ANALISA TERHADAP PERBANDINGAN ALGORITMA DECISION TREE DENGAN ALGORITMA RANDOM TREE UNTUK PRE-PROCESSING DATA
|
|
|
- Yuliani Sudjarwadi
- 8 tahun lalu
- Tontonan:
Transkripsi
1 ANALISA TERHADAP PERBANDINGAN ALGORITMA DECISION TREE DENGAN ALGORITMA RANDOM TREE UNTUK PRE-PROCESSING DATA Saifullah 1, Muhammad Zarlis 2, Zakaria 3, Rahmat Widia Sembiring 4 1STIKOM Tunas Bangsa Pematangsiantar, Jln Jend. Sudirman Blok A No.1/2/3 2Fasilkom TI USU, Jl. Universitas No. 9A Kampus USU, Medan 3Universitas Methodist, Kampus I Jl. Hang Tuah No. 8 Medan 4Politeknik Negeri Medan, Jl. Almamater No. 1, Kampus USU Medan Abstract Preprocessing data is needed some methods to get better results. This research is intended to process employee dataset as preprocessing input. Furthermore, model decision algorithm is used, random tree and random forest. Decision trees are used to create a model of the rule selected in the decision process. With the results of the preprocessing approach and the model rules obtained, can be a reference for decision makers to decide which variables should be considered to support employee performance improvement. Keywords: Pre-processing Data, Decision Tree, Random Tree, Random Forest. Abstrak Preprocessing data sangat dibutuhkan beberapa metode untuk mendapatkan hasil yang lebih baik. Penelitian ini ditujukan mengolah dataset karyawan sebagai inputan preprocessing. Selanjutnya digunakan model algoritma decision tree, random tree dan random forest. Pohon keputusan digunakan untuk membuat model aturan yang dipilih dalam proses mengambil keputusan. Dengan hasil pendekatan preprocessing dan model aturan yang didapat, dapat menjadi referensi bagi pengambil keputusan untuk mengambil keputusan variabel mana yang harus diperhatikan untuk mendukung peningkatan kinerja karyawan. Kata Kunci: Pre-processing Data, Decision Tree, Random Tree, Random Forest. 1. PENDAHULUAN Dengan meningkatnya teknologi informasi (TI) jumlah data semakin tinggi yang akan diproses dan disimpan dalam database, sehingga tingkat kesulitannya dalam memprosesan cukup tinggi. Para peneliti banyak menggunakan data mining untuk mengatasi masalah pengelompokan dan pengolahan database yang sangat besar. Teknik data mining secara garis besar dapat dibagi dalam dua kelompok: verifikasi dan discovery. Metode verifikasi umumnya meliputi teknik-teknik statistik seperti goodness of fit, dan analisis variansi. Metode discovery lebih lanjut dapat dibagi atas model prediktif dan model deskriptif. Teknik prediktif melakukan prediksi terhadap data dengan menggunakan hasil-hasil yang telah diketahui dari data yang berbeda. Sementara itu, model deskriptif bertujuan mengidentifikasi pola-pola atau hubungan antar data dan memberikan cara untuk mengeksplorasi karakteristik data yang diselidiki [1]. Algoritma Decision Tree Dengan Algoritma Random Tree (Saifullah) 180
2 Dalam pengolahan data, penulis ingin membuat perbandingan metode dalam memprosesnya, diantaranya menggunakan model preproceesing data Handle missing value as category dan Missing value replenishment yang dipaplikasikan pada pohon keputusan decision tree, random tree dan random forest. Dengan menggunakan perbandingan model ini, penelitian ini akan memberikan aturan preprocessing mana yang paling efisien untuk diaplikaksikan pada decision tree, random tree dan random forest. 2. METODOLOGI PENELITIAN 2.1. Pengertian Data Mining Data mining adalah suatu istilah yang digunakan untuk menemukan pengetahuan yang tersembunyi di dalam database. Data mining merupakan proses semi otomatik yang menggunakan teknik statistik, matematika, kecerdasan buatan, dan machine learning untuk mengekstraksi dan mengidentifikasi informasi pengetahuan potensial dan berguna yang bermanfaat yang tersimpan di dalam database besar [2]. Enam fase CRISP-DM ( Cross Industry Standard Process for Data Mining) [3]. 1. Fase Pemahaman Bisnis ( Business Understanding Phase ) 2. Fase Pemahaman Data ( Data Understanding Phase ) 3. Fase Pengolahan Data ( Data Preparation Phase ) 4. Fase Pemodelan ( Modeling Phase ) 5. Fase Evaluasi ( Evaluation Phase ) 6. Fase Penyebaran (Deployment Phase) 2.2. Pengertian Decision Tree Decision tree merupakan salah satu metode klasifikasi yang menggunakan representasi struktur pohon (tree) di mana setiap node merepresentasikan atribut, dimana cabangnya merepresentasikan nilai dari atribut, dan daun merepresentasikan kelas. Node yang paling atas dari decision tree disebut sebagai root. Decision tree merupakan metode klasifikasi yang paling populer digunakan. Selain karena pembangunannya relatif cepat, hasil dari model yang dibangun mudah untuk dipahami. Pada decision tree terdapat 3 jenis node, yaitu Root Node, Internal Node, Leaf node Pengertian Random Tree Operator ini mempelajari tentang sebuah pohon keputusan. Operator ini hanya menggunakan subset acak atribut untuk setiap perpecahan. Operator ini mempelajari tentng pohon keputusan yakni data nominal dan numerik. Pohon keputusan adalah metode klasifikasi yang kuat yang dapat dengan mudah dipahami. Operator pohon Random bekerja sama dengan Quinlan C4.5 atau CART memilih subset acak atribut sebelum diterapkan. Ukuran subset ditentukan oleh parameter rasio bagian Pengertian Random Forest Operator ini menghasilkan satu set sejumlah tertentu pohon random yaitu menghasilkan forest (hutan; kumpulan pohon) acak. Model yang dihasilkan adalah model suara pilihan dari semua pohon. Operator Random Forest menghasilkan satu set pohon acak. Pohon-pohon acak yang dihasilkan dengan cara yang persis sama seperti Algoritma Decision Tree Dengan Algoritma Random Tree (Saifullah) 181
