelly Arysanti

Lebih terperinci

BAB III METODOLOGI PENELITIAN. Penelitian ini dilakukan di Jurusan Ilmu Komputer Fakultas Matematika dan

BAB III METODOLOGI PENELITIAN. Penelitian ini dilakukan di Jurusan Ilmu Komputer Fakultas Matematika dan BAB III METODOLOGI PENELITIAN 3.1 Tempat dan Waktu Penelitian Penelitian ini dilakukan di Jurusan Ilmu Komputer Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Lampung. Waktu penelitian dilakukan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 6 BAB 2 LANDASAN TEORI 2.1 Citra 2.1.1 Definisi Citra Citra adalah suatu representasi (gambaran), kemiripan, atau imitasi dari suatu objek. Citra digital adalah citra yang dapat diolah oleh komputer. Citra

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Pengenalan Citra Citra adalah suatu representasi (gambaran), kemiripan atau imitasi dari suatu objek. Citra sebagai keluaran suatu sistem perekaman data dapat bersifat optik berupa

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Steganografi Steganografi berasal dari Bahasa Yunani, yaitu kata steganos yang artinya tulisan tersembunyi (covered writing) dan kata graphos yang berarti tulisan. Sehingga steganografi

Lebih terperinci

MULTIMEDIA system. Roni Andarsyah, ST., M.Kom Lecture Series

MULTIMEDIA system. Roni Andarsyah, ST., M.Kom Lecture Series MULTIMEDIA system Roni Andarsyah, ST., M.Kom Lecture Series Kompresi data teks (Huffman coding, RLE coding, LZW coding, arithmetic coding Representasi dan kompresi data suara dan audio Representasi dan

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Definisi Citra Citra adalah suatu representasi (gambaran), kemiripan, atau imitasi dari suatu objek. Citra sebagai keluaran suatu sistem perekaman data dapat bersifat optik berupa

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Pada bab ini akan membahas landasan atas teori-teori yang bersifat ilmiah untuk mendukung penulisan tugas akhir ini. Teori-teori yang dibahas mengenai pengertian citra, kompresi citra,

Lebih terperinci

SATUAN ACARA PERKULIAHAN ( SAP )

SATUAN ACARA PERKULIAHAN ( SAP ) SATUAN ACARA PERKULIAHAN ( SAP ) Mata Kuliah : Pengolahan Citra Digital Kode : IES 6 Semeste r : VI Waktu : x x 5 Menit Pertemuan : & 4 A. Kompetensi. Utama Mahasiswa dapat memahami tentang sistem pengolahan

Lebih terperinci

SISTEM ANALISA PERBANDINGAN UKURAN HASIL KOMPRESI WINZIP DENGAN 7-ZIP MENGGUNAKAN METODE TEMPLATE MATCHING

SISTEM ANALISA PERBANDINGAN UKURAN HASIL KOMPRESI WINZIP DENGAN 7-ZIP MENGGUNAKAN METODE TEMPLATE MATCHING SISTEM ANALISA PERBANDINGAN UKURAN HASIL KOMPRESI WINZIP DENGAN 7-ZIP MENGGUNAKAN METODE TEMPLATE MATCHING Pandi Barita Simangunsong Dosen Tetap STMIK Budi Darma Medan Jl. Sisingamangaraja No. 338 Simpang

Lebih terperinci

IV. RANCANG BANGUN SISTEM. Perangkat lunak bantu yang dibuat adalah perangkat lunak yang digunakan untuk

IV. RANCANG BANGUN SISTEM. Perangkat lunak bantu yang dibuat adalah perangkat lunak yang digunakan untuk IV. RANCANG BANGUN SISTEM 4.1 Analisis dan Spesifikasi Sistem Perangkat lunak bantu yang dibuat adalah perangkat lunak yang digunakan untuk menyisipkan label digital, mengekstraksi label digital, dan dapat

Lebih terperinci

Perbandingan Algoritma Kompresi Terhadap Objek Citra Menggunakan JAVA

Perbandingan Algoritma Kompresi Terhadap Objek Citra Menggunakan JAVA Perbandingan Algoritma Terhadap Objek Menggunakan JAVA Maria Roslin Apriani Neta Program Studi Magister Teknik Informatika, Universitas Atma Jaya Yogyakarta Jl. Babarsari no 43 55281 Yogyakarta Telp (0274)-487711

Lebih terperinci

KOMPRESI CITRA DIGITAL MENGGUNAKAN METODE STATISTICAL CODING

KOMPRESI CITRA DIGITAL MENGGUNAKAN METODE STATISTICAL CODING KOMPRESI CITRA DIGITAL MENGGUNAKAN METODE STATISTICAL CODING Abdul Halim Hasugian Dosen Tetap Program Studi Teknik Informatika STMIK Budi Darma Medan Jl. Sisingamangaraja No. 338 Simpang Limun Medan www.stmik-budidarma.ac.id//email:abdulhasugian@gmail.co.id

