Merencana Garis. Merencana Garis.
|
|
|
- Susanto Pranoto
- 9 tahun lalu
- Tontonan:
Transkripsi
1 Merencana Garis Gaguk Suhardjito FreeboardForum 2006 [email protected] halaman1
2 Ukuran Utama Kapal Ukuran Utama Kapal << LBP, Bmld, Tmld, Dmld, Freeboard dan CB >> berpengaruh terhadap : Stabilitas Kapasitas ruang muat Kebutuhan daya mesin Efisiensi ekonomi Penentuan Ukuran Utama dilakukan secara iteratif mengikuti sekuense sebagai berikut : Estimasi Displasemen <diestimasi dgn ratio DWT/Displasemen> Penentuan LBP <fungsi dari Displasemen dan Kecepatan> Penentuan CB & CM <fungsi dari Fn (Froude Number)> Penentuan Bmld,Tmld & Dmld <sesuai kebutuhan ruang, stabilitas, freeboard dan cadangan daya apung> Berdasarkan daerah pelayaran dan galangan kapal yang ada, ukuran utama dibatasi oleh Pintu air, Kanal, Jembatan dan panjang Slipways Panjang Kapal Pada umumnya panjang kapal ditentukan dari ukuran kapal yang sama atau formula/dalil dan diagram yang diturunkan dari database kapal yang sama. Dalil Schneekluth Dalil Ayre Dalil Posdunine Dalil Volker LBP = 0.3. V ,2. (CB + 0,5) / {(0,145/Fn)+0,5} L/n 1/3 = 3,33 + 1,67 ( V/L 0,5 ) L = C {(V/(V+2)} 2. n 1/3 L/n 1/3 = 3,5 + 4,5. V/(g n 1/3 ) 0,5 Metode Pengecekan Panjang Kapal [email protected] halaman2
3 Metode pengecekan panjang kapal pada umumnya dilakukan dengan cara pengecekan eksternal dan pengecekan thd Froude Number (Fn) Pengecekan eksternal meliputi pembatasan panjang akibat dari Slipway, Panjang Dok, Pintu air atau Pelabuhan Pengecekan thd Froude Number (Fn) untuk memastikan apakah terjadi interferensi sistem gelombang bagian depan dan buritan kapal, menurut Jensen 1994, daerah 0,25 < Fn < 0,27 dan 0,37 < Fn < 0,5 harus dihindari karena akan terjadi interferensi/crash antara gelombang haluan dan gelombang bahu depan (forward shoulder) Untuk mengubah Fn yang tidak diharapkan menjadi Fn yang diharapkan bisa dilakukan dengan cara : Mengubah panjang Mengubah bentuk lambung Mengubah kecepatan Lebar Kapal dan Stabilitas Lebar kapal sangat berpengaruh terhadap stabilitas dan terhadap biaya produksi/operasi, Penambahan Lebar kapal dengan displasemen yang sama akan mengakibatkan : Penambahan tahanan kapal dan penambahan kebutuhan daya mesin Sarat kapal menjadi rendah, diameter propeller menjadi lebih kecil sehingga effisiensinya pun lebih rendah Penambahan konstruksi pada dasar kapal dan geladak yang berakibat pada berat baja kapal yang meningkat Item diatas mengakibatkan biaya produksi yang lebih tinggi!!! Stabilitas awal yang lebih besar KM menjadi lebih besar dan KG menjadi lebih rendah Kurva stabilitas menjadi lebih curam pada kemiringan awal dengan kemungkinan memperkecil range Sarat kapal yang rendah tidak menjadi masalah apabila terjadi pembatasan terhadapnya Tinggi, Sarat dan Freeboard (Lambung timbul) Sarat kapal (Tmld) sering dibatasi oleh kedalam air laut, terutama untuk Kapal Supertanker Kapal Curah Kapal Pengangkut pisang Kapal antar pulau [email protected] halaman3
4 Kapal dengan sarat yang besar akan memberikan keuntungan Tahanan yang lebih rendah Kemungkinan pemasangan diameter propeller yang lebih besar Tinggi kapal (Dmld) menentukan volume kapal dan freeboard, tinggi kapal menentukan biaya produksi, kenaikan 10% tinggi kapal berakibat penambahan 8% berat baja pada L/D = 10 dan 4% pada L/D=14. Tinggi kapal juga berpengaruh terhadap kekuatan memanjang, bila tinggi kapal diperkecil, flens harus diperkuat untuk menjaga modulus penampang, lambung kapal juga harus diperkuat agar mampu menyalurkan shear forces. Kapal dengan tinggi yang lebih rendah akan mengalami defleksi yang lebih besar yang bisa mengakibatkan kerusakan pipa-pipa, poros, ceiling dan komponen lainnya. Penentuan tinggi kapal (Dmld) harus dicek terlebih dahulu ; Freeboard yang merupakan perbedaan antara Tinggi dengan Sarat, harus dicek kesesuaiannya dengan peraturan yang berlaku Tinggi kapal harus menghasilkan volume dibawah geladak dan volume ruang muat yang didinginkan Posisi Centre of Gravity (KG) harus dicek untuk memastikan MG kapal memenuhi sarat, KG tergantung dari tinggi kapal. Standar MG muatan penuh Ocean going passanger ship 1,5 2,2 m Inland passanger ship 0,5 1,5 m Tug 1,0 m Cargo ship 0,8 1,0 m Containership 0,3 0,6 m Koefisien Blok & Koefisien Prismatik Koefisien Blok (CB), Koefisien Prismatik (CP), Koefisien Luas TengahKapal (MSA) dan Titik Apung Memanjang (LCB) menentukan Length of entrance body, Length of parallel midle body dan Length of run body. Length of Run Body Paralel Middle Body Length of Entance Body A midship B.T LBP Section Area Curve (CSA) [email protected] halaman4
5 Koefisien Midship (CM) Pengaruh CM terhadap tahanan kapal, penambahan CM dengan CB konstan berakibat Penambahan panjang run pengurangan tahanan kapal Penambahan panjang entance pengurangan tahanan gelombang Penambahan luas permukaan basah penambahan tahanan gesek Pengaruh CM terhadap kelengkungan kurva, harga CM yang tinggi berakibat radius bilga yang lebih kecil, sehingga kelengkungan pelat kapal yang lebih kecil hal tersebut akan menurunkan biaya produksi. Ukuran dan bentuk Midship Section pada kapal kontainer- disesuaikan dengan kebutuhan peletakan kontainer pada kapal