BAB I PENDAHULUAN. Universitas Sumatera Utara
|
|
|
- Liana Jayadi
- 9 tahun lalu
- Tontonan:
Transkripsi
1 BAB I PENDAHULUAN 1.1 Latar Belakang Data mining adalah suatu konsep yang digunakan untuk menemukan pengetahuan yang tersembunyi di dalam database. Data mining merupakan proses semi otomatik yang menggunakan teknik statistik, matematika, kecerdasan buatan, dan machine learning untuk mengekstraksi dan mengidentifikasi informasi pengetahuan potensial dan berguna yang tersimpan di dalam database besar. (Turban et al, 2005 ). Data mining adalah bagian dari proses KDD ( Knowledge Discovery in Databases) yang terdiri dari beberapa tahapan seperti pemilihan data, pra pengolahan, transformasi, data mining, dan evaluasi hasil (Maimon dan Last, 2000). KDD secara umum juga dikenal sebagai pangkalan data. Teknik data mining secara garis besar dapat dibagi dalam dua kelompok: verifikasi dan discovery. Metode verifikasi umumnya meliputi teknik-teknik statistik seperti goodness of fit, dan analisis variansi. Metode discovery lebih lanjut dapat dibagi atas model prediktif dan model deskriptif. Teknik prediktif melakukan prediksi terhadap data dengan menggunakan hasil-hasil yang telah diketahui dari data yang berbeda. Model ini dapat dibuat berdasarkan penggunaan data historis lain. Sementara itu, model deskriptif bertujuan mengidentifikasi pola-pola atau hubungan antar data dan memberikan cara untuk mengeksplorasi karakteristik data yang diselidiki (Dunham, 2003). Masih menjadi isu sentral di dunia pendidikan tinggi khususnya program diploma dalam hal faktor prediktor dan teknik yang digunakan untuk memprediksi keinginan mahasiswa diploma dalam melanjutkan studinya ke jenjang sarjana setelah menyelesaikan studi pada tingkat diploma. Hingga saat ini masih jarang ditemukan prediktor-prediktor serta teknik yang cukup handal dan akurat dalam memprediksi tingkat keinginan mahasiswa diploma untuk melanjutkan studinya ke jenjang sarjana, apakah mereka akan melanjutkan studinya pada bidang ilmu
2 yang sama atau melanjukan studinya tapi kebidang ilmu yang berbeda atau tidak malanjutkan studinya. Dewasa ini kemajuan teknologi informasi dan komputer telah menyediakan fasilitas penyimpanan data dalam format elektronik sehingga penyimpanan data bukan lagi menjadi satu pekerjaan yang sulit. Sebagai konsekuensinya jumlah data yang disimpan mengalami peningkatan yang sangat cepat dari segi kuantitas dan kualitas. Pada institusi pendidikan tinggi data dapat diperoleh dari data historis dan data kegiatan operasional sebuah perguruan tinggi, dimana data ini akan bertambah secara terus menerus, sehingga proses eksplorasi data dalam menentukan hubungan antar variabel didalam data menjadi sangat lambat dan memiliki proses yang subjektif. Salah satu Solusi yang mungkin digunakan untuk menangani masalah ini adalah konsep menemukan pengetahuan di dalam pangkalan data. Beberapa tahun belakangan ini telah terjadi peningkatan penelitian di area pendidikan dengan menggunakan teknik-teknik penambangan data. Aplikasi dari teknik penambangan data ini difokuskan untuk membangun metode-metode untuk mengungkapkan pengetahuan yang tersimpan didalam data dan digunakan untuk membuka informasi yang tersembunyi didalam data yang tidak nampak dipermukaan tetapi potensial untuk digunakan. Pengungkapan pengetahuan ini juga dapat digunakan untuk lebih mengetahui bagaimana prilaku belajar seorang mahasiswa di tingkat diploma, sehingga dapat membantu para dosen untuk lebih mengenal situasi para mahasiswanya, dapat dijadikan sebagai pengetahuan dini untuk mengambil tindakan preventif dalam hal mengantisipasi mahasiswa dropout, untuk memicu meningkatkan prestasi mahasiswa, untuk meningkatkan kurikulum, termasuk juga untuk memprediksi keinginan mahasiswa dalam melanjutkan studinya kejenjang yang lebih tinggi dan banyak lagi keuntungan lain yang bisa diperoleh dari hasil penambangan data. Dalam beberapa penelitian yang telah dilakukan oleh peneliti yang dituliskan dalam jurnal atau karya ilmiah tentang penggunaan data mining pada perguruan tinggi adalah : Romero dan Ventura, (2007), telah melakukan survey
3 data mining dalam bidang pendidikan antara tahun 1995 sampai 2005, hasil penelitian yang dilakukan menyimpulkan bahwa data mining yang berhubungan dengan pendidikan sangat baik untuk diteliti terutama di bidang e-learning, multimedia, artificial intelligent dan web database. Merceron dan Yacep, (2005) melakukan penelitian menggunakan data mining untuk mengidentifikasi perilaku mahasiswa yang cenderung gagal pada prestasi akademik sebelum ujian akhir. Waiyamai, (2003) menggunakan data mining untuk membantu dalam pengembangan kurikulum baru. Ogor, (2007) menggunakan teknik data mining yang digunakan untuk membangun prototipe Penilaian Kinerja Monitoring System (PAMS) untuk mengevaluasi kinerja mahasiswa. Sembiring, et al., (2009) menggunakan teknik data mining dalam pemantauan dan memprediksi peningkatan prestasi mahasiswa berdasarkan minat, prilaku belajar, pemanfaatan waktu dan dukungan orang tua di perguruan tinggi. Dalam penelitian ini akan di teliti tentang perilaku mahasiswa diploma untuk melanjutkan studi ke jenjang sarjana akan digunakan teknik decision tree (C 4.5) untuk menganalisis dan membangun sebuah model prediksi berdasarkan perilaku belajar mahasiswa diploma dan menggunakan teknik Support Vector Machine untuk mengklasifikasi mahasiwa tersebut berdasarkan model prediksi yang diperoleh oleh decision tree. Kedua metode ini dipilih karena metode decision tree ini cukup sederhana dan banyak dipergunakan oleh peneliti lain dalam mengembangkan sebuah model. Metode Support Vector Machine (SVM) merupakan teknik yang relative baru dalam pattern recognition dan merupakan state of art dalam pattern recognition dan machine learning karena kehandalannya dalam memproses data berdimensi banyak. Penelitian ini mengambil area pendidikan tinggi sebagai sebagai salah satu domain penelitian dalam bidang penambangan data dengan sumber data dari database akademik AMIK Tunas Bangsa Pematang Siantar dan melakukan survey terhadap 1300 orang mahasiswa D3 Manajemen Informatika AMIK Tunas Bangsa Angkatan 2009/2010.