Lebih terperinci

BAB III ANALISA MASALAH DAN PERANCANGAN PROGRAM

BAB III ANALISA MASALAH DAN PERANCANGAN PROGRAM BAB III ANALISA MASALAH DAN PERANCANGAN PROGRAM III.1 Analisis Permasalahan Tahapan analisis terhadap suatu sistem dilakukan sebelum tahapan perancangan dilakukan. Adapun tujuan yang dilakukannmya analisis

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1. Kompresi Data Kompresi data adalah proses mengkodekan informasi menggunakan bit atau information-bearing unit yang lain yang lebih rendah daripada representasi data yang tidak

Lebih terperinci

Suatu proses untuk mengubah sebuah citra menjadi citra baru sesuai dengan kebutuhan melalui berbagai cara.

Suatu proses untuk mengubah sebuah citra menjadi citra baru sesuai dengan kebutuhan melalui berbagai cara. Image Enhancement Suatu proses untuk mengubah sebuah citra menjadi citra baru sesuai dengan kebutuhan melalui berbagai cara. Cara-cara yang bisa dilakukan misalnya dengan fungsi transformasi, operasi matematis,

Lebih terperinci

BAB III ANALISIS DAN DESAIN SISTEM

BAB III ANALISIS DAN DESAIN SISTEM BAB III ANALISIS DAN DESAIN SISTEM III.1. Analisis Masalah Pesan terkadang mengandung sebuah informasi yang sangat penting yang harus dijaga kerahasiaannya. Ada beberapa cara yang dapat digunakan untuk

Lebih terperinci

TUGAS AKHIR KOMPRESI CITRA BERWARNA DENGAN PENERAPAN DISCRETE COSINE TRANSFORM ( DCT )

TUGAS AKHIR KOMPRESI CITRA BERWARNA DENGAN PENERAPAN DISCRETE COSINE TRANSFORM ( DCT ) TUGAS AKHIR KOMPRESI CITRA BERWARNA DENGAN PENERAPAN DISCRETE COSINE TRANSFORM ( DCT ) Diajukan untuk Melengkapi Tugas Akhir dan Memenuhi Syarat-syarat untuk Mencapai Gelar Sarjana Teknik Fakultas Teknik

Lebih terperinci

Mode Warna pada Image Ada beberapa mode warna yang dapat digunakan pada Photoshop. Masingmasing mode warna mempunyai maksud dan tujuan yang berbeda, y

Mode Warna pada Image Ada beberapa mode warna yang dapat digunakan pada Photoshop. Masingmasing mode warna mempunyai maksud dan tujuan yang berbeda, y Adobe Photoshop CS2 Adobe Photoshop merupakan sebuah software yang berfungsi sebagai image editor. Adobe Photoshop dapat digunakan untuk membuat gambar maupun mengedit gambar. Editor gambar (image editor)

Lebih terperinci

PENERAPAN METODE MOST SIGNIFICANT BIT UNTUK PENYISIPAN PESAN TEKS PADA CITRA DIGITAL

PENERAPAN METODE MOST SIGNIFICANT BIT UNTUK PENYISIPAN PESAN TEKS PADA CITRA DIGITAL Pelita Informatika Budi Darma, Volume : IV, Nomor:, Agustus 23 ISSN : 23-9425 PENERAPAN METODE MOST SIGNIFICANT BIT UNTUK PENYISIPAN PESAN TEKS PADA CITRA DIGITAL Harry Suhartanto Manalu (9259) Mahasiswa

Lebih terperinci

BAB III KONSEP, DESAIN DAN PENGUMPULAN MATERI 3.1. Konsep Dalam membangun program Aplikasi Simulasi Metoda Kompresi Data Huffman dengan Adobe Flash Profesional / Action Script 3.0 ini peneliti akan menganalisa

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Steganografi Kata steganografi berasal dari bahasa yunani yang terdiri dari steganos (tersembunyi) graphen (menulis), sehingga bisa diartikan sebagai tulisan yang tersembunyi.

Lebih terperinci

BAB 3 ANALISA DAN PERANCANGAN

BAB 3 ANALISA DAN PERANCANGAN BAB 3 ANALISA DAN PERANCANGAN 3.1 Analisa Proses masking terhadap citra bertujuan sebagai penandaan tempat pada citra yang akan disisipkan pesan sedangkan filtering bertujuan untuk melewatkan nilai pada

Lebih terperinci

BAB IV PERANCANGAN SISTEM

BAB IV PERANCANGAN SISTEM BAB IV PERANCANGAN SISTEM 4.1 Perancangan sistem Pada bagian ini akan dijelaskan beberapa tahapan untuk membuat sebuah aplikasi mulai dari alur aplikasi, perancangan antar muka, perancangan arsitektural,

Lebih terperinci

BAB I PENDAHULUAN. dalam storage lebih sedikit. Dalam hal ini dirasakan sangat penting. untuk mengurangi penggunaan memori.

