BAB I PENDAHULUAN 1.1 Latar Belakang
|
|
|
- Vera Pranoto
- 7 tahun lalu
- Tontonan:
Transkripsi
1 BAB I PENDAHULUAN 1.1 Latar Belakang Penentuan dosen pembimbing tugas akhir masih dilakukan secara manual di Jurusan Teknik Informatika UMM yang hanya mengandalkan pengetahuan personal tentang spesialisasi dosen yang dibutuhkan. Maka dari itu dibutuhkan analisis tentang keahlian dosen yang sesuai dengan topik tugas akhir mahasiswa, karena tugas akhir merupakan karya ilmiah mahasiswa sebagai salah satu syarat untuk mahasiswa mendapatkan gelar sarjana. Dalam menyusun tugas akhir, mahasiswa membutuhkan dosen pembimbing sebagai tempat konsultasi dalam menyelesaikan tugas akhir tersebut. Dosen pembimbing sebaiknya merupakan orang yang menguasai bidang yang sesuai dengan tugas akhir mahasiswa sehingga proses bimbingan dapat berjalan dengan baik. Pada penelitian Rosalina (2015) telah dikembangkan software untuk klasifikasi penentuan dosen pembimbing tugas akhir, namun pada penelitian tersebut belum ada keahlian dosen pembimbing, sehingga menyebabkan persebaran kata kunci dari sebuah bidang minat. Sehingga mempengaruhi proses pelatihan data dan sistem tersebut belum bisa bekerja secara optimal [4]. Data latih yang digunakan sebelumnya juga belum divalidasi. Klasifikasi adalah proses untuk menemukan model atau fungsi yang menjelaskan atau membedakan konsep atau kelas data, dengan tujuan untuk dapat memperkirakan kelas dari suatu objek yang labelnya tidak diketahui. Model itu sendiri bisa berupa aturan jika-maka, berupa pohon keputusan, formula matematis atau neural network. Proses klasifikasi biasanya dibagi menjadi dua fase : learning dan test. Pada fase learning, sebagian data yang telah diketahui kelas datanya digunakan untuk membentuk model perkiraan. Kemudian pada fase test model yang sudah terbentuk diuji dengan sebagian data lainnya untuk mengetahui akurasi kelas data yang belum diketahui. 1
2 Teknik klasifikasi yang digunakan untuk klasifikasi dapat berupa bayesian classifier, nearest neightbour classifier, support vector machine, dan lain sebagainya. Masing-masing classifier memiliki algoritma pembelajarannya masing-masing. Ada banyak algoritma pelatihan yang sudah dikembangkan oleh para peneliti, salah satunya adalah Random Forest (RF), dari hasil penelitian untuk kategorisasi teks menunjukkan bahwa RF memiliki akurasi 92%, akurasi Naïve Bayes 87%, akurasi K-NN 85%, akurasi SVM 87%. Sehingga pada penelitian ini dipilih metode RF untuk menyelesaikan masalah klasifikasi penetuan dosen pembimbing tugas akhir [5]. Klasifikasi merupakan proses dua tahap. Pada tahap pertama, sebuah model dibangun berdasarkan training data (data latih), yang mendeskripsikan definisi yang telah ditetapkan mengenai himpunan kelas data atau konsep. Pada tahap kedua, model digunakan untuk mengklasifikasikan data tuples yang baru atau objek dimana lebel kelasnya belum diketahui. Random Forest memprediksi respons suatu amatan dengan cara menggabungkan (aggregating) hasil prediksi k pohon. Untuk masalah klasifikasi, pohon yang dibangun adalah pohon klasifikasi dan hasil prediksi random forest adalah berdasarkan majority vote (suara terbanyak), yaitu kategori atau kelas yang paling sering muncul sebagai hasil prediksi dari k pohon klasifikasi. Metode klasifikasi Random Forest (RF) merupakan pengembangan dari Decision Tree dengan menggunakan beberapa Decision Tree, dimana setiap Decision Tree telah dilakukan training menggunakan sampel individu dan setiap atribut dipecah pada tree yang dipilih antara atribut subset yang bersifat acak [3]. Oleh karena itu, pada penelitian ini akan dikembangkan software untuk klasifikasi dosen tugas akhir dengan menggunakan algoritma Random Forest. 1.2 Rumusan Masalah Adapun rumusan masalah dalam penelitian ini adalah sebagai berikut : a. Bagaimana menerapkan klasifikasi penentuan dosen pembimbing tugas akhir menggunakan algoritma Random Forest? b. Bagaimana menggunakan algoritma Random Forest pada sistem? 2