3 operator Acak Pohon menghasilkan pohon. Model hutan yang dihasilkan mengandung sejumlah tertentu dari model pohon acak. Jumlah pohon parameter menentukan jumlah yang diperlukan pohon. Model yang dihasilkan adalah model suara pilihan dari semua pohon acak. Untuk informasi lebih lanjut tentang pohon acak silakan mempelajari operator random Tree Preprocessing data Pre-processing data adalah proses mengubah data ke dalam format yang sederhana, lebih efektif, dan sesuai dengan kebutuhan pengguna. Indikator yang dapat digunakan sebagai referensi adalah hasil lebih akurat, waktu komputasi yang lebih pendek, juga data menjadi lebih kecil tanpa mengubah informasi di dalamnya Jenis-Jenis metode Preprecessing data Ekstraksi fitur adalah perubahan dari data dimensi tinggi ke dimensi rendah. Transformasi data dapat linier dan nonlinier dimensi data, tujuannya adalah pemetaan data ke dimensi yang lebih rendah. Beberapa algoritma telah lakukan, untuk supervised learning: LDA, CCA, PLS, LSI, SVD, dan unsupervised learning: PCA, ICA, FastICA ][4][5] Handle Missing Value as Category Operator ini memetakan nilai-nilai tertentu dari atribut yang dipilih ke nilai baru. Operator ini dapat diterapkan pada kedua atribut numerik dan nominal. Operator ini dapat digunakan untuk menggantikan nilai nominal (misalnya mengganti nilai 'hijau' dengan nilai warna_hijau ) serta nilai-nilai numeric. Tapi, salah satu penggunaan operator ini dapat melakukan pemetaan untuk atribut hanya satu jenis. Sebuah pemetaan tunggal dapat ditentukan dengan menggunakan parameter menggantikan what dan replace by seperti dalam operator replace Missing Value Replenishment Operator ini menggantikan nilai-nilai yang hilang dalam contoh atribut yang dipilih oleh pengganti yang ditentukan. Operator ini menggantikan nilai-nilai yang hilang dalam contoh atribut yang dipilih oleh pengganti yang ditentukan. Nilai-nilai yang hilang dapat diganti dengan nilai minimum, maksimum atau rata-rata atribut tersebut. Nol juga dapat ditempatkan di tempat nilai-nilai yang hilang. Setiap nilai pengisian juga dapat ditentukan sebagai pengganti nilai-nilai yang hilang [6] Metode Penelitian Rancangan penelitian ini pertama kali dilakukan dengan memahami data (observasi) untuk mempelajari klasifikasi data yang di gunakan untuk proses preprocessing data. Hasil pengamatan kemudian dibuat menjadi scenario implementasi pohon keputusan yang mendukung, kemudian mendapatkan aturan yang sesuai untuk digunakan. Data yang sudah diolah merupakan data input pada proses pohon keputusan. Selanjutnya data input diproses dengan menggunakan Decision Tree, Random Tree dan Random Forest. Algoritma Decision Tree Dengan Algoritma Random Tree (Saifullah) 182
4 regular Pension nominal standbypay regular integer Jurnal Sains Komputer & Informatika (J-SAKTI) 3. HASIL DAN PEMBAHASAN Adapun hasil percobaan training dan testing data dapat dilihat pada bagian berikut ini Sampel Data Dalam pengujian data set ini yang terdiri dari 10 data dengan rincian sebagai berikut: Tabel 1. Deskripsi data Tipe Nama Tipe data Deskripsi Uraian Missing value mode = good (26), bad (14), good label Class nominal least = bad (14) (26) 0 avg = /- regular Duration integer [1.000 ; 3.000] 1 wage-inc- avg = /- regular 1 st real [2.000 ; 6.900] 1 wage-inc- avg = /- regular 2 nd real [2.000 ; 7.000] 10 wage-inc- avg = /- regular 3 rd real [2.000 ; 5.100] 28 regular col-adj nominal mode = none (14), least = tcf (4) tcf (4), none (14), tc (6) 16 regular workinghours integer avg = / [ ; ] 3 none (8), mode = none (8), empl_contr (7), least = ret_allw (3) ret_allw (3) 22 avg = / [2.000 ; ] Hasil Preprocessing dengan Handle missing value as category DecisionTree dapat dilihat pada gambar 1. Gambar 1. Model Preprocessingnya Handle missing value as category dengan implementasi decision tree Random Tree Model preprocessing dengan grafik dari software rapidminer yang akan digunakan dapat dilihat pada gambar 2. Algoritma Decision Tree Dengan Algoritma Random Tree (Saifullah) 183
5 Gambar 2. Model Preprocessingnya Handle missing value as category dengan implementasi random tree Random Forest dapat dilihat pada gambar 3. Gambar 3. Model Preprocessingnya Handle missing value as category dengan implementasi random forest 3.3. Preprocessing dengan Missing value replenishment DecisionTree dapat dilihat pada gambar 4 Gambar 4. Model Preprocessingnya Missing value replenishment dengan implementasi decision tree Random Tree dapat dilihat pada gambar 5. Gambar 5. Model Preprocessingnya Missing value replenishment dengan implementasi random tree Algoritma Decision Tree Dengan Algoritma Random Tree (Saifullah) 184