4 Penelitian ini diharapkan dapat memberikan kontribusi bagi perguruan tinggi swasta khususnya Akademi Manajemen Informatika dan Komputer (AMIK) Tunas Bangsa Pematangsiantar. 1.2 Perumusan Masalah Berdasar pada latar belakang di atas, maka dapat dirumuskan masalah dalam tesis ini sebagai berikut: 1. Bagaimana membangun model yang dapat digunakan untuk memprediksi keinginan para alumni diploma untuk melanjutkan studinya ke jenjang sarjana? 2. Bagaimana menggunakan model untuk memprediksi keinginan para alumni diploma unutk melanjutkan studinya ke jenjang sarjana? 1.3 Batasan Masalah Mengingat luasnya ruang lingkup penelitian dalam implemantasi teknik - teknik data mining di area pendidikan, khususnya pada pendidikan tinggi, maka penelitian ini dibatasi pada: 1. Sumber data untuk penelitian ini, diperoleh dari database akademik dan hasil survey secara acak yang dilakukan terhadap mahasiswa program diploma tiga bidang informatika dan komputer di AMIK Tunas Bangsa Pematang Siantar. 2. Pendekatan dalam analisis data dalam penelitian ini akan menggunakan teknik Multi variant analisis untuk menguji tingkat korelasi faktor-faktor prediktor yang akan diusulkan dan Decision tree (Algoritma C.4.5) untuk membangun model prediksi serta teknik SVM untuk memprediksi keinginan mahasiswa program diploma tiga yang akan melanjutkan studinya ke jenjang sarjana. 3. Untuk mendukung analisis data dalam penelitian ini akan menggunakan bantuan perangkat lunak data mining yang berbasis open source seperti WEKA atau Rapid Miner versi 5.0
5 1.4 Tujuan Penelitian Beranjak dari latarbelakang permasalahan, tujuan penelitian ini adalah sebagai berikut: 1. Untuk mendapatkan apa saja factor-faktor yang berpengaruh terhadap keinginan mahasiswa program diploma 3 bidang informatika dan komputer untuk melanjutkan pendidikannya ke jenjang yang lebih tinggi. 2. Untuk membangun sebuah model prediksi mahasiswa program diploma 3 bidang informatika dan komputer yang akan melanjutkan studinya ke jenjang sarjana. 1.5 Manfaat Penelitian Penelitian ini secara teoritis diharapkan akan bermanfaat bagi menambah khasanah dan variasi penelitian dalam penerapan teknik-teknik data mining pada area pendidikan. Hasil dari penelitian ini diharapkan dapat dijadikan sebagai perbandingan bagi peneliti lain yang tertarik dalam penerapan teknik-teknik data mining pada area pendidikan. Secara praktis hasil penelitian ini juga dapat bermanfaat bagi institusi pendidikan tinggi sebagai referensi dan sebagai informasi pendukung dalam mengambil kebijakan strategis. Model prediksi yang diperoleh dari penelitian ini juga dapat dipergunakan oleh institusi-institusi pendidikan tinggi yang memiliki program sarjana, sebagai sistem informasi pendukung untuk promosi dengan sasaran mahasiswa yang sedang mengikuti program diploma tiga.