3 c. Bagaimana mengukur keberhasilan algoritma Random Forest untuk pengklasifikasian data? 1.3 Batasan Masalah Terdapat beberapa batasan masalah yang diangkat sebagai parameter pengerjaan tugas akhir ini diantaranya adalah sebagai berikut : a. Data yang digunakan adalah data judul tugas akhir dari data tugas akhir Teknik Informatika UMM dari tahun 2012 sampai Mei b. Klasifikasi data dikelompokkan menjadi 14 kelas berdasarkan jumlah data dosen pembimbing tugas akhir yang telah divalidasi. 1.4 Tujuan Penelitian Penelitian ini bertujuan untuk mengembangkan software klasifikasi dosen tugas akhir dengan menggunakan algoritma Random Forest serta menganalisis metode tersebut untuk mengklasifikasin dosen pembimbing tugas akhir. 1.5 Metodologi Penyelesaian masalah dalam tugas akhir ini dengan menggunakan berbagai metodologi, antara lain : Gambar 1.1 Metodologi 3
4 a. Studi pustaka Studi pustaka merupakan tahapan untuk memahami konsep dari pembangunan sistem yaitu mengenai algoritma Random Forest. Pemahaman konsep didapatkan dari berbagai jurnal, karya tulis ilmiah dan buku yang berhubungan dengan klasifikasi data mining menggunakan Random Forest. b. Pengumpulan Data Tahap berikutnya yaitu melakukan pengumpulan data yang akan digunakan untuk proses klasifikasi. Data yang dikumpulkan merupakan data judul tugas akhir, abstrak dan keyword abstrak tugas akhir yang dibimbing oleh dosen teknik informatika Universitas Muhammadiyah Malang dari tahun 2012 sampai Mei c. Analisis dan Desain Sistem Dalam tahap ini dilakukan analisa mengenai proses klasifikasi yang dijalankan oleh sistem. Berikut merupakan diagram alur proses : Data Training Validasi Data Data Test Model Dosen Pembimbing TA Gambar 1.2 Rancangan Sistem 4
5 d. Implementasi perangkat lunak Dalam tahap ini dilakukan pembuatan sistem dengan menggunakan bahasa pemrograman php e. Uji coba dan evaluasi Pada tahap ini dilakukan uji coba dan evaluasi terhadap sistem yang telah dibangun. Pengujian dilakukan berdasarkan hasil klasifikasi sistem dan dilakukan evaluasi apakah sudah diklasifikasikan secara benar. f. Pembuatan dokumentasi tugas akhir Tahap ini dilakukan untuk tujuan dokumentasi dan dapat dipergunakan untuk pengembangan atau penelitian lanjutan. 1.6 Sistematika Penulisan Sistematika penulisan laporan tugas akhir ini digunakan untuk memberikan gambaran umum mengenai penelitian yang dilakukan, sebagai berikut: 1. BAB I PENDAHULUAN Bab ini berisi latar belakang yang menjelaskan mengenai alasan mengapa tugas akhir tersebut diusulkan. Kemudian berisi rumusan masalah yang mendeskripsikan masalah-masalah yang akan diselesaikan oleh tugas akhir yang diajukan. Batasan masalah yang diangkat sebagai parameter pengerjaan tugas akhir ini. Permasalahan-permasalahan yang telah dikemukakan kemudian dijawab penyelesaiannya di dalam tujuan penelitian. Bab ini juga membahas mengenai metodologi yang mendefinisikan tentang metode penyelesaian tugas akhir dan juga membahas sistematika penulisan laporan tugas akhir. 2. BAB II LANDASAN TEORI Pada Bab ini membahas berbagai konsep dasar dan teori-teori yang relevan berkaitan dengan permasalahan yang dikaji dan hal-hal yang berguna dalam proses analisis dan desain sistem sehingga dapat mendukung secara teknis pengerjaan aplikasi dengan mengimplementasikan text mining dan algoritma 5
6 SVM dalam melakukan klasifikasi. Adapun teoriteori yang diambil harus berdasarkan referensi yang dapat dipertanggungjawabkan sehingga untuk penulisannya diperlukan bentuk kutipan yang mengacu pada referensi tertentu. 3. BAB III ANALISA DAN PERANCANGAN SISTEM Bab ini berisi perancangan sistem aplikasi yang akan dibangun dengan penjabaran mengenai perancangan sistem, perancangan arsitektur neural network dan perancangan antarmuka dari sistem sehingga diharapkan dapat memberikan gambaran jelas untuk implementasi coding pada program dan pengujian. 4. BAB IV IMPLEMENTASI DAN PENGUJIAN SISTEM Bab ini berisi mengenai implementasi dari hasil perancangan sistem yang dibuat pada bab III dan mencakup proses pengujian sistem, apakah sistem memberikan hasil yang akurat atau tidak. 5. BAB V KESIMPULAN DAN SARAN Bab ini berisi kesimpulan yang dapat diambil dari implementasi dan uji coba yang telah dilakukan. Serta berisi saran-saran yang diharapkan dapat digunakan untuk pengembangan sistem di masa mendatang. 6