6 Random Forest dapat dilihat pada gambar 6. Gambar 6. Model Preprocessingnya Missing value replenishment dengan implementasi random tree 4. SIMPULAN Penelitian ini menghasilkan beberapa kesimpulan sebagai berikut : a. Dengan menerapkan model preprocessing data Handle missing value as category dan Missing value replenisment data hasil pre-processing dapat diaplikasikan pada pohon keputusan Decision tree, random tree dan Random Forest. b. Diperoleh suatu model aturan yang dapat memperlihatkan aturan keterhubungan antara wage_inc_1st dengan staturoty holidays dan working hours c. Dalam studi kasus labour realtion ditemukan bahwa jika statutrory holidays akan diberikan jika wage_inc_1st lebih besar dari 2.0. d. Preprocessing ternyata memberi efek pada efisiensi implementasi pohon keputusan. DAFTAR PUSTAKA [1] Dunham, M.H Data Mining Introductory and advanced topics. News Jersey: Prentice Hall. [2] Turban, E., Aronson, J. E. & Liang, T., 2005, Decision Support Sistems and Intellegent Sistems (Sistem Pendukung Keputusan dan Sistem Cerdas). [3] Larose D, T., 2006, Data Mining Methods and Models, Jhon Wiley & Sons, Inc. Hoboken New Jersey. [4] Sembiring R dan Zain J, 2010, Rancangan Pre-Processing Data Multidimensi Berdasarkan Analisa Komponen, Proceeding The 5 th IMT-GT International Conference on Mathematics, Statistic, and Their Application. [5] Sembering S, Embong A, Mohammad, M. A, Furqan M, Improving Student Academic Performace by An Application of Data Mining Techniques, Proceeding The 5 th IMT-GT International Conference on Mathematics, Statistic, and Their Application (ICMSA 2009). [6] Juan S, Xi-Zhao W., (2005), An Initial Comparison on Noise Resisting Between Crisp and Fuzzy Decision Trees, IEEE 2005 Proceeding of the Fourth International Conference on Machine Learning and Cybernetics. Algoritma Decision Tree Dengan Algoritma Random Tree (Saifullah) 185
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 2.1. Pendahuluan Didalam bab ini menceritakan semua teori-teori yang digunakan didalam proses algoritma decision tree, algoritma Random tree dan Random Florest serta teoriteori dan
ANALISIS PERBANDINGAN ALGORITMA DECISION TREE DENGAN ALGORITMA RANDOM TREE UNTUK PROSES PRE PROCESSING DATA TESIS SAIFULLAH
ANALISIS PERBANDINGAN ALGORITMA DECISION TREE DENGAN ALGORITMA RANDOM TREE UNTUK PROSES PRE PROCESSING DATA TESIS SAIFULLAH 117038036 PROGRAM STUDI MAGISTER (S2) TEKNIK INFORMATIKA FAKULTAS ILMU KOMPUTER
BAB I PENDAHULUAN. Universitas Sumatera Utara
BAB I PENDAHULUAN 1.1 Latar Belakang Data mining adalah suatu istilah yang digunakan untuk menemukan pengetahuan yang tersembunyi di dalam database. Data mining merupakan proses semi otomatik yang menggunakan
PERBANDINGAN DECISION TREE
84 2015 Jurnal Krea-TIF Vol: 03 No: 02 PERBANDINGAN DECISION TREE PADA ALGORITMA C 4.5 DAN ID3 DALAM PENGKLASIFIKASIAN INDEKS PRESTASI MAHASISWA (Studi Kasus: Fasilkom Universitas Singaperbangsa Karawang)
Student Clustering Based on Academic Using K-Means Algoritms
Student Clustering Based on Academic Using K-Means Algoritms Hironimus Leong, Shinta Estri Wahyuningrum Faculty of Computer Science, Faculty of Computer Science Unika Soegijapranata [email protected]
Penerapan Algoritma C4.5 Untuk Menentukan Kesesuaian Lensa Kontak dengan Mata Pasien
1 Penerapan Algoritma C4.5 Untuk Menentukan Kesesuaian Lensa Kontak dengan Mata Pasien Ketut Wisnu Antara 1, Gede Thadeo Angga Kusuma 2 Jurusan Pendidikan Teknik Informatika Universitas Pendidikan Ganesha
MODEL KLASIFIKASI KELAYAKAN KREDIT KOPERASI KARYAWAN BERBASIS DECISION TREE
MODEL KLASIFIKASI KELAYAKAN KREDIT KOPERASI KARYAWAN BERBASIS DECISION TREE Rina Fiati 1, Putri Kurnia Handayani 2 1 Program Studi Teknik Informatika, Fakultas Teknik, Universitas Muria Kudus Gondangmanis,
BAB I PENDAHULUAN. Universitas Sumatera Utara
BAB I PENDAHULUAN 1.1 Latar Belakang Data mining adalah suatu konsep yang digunakan untuk menemukan pengetahuan yang tersembunyi di dalam database. Data mining merupakan proses semi otomatik yang menggunakan
PREDIKSI HERREGISTRASI CALON MAHASISWA BARU MENGGUNAKAN ALGORITMA NAÏVE BAYES
PREDIKSI HERREGISTRASI CALON MAHASISWA BARU MENGGUNAKAN ALGORITMA NAÏVE BAYES Selvy Megira 1), Kusrini 2), Emha Taufiq Luthfi 3) 1), 2), 3) Teknik Universitas AMIKOM Yogyakarta Jl Ring road Utara, Condongcatur,
MODEL KLASIFIKASI KELAYAKAN KREDIT KOPERASI KARYAWAN DENGAN ALGORITMA DECISION TREE
MODEL KLASIFIKASI KELAYAKAN KREDIT KOPERASI KARYAWAN DENGAN ALGORITMA DECISION TREE Putri Kurnia Handayani Program Studi Sistem Informasi, Fakultas Teknik, Universitas Muria Kudus Gondangmanis, PO Box
KLASIFIKASI PROSES BUSINESS DATA MAHASISWA UNIVERSITAS KANJURUHAN MALANG MENGGUNAKAN TEKNIK DATA MINING
KLASIFIKASI PROSES BUSINESS DATA MAHASISWA UNIVERSITAS KANJURUHAN MALANG MENGGUNAKAN TEKNIK DATA MINING Moh Ahsan Universitas Kanjuruhan Malang [email protected] ABSTRAK. Universitas Kanjuruhan Malang
TUGAS KONSEP DASAR DATA MINING
TUGAS KONSEP DASAR DATA MINING Di susun Oleh: Nurkholifah Npm : 2014210052 FAKULTAS ILMU KOMPUTER JURUSAN SISTEM INFORMASI UNIVERSITAS INDO GLOBAL MANDIRI TAHUN 2016 BAB I PENDAHULUAN 1.1 Latar Belakang
Jurnal Informatika Mulawarman Vol. 12, No. 1, Februari ISSN
Jurnal Informatika Mulawarman Vol. 12, No. 1, Februari 2017 50 APLIKASI KLASIFIKASI ALGORITMA C4.5 (STUDI KASUS MASA STUDI MAHASISWA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS MULAWARMAN
TechnoXplore ISSN : X Jurnal Ilmu Komputer & Teknologi Informasi Vol 1 No : 2, Oktober 2016
Penerapan Data Mining Pada Data Transaksi Superstore Untuk Mengetahui Kemungkinan Pelanggan Membeli Product Category Dan Product Container Secara Bersamaan Dengan Teknik Asosiasi Menggunakan Algoritma
BAB II TINJAUAN PUSTAKA
BAB II TINJAUAN PUSTAKA 2.1 Data Mining 2.1.1 Pengertian Data Mining Dengan semakin besarnya jumlah data dan kebutuhan akan analisis data yang akurat maka dibutuhkan metode analisis yang tepat. Data mining
Klasifikasi Data Karyawan Untuk Menentukan Jadwal Kerja Menggunakan Metode Decision Tree
Klasifikasi Data Karyawan Untuk Menentukan Jadwal Kerja Menggunakan Metode Decision Tree Disusun oleh : Budanis Dwi Meilani Achmad dan Fauzi Slamat Jurusan Sistem Informasi Fakultas Teknologi Informasi.