BAB I PENDAHULUAN. dalam storage lebih sedikit. Dalam hal ini dirasakan sangat penting. untuk mengurangi penggunaan memori. BAB I PENDAHULUAN 1.1. Latar Belakang Pada era informasi seperti sekarang ini, siapa yang tak kenal yang namanya tempat penyimpanan data atau yang sering disebut memori. Di mana kita dapat menyimpan berbagai

Lebih terperinci

Model Citra (bag. 2)

Model Citra (bag. 2) Model Citra (bag. 2) Ade Sarah H., M. Kom Resolusi Resolusi terdiri dari 2 jenis yaitu: 1. Resolusi spasial 2. Resolusi kecemerlangan Resolusi spasial adalah ukuran halus atau kasarnya pembagian kisi-kisi

Lebih terperinci

BAB I. PENDAHULUAN Latar Belakang Masalah

BAB I. PENDAHULUAN Latar Belakang Masalah BAB I. PENDAHULUAN 1 1.1. Latar Belakang Masalah Citra adalah gambar yang berada pada bidang dua dimensi. Agar dapat diproses lebih lanjut, sebuah citra disimpan di dalam bentuk digital. Ukuran citra digital

Lebih terperinci

BAB III METODE KOMPRESI HUFFMAN DAN DYNAMIC MARKOV COMPRESSION. Kompresi ialah proses pengubahan sekumpulan data menjadi suatu bentuk kode

BAB III METODE KOMPRESI HUFFMAN DAN DYNAMIC MARKOV COMPRESSION. Kompresi ialah proses pengubahan sekumpulan data menjadi suatu bentuk kode BAB III METODE KOMPRESI HUFFMAN DAN DYNAMIC MARKOV COMPRESSION 3.1 Kompresi Data Definisi 3.1 Kompresi ialah proses pengubahan sekumpulan data menjadi suatu bentuk kode untuk menghemat kebutuhan tempat

Lebih terperinci

UKDW BAB 1 PENDAHULUAN

UKDW BAB 1 PENDAHULUAN BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah. Run-Length Encoding merupakan salah satu metode kompresi lossless yang bekerja dengan mereduksi karakter atau string yang berulang. Metode ini lebih cocok

Lebih terperinci

BAB 1 PENDAHULUAN. Dalam penggunaan sehari-hari data berarti suatu pernyataan yang diterima secara apa

BAB 1 PENDAHULUAN. Dalam penggunaan sehari-hari data berarti suatu pernyataan yang diterima secara apa BAB 1 PENDAHULUAN 1.1. Latar Belakang Masalah Data adalah bentuk jamak dari datum yang berarti sesuatu yang diberikan. Dalam penggunaan sehari-hari data berarti suatu pernyataan yang diterima secara apa

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Data dan informasi dapat disajikan bukan hanya dalam bentuk teks semata, melainkan dalam bentuk gambar (image), audio dan video. Apalagi dilihat sekarang perkembangan

Lebih terperinci

BAB II Tinjauan Pustaka

BAB II Tinjauan Pustaka 23 BAB II Tinjauan Pustaka II.1. Pengolahan Citra Digital Citra yang diperoleh dari lingkungan masih terdiri dari warna yang sangat komplek sehingga masih diperlukan proses lebih lanjut agar image tersebut

Lebih terperinci

Analisis dan Perancangan Perangkat Lunak Kompresi Citra Menggunakan Algoritma. Fast Fourier Transform (FFT).

Analisis dan Perancangan Perangkat Lunak Kompresi Citra Menggunakan Algoritma. Fast Fourier Transform (FFT). Analisis dan Perancangan Perangkat Lunak Kompresi Citra Menggunakan Algoritma Fast Fourier Transform (FFT) Rima Lestari 1, Marihat Situmorang 2, Maya Silvi Lydia 3 Program Studi S1 Ilmu Komputer, FASILKOM-TI

Lebih terperinci

BAB I PENDAHULUAN. mengirim pesan secara tersembunyi agar tidak ada pihak lain yang mengetahui.