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 2.1 Data Mining Data Mining adalah proses yang mempekerjakan satu atau lebih teknik pembelajaran komputer (machine learning) untuk menganalisis dan mengekstraksi pengetahuan (knowledge)
BAB I PENDAHULUAN 1.1 Latar Belakang Masalah
BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Saat ini media sosial seperti Twitter telah berkembang pesat. Data global menyebut pada akhir Desember 2014 Twitter memiliki 284 juta pengguna aktif. Dick Costolo
BAB I PENDAHULUAN 1.1 Latar Belakang
BAB I PENDAHULUAN 1.1 Latar Belakang Pendidikan merupakan salah satu aspek penting di dalam kehidupan. Oleh karena itu, pendidikan mendapat perhatian besar dalam kehidupan masyarakat dan negara. Pendidikan
BAB I PENDAHULUAN 1.1 Latar Belakang
BAB I PENDAHULUAN 1.1 Latar Belakang Internet saat ini merupakan kebutuhan pokok yang tidak bisa dipisahkan dari segenap sendi kehidupan. Berbagai pekerjaan ataupun kebutuhan dapat dilakukan melalui media
BAB 1 PENDAHULUAN 1-1
BAB 1 PENDAHULUAN Bab ini menguraikan penjelasan umum mengenai tugas akhir yang dikerjakan. Penjelasan tersebut meliputi latar belakang masalah, tujuan tugas akhir, lingkup tugas akhir, metodologi yang
UKDW. 1.1 Latar Belakang BAB 1 PENDAHULUAN
BAB 1 PENDAHULUAN 1.1 Latar Belakang Perkembangan teknologi komputer yang pesat pada masa kini menjadi perhatian utama bagi manusia. Kemajuan teknologi komputer yang pesat ini menimbulkan bermacam-macam
Bab 1 PENDAHULUAN. 1.1 Latar Belakang Masalah
Bab 1 PENDAHULUAN 1.1 Latar Belakang Masalah Semakin hari semakin banyak inovasi, perkembangan, dan temuan-temuan yang terkait dengan bidang Teknologi Informasi dan Komputer. Hal ini menyebabkan semakin
BAB I PENDAHULUAN. 1.1 Latar Belakang Saat ini pendidikan di Indonesia semakin berkembang. Banyaknya
BAB I PENDAHULUAN 1.1 Latar Belakang Saat ini pendidikan di Indonesia semakin berkembang. Banyaknya pembangunan gedung sekolah maupun perguruan tinggi menjadi tanda berkembangnya pendidikan. Jumlah pendaftar
BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah 1.2 Hipotesis
BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah Setiap matakuliah memiliki silabus perkuliahan yang berisi materi-materi mengenai matakuliah tersebut. Silabus disusun berdasarkan buku-buku referensi utama
BAB I PENDAHULUAN 1.1 Latar Belakang
BAB I PENDAHULUAN 1.1 Latar Belakang Kredit merupakan produk utama dari koperasi simpan pinjam dalam upaya meningkatkan profitabilitasnya. Namun akan terjadi masalah apabila manajemen sembarangan dalam
BAB I PENDAHULUAN. 1.1 Latar Belakang
1 1.1 Latar Belakang BAB I PENDAHULUAN Dalam Peraturan Menteri Agama Republik Indonesia Nomor 30 Tahun 2014 tentang Biaya Kuliah Tunggal dan Uang Kuliah Tunggal pada Perguruan Tinggi Keagamaan Negeri di
BAB I PENDAHULUAN. Pada bagian awal penelitian ini dipaparkan secara lengkap latar belakang,
BAB I PENDAHULUAN Pada bagian awal penelitian ini dipaparkan secara lengkap latar belakang, rumusan masalah, batasan masalah, tujuan penelitian, metodologi, dan sistematika penulisan. 1.1 Latar Belakang
KATA PENGANTAR. menyelesaikan penyusunan laporan tugas akhir APLIKASI KLASIFIKASI ARTIKEL TEKNOLOGI INFORMASI PADA MAJALAH CHIP
KATA PENGANTAR Syukur Alhamdulillah, puji dan syukur kami panjatkan kehadirat Allah SWT, karena dengan limpah dan rahmat dan karunia-nya penulis dapat menyelesaikan penyusunan laporan tugas akhir APLIKASI
BAB I PENDAHULUAN 1.1 Latar Belakang
BAB I PENDAHULUAN 1.1 Latar Belakang Meningkatnya perkembangan teknologi juga diikuti dengan berkembangnya penggunaan berbagai situs jejaring sosial. Salah satu jejaring sosial yang sangat marak digunakan
BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah
BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah Dinas Pariwisata dan Kebudayaan Jawa Barat yang beralamat di Jl. L.L.R.E. Martadinata No.239 Bandung, merupakan suatu lembaga negara yang mempunyai tugas salah
Penerapan Data Mining Untuk Menampilkan Informasi Pertumbuhan Berat Badan Ideal Balita dengan Menggunakan Metode Naive Bayes Classifier
Penerapan Data Mining Untuk Menampilkan Informasi Pertumbuhan Berat Badan Ideal Balita dengan Menggunakan Metode Naive Bayes Classifier Octia Nuraeni 55410244 Teknik Informatika Pembimbing : Dr. Riza Adrianti