BAB III METODE PENELITIAN
BAB III METODE PENELITIAN 3.1 Dasar Penelitian Penelitian ini dilakukan berdasarkan rumusan masalah yang telah dijabarkan pada bab sebelumnya yaitu untuk mengklasifikasikan kelayakan kredit calon debitur
BAB I PENDAHULUAN 1.1 Latar Belakang
BAB I PENDAHULUAN 1.1 Latar Belakang Education data mining merupakan penelitian didasarkan data di dunia pendidikan untuk menggali dan memperoleh informasi tersembunyi dari data yang ada. Pemanfaatan education
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI 2.1 Penambangan Data (Data Mining) Pengertian data mining, berdasarkan beberapa orang: 1. Data mining (penambangan data) adalah suatu proses untuk menemukan suatu pengetahuan atau
BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI
BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI 2.1 Tinjauan Studi Sebelum melakukan penelitian penulis terlebih dahulu melakukan tinjauan pustaka dari penelitian lain dan penelitian tentang prediksi penjurusan
BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI. yang tepat. Sistem data mining mampu memberikan informasi yang tepat dan
BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI 2.1. Tinjauan Pustaka Sistem data mining akan lebih efektif dan efisiensi dengan komputerisasi yang tepat. Sistem data mining mampu memberikan informasi yang
BAB I PENDAHULUAN. pengetahuan yang tersembunyi di dalam database. Data mining merupakan proses
BAB I PENDAHULUAN A. Latar Belakang Masalah Data mining adalah suatu konsep yang digunakan untuk menemukan pengetahuan yang tersembunyi di dalam database. Data mining merupakan proses semi otomatik yang
BAB II TINJAUAN PUSTAKA
BAB II TINJAUAN PUSTAKA 2.1 Pengertian Data Mining Data mining adalah suatu istilah yang digunakan untuk menemukan pengetahuan yang tersembunyi di dalam database. Data mining merupakan proses semi otomatik
Versi Online tersedia di : JURNAL TECH-E (Online)
JURNAL TECH-E - VOL. 1 NO. 1 (2017) Versi Online tersedia di : http://bsti.ubd.ac.id/e-jurnal JURNAL TECH-E 2581-116 (Online) Artikel Perancangan Aplikasi Prediksi Kelulusan Mahasiswa Tepat Waktu Pada
SOLUSI PREDIKSI MAHASISWA DROP OUT PADA PROGRAM STUDI SISTEM INFORMASI FAKULTAS ILMU KOMPUTER UNIVERSITAS BINA DARMA
SOLUSI PREDIKSI MAHASISWA DROP OUT PADA PROGRAM STUDI SISTEM INFORMASI FAKULTAS ILMU KOMPUTER UNIVERSITAS BINA DARMA Ade Putra Fakultas Vokasi, Program Studi Komputerisasi Akuntansi Universitas Bina Darma
BAB 3 METODE PENELITIAN. Jenis sumber data yang didapatkan peneliti adalah data primer dan data sekunder.
BAB 3 METODE PENELITIAN 3.1 Metode Pengumpulan Data 3.1.1 Sumber Data Jenis sumber data yang didapatkan peneliti adalah data primer dan data sekunder. 1. Data primer Didapatkan peneliti secara langsung
BAB 2 TINJAUAN PUSTAKA Klasifikasi Data Mahasiswa Menggunakan Metode K-Means Untuk Menunjang Pemilihan Strategi Pemasaran
BAB 2 TINJAUAN PUSTAKA 2.1 Tinjauan Pustaka Beberapa penelitian terdahulu telah banyak yang menerapkan data mining, yang bertujuan dalam menyelesaikan beberapa permasalahan seputar dunia pendidikan. Khususnya
Penerapan Data Mining dalam Memprediksi Pembelian cat
Konferensi Nasional Sistem & Informatika 2015 STMIK STIKOM Bali, 9 10 Oktober 2015 Penerapan Data Mining dalam Memprediksi Pembelian cat Fitriana Harahap STMIK POTENSI UTAMA Jl. KL. Yos Sudarso KM 6,5
BAB III METODE PENELITIAN
BAB III METODE PENELITIAN 3.1 Instrumen Penelitian Pada penelitian ini bahan dan peralatan yang diperlukan sebagai berikut: 3.1.1 Bahan Dalam penelitian ini bahan yang dibutuhkan adalah data siswa kelas
BAB II TINJAUAN PUSTAKA Indeks Prestasi Kumulatif dan Lama Studi. menggunakan dokumen/format resmi hasil penilaian studi mahasiswa yang sudah
BAB II TINJAUAN PUSTAKA 2.1 Landasan Teori 2.1.1 Indeks Prestasi Kumulatif dan Lama Studi Mahasiswa yang telah menyelesaikan keseluruhan beban program studi yang telah ditetapkan dapat dipertimbangkan
POHON KEPUTUSAN DENGAN ALGORITMA C4.5
POHON KEPUTUSAN DENGAN ALGORITMA C4.5 1. Pengantar Algoritma C4.5 Klasifikasi merupakan salah satu proses pada data mining yang bertujuan untuk menemukan pola yang berharga dari data yang berukuran relatif
Penerapan Fungsi Data Mining Klasifikasi untuk Prediksi Masa Studi Mahasiswa Tepat Waktu pada Sistem Informasi Akademik Perguruan Tinggi
IJCCS, Vol.x, No.x, July xxxx, pp. 1~5 ISSN: 1978-1520 39 Penerapan Fungsi Data Mining Klasifikasi untuk Prediksi Masa Studi Mahasiswa Tepat Waktu pada Sistem Informasi Akademik Perguruan Tinggi Irwan
BAB 3 METODE PENELITIAN. Bahan dan peralatan yang dibutuhkan dalam penelitian ini antara lain :
BAB 3 METODE PENELITIAN 3.1 Instrumen Penelitian Bahan dan peralatan yang dibutuhkan dalam penelitian ini antara lain : 3.1.1 Bahan Bahan yang digunakan dalam penelitian ini yaitu data siswa kelas SMA
BAB I PENDAHULUAN 1.1 Latar Belakang Masalah
BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Pada bab ini dilakukan pendefinisian permasalahan dari penelitian yang akan dilakukan. Dalam Cross Industry Standard Process for Data Mining[3], tahapan ini
METODE PENELITIAN HASIL DAN PEMBAHASAN
5. Oleh karena itu untuk meningkatkan akurasinya, proses learning harus dihentikan lebih awal atau melakukan pemotongan tree secara umum. Untuk itu diberikan 2 (dua) buah threshold yang harus dipenuhi
ANALISIS SEGMENTASI NASABAH MENGGUNAKAN ALGORITMA K-MEANS CLUSTERING (Studi Kasus di PT. Buana Sejahtera Multidana Cabang Cikampek)
ANALISIS SEGMENTASI NASABAH MENGGUNAKAN ALGORITMA K-MEANS CLUSTERING (Studi Kasus di PT. Buana Sejahtera Multidana Cabang Cikampek) Meriska Defriani 1, Noviyanti 2 1 STT Wastukancana 2 Teknik Informatika,
PEMBENTUKAN DECISION TREE DATA LAMA STUDI MAHASISWA MENGGUNAKAN ALGORITMA NBTREE DAN C4.5
PEMBENTUKAN DECISION TREE DATA LAMA STUDI MAHASISWA MENGGUNAKAN ALGORITMA NBTREE DAN C4.5 Syam Gunawan 1, Pritasari Palupiningsih 2 1,2 Jurusan Sistem Informasi, STMIK Indonesia 1 [email protected],
BAB I PENDAHULUAN. 1.1 Latar Belakang
BAB I PENDAHULUAN 1.1 Latar Belakang Perpustakaan merupakan tempat dimana seseorang mendapatkan pengetahuan, informasi atau hiburan dengan jumlah kategori yang bervarian seperti ilmiah, non fiksi, komedi,
PENENTUAN NILAI PANGKAT PADA ALGORITMA FUZZY C- MEANS
PENENTUAN NILAI PANGKAT PADA ALGORITMA FUZZY C- MEANS WULAN ANGGRAENI [email protected] Program Studi Pendidikan Matematika Universitas Indraprasta PGRI Abstract. The purpose of this study was to
IMPLEMENTASI TEKNIK DATA MINING CLASSIFICATION DENGAN METODE DECISSION TREE UNTUK MENENTUKAN TINGKAT KELULUSAN MAHASISWA
IMPLEMENTASI TEKNIK DATA MINING CLASSIFICATION DENGAN METODE DECISSION TREE UNTUK MENENTUKAN TINGKAT KELULUSAN MAHASISWA Sudirman 1,2 Departement of Information Science, Faculty of Computer Science and
BAB 2 LANDASAN TEORI
6 BAB 2 LANDASAN TEORI Pada tinjauan pustaka ini akan dibahas tentang konsep dasar dan teori-teori yang mendukung pembahasan yang berhubungan dengan sistem yang akan dibuat. 2.1 Basis Data (Database) Database
DECISION TREE BERBASIS ALGORITMA UNTUK PENGAMBILAN KEPUTUSAN
ISSN : 1978-6603 DECISION TREE BERBASIS ALGORITMA UNTUK PENGAMBILAN KEPUTUSAN Zulfian Azmi #1, Muhammad Dahria #2 #1 Program Studi Sistem Komputer, #2 Program Studi Sistem Informasi STMIK Triguna Dharma
BAB 2 TINJAUAN PUSTAKA
BAB 2 TINJAUAN PUSTAKA Bab ini berisi tentang pemahaman dari logika fuzzy dan data mining. Pada bab ini juga akan dijelaskan bagian-bagian yang perlu diketahui dalam logika fuzzy dan data mining, sehingga
Pemanfaatan Educational Data Mining (EDM)...
PEMANFAATAN EDUCATIONAL DATA MINING (EDM) UNTUK MEMPREDIKSI MASA STUDI MAHASISWA MENGGUNAKAN ALGORITMA C4.5 (STUDI KASUS: TI-S1 UDINUS) Defri Kurniawan 1*, Wibowo Wicaksono 1 dan Yani Parti Astuti 1 1
BAB 2 LANDASAN TEORI
6 BAB 2 LANDASAN TEORI 2.1 Sistem Pendukung Keputusan Sistem Pendukung Keputusan (SPK) / Decision Support Sistem (DSS) adalah sistem komputer yang saling berhubungan dan menjadi alat bantu bagi seorang
BAB I PENDAHULUAN 1.1 Latar Belakang
BAB I PENDAHULUAN 1.1 Latar Belakang Penentuan dosen pembimbing tugas akhir masih dilakukan secara manual di Jurusan Teknik Informatika UMM yang hanya mengandalkan pengetahuan personal tentang spesialisasi
JURNAL TEKNIK, (2014) APLIKASI DATA MINING UNTUK MEMPREDIKSI PERFORMANSI MAHASISWA DENGAN METODE KLASIFIKASI DECISION TREE
JURNA TEKNIK, (2014) 1-6 1 AIKASI DATA MINING UNTUK MEMREDIKSI ERFORMANSI MAHASISWA DENGAN METODE KASIFIKASI DECISION TREE Irfan Fahmi, Budi Santosa Jurusan Teknik Industri, Fakultas Teknologi Industri,
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 2.1 Data Mining Data Mining adalah proses yang mempekerjakan satu atau lebih teknik pembelajaran komputer (machine learning) untuk menganalisis dan mengekstraksi pengetahuan (knowledge)
Evaluasi Kinerja Akademik Mahasiswa Menggunakan Algoritma Naïve Bayes (Studi Kasus: Fasilkom Unilak)
n 1 Evaluasi Kinerja Akademik Mahasiswa Menggunakan Algoritma Naïve Bayes (Studi Kasus: Fasilkom Unilak) Nurliana Nasution 1, Khairani Djahara 2, Ahmad Zamsuri 3 1,2,3 Program Studi Teknik Informatika
BAB I PENDAHULUAN. untuk menemukan pengetahuan atau informasi berharga yang tersembunyi di
BAB I PENDAHULUAN A. Latar Belakang Data mining merupakan salah satu cabang ilmu komputer yang cukup baru yang banyak digunakan dan dipelajari oleh para ahli ilmu komputer dan programmer. Data mining merupakan
ALGORITMA DECISION TREE (C4.5) UNTUK MEMPREDIKSI KEPUASAN MAHASISWA TERHADAP KINERJA DOSEN POLITEKNIK TEDC BANDUNG
ALGORITMA DECISION TREE (C4.5) UNTUK MEMPREDIKSI KEPUASAN MAHASISWA TERHADAP KINERJA DOSEN POLITEKNIK TEDC BANDUNG Ade Yuliana 1, Duwi Bayu Pratomo 2 1,2 Program Studi Teknik Informatika - Politeknik TEDC
BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI
BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI 2.1. Tinjauan Pustaka Tinjauan pustaka atau disebut juga kajian pustaka (literature review) merupakan sebuah aktivitas untuk meninjau atau mengkaji kembali berbagai
IMPLEMENTASI ALGORITMA FUZZY SEBAGAI PENGGALIAN INFORMASI KETERLAMBATAN KELULUSAN TUGAS AKHIR MAHASISWA DENGAN METODE DECISION TREE
IMPLEMENTASI ALGORITMA FUZZY SEBAGAI PENGGALIAN INFORMASI KETERLAMBATAN KELULUSAN TUGAS AKHIR MAHASISWA DENGAN METODE DECISION TREE Yusni Amaliah 1), Ummi Syafiqoh 2), Eviana Tjatur Putri (3) 1,2) Sistem
Materi 2 DATA MINING 3 SKS Semester 6 S1 Sistem Informasi UNIKOM 2015 Nizar Rabbi Radliya
Materi 2 DATA MINING 3 SKS Semester 6 S1 Sistem Informasi UNIKOM 2015 Nizar Rabbi Radliya [email protected] Nama Mahasiswa NIM Kelas Memahami definisi, proses serta teknik data mining. Pengenalan
STUDI ALGORITMA CART DENGAN INDUKSI FUZZY DALAM MENGKLASIFIKASIKAN DATA
STUDI ALGORITMA CART DENGAN INDUKSI FUZZY DALAM MENGKLASIFIKASIKAN DATA SKRIPSI OKTAVIYANI DASWATI 1308230003 PROGRAM STUDI S-1 EKSTENSI MATEMATIKA DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN
BAB II TINJAUAN PUSTAKA
BAB II TINJAUAN PUSTAKA 2.1 Dasar Teori 2.1.1 Data Mining Data mining adalah suatu istilah yang digunakan untuk menguraikan penemuan pengetahuan di dalam database. Data mining adalah Proses yang menggunakan
BAB I PENDAHULUAN. ada tiga, yaitu association rules, classification dan clustering.
BAB I PENDAHULUAN 1.1. Latar Belakang Data mining adalah serangkaian proses untuk menggali nilai tambah berupa informasi yang selama ini tidak diketahui secara manual dari suatu basis data. Informasi yang
APPLICATION OF DATA MINING ALGORITHM TO RECIPIENT OF MOTORCYCLE INSTALLMENT
APPLICATION OF DATA MINING ALGORITHM TO RECIPIENT OF MOTORCYCLE INSTALLMENT Harry Dhika 1, Fitriana Destiawati 2 1,2 Teknik Informatika Fakultas Teknik, Matematika dan IPA, Universitas Indraprasta PGRI
PENERAPAN ALGORITMA C5.0 DALAM PENGKLASIFIKASIAN DATA MAHASISWA UNIVERSITAS NEGERI GORONTALO
PENERAPAN ALGORITMA C5.0 DALAM PENGKLASIFIKASIAN DATA MAHASISWA UNIVERSITAS NEGERI GORONTALO Wandira Irene, Mukhlisulfatih Latief, Lillyan Hadjaratie Program Studi S1 Sistem Informasi / Teknik Informatika
Moch. Ali Machmudi 1) 1) Stmik Bina Patria
UJI PENGARUH KARAKTERISTIK DATASET PADA PERFORMA ALGORITMA KLASIFIKASI Moch. Ali Machmudi 1) 1) Stmik Bina Patria 1) Jurusan Manjemen Informatika-D3 Email : 1 [email protected] 1) Abstrak Tujuan utama
BAB III ANALISIS DAN PERANCANGAN
BAB III ANALISIS DAN PERANCANGAN 3.1 Gambaran Umum Bank XYZ Bank XYZ adalah salah satu bank swasta di Indonesia dan merupakan bank terbesar kelima se-indonesia. Selain menggeluti di bidang jasa keuangan,
Educational Data Mining untuk Mengetahui Pola Minat Kerja Mahasiswa
Educational Data Mining untuk Mengetahui Pola Minat Kerja Mahasiswa Daniel Swanjaya 1, Abidatul Izzah 2 1,2 Universitas Nusantara PGRI Kediri Kontak Person: Daniel Swanjaya 1, Abidatul Izzah 2 1,2 Kampus
IMPLEMENTASI ALGORITMA C4.5 UNTUK MENENTUKAN PENERIMA BEASISWA DI STT HARAPAN MEDAN
116 IMPLEMENTASI ALGORITMA C4.5 UNTUK MENENTUKAN PENERIMA BEASISWA DI STT HARAPAN MEDAN Rismayanti 1 1 Dosen Tetap Program Studi Teknik Informatika, Sekolah Tinggi Teknik Harapan Medan Jl. H.M Joni No.70
IDENTIFIKASI MAHASISWA YANG MEMPUNYAI KECENDERUNGAN LULUS TIDAK TEPAT WAKTU PADA PROGRAM STUDI MMT-ITS DENGAN MENGGUNAKAN ALGORITMA C4.
IDENTIFIKASI MAHASISWA YANG MEMPUNYAI KECENDERUNGAN LULUS TIDAK TEPAT WAKTU PADA PROGRAM STUDI MMT-ITS DENGAN MENGGUNAKAN ALGORITMA C4.5 Amelia Halim 1) dan Joko Lianto Buliali 2) 1) Program Studi Magister
CLUSTERING DATA KATEGORIK MENGGUNAKAN K-MODES DENGAN WEIGHTED DISSIMILARITY MEASURE
CLUSTERING DATA KATEGORIK MENGGUNAKAN K-MODES DENGAN WEIGHTED DISSIMILARITY MEASURE Lutfi Hidayat Ramdhani¹, Hetti Hidayati², Mahmud Dwi Suliiyo³ ¹Teknik Informatika,, Universitas Telkom Abstrak K-Modes
ALGORITMA C4.5 UNTUK SIMULASI PREDIKSI KEMENANGAN DALAM PERTANDINGAN SEPAKBOLA
53 ALGORITMA C4.5 UNTUK SIMULASI PREDIKSI KEMENANGAN DALAM PERTANDINGAN SEPAKBOLA Marwana*) Abstract : Abstract-This study is a simulation for memperiksi victory in a football game using the C4.5 data
PENERAPAN DECISION TREE UNTUK PENENTUAN POLA DATA PENERIMAAN MAHASISWA BARU
PENERAPAN DECISION TREE UNTUK PENENTUAN POLA DATA PENERIMAAN MAHASISWA BARU Aradea, Satriyo A., Ariyan Z., Yuliana A. Teknik Informatika Universitas Siliwangi Tasikmalaya Ilmu Komputer Universitas Diponegoro
SILABUS MATAKULIAH. Indikator Pokok Bahasan/Materi Aktifitas Pembelajaran
SILABUS MATAKULIAH Revisi : - Tanggal Berlaku : Maret 2015 A. Identitas 1. Nama Matakuliah : A11.54606 / Data 2. Program Studi : Teknik Informatika-S1 3. Fakultas : Ilmu Komputer 4. Bobot sks : 3 SKS 5.