BAB I PENDAHULUAN. mengirim pesan secara tersembunyi agar tidak ada pihak lain yang mengetahui. 1 BAB I PENDAHULUAN 1.1 Latar Belakang Seringkali seseorang yang hendak mengirim pesan kepada orang lain, tidak ingin isi pesan tersebut diketahui oleh orang lain. Biasanya isi pesan tersebut bersifat

Lebih terperinci

Pemampatan Citra Pemampatan Citra versus Pengkodean Citra

Pemampatan Citra Pemampatan Citra versus Pengkodean Citra Bab 10 Pemampatan Citra P ada umumnya, representasi citra digital membutuhkan memori yang besar. Sebagai contoh, citra Lena dalam format bitmap yang berukuran 512 512 pixel membutuhkan memori sebesar 32

Lebih terperinci

Penerapan Metode End Of File Pada Steganografi Citra Gambar dengan Memanfaatkan Algoritma Affine Cipher sebagai Keamanan Pesan

Penerapan Metode End Of File Pada Steganografi Citra Gambar dengan Memanfaatkan Algoritma Affine Cipher sebagai Keamanan Pesan Penerapan Metode End Of File Pada Steganografi Citra Gambar dengan Memanfaatkan Algoritma Affine Cipher sebagai Keamanan Pesan 1) Achmad Fauzi STMIK KAPUTAMA, Jl. Veteran No. 4A-9A, Binjai, Sumatera Utara

Lebih terperinci

Kompresi. Definisi Kompresi

Kompresi. Definisi Kompresi 1 Kompresi Bahan Kuliah : Sistem Multimedia PS TI Undip Gasal 2011/2012 2 Definisi Kompresi Memampatkan/mengecilkan ukuran Proses mengkodekan informasi menggunakan bit yang lain yang lebih rendah daripada

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Kompresi Data Kompresi data sudah ada dalam 20 tahun terakhir ini. Kompresi data memberikan pengaruh yang cukup besar terhadap berbagai bidang studi sekarang ini. Hal ini terbukti

Lebih terperinci

KONSEP DASAR PENGOLAHAN CITRA

KONSEP DASAR PENGOLAHAN CITRA KONSEP DASAR PENGOLAHAN CITRA Copyright @ 2007 by Emy 2 1 Kompetensi Mampu membangun struktur data untuk merepresentasikan citra di dalam memori computer Mampu melakukan manipulasi citra dengan menggunakan

Lebih terperinci

KOMPRESI CITRA BERWARNA DENGAN ALGORITMA ENHANCED SELF ORGANIZING MAP (ENHANCED SOM)

KOMPRESI CITRA BERWARNA DENGAN ALGORITMA ENHANCED SELF ORGANIZING MAP (ENHANCED SOM) KOMPRESI CITRA BERWARNA DENGAN ALGORITMA ENHANCED SELF ORGANIZING MAP (ENHANCED SOM) Bambang Trianggono *, Agus Zainal Arifin * Jurusan Teknik Informatika, Fakultas Teknologi Informasi, Institut Teknologi

Lebih terperinci

Gambar 2.1 Contoh citra biner

Gambar 2.1 Contoh citra biner BAB 2 LANDASAN TEORI 2.1 Citra Citra atau gambar dapat didefinisikan sebagai sebuah fungsi dua dimensi, f(x,y), di mana x dan y adalah koordinat bidang datar, dan harga fungsi f di setiap pasangan koordinat

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA Pada bab ini penulis memaparkan teori-teori ilmiah yang didapat dari metode pencarian fakta yang digunakan untuk mendukung penulisan skripsi ini dan sebagai dasar pengembangan sistem

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Citra Citra (image) adalah gambar pada bidang dwimatra (dua dimensi). Ditinjau dari sudut pandang matematis, citra merupakan fungsi menerus (continue) dari intensitas cahaya pada

Lebih terperinci

Algoritma Kohonen dalam Mengubah Citra Graylevel Menjadi Citra Biner

Algoritma Kohonen dalam Mengubah Citra Graylevel Menjadi Citra Biner Jurnal Ilmiah Teknologi dan Informasia ASIA (JITIKA) Vol.9, No.2, Agustus 2015 ISSN: 0852-730X Algoritma Kohonen dalam Mengubah Citra Graylevel Menjadi Citra Biner Nur Nafi'iyah Prodi Teknik Informatika

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 7 BAB 2 LANDASAN TEORI 2.1 Citra Digital Citra digital merupakan sebuah fungsi intensitas cahaya, dimana harga x dan y merupakan koordinat spasial dan harga fungsi f tersebut pada setiap titik merupakan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Citra Digital Secara harfiah citra (image) adalah gambar pada bidang dwimatra atau dua dimensi. Citra juga dapat diartikan sebagai kumpulan titik-titik dengan intesitas warna tertentu

Lebih terperinci

BAB I PENDAHULUAN. Dalam bidang teknologi informasi, komunikasi data sangat sering

BAB I PENDAHULUAN. Dalam bidang teknologi informasi, komunikasi data sangat sering BAB I PENDAHULUAN 1.1 Latar Belakang Dalam bidang teknologi informasi, komunikasi data sangat sering dilakukan. Komunikasi data ini berhubungan erat dengan pengiriman data menggunakan sistem transmisi

Lebih terperinci