BAB I PENDAHULUAN 1.1 Latar Belakang
BAB I PENDAHULUAN 1.1 Latar Belakang Education data mining merupakan penelitian didasarkan data di dunia pendidikan untuk menggali dan memperoleh informasi tersembunyi dari data yang ada. Pemanfaatan education
Perbandingan 5 Algoritma Data Mining untuk Klasifikasi Data Peserta Didik
Perbandingan 5 Algoritma Data Mining untuk Klasifikasi Data Peserta Didik Imam Sutoyo AMIK BSI JAKARTA e-mail: [email protected] Abstrak - Klasifikasi peserta didik merupakan kegiatan yang sangat penting
IMPLEMENTASI DATA MINING DENGAN NAIVE BAYES CLASSIFIER UNTUK MENDUKUNG STRATEGI PEMASARAN DI BAGIAN HUMAS STMIK AMIKOM YOGYAKARTA
IMPLEMENTASI DATA MINING DENGAN NAIVE BAYES CLASSIFIER UNTUK MENDUKUNG STRATEGI PEMASARAN DI BAGIAN HUMAS STMIK AMIKOM YOGYAKARTA Erik Hadi Saputra 1), Burhan Alfironi Muktamar 2) 1), 2) Teknik Informatika
BAB I PENDAHULUAN 1.1 Latar Belakang
BAB I PENDAHULUAN 1.1 Latar Belakang Job Order merupakan pekerjaan yang dilakukan apabila ada order yang diterima dari konsumen. Setiap detil pekerjaan 100% ditentukan oleh calon pembeli, pihak pembuat
Terkait dengan klasifikasi trafik jaringan komputer, beberapa penelitian telah dilakukan dengan fokus pada penerapan data mining. Penelitian tentang
1 BAB I PENDAHULUAN 1.1 Latar Belakang Pada saat ini komunikasi data pada jaringan internet telah mencapai kemajuan yang sangat pesat, ditandai oleh pemakaiannya yang lebih beragam dan teknologi yang digunakan
BAB I PENDAHULUAN. 1.1 Latar Belakang
BAB I PENDAHULUAN 1.1 Latar Belakang Pendidikan adalah salah satu aspek terpenting bagi kehidupan manusia, yang dapat mempengaruhi manusia itu sendiri, juga menjadi faktor pendukung dalam setiap sektor
5. Struktur Penulisan Tesis
Course Outline 1. Pengantar Penelitian 2. Tahapan Penelitian 3. Masalah Penelitian 4. Literature Review 5. Struktur Penulisan Tesis 6. Kesalahan Penulisan Tesis 7. Metode Eksperimen 8. Pengujian Tesis
UKDW BAB 1 PENDAHULUAN. 1.1 Latar Belakang Masalah
BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah Berkembangnya teknologi telah membuat banyak informasi bermunculan. Informasi-informasi tersebut tertuang dalam bentuk dokumen terutama dokumen digital. Semakin
Bab III METODOLOGI PENELITIAN. Pada penelitian ini menggunakan ala penelitian berupa perangkat keras
Bab III METODOLOGI PENELITIAN 3.1 Alat dan Bahan Penelitian Pada penelitian ini menggunakan ala penelitian berupa perangkat keras dan perangkat lunak, yaitu: a. Perangkat keras 1. Processor Intel Core
BAB I PENDAHULUAN 1.1 Latar Belakang
BAB I PENDAHULUAN 1.1 Latar Belakang Menurut Liu opini merupakan pernyataan subyektif yang mencerminkan sentimen orang atau persepsi tentang entitas dan peristiwa [1]. Opini atau pendapat orang lain terhadap
UKDW BAB 1 PENDAHULUAN. 1.1 Latar Belakang
BAB 1 PENDAHULUAN 1.1 Latar Belakang Tinjauan atau review seseorang yang ditujukan kepada suatu objek atau produk sangat berpengaruh terhadap penilaian publik atas produk tersebut (Sahoo, 2013). Review
BAB I PENDAHULUAN. masalah kecerdasan, desain, pemilihan, implementasi, dan monitoring (Tripathi,
BAB I PENDAHULUAN 1.1 Latar Belakang Pengambilan suatu keputusan dapat membantu dalam mencari solusi dari sekian banyak solusi yang ada. Pengambilan keputusan adalah hasil dari suatu proses yang termasuk
BAB I PENDAHULUAN 1.1 Latar Belakang 1.2 Perumusan Masalah
BAB I PENDAHULUAN 1.1 Latar Belakang Saat ini sering terjadi data explosion problem yaitu data data yang tersimpan dalam database berjumlah sangat besar namun dari data data tersebut belum banyak dimanfaatkan
BAB I PENDAHULUAN. jurusan ditentukan berdasarkan standar kriteria tiap jurusan.
BAB I PENDAHULUAN 1.1 Latar Belakang Pratiwi (2014) berpendapat Sekolah Menengah Atas (SMA) merupakan suatu instansi pendidikan yang di dalamnya terdapat proses pengambilan keputusan jurusan siswa kelas
BAB I PENDAHULUAN 1.1 Latar Belakang
BAB I PENDAHULUAN 1.1 Latar Belakang Salah satu tanggung jawab sosial PT. Telkom dalam program kemitraan dengan masyarakat sekitarnya adalah memberikan kredit lunak bagi pelaku Usaha Kecil Menengah (UKM).
BAB I PENDAHULUAN. ilmu tertentu dengan menggunakan kaidah-kaidah yang berlaku dalam bidang
BAB I PENDAHULUAN 1.1.Latar Belakang Masalah Tugas Akhir (TA) atau Skripsi merupakan suatu karya tulis ilmiah, berupa paparan tulisan hasil penelitian yang membahas suatu masalah dalam bidang ilmu tertentu
BAB I PENDAHULUAN I - 1
BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Dunia pendidikan merupakan dunia yang memerlukan perhatian khusus karena pendidikan merupakan faktor yang sangat mempengaruhi kualitas para calon penerus bangsa
Bab I Pendahuluan. 1.1 Latar Belakang
Bab I Pendahuluan 1.1 Latar Belakang Klasifikasi merupakan task dari data mining yang bertujuan untuk memberikan label kelas terhadap suatu data. Pemberian label kelas ini dilakukan oleh classifier. Suatu
BAB I PENDAHULUAN BAB I PENDAHULUAN 1.1 Latar Belakang
1 BAB I PENDAHULUAN BAB I PENDAHULUAN 1.1 Latar Belakang Intelligent agent, sebagai bagian dari kecerdasan buatan yang dapat diterapkan pada sistem dalam menyelesaikan sebuah permasalahan. Agen yang diterapkan
a. Prosesor yang digunakan adalah Intel Core i3 1.9 Ghz b. RAM dengan ukuran 2GB c. Harddisk dengan ukuran 500GB d. Layar monitor 14.
BAB III METODE PENELITIAN 3.1 Instrumen Penelitian Beberapa perangkat yang digunakan untuk mengerjakan tugas akhir ini adalah sebagai berikut : 1. Perangkat Lunak Dalam melakukan penelitian, peneliti menggunakan
BAB I PENDAHULUAN. penunjang Al-Quran untuk memudahkan untuk mempelajarinya, yang bisa
BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Dengan kemajuan teknologi yang sangat pesat ini sudah banyak aplikasi penunjang Al-Quran untuk memudahkan untuk mempelajarinya, yang bisa disebut atau di artikan
REKOMENDASI TOPIK TUGAS AKHIR MAHASISWA TEKNIK INFORMATIKA DI UNIVERSITAS MUHAMMADIYAH JEMBER MENGGUNAKAN METODE NAÏVE BAYESIAN CLASSIFIER
REKOMENDASI TOPIK TUGAS AKHIR MAHASISWA TEKNIK INFORMATIKA DI UNIVERSITAS MUHAMMADIYAH JEMBER MENGGUNAKAN METODE NAÏVE BAYESIAN CLASSIFIER Titis Suwartiningsih (11 1065 1116) 1, Bagus Setya Rintyarna,
BAB I PENDAHULUAN 1.1 Latar Belakang
BAB I PENDAHULUAN 1.1 Latar Belakang Salah satu pelayanan dalam dunia perbankan adalah pemberian pinjaman kredit kepada nasabah yang memenuhi syarat perbankan. kredit merupakan sumber utama penghasilan
BAB I PENDAHULUAN. 1.1 Latar Belakang
BAB I PENDAHULUAN 1.1 Latar Belakang Teknologi informasi yang sangat berkembang pesat saat sekarang ini membawa pengaruh dalam segala bidang kehidupan, mulai dari industri, ekonomi, kesehatan dan bidang
KLASIFIKASI PADA TEXT MINING
Text dan Web Mining - FTI UKDW - BUDI SUSANTO 1 KLASIFIKASI PADA TEXT MINING Budi Susanto Text dan Web Mining - FTI UKDW - BUDI SUSANTO 2 Tujuan Memahami konsep dasar sistem klasifikasi Memahami beberapa
KLASIFIKASI PADA TEXT MINING
Budi Susanto KLASIFIKASI PADA TEXT MINING Text dan Web Mining - FTI UKDW - BUDI SUSANTO 1 Tujuan Memahami konsep dasar sistem klasifikasi Memahami beberapa algoritma klasifikasi: KNN Naïve Bayes Decision
BAB 1 PENDAHULUAN 1.1. Latar belakang
BAB 1 PENDAHULUAN 1.1. Latar belakang Dengan adanya perkembangan dan pertumbuhan yang secara cepat dalam hal informasi elektronik sangat diperlukan suatu proses untuk menyelesaikan suatu permasalahan itu
1. PENDAHULUAN 1.1. Latar Belakang Masalah