BAB 1 PENDAHULUAN. 1.1 Latar Belakang
BAB 1 PENDAHULUAN 1.1 Latar Belakang Peminatan siswa SMA Negeri 8 Bandung dilakukan di kelas X SMA setelah tahap daftar ulang. Hal tersebut berdasarkan aturan kurikulum 2013 [11]. Peminatan merupakan hal
BAB III METODE PENELITIAN
BAB III METODE PENELITIAN Penelitian ini adalah penelitian eksperimen dengan langkah-langkah atau metode penelitian sebagai berikut: 1. Penentuan Masalah Penentuan masalah ini diperoleh dari studi literature
IMPLEMENTASI ALGORITMA C4.5 UNTUK KLASIFIKASI BIDANG KERJA ALUMNI DI STMIK LPKIA BANDUNG
IMPLEMENTASI ALGORITMA C4.5 UNTUK KLASIFIKASI BIDANG KERJA ALUMNI DI STMIK LPKIA BANDUNG 1 Ati Suci Dian Martha, 2 Afryanto Redy 1 Program Studi Sistem Informasi STMIK LPKIA 1 Program Studi Sistem Informasi
PENGAMBILAN KEPUTUSAN UNTUK PENENTUAN BEASISWA TEPAT SASARAN MENGGUNAKAN METODE DECISION TREE DI SMK TARUNA BAKTI KERTOSONO
PENGAMBILAN KEPUTUSAN UNTUK PENENTUAN BEASISWA TEPAT SASARAN MENGGUNAKAN METODE DECISION TREE DI SMK TARUNA BAKTI KERTOSONO SKRIPSI Diajukan Untuk Memenuhi Sebagian Syarat Guna Memperoleh Gelar Sarjana
PENERAPAN DATA MINING UNTUK EVALUASI KINERJA AKADEMIK MAHASISWA MENGGUNAKAN ALGORITMA NAÏVE BAYES CLASSIFIER
PENERAPAN DATA MINING UNTUK EVALUASI KINERJA AKADEMIK MAHASISWA MENGGUNAKAN ALGORITMA NAÏVE BAYES CLASSIFIER I. PENDAHULUAN Mahasiswa merupakan salah satu aspek penting dalam evaluasi keberhasilan penyelenggaraan
BAB 2 TINJAUAN PUSTAKA
BAB 2 TINJAUAN PUSTAKA Pada tinjauan pustaka ini membahas tentang landasan teori yang medukung pembahasan yang berhubungan dengan sistem yang akan dibuat. 2.1 Data Mining Data mining adalah kegiatan menemukan
Belajar Mudah Algoritma Data Mining : C4.5
Belajar Mudah Algoritma Data Mining : C4.5 Algoritma data mining C4.5 merupakan salah satu algoritma yang digunakan untuk melakukan klasifikasi atau segmentasi atau pengelompokan dan bersifat prediktif.
2. Data & Proses Datamining
2. Data & Proses Datamining Data 1. Input (Dataset) 2. Pengolahan Data Awal 3. Metode Learning Tahapan Utama Proses Data Mining Input (Data) Metode (Algoritma Data Mining) Output (Pola/Model/ Knowledge)
ALGORITMA DECISION TREE-J48, K-NEAREST, DAN ZERO-R PADA KINERJA AKADEMIK
ALGORITMA DECISION TREE-J48, K-NEAREST, DAN ZERO-R PADA KINERJA AKADEMIK Nurfaizah 1) Mohammad Imron 2) Linda Perdanawanti 3) 1),2),3) Sistem Informasi, STMIK AMIKOM Purwokerto Jl. Letjend. Pol. Sumarto,
Penghitungan k-nn pada Adaptive Synthetic-Nominal (ADASYN-N) dan Adaptive Synthetic-kNN (ADASYN-kNN) untuk Data Nominal- Multi Kategori
Penghitungan k-nn pada Adaptive Synthetic-Nominal (ADASYN-N) dan Adaptive Synthetic-kNN (ADASYN-kNN) untuk Data Nominal- Multi Kategori Abstrak 1 Sri Rahayu, 2 Teguh Bharata Adji & 3 Noor Akhmad Setiawan
JURNAL IMPLEMENTASI DATA MINING DENGAN ALGORITMA C4.5 UNTUK MEMPREDIKSI PRESTASI SISWA
JURNAL IMPLEMENTASI DATA MINING DENGAN ALGORITMA C4.5 UNTUK MEMPREDIKSI PRESTASI SISWA IMPLEMENTATION OF DATA MINING WITH C4.5 ALGORITHM TO PREDICT STUDENT ACHIEVEMENT Oleh: SITI MUHIMATUL KHOIROH NPM
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 1.1 Data Mining Data mining adalah proses yang menggunakan teknik statistik, matematika, kecerdasan buatan, dan machine learning untuk mengekstrasi dan mengidentifikasi informasi
TINJAUAN PUSTAKA. Definisi Data Mining
TINJAUAN PUSTAKA Definisi Data Mining Sistem Manajemen Basis Data tingkat lanjut dan teknologi data warehousing mampu untuk mengumpulkan banjir data dan untuk mentransformasikannya ke dalam basis data
DATA MINING MENGGUNAKAN ALGORITMA NAÏVE BAYES UNTUK KLASIFIKASI KELULUSAN MAHASISWA UNIVERSITAS DIAN NUSWANTORO ABSTRAK
DATA MINING MENGGUNAKAN ALGORITMA NAÏVE BAYES UNTUK KLASIFIKASI KELULUSAN MAHASISWA UNIVERSITAS DIAN NUSWANTORO Oleh: Yuda Septian Nugroho Jurusan Sistem Informasi, Fakultas Ilmu Komputer, Universitas
BAB 2 TINJAUAN PUSTAKA
BAB 2 TINJAUAN PUSTAKA 2.1 Tinjauan Studi Sebelum menyusun tugas akhir ini dilakukan tinjauan pustaka terlebih dahulu terhadap penelitian-penelitian terkait sebagai bahan referensi. Penelitian tentang
IMPLEMENTASI DATA MINING MENGGUNAKAN CRISP-DM PADA SISTEM INFORMASI EKSEKUTIF DINAS KELAUTAN DAN PERIKANAN PROVINSI JAWA TENGAH
IMPLEMENTASI DATA MINING MENGGUNAKAN CRISP-DM PADA SISTEM INFORMASI EKSEKUTIF DINAS KELAUTAN DAN PERIKANAN PROVINSI JAWA TENGAH Indra Purnama, Ragil Saputra, Adi Wibowo Universitas Diponegoro Semarang
PENERAPAN DECISION TREEALGORITMA C4.5 DALAM PENGAMBILAN KEPUTUSAN HUNIAN TEMPAT TINGGAL
PENERAPAN DECISION TREEALGORITMA C4.5 DALAM PENGAMBILAN KEPUTUSAN HUNIAN TEMPAT TINGGAL Besse Helmi Mustawinar Teknik Informatika FTKOM Universitas Cokroaminoto Palopo Jl Latamacelling Nomor 19 Palopo,
PEMODELAN ATURAN DALAM MEMPREDIKSI PRESTASI AKADEMIK MAHASISWA POLITEKNIK NEGERI MEDAN DENGAN KERNEL K-MEANS CLUSTERING TESIS.