BAB I PENDAHULUAN. Universitas Sumatera Utara
BAB I PENDAHULUAN 1.1 Latar Belakang Data mining adalah suatu istilah yang digunakan untuk menemukan pengetahuan yang tersembunyi di dalam database. Data mining merupakan proses semi otomatik yang menggunakan
BAB I PENDAHULUAN. pengetahuan yang tersembunyi di dalam database. Data mining merupakan proses
BAB I PENDAHULUAN A. Latar Belakang Masalah Data mining adalah suatu konsep yang digunakan untuk menemukan pengetahuan yang tersembunyi di dalam database. Data mining merupakan proses semi otomatik yang
TUGAS KONSEP DASAR DATA MINING
TUGAS KONSEP DASAR DATA MINING Di susun Oleh: Nurkholifah Npm : 2014210052 FAKULTAS ILMU KOMPUTER JURUSAN SISTEM INFORMASI UNIVERSITAS INDO GLOBAL MANDIRI TAHUN 2016 BAB I PENDAHULUAN 1.1 Latar Belakang
BAB I PENDAHULUAN. untuk menemukan pengetahuan atau informasi berharga yang tersembunyi di
BAB I PENDAHULUAN A. Latar Belakang Data mining merupakan salah satu cabang ilmu komputer yang cukup baru yang banyak digunakan dan dipelajari oleh para ahli ilmu komputer dan programmer. Data mining merupakan
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI 2.1 Penambangan Data (Data Mining) Pengertian data mining, berdasarkan beberapa orang: 1. Data mining (penambangan data) adalah suatu proses untuk menemukan suatu pengetahuan atau
1.2 Rumusan Masalah 1.3 Batasan Masalah 1.4 Tujuan Penelitian
Penerapan Data Mining dengan Menggunakan Metode Clustering K-Mean Untuk Mengukur Tingkat Ketepatan Kelulusan Mahasiswa Program Teknik Informatika S1 Fakultas Ilmu Komputer Universitas Dian Nuswantoro Semarang
BAB 1 PENDAHULUAN 1-1
BAB 1 PENDAHULUAN Bab ini menguraikan penjelasan umum mengenai tugas akhir yang dikerjakan. Penjelasan tersebut meliputi latar belakang masalah, tujuan tugas akhir, lingkup tugas akhir, metodologi yang
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 2.1 Data Mining Secara sederhana data mining adalah penambangan atau penemuan informasi baru dengan mencari pola atau aturan tertentu dari sejumlah data yang sangat besar. Data mining
BAB I PENDAHULUAN 1.1 Latar Belakang
BAB I PENDAHULUAN 1.1 Latar Belakang Internet saat ini merupakan kebutuhan pokok yang tidak bisa dipisahkan dari segenap sendi kehidupan. Berbagai pekerjaan ataupun kebutuhan dapat dilakukan melalui media
BAB 1 PENDAHULUAN Latar Belakang
BAB 1 PENDAHULUAN 1.1. Latar Belakang Pasar modal merupakan salah satu bagian dari pasar keuangan, di samping pasar uang, yang sangat penting peranannya bagi pembangunan nasional pada umumnya dan bagi
BAB 1 PENDAHULUAN. Dengan kemajuan teknologi informasi sekarang ini, kebutuhan akan
BAB 1 PENDAHULUAN A. Latar Belakang Dengan kemajuan teknologi informasi sekarang ini, kebutuhan akan informasi yang akurat sangat dibutuhkan dalam kehidupan sehari-hari. Namun kebutuhan informasi yang
Timor Setiyaningsih, Nur Syamsiah Teknik Informatika Universitas Darma Persada. Abstrak
DATA MINING MELIHAT POLA HUBUNGAN NILAI TES MASUK MAHASISWA TERHADAP DATA KELULUSAN MAHASISWA UNTUK MEMBANTU PERGURUAN TINGGI DALAM MENGAMBIL KEBIJAKAN DALAM RANGKA PENINGKATAN MUTU PERGURUAN TINGGI Timor
Penggalian Informasi Potensial dari Basis Data di Perguruan Tinggi. Sri Andayani Jurusan Pendidikan Matematika FMIPA UNY
Penggalian Informasi Potensial dari Basis Data di Perguruan Tinggi Sri Andayani Jurusan Pendidikan Matematika FMIPA UNY Abstrak Basis data di perguruan tinggi menyimpan banyak informasi yang dapat lebih
BAB II TINJAUAN PUSTAKA
BAB II TINJAUAN PUSTAKA 2.1. Aplikasi Data Mining Data mining adalah suatu istilah yang digunakan untuk menemukan pengetahuan yang tersembunyi di dalam database. Data mining merupakan proses semi otomatik
BAB I PENDAHULUAN. dihindarkan dari kehidupan bermasyarakat di dunia tidak terkecuali di
BAB I PENDAHULUAN 1.1. Latar Belakang Salah satu faktor penyebab seorang siswa tidak bisa melanjutkan pendidikan di sekolah menengah atas adalah kemiskinan. Hal ini tidak bisa dihindarkan dari kehidupan
BAB I PENDAHULUAN. Permintaan sepeda motor pada PT. Bintang Utama Motor semakin
BAB I PENDAHULUAN I.1. Latar Belakang Permintaan sepeda motor pada PT. Bintang Utama Motor semakin bertambah setiap tahunnya. Terdapat banyak jenis sepeda motor Honda di PT. Bintang Utama Motor mulai dari
3.1 Metode Pengumpulan Data
BAB 3 METODE PENELITIAN 3.1 Metode Pengumpulan Data Sebuah penelitian memerlukan pengumpulan data dan metode pengumpulan data karena sangat berpengaruh terhadap akurasi dan kualitas data yang digunakan
BAB I PENDAHULUAN 1.1 Latar Belakang
BAB I PENDAHULUAN 1.1 Latar Belakang Education data mining merupakan penelitian didasarkan data di dunia pendidikan untuk menggali dan memperoleh informasi tersembunyi dari data yang ada. Pemanfaatan education
BAB 1 PENDAHULUAN 1.1 Latar Belakang Dropout Data mining
BAB 1 PENDAHULUAN Bab ini membahas mengenai latar belakang masalah, identifikasi masalah, ruang lingkup tugas akhir, maksud dan tujuan tugas akhir, metode penelitian tugas akhir, dan sistematika penulisan
BAB II TINJAUAN PUSTAKA