1. PENDAHULUAN 1.1. Latar Belakang Masalah Unit Gawat Darurat (UGD) adalah salah satu bagian dari Rumah Sakit (RS) yang menyediakan penanganan awal bagi pasien yang menderita sakit dan cedera, yang dapat
PENERAPAN DECISION TREE UNTUK PENENTUAN POLA DATA PENERIMAAN MAHASISWA BARU
PENERAPAN DECISION TREE UNTUK PENENTUAN POLA DATA PENERIMAAN MAHASISWA BARU Aradea, Satriyo A., Ariyan Z., Yuliana A. Teknik Informatika Universitas Siliwangi Tasikmalaya Ilmu Komputer Universitas Diponegoro
APLIKASI KLASIFIKASI PEMENUHAN GIZI PADA LANSIA MENGGUNAKAN METODE DECISION TREE ID3
APLIKASI KLASIFIKASI PEMENUHAN GIZI PADA LANSIA MENGGUNAKAN METODE DECISION TREE ID3 SKRIPSI Diajukan Untuk Memenuhi Sebagian Syarat Guna Memperoleh Gelar Sarjana Komputer (S.Kom) Pada Program Studi Sistem
BAB I PENDAHULUAN. 1.1 Latar Belakang
BAB I PENDAHULUAN 1.1 Latar Belakang Perkembangan teknologi yang pesat mempermudah akses terhadap informasi tekstual yang sangat besar jumlahnya, baik yang terdapat pada Internet maupun pada koleksi dokumen
ANALISIS SENTIMEN DATA KRITIK DAN SARAN PELATIHAN APLIKASI TEKNOLOGI INFORMASI (PATI) MENGGUNAKAN ALGORITMA SUPPORT VECTOR MACHINE
ANALISIS SENTIMEN DATA KRITIK DAN SARAN PELATIHAN APLIKASI TEKNOLOGI INFORMASI (PATI) MENGGUNAKAN ALGORITMA SUPPORT VECTOR MACHINE LAPORAN TUGAS AKHIR Diajukan untuk Memenuhi Persyaratan Guna Meraih Gelar
BAB 1 PENDAHULUAN. 1.1 Latar Belakang
BAB 1 PENDAHULUAN Pada bab ini dijelaskan latar belakang dari penelitian klasifikasi dokumen teks. Tujuan dan ruang lingkup dari tugas akhir memberikan penjelasan mengenai hasil yang ingin diketahui dan
BAB I PENDAHULUAN 1.1 Latar Belakang
BAB I PENDAHULUAN 1.1 Latar Belakang Selain sebagai media komunikasi, Twitter memberikan akses bagi pihak ketiga yang ingin mengembangkan aplikasi yang memanfaatkan layanannya melalui Twitter API. Salah
BAB I PENDAHULUAN. dari pemikiran-pemikiran manusia yang semakin maju, hal tersebut dapat. mendukung bagi pengembangan penyebaran informasi.
BAB I PENDAHULUAN 1.1 Latar Belakang Perkembangan teknologi dan ilmu pengetahuan pada masa globalisasi ini dirasakan telah semakin pesat dan canggih. Semua ini dikarenakan hasil dari pemikiran-pemikiran
BAB I PENDAHULUAN Latar Belakang
BAB I PENDAHULUAN 1.1. Latar Belakang Apa yang orang lain pikirkan telah menjadi sesuatu yang penting untuk menjadi pertimbangan dalam pengambilan keputusan (Pang and Lee, 2006). Sesuatu yang orang lain
BAB I PENDAHULUAN. Machine learning (ML), bagian dari kecerdasan buatan (artificial
BAB I PENDAHULUAN 1. 1.1. Latar Belakang Machine learning (ML), bagian dari kecerdasan buatan (artificial intelligence), merupakan metode untuk mengoptimalkan performa dari sistem dengan mempelajari data
BAB III METODOLOGI PENELITIAN
40 BAB III METODOLOGI PENELITIAN 3.1 DESAIN PENELITIAN Dalam melakukan penelitian, dibutuhkan desain penelitian agar penelitian yang dilakukan dapat berjalan dengan baik. Berikut ini merupakan desain penelitian
BAB 1 PENDAHULUAN Latar Belakang
BAB 1 PENDAHULUAN 1.1. Latar Belakang Data mining adalah proses mengeksplorasi dan menganalisis data dalam jumlah besar untuk menemukan pola dan rule yang berarti (Berry & Linoff, 2004). Klasifikasi adalah
BAB I PENDAHULUAN. 1.1 Latar Belakang
BAB I PENDAHULUAN 1.1 Latar Belakang Sistem jaringan komputer memiliki peran yang sangat penting dalam masyarakat modern karena memungkinkan informasi dapat diakses, disimpan dan dimanipulasi secara online.
BAB I PENDAHULUAN 1.1 Latar Belakang
1. BAB I PENDAHULUAN 1.1 Latar Belakang website adalah salah satu layanan yang bisa digunakan untuk melakukan pencarian berbagai informasi, sehingga sangat dibutuhkan untuk keperluan pengguna dalam pencarian
Data Mining II Estimasi
Data Mining II Estimasi Matakuliah Data warehouse Universitas Darma Persada Oleh: Adam AB Data Mining-2012-a@b 1 Tahapan proses datamining Input (Data) Metode (Algoritma Data Mining) Output (Pola/Model/
Konsep Data Mining. Klasifikasi : Pohon Keputusan. Bertalya Universitas Gunadarma 2009
Konsep Data Mining Klasifikasi : Pohon Keputusan Bertalya Universitas Gunadarma 2009 Definisi Klasifikasi Proses untuk menyatakan suatu objek ke salah satu kategori yg sudah didefinisikan sebelumnya. Proses
UKDW 1. BAB 1 PENDAHULUAN Latar Belakang Masalah
1. BAB 1 PENDAHULUAN 1.1. Latar Belakang Masalah Universitas yang baik dan terpercaya selalu memperhatikan perkembangan dan kondisi yang terjadi di universitas tersebut, salah satunya dengan memantau kinerja
BAB I PENDAHULUAN I.1. Latar Belakang Masalah
BAB I PENDAHULUAN I.1. Latar Belakang Masalah Dalam era teknologi seperti saat ini, informasi berupa teks sudah tidak lagi selalu tersimpan dalam media cetak seperti kertas. Orang sudah mulai cenderung
UKDW. BAB I PENDAHULUAN 1.1 Latar Belakang
BAB I PENDAHULUAN 1.1 Latar Belakang Penerimaan mahasiswa baru merupakan proses yang selalu dilakukan setiap tahunnya oleh Universitas Kristen Duta Wacana Yogyakarta (UKDW). Mahasiswa baru merupakan mahasiswa
BAB 1 PENDAHULUAN. Universitas Sumatera Utara
1 BAB 1 PENDAHULUAN 1.1. Latar Belakang Kata kunci (keyword) merupakan kata-kata singkat yang dapat menggambarkan isi suatu artikel ataupun dokumen (Figueroa,et al. 2014). Kata kunci memberikan kemudahan
BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah
BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah Perguruan tinggi merupakan strata terakhir sebelum mahasiswa dapat bersaing didalam dunia kerja. Agar mampu bersaing didalam dunia kerja, mahasiswa dituntut
BAB 3. METODOLOGI PENELITIAN
BAB 3. METODOLOGI PENELITIAN 3.1 Alat dan Bahan Penelitian Pada penelitian ini menggunakan alat penelitian berupa perangkat keras dan perangkat lunak, yaitu : 1. Perangkat keras a. Processor Intel Core
BAB I PENDAHULUAN 1.1. Latar Belakang
BAB I PENDAHULUAN Pada bab ini akan dijelaskan langkah awal dari penelitian yang akan dilakukan. Bab ini berisi latar belakang penelitian, rumusan masalah penelitian, batasan masalah, metodologi penelitian
BAB I PENDAHULUAN 1.1 Latar Belakang
BAB I PENDAHULUAN 1.1 Latar Belakang Seiring berkembangnya teknologi informasi, kebutuhan akan informasi yang digunakan untuk mendukung business intelligent suatu perusahaan juga meningkat. Informasi penting
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 2.1 Data Mining Secara sederhana data mining adalah penambangan atau penemuan informasi baru dengan mencari pola atau aturan tertentu dari sejumlah data yang sangat besar. Data mining
BAB IV METODOLOGI PENELITIAN. Penelitian ini dilakukan dengan melalui empat tahap utama, dimana
BAB IV METODOLOGI PENELITIAN Penelitian ini dilakukan dengan melalui empat tahap utama, dimana tahap pertama adalah proses pengumpulan dokumen teks yang akan digunakan data training dan data testing. Kemudian
PREDIKSI HERREGISTRASI CALON MAHASISWA BARU MENGGUNAKAN ALGORITMA NAÏVE BAYES
PREDIKSI HERREGISTRASI CALON MAHASISWA BARU MENGGUNAKAN ALGORITMA NAÏVE BAYES Selvy Megira 1), Kusrini 2), Emha Taufiq Luthfi 3) 1), 2), 3) Teknik Universitas AMIKOM Yogyakarta Jl Ring road Utara, Condongcatur,
IMPLEMENTASI DATA MINING UNTUK MEMPREDIKSI DATA NASABAH BANK DALAM PENAWARAN DEPOSITO BERJANGKA DENGAN MENGGUNAKAN ALGORITMA KLASIFIKASI NAIVE BAYES
IMPLEMENTASI DATA MINING UNTUK MEMPREDIKSI DATA NASABAH BANK DALAM PENAWARAN DEPOSITO BERJANGKA DENGAN MENGGUNAKAN ALGORITMA KLASIFIKASI NAIVE BAYES Nama : Muhammad Rizki NPM : 54410806 Jurusan Pembimbing
Metode Klasifikasi (SVM Light dan K-NNK. NN) Dr. Taufik Fuadi Abidin, S.Si., M.Tech. Jurusan Informatika FMIPA Universitas Syiah Kuala