PEMODELAN ATURAN DALAM MEMPREDIKSI PRESTASI AKADEMIK MAHASISWA POLITEKNIK NEGERI MEDAN DENGAN KERNEL K-MEANS CLUSTERING TESIS Oleh HIKMAH ADWIN ADAM 097038004/TINF PROGRAM STUDI MAGISTER (S2) TEKNIK INFORMATIKA
Perbandingan 5 Algoritma Data Mining untuk Klasifikasi Data Peserta Didik
Perbandingan 5 Algoritma Data Mining untuk Klasifikasi Data Peserta Didik Imam Sutoyo AMIK BSI JAKARTA e-mail: [email protected] Abstrak - Klasifikasi peserta didik merupakan kegiatan yang sangat penting
BAB I PENDAHULUAN I-1
BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Penyakit liver merupakan peradangan hati yang disebabkan oleh infeksi virus, bakteri, atau bahan- bahan beracun sehingga hati tidak melakukan fungsinya dengan
BAB II TINJAUAN PUSTAKA
BAB II TINJAUAN PUSTAKA 2.1. Data Mining Dengan perkembangan pesat teknologi informasi termasuk diantaranya teknologi pengelolaan data, penyimpanan data, pengambilan data disertai kebutuhan pengambilan
Manfaat Pohon Keputusan
DECISION TREE (POHON KEPUTUSAN) Latar Belakang Pohon Keputusan Di dalam kehidupan manusia sehari-hari, manusia selalu dihadapkan oleh berbagai macam masalah dari berbagai macam bidang. Masalah-masalah
BAB II TINJAUAN PUSTAKA
BAB II TINJAUAN PUSTAKA 2.1 Pengunduran Diri Mahasiswa Hampir tidak ada perguruan tinggi baik negeri maupun swasta (PTN/PTS) yang tidak pernah mahasiswanya mengundurkan diri sebagai mahasiswa di PTN/PTS
BAB II TINJAUAN PUSTAKA. pengetahuan di dalam database. Data mining adalah proses yang menggunakan
6 BAB II TINJAUAN PUSTAKA 2.1 Pengertian Data Mining Data mining adalah suatu istilah yang digunakan untuk menguraikan penemuan pengetahuan di dalam database. Data mining adalah proses yang menggunakan
DATA MINING DENGAN METODE CLUSTERING UNTUK PENGOLAHAN INFORMASI PERSEDIAAN OBAT PADA PUSKESMAS PANDANARAN SEMARANG
DATA MINING DENGAN METODE CLUSTERING UNTUK PENGOLAHAN INFORMASI PERSEDIAAN OBAT PADA PUSKESMAS PANDANARAN SEMARANG Joanna Ardhyanti Mita Nugraha 1, Yupie Kusumawati 2 1,2 Sistem Informasi, Fakultas Ilmu
Penerapan Algoritma Cart Untuk Memprediksi Status Kelulusan Mahasiswa
ISSN: 2089-3787 1215 Penerapan Algoritma Cart Untuk Memprediksi Status Kelulusan Mahasiswa Muhammad Faisal Amin Program Studi Teknik Informatika, STMIK Banjarbaru Jl. A. Yani Km. 33,3 Banjarbaru [email protected]
BAB IV HASIL DAN PEMBAHASAN. dan fakor-faktor penyebab masalah tersebut bisa terjadi diantaranya. dimanfaatkan dan dikelola dengan baik.
BAB IV HASIL DAN PEMBAHASAN 4.1. Identifikasi Masalah Dalam menentukan status calon dosen dan dosen tetap terdapat masalahmasalah dan fakor-faktor penyebab masalah tersebut bisa terjadi diantaranya sebagai
TESIS. Oleh HERI SANTOSO /TINF
ANALISIS DAN PREDIKSI PADA PERILAKU MAHASISWA DIPLOMA UNTUK MELANJUTKAN STUDI KE JENJANG SARJANA MENGGUNAKAN TEKNIK DECISION TREE DAN SUPPORT VEKTOR MACHINE TESIS Oleh HERI SANTOSO 097038017/TINF PROGRAM
PENERAPAN ALGORITMA C4.5 UNTUK KLASIFIKASI PREDIKAT KEBERHASILAN MAHASISWA DI AMIK TUNAS BANGSA. Abstrak
JURASIK (Jurn Riset Sistem Informasi & Teknik Informatika) ISSN 2527-5771 PENERAPAN ALGORITMA C4.5 UNTUK KLASIFIKASI PREDIKAT KEBERHASILAN MAHASISWA DI AMIK TUNAS BANGSA Yuni Sara Luvia 1, Dedy Hartama