BAB II TINJAUAN PUSTAKA 2.1 Landasan Teori 2.1.1 Konsep Pemasaran Dalam merancang dan mengembangkan produk, baik yang berupa jasa maupun barang, tidak terlepas dari konsep pemasaran yang bertujuan memenuhi
PENERAPAN DATA MINING SEBAGAI MODEL SELEKSI PENERIMA BEASISWA PENUH (STUDI KASUS: STIE PERBANAS SURABAYA)
ISSN 1858-4667 JURNAL LINK VOL. 27/No. 1/Februari 2018 PENERAPAN DATA MINING SEBAGAI MODEL SELEKSI PENERIMA BEASISWA PENUH (STUDI KASUS: STIE PERBANAS SURABAYA) Hariadi Yutanto 1, Nurcholis Setiawan 2
PENERAPAN DATA MINING UNTUK MENGANALISA JUMLAH PELANGGAN AKTIF DENGAN MENGGUNAKAN ALGORITMA C4.5
PENERAPAN DATA MINING UNTUK MENGANALISA JUMLAH PELANGGAN AKTIF DENGAN MENGGUNAKAN ALGORITMA C4.5 Annisak Izzaty Jamhur Universitas Putera Indonesia YPTK Padang e-mail: [email protected] Abstract
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 2.1. Pendahuluan Didalam bab ini menceritakan semua teori-teori yang digunakan didalam proses algoritma decision tree, algoritma Random tree dan Random Florest serta teoriteori dan
ALGORITMA NEAREST NEIGHBOR UNTUK MENENTUKAN AREA PEMASARAN PRODUK BATIK DI KOTA PEKALONGAN
ALGORITMA NEAREST NEIGHBOR UNTUK MENENTUKAN AREA PEMASARAN PRODUK BATIK DI KOTA PEKALONGAN Devi Sugianti Program Studi Sistem Informasi,STMIK Widya Pratama Jl. Patriot 25 Pekalongan Telp (0285)427816 email
BAB I PENDAHULUAN Latar Belakang
BAB I PENDAHULUAN 1.1. Latar Belakang Pertukaran informasi di zaman modern ini telah sampai pada era digital. Hal ini ditandai dengan semakin dibutuhkannya teknologi berupa komputer dan jaringan internet
BAB I PENDAHULUAN. bersaing. Dalam dunia bisnis yang dinamis dan penuh persaingan. Seiring dengan
BAB I PENDAHULUAN 1.1 Latar Belakang Kemajuan perkembangan teknologi informasi pada era globalisasi sekarang ini sangat pesat, hal ini menuntut setiap perusahaan untuk dapat saling bersaing. Dalam dunia
BAB I PENDAHULUAN 1.1 Latar Belakang
BAB I PENDAHULUAN 1.1 Latar Belakang Salah satu tanggung jawab sosial PT. Telkom dalam program kemitraan dengan masyarakat sekitarnya adalah memberikan kredit lunak bagi pelaku Usaha Kecil Menengah (UKM).
BAB I PENDAHULUAN. Dengan kemajuan teknologi informasi dewasa ini, kebutuhan akan informasi yang akurat
BAB I PENDAHULUAN 1.1 Latar Belakang Dengan kemajuan teknologi informasi dewasa ini, kebutuhan akan informasi yang akurat sangat dibutuhkan dalam kehidupan sehari-hari, sehingga informasi akan menjadi
Penerapan Algoritma C4.5 Untuk Menentukan Kesesuaian Lensa Kontak dengan Mata Pasien
1 Penerapan Algoritma C4.5 Untuk Menentukan Kesesuaian Lensa Kontak dengan Mata Pasien Ketut Wisnu Antara 1, Gede Thadeo Angga Kusuma 2 Jurusan Pendidikan Teknik Informatika Universitas Pendidikan Ganesha
BAB I PENDAHULUAN. 1.1 Latar Belakang
7 BAB I PENDAHULUAN 1.1 Latar Belakang Beberapa institusi yang memanfaatkan sistem informasi berbasis komputer selama bertahun-tahun sudah pasti memiliki jumlah data yang cukup besar pula. Data yang dihasilkan
PENERAPAN ALGORITMA C4.5 UNTUK KLASIFIKASI PREDIKAT KEBERHASILAN MAHASISWA DI AMIK TUNAS BANGSA. Abstrak
JURASIK (Jurn Riset Sistem Informasi & Teknik Informatika) ISSN 2527-5771 PENERAPAN ALGORITMA C4.5 UNTUK KLASIFIKASI PREDIKAT KEBERHASILAN MAHASISWA DI AMIK TUNAS BANGSA Yuni Sara Luvia 1, Dedy Hartama
PENERAPAN ALGORITMA C5.0 DALAM PENGKLASIFIKASIAN DATA MAHASISWA UNIVERSITAS NEGERI GORONTALO
PENERAPAN ALGORITMA C5.0 DALAM PENGKLASIFIKASIAN DATA MAHASISWA UNIVERSITAS NEGERI GORONTALO Wandira Irene, Mukhlisulfatih Latief, Lillyan Hadjaratie Program Studi S1 Sistem Informasi / Teknik Informatika
PEMODELAN ATURAN DALAM MEMPREDIKSI PRESTASI AKADEMIK MAHASISWA POLITEKNIK POLIPROFESI MEDAN DENGAN KERNEL K-MEANS CLUSTERING
EKSPLORA INFORMATIKA 151 PEMODELAN ATURAN DALAM MEMPREDIKSI PRESTASI AKADEMIK MAHASISWA POLITEKNIK POLIPROFESI MEDAN DENGAN KERNEL K-MEANS CLUSTERING A. Karim Politeknik Poliprofesi Medan Jalan Sie Batanghari
BAB I PENDAHULUAN 1.1 Latar Belakang
BAB I PENDAHULUAN 1.1 Latar Belakang Salah satu pelayanan dalam dunia perbankan adalah pemberian pinjaman kredit kepada nasabah yang memenuhi syarat perbankan. kredit merupakan sumber utama penghasilan
Majalah Ilmiah UPI YPTK, Volume 20, No. 1, Maret
Majalah Ilmiah UPI YPTK, Volume 20, No. 1, Maret 2013 12 PENERAPAN ALGORITMA C 4.5 DALAM MEMPEROLEH DECISION TREE UNTUK MEMPREDIKSI PENENTUAN RESIKO KREDIT PADA BANK BPR BUKITTANDANG MANDIRI PADANG MENGGUNAKAN
BAB II TINJAUAN PUSTAKA
BAB II TINJAUAN PUSTAKA 2.1 Pengertian Data Mining Data mining adalah suatu istilah yang digunakan untuk menemukan pengetahuan yang tersembunyi di dalam database. Data mining merupakan proses semi otomatik
Konsep Data Mining. Pendahuluan. Bertalya. Universitas Gunadarma 2009
Konsep Data Mining Pendahuluan Bertalya Universitas Gunadarma 2009 Latar Belakang Data yg dikumpulkan semakin bertambah banyak Data web, e-commerce Data pembelian di toko2 / supermarket Transaksi Bank/Kartu
BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI. menerapkan metode clustering dengan algoritma K-Means untuk penelitiannya.
BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI 2.1 Tinjauan Pustaka Salah satu cara untuk mengetahui faktor nilai cumlaude mahasiswa Fakultas Teknik Universitas Muhammadiyah Yogyakarta adalah dengan menerapkan
BAB I PENDAHULUAN 1.1 Latar Belakang
BAB I PENDAHULUAN 1.1 Latar Belakang Penentuan dosen pembimbing tugas akhir masih dilakukan secara manual di Jurusan Teknik Informatika UMM yang hanya mengandalkan pengetahuan personal tentang spesialisasi
BAB I PENDAHULUAN. 1.1 Latar Belakang Saat ini pendidikan di Indonesia semakin berkembang. Banyaknya
BAB I PENDAHULUAN 1.1 Latar Belakang Saat ini pendidikan di Indonesia semakin berkembang. Banyaknya pembangunan gedung sekolah maupun perguruan tinggi menjadi tanda berkembangnya pendidikan. Jumlah pendaftar
PREDIKSI HERREGISTRASI CALON MAHASISWA BARU MENGGUNAKAN ALGORITMA NAÏVE BAYES
PREDIKSI HERREGISTRASI CALON MAHASISWA BARU MENGGUNAKAN ALGORITMA NAÏVE BAYES Selvy Megira 1), Kusrini 2), Emha Taufiq Luthfi 3) 1), 2), 3) Teknik Universitas AMIKOM Yogyakarta Jl Ring road Utara, Condongcatur,
DATA MINING ANALISA POLA PEMBELIAN PRODUK DENGAN MENGGUNAKAN METODE ALGORITMA APRIORI
DATA MINING ANALISA POLA PEMBELIAN PRODUK DENGAN MENGGUNAKAN METODE ALGORITMA APRIORI Heroe Santoso 1), I Putu Hariyadi 2), Prayitno 3) 1), 2),3) Teknik Informatika STMIK Bumigora Mataram Jl Ismail Marzuki
Jurnal Informatika Mulawarman Vol. 12, No. 1, Februari ISSN
Jurnal Informatika Mulawarman Vol. 12, No. 1, Februari 2017 50 APLIKASI KLASIFIKASI ALGORITMA C4.5 (STUDI KASUS MASA STUDI MAHASISWA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS MULAWARMAN
BAB 1 PENDAHULUAN. teknologi informasi yang memungkinkan data dalam jumlah besar terakumulasi. Hampir
BAB 1 PENDAHULUAN 1.1 Latar Belakang Perkembangan database yang pesat tidak dapat lepas dari perkembangan teknologi informasi yang memungkinkan data dalam jumlah besar terakumulasi. Hampir semua data tersebut
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 1.1 Data Mining Data mining adalah proses yang menggunakan teknik statistik, matematika, kecerdasan buatan, dan machine learning untuk mengekstrasi dan mengidentifikasi informasi
Materi 1 DATA MINING 3 SKS Semester 6 S1 Sistem Informasi UNIKOM 2015 Nizar Rabbi Radliya
Materi 1 DATA MINING 3 SKS Semester 6 S1 Sistem Informasi UNIKOM 2015 Nizar Rabbi Radliya [email protected] Nama Mahasiswa NIM Kelas 1. Memahami cakupan materi dan sistem perkuliahan Data Mining.
BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah
BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah Sejalan dengan perkembangan teknologi informasi, semakin bertambah pula kemampuan komputer dalam membantu menyelesaikan permasalahanpermasalahan di berbagai
Proses Data Mining dalam Sistem Pembelajaran Berbantuan Komputer
Proses Data Mining dalam Sistem Pembelajaran Berbantuan Komputer Mewati Ayub Jurusan Teknik Informatika, Fakultas Teknologi Informasi Universitas Kristen Maranatha, Bandung Email : [email protected]
BAB 1 PENDAHULUAN 1.1 LATAR BELAKANG
BAB 1 PENDAHULUAN 1.1 LATAR BELAKANG Era komunikasi dengan menggunakan fasilitas internet memberikan banyak kemudahan dalam mendapatkan informasi yang dikehendaki. Dengan demikian semakin banyak orang,
BAB II TINJAUAN PUSTAKA. pengetahuan di dalam database. Data mining adalah proses yang menggunakan
6 BAB II TINJAUAN PUSTAKA 2.1 Pengertian Data Mining Data mining adalah suatu istilah yang digunakan untuk menguraikan penemuan pengetahuan di dalam database. Data mining adalah proses yang menggunakan
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 2.1 Data Mining Faktor penentu bagi usaha atau bisnis apapun pada masa sekarang ini adalah kemampuan untuk menggunakan informasi seefektif mungkin. Penggunaan data secara tepat karena
Decision Tree Penentuan Masa Studi Mahasiswa Prodi Teknik Informatika (Studi Kasus: Fakultas Teknik dan Komputer Universitas Harapan Medan)
Decision Tree Penentuan Masa Studi Mahasiswa Prodi Teknik Informatika (Studi Kasus: Fakultas Teknik dan Komputer Universitas Harapan Medan) Rismayanti Program Studi Teknik Informatika Universitas Harapan
BAB II TINJAUAN PUSTAKA Indeks Prestasi Kumulatif dan Lama Studi. menggunakan dokumen/format resmi hasil penilaian studi mahasiswa yang sudah
BAB II TINJAUAN PUSTAKA 2.1 Landasan Teori 2.1.1 Indeks Prestasi Kumulatif dan Lama Studi Mahasiswa yang telah menyelesaikan keseluruhan beban program studi yang telah ditetapkan dapat dipertimbangkan
TAKARIR. : Mengelompokkan suatu objek yang memiliki kesamaan. : Kelompok atau kelas
TAKARIR Data Mining Clustering Cluster Iteratif Random Centroid : Penggalian data : Mengelompokkan suatu objek yang memiliki kesamaan. : Kelompok atau kelas : Berulang : Acak : Pusat area KDD (Knowledge
Universitas Putra Indonesia YPTK Padang Fakulas Ilmu Komputer Program Studi Teknik Informatika. Knowledge Discovery in Databases (KDD)
Universitas Putra Indonesia YPTK Padang Fakulas Ilmu Komputer Program Studi Teknik Informatika Knowledge Discovery in Databases (KDD) Knowledge Discovery in Databases (KDD) Definisi Knowledge Discovery
BAB 1 KONSEP DATA MINING 2 Gambar 1.1 Perkembangan Database Permasalahannya kemudian adalah apa yang harus dilakukan dengan data-data itu. Sudah diket
Bab1 Konsep Data Mining POKOK BAHASAN: Konsep dasar dan pengertian Data Mining Tahapan dalam Data Mining Model Data Mining Fungsi Data Mining TUJUAN BELAJAR: Setelah mempelajari materi dalam bab ini, mahasiswa
BAB I PENDAHULUAN. 1.1 Latar Belakang
BAB I PENDAHULUAN 1.1 Latar Belakang Sistem jaringan komputer memiliki peran yang sangat penting dalam masyarakat modern karena memungkinkan informasi dapat diakses, disimpan dan dimanipulasi secara online.