Metode Klasifikasi (SVM Light dan K-NNK NN) Dr. Taufik Fuadi Abidin, S.Si., M.Tech Jurusan Informatika FMIPA Universitas Syiah Kuala www.informatika.unsyiah.ac.id/tfa Alur dan Proses Cleaning Process Dokumen
1. BAB I PENDAHULUAN 1.1 Latar Belakang
1. BAB I PENDAHULUAN 1.1 Latar Belakang Saat ini dunia telah memasuki era dimana masyarakat dapat secara bebas menyuarakan pendapat mereka di berbagai media, salah satunya melalui media sosial. Masyarakat
BAB I PENDAHULUAN 1.1 Latar Belakang
BAB I PENDAHULUAN 1.1 Latar Belakang Situs belanja online sering disebut juga dengan situs e-commerce yaitu suatu proses membeli dan menjual produk-produk secara elektronik oleh konsumen dan dari perusahaan
BAB 1 PENDAHULUAN. 1.1 Latar Belakang Masalah
BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah Pengembangan teknologi diharapkan menghasilkan berbagai hal yang berguna untuk memenuhi kebutuhan masyarakat serta memberi kemudahan dan kenyamanan pada pengguna
Implementasi Pengembangan Smart Helpdesk di UPT TIK UNS Menggunakan Algoritma Naive Bayes Classifier
Implementasi Pengembangan Smart Helpdesk di UPT TIK UNS Menggunakan Algoritma Naive Bayes Classifier Wachid Daga Suryono 1, Ristu Saptono 2, Wiranto 3 Program Studi Informatika, Fakultas Matematika dan
PEMBANGUNAN APLIKASI KLASIFIKASI MAHASISWA BARU UNIVERSITAS ATMA JAYA YOGYAKARTA DENGAN METODE NAΪVE BAYES CLASSIFIER
PEMBANGUNAN APLIKASI KLASIFIKASI MAHASISWA BARU UNIVERSITAS ATMA JAYA YOGYAKARTA DENGAN METODE NAΪVE BAYES CLASSIFIER TUGAS AKHIR Diajukan untuk Memenuhi Sebagian Persyaratan Mencapai Derajat Sarjana Teknik
BAB I PENDAHULUAN Latar Belakang
BAB I PENDAHULUAN 1.1. Latar Belakang Pertukaran informasi di zaman modern ini telah sampai pada era digital. Hal ini ditandai dengan semakin dibutuhkannya teknologi berupa komputer dan jaringan internet
BAB I PENDAHULUAN. beberapa tahun terakhir (Dave Chaffey, 2016). Media jejaring sosial seperti Twitter,
BAB I PENDAHULUAN 1.1. Latar Belakang Popularitas media jejaring sosial terus mengalami peningkatan dalam beberapa tahun terakhir (Dave Chaffey, 2016). Media jejaring sosial seperti Twitter, Facebook,
ABSTRAK. Keywords : Data Mining, Filter, Data Pre-Processing, Association, Classification, Deskriptif, Prediktif, Data Mahasiswa.
ABSTRAK Kemajuan teknologi membuat begitu mudahnya dalam pengolahan suatu informasi. Waktu tidak lagi menjadi hambatan dalam pengolahan data yang sangat banyak. Hal ini didukung pula dengan adanya perkembangan
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 1.1 Data Mining Data mining adalah proses yang menggunakan teknik statistik, matematika, kecerdasan buatan, dan machine learning untuk mengekstrasi dan mengidentifikasi informasi
Moch. Ali Machmudi 1) 1) Stmik Bina Patria
UJI PENGARUH KARAKTERISTIK DATASET PADA PERFORMA ALGORITMA KLASIFIKASI Moch. Ali Machmudi 1) 1) Stmik Bina Patria 1) Jurusan Manjemen Informatika-D3 Email : 1 [email protected] 1) Abstrak Tujuan utama
BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI
BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI penelitian. Pada bab ini akan dibahas literatur dan landasan teori yang relevan dengan 2.1 Tinjauan Pustaka Kombinasi metode telah dilakukan oleh beberapa peneliti
BAB I PENDAHULUAN 1.1. Latar Belakang
BAB I PENDAHULUAN 1.1. Latar Belakang Dalam mencapai tujuan pembangunan ekonomi diperlukan peran serta lembaga keuangan untuk membiayai pembangunan tersebut. Lembaga keuangan memegang peranan penting dalam
APLIKASI PENENTUAN CALON PENDONOR DARAH MENGGUNAKAN METODE ALGORITMA ID3 ( STUDI KASUS PMI KOTA KEDIRI )
Artikel Skripsi APLIKASI PENENTUAN CALON PENDONOR DARAH MENGGUNAKAN METODE ALGORITMA ID3 ( STUDI KASUS PMI KOTA KEDIRI ) SKRIPSI Diajukan Untuk Memenuhi Sebagian Syarat Guna Memperoleh Gelar Sarjana Komputer
APLIKASI PREDIKSI HARGA SAHAM APPLE, IBM, DELL DAN HP MENGGUNAKAN ALGORITMA K-NEAREST NEIGHBORS
APLIKASI PREDIKSI HARGA SAHAM APPLE, IBM, DELL DAN HP MENGGUNAKAN ALGORITMA K-NEAREST NEIGHBORS Naila Fitriah 52409455 Teknologi Industri Teknik Informatika AGENDA Saham? Manfaat Prediksi Saham KNN? 2