BAB I PENDAHULUAN. jurusan ditentukan berdasarkan standar kriteria tiap jurusan.
BAB I PENDAHULUAN 1.1 Latar Belakang Pratiwi (2014) berpendapat Sekolah Menengah Atas (SMA) merupakan suatu instansi pendidikan yang di dalamnya terdapat proses pengambilan keputusan jurusan siswa kelas
PENERAPAN DATA MINING UNTUK EVALUASI KINERJA AKADEMIK MAHASISWA MENGGUNAKAN ALGORITMA NAÏVE BAYES CLASSIFIER
PENERAPAN DATA MINING UNTUK EVALUASI KINERJA AKADEMIK MAHASISWA MENGGUNAKAN ALGORITMA NAÏVE BAYES CLASSIFIER I. PENDAHULUAN Mahasiswa merupakan salah satu aspek penting dalam evaluasi keberhasilan penyelenggaraan
Penerapan Data Mining dalam Memprediksi Pembelian cat
Konferensi Nasional Sistem & Informatika 2015 STMIK STIKOM Bali, 9 10 Oktober 2015 Penerapan Data Mining dalam Memprediksi Pembelian cat Fitriana Harahap STMIK POTENSI UTAMA Jl. KL. Yos Sudarso KM 6,5
APLIKASI DATA MINING ANALISIS DATA TRANSAKSI PENJUALAN OBAT MENGGUNAKAN ALGORITMA APRIORI (Studi Kasus di Apotek Setya Sehat Semarang)
Hapsari Dita Anggraeni, Ragil Saputra, Beta Noranita APLIKASI DATA MINING ANALISIS DATA TRANSAKSI PENJUALAN OBAT MENGGUNAKAN ALGORITMA APRIORI (Studi Kasus di Apotek Setya Sehat Semarang) Hapsari Dita
BAB II TINJAUAN PUSTAKA
BAB II TINJAUAN PUSTAKA 2.1 Dasar Teori 2.1.1 Data Mining Data mining adalah suatu istilah yang digunakan untuk menguraikan penemuan pengetahuan di dalam database. Data mining adalah Proses yang menggunakan
KLASIFIKASI PROSES BUSINESS DATA MAHASISWA UNIVERSITAS KANJURUHAN MALANG MENGGUNAKAN TEKNIK DATA MINING
KLASIFIKASI PROSES BUSINESS DATA MAHASISWA UNIVERSITAS KANJURUHAN MALANG MENGGUNAKAN TEKNIK DATA MINING Moh Ahsan Universitas Kanjuruhan Malang [email protected] ABSTRAK. Universitas Kanjuruhan Malang
BAB 1 PENDAHULUAN. terhadap peran sistem informasi dalam perusahaan sebagai bagian dari produktivitas.
BAB 1 PENDAHULUAN 1.1. Latar Belakang Masalah Perkembangan teknologi informasi telah mampu mengubah persepsi manusia terhadap peran sistem informasi dalam perusahaan sebagai bagian dari produktivitas.
IMPLEMENTASI ALGORITMA C4.5 UNTUK KLASIFIKASI BIDANG KERJA ALUMNI DI STMIK LPKIA BANDUNG
IMPLEMENTASI ALGORITMA C4.5 UNTUK KLASIFIKASI BIDANG KERJA ALUMNI DI STMIK LPKIA BANDUNG 1 Ati Suci Dian Martha, 2 Afryanto Redy 1 Program Studi Sistem Informasi STMIK LPKIA 1 Program Studi Sistem Informasi
BAB 1 PENDAHULUAN 1-1
BAB 1 PENDAHULUAN Dalam bab ini berisi penjelasan mengenai latar belakang masalah, identifikasi masalah, tujuan tugas akhir, lingkup tugas akhir, metode penelitian serta sistematika penulisan. 1.1 Latar
PENELITIAN MANDIRI PEMBANGUNAN DATA MINING UNIVERSITAS UNTUK PENGEMBANGAN SISTEM INFORMASI EKSEKUTIF AKADEMIK
Nama Rumpun Ilmu: Teknologi Informasi PENELITIAN MANDIRI PEMBANGUNAN DATA MINING UNIVERSITAS UNTUK PENGEMBANGAN SISTEM INFORMASI EKSEKUTIF AKADEMIK Asroni, S.T., M.Eng. (NIDN 0526047401) Eko Prasetyo,
BAB 1 PENDAHULUAN Latar Belakang
BAB 1 PENDAHULUAN 1.1. Latar Belakang Data mining adalah proses mengeksplorasi dan menganalisis data dalam jumlah besar untuk menemukan pola dan rule yang berarti (Berry & Linoff, 2004). Klasifikasi adalah
BAB II TINJAUAN PUSTAKA
BAB II TINJAUAN PUSTAKA 2.1 Pengunduran Diri Mahasiswa Hampir tidak ada perguruan tinggi baik negeri maupun swasta (PTN/PTS) yang tidak pernah mahasiswanya mengundurkan diri sebagai mahasiswa di PTN/PTS
SATUAN ACARA PERKULIAHAN UNIVERSITAS GUNADARMA
Mata Kuliah Kode / SKS Program Studi Fakultas : Konsep Data Mining : IT012274 / 2 SKS : Sistem Komputer : Ilmu Komputer & Teknologi Informasi 1 Pengenalan RDBMS 2 SQL Mahasiswa dapat mnegrti dan memahami
BAB I PENDAHULUAN. 1.1 Latar Belakang
BAB I PENDAHULUAN 1.1 Latar Belakang Perkembangan teknologi yang pesat mempermudah akses terhadap informasi tekstual yang sangat besar jumlahnya, baik yang terdapat pada Internet maupun pada koleksi dokumen
BAB 2 LANDASAN TEORI
6 BAB 2 LANDASAN TEORI Pada tinjauan pustaka ini akan dibahas tentang konsep dasar dan teori-teori yang mendukung pembahasan yang berhubungan dengan sistem yang akan dibuat. 2.1 Basis Data (Database) Database
- PERTEMUAN 1 - KNOWLEGDE DISCOVERY
DATA WAREHOUSE - PERTEMUAN 1 - KNOWLEGDE DISCOVERY in DATABASE (KDD) Penemuan Pengetahuan di Database Tujuan : Mahasiswa Dapat memahami konsep KDD yang merupakan tujuan akhir dari Data Warehouse dan Data
DATA MINING UNTUK MENGETAHUI LAMA STUDI MAHASISWA DI UNIVERSITAS MUHAMMADIYAH PONOROGO
DATA MINING UNTUK MENGETAHUI LAMA STUDI MAHASISWA DI UNIVERSITAS MUHAMMADIYAH PONOROGO SKRIPSI Diajukan dan Disusun Sebagai Salah Satu Syarat Untuk Memperoleh Gelar Sarjana Jenjang Strata Satu (S1) Pada
BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI. yang tepat. Sistem data mining mampu memberikan informasi yang tepat dan
BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI 2.1. Tinjauan Pustaka Sistem data mining akan lebih efektif dan efisiensi dengan komputerisasi yang tepat. Sistem data mining mampu memberikan informasi yang
RENCANA PEMBELAJARAN SEMESTER
RENCANA PEMBELAJARAN SEMESTER Mata Kuliah Big Data and Data Analytics Semester Tujuh Kode SMXXXXXX Prodi MBTI Dosen Andry Alamsyah SKS 4 Capaian Pembelajaran 1. Memahami fenomena, framework, peluang dan
BAB I PENDAHULUAN 1.1. Latar Belakang
BAB I PENDAHULUAN 1.1. Latar Belakang Dalam mencapai tujuan pembangunan ekonomi diperlukan peran serta lembaga keuangan untuk membiayai pembangunan tersebut. Lembaga keuangan memegang peranan penting dalam
Manajemen Data. Dosen : Dr. Yan Rianto Rini Wijayanti, M.Kom Nama : Yoga Prihastomo NIM :
Manajemen Data Dosen : Dr. Yan Rianto Rini Wijayanti, M.Kom Nama : Yoga Prihastomo NIM : 1011601026 MAGISTER ILMU KOMPUTER UNIVERSITAS BUDI LUHUR 2011 DIT TI / DJHKI SKPL-DJHKI-01.04.2011.xx Halaman 0
Analisis asosiasi Penguasaan ICT Mahasiswa Baru dan Pencapaian Prestasi Akademik Mahasiswa dengan Algoritma Apriori.
SEMINAR NASIONAL MATEMATIKA DAN PENDIDIKAN MATEMATIKA UNY 2016 Analisis asosiasi Penguasaan ICT Mahasiswa Baru dan Pencapaian Prestasi Akademik Mahasiswa dengan Algoritma Apriori. Kuswari Hernawati 1,
RANCANG BANGUN APLIKASI DATA MINING ANALISIS TINGKAT KELULUSAN MENGGUNAKAN ALGORITMA FP-GROWTH (Studi Kasus Di Politeknik Negeri Malang)
RANCANG BANGUN APLIKASI DATA MINING ANALISIS TINGKAT KELULUSAN MENGGUNAKAN ALGORITMA FP-GROWTH (Studi Kasus Di Politeknik Negeri Malang) Naufal Farras Hilmy 1, Banni Satria Andoko 2 Program Studi Teknik
JURNAL PREDIKSI PRESTASI SISWA SEKOLAH DASAR MENGGUNAKAN ALGORITMA CART PREDICTION ELEMENTARY SCHOOL STUDENT ACHIEVEMENT USING CART ALGORITHM
JURNAL PREDIKSI PRESTASI SISWA SEKOLAH DASAR MENGGUNAKAN ALGORITMA CART PREDICTION ELEMENTARY SCHOOL STUDENT ACHIEVEMENT USING CART ALGORITHM Oleh: BENI KURNIAWAN 12.1.03.02.0201 Dibimbing oleh : 1. Resty
BAB III METODOLOGI 3.1. Prosedur Penelitian Identifikasi Masalah
BAB III METODOLOGI Dalam penelitian ini metodologi memegang peranan penting guna mendapatkan data yang obyektik, valid dan selanjutnya digunakan untuk memecahkan permasalahan yang telah dirumuskan. Maka
BAB III ANALISIS DAN PENYELESAIAN MASALAH
BAB III ANALISIS DAN PENYELESAIAN MASALAH 3.1 Deskripsi Sistem Gambar III-1 Deskripsi Umum Sistem Pada gambar III-1 dapat dilihat deskripsi sistem sederhana yang mendeteksi intrusi pada jaringan menggunakan
ALGORITMA BAYESIAN CLASSIFICATION UNTUK MEMPREDIKSI HEREGRISTRASI MAHASISWA BARU DI STMIK WIDYA PRATAMA
ALGORITMA BAYESIAN CLASSIFICATION UNTUK MEMPREDIKSI HEREGRISTRASI MAHASISWA BARU DI STMIK WIDYA PRATAMA Devi Sugianti Program Studi Sistem Informasi,STMIK WidyaPratama Jl. Patriot 25 Pekalongan Telp (0285)427816
BAB 1 PENDAHULUAN 1.1 Latar Belakang
BAB 1 PENDAHULUAN 1.1 Latar Belakang Rumah sakit merupakan suatu institusi atau organisasi kesehatan yang melalui tenaga medis profesional memberikan pelayanan kesehatan, asuhan keperawatan, diagnosis
BAB I PENDAHULUAN. Perguruan tinggi yang baik dipengaruhi oleh kualitas. mahasiswa di dalamnya. Mahasiswa merupakan objek
1 BAB I PENDAHULUAN 1.1. Latar Belakang Perguruan tinggi yang baik dipengaruhi oleh kualitas mahasiswa di dalamnya. Mahasiswa merupakan objek pembelajaran bagi perguruan tinggi sehingga jika prestasi mahasiswa
BAB II TINJAUAN PUSTAKA. yang akan dibuat adalah sebagai berikut : Sistem Monitoring Pertumbuhan Balita Berbasis Web. Wahyuningsih
BAB II TINJAUAN PUSTAKA A. Telaah Penelitian Penelitian sebelumnya yang berhubungan dengan sistem informasi yang akan dibuat adalah sebagai berikut : Wahyuningsih (2011) telah melakukan penelitian yang
BAB I PENDAHULUAN. berbagai macam metode dan teknologi, sehingga sebuah sistem
BAB I PENDAHULUAN 1.1. Latar Belakang Business Intelligence merupakan sebuah konsep yang menggunakan berbagai macam metode dan teknologi, sehingga sebuah sistem business intelligence pada umumnya dapat
CONTOH KASUS DATA MINING
CONTOH KASUS DATA MINING CONTOH KASUS DATA MINING Sebuah rumah sakit ingin ingin menekan biaya perawatan pasien tanpa mengurangi kualitas pelayanan. Salahsatu potensi yang dapat dimanfaatkan pada penerapan
Student Clustering Based on Academic Using K-Means Algoritms
Student Clustering Based on Academic Using K-Means Algoritms Hironimus Leong, Shinta Estri Wahyuningrum Faculty of Computer Science, Faculty of Computer Science Unika Soegijapranata [email protected]
Model Data Mining sebagai Prediksi Penyakit Hipertensi Kehamilan dengan Teknik Decision Tree
Scientific Journal of Informatics Vol. 3, No. 1, Mei 2016 p-issn 2407-7658 http://journal.unnes.ac.id/nju/index.php/sji e-issn 2460-0040 Model Data Mining sebagai Prediksi Penyakit Hipertensi Kehamilan
ANALISA TERHADAP PERBANDINGAN ALGORITMA DECISION TREE DENGAN ALGORITMA RANDOM TREE UNTUK PRE-PROCESSING DATA
ANALISA TERHADAP PERBANDINGAN ALGORITMA DECISION TREE DENGAN ALGORITMA RANDOM TREE UNTUK PRE-PROCESSING DATA Saifullah 1, Muhammad Zarlis 2, Zakaria 3, Rahmat Widia Sembiring 4 1STIKOM Tunas Bangsa Pematangsiantar,
ANALISIS TINGKAT KEPUASAN PELANGGAN TERHADAP PENJUALAN AIR MINUM ISI ULANG DENGAN MENGGUNAKAN METODE ROUGH SET (Studi Kasus: Rihata Water)
ANALISIS TINGKAT KEPUASAN PELANGGAN TERHADAP PENJUALAN AIR MINUM ISI ULANG DENGAN MENGGUNAKAN METODE ROUGH SET (Studi Kasus: Rihata Water) Tania Dian Tri Utami 1, Dedy Hartama 2, Agus Perdana Windarto
MEMANFAATKAN ALGORITMA K-MEANS DALAM MENENTUKAN PEGAWAI YANG LAYAK MENGIKUTI ASESSMENT CENTER UNTUK CLUSTERING PROGRAM SDP
MEMANFAATKAN ALGORITMA K-MEANS DALAM MENENTUKAN PEGAWAI YANG LAYAK MENGIKUTI ASESSMENT CENTER UNTUK CLUSTERING PROGRAM SDP Page 87 Iin Parlina 1, Agus Perdana Windarto 2, Anjar Wanto 3, M.Ridwan Lubis
BAB I PENDAHULUAN. masalah kecerdasan, desain, pemilihan, implementasi, dan monitoring (Tripathi,
BAB I PENDAHULUAN 1.1 Latar Belakang Pengambilan suatu keputusan dapat membantu dalam mencari solusi dari sekian banyak solusi yang ada. Pengambilan keputusan adalah hasil dari suatu proses yang termasuk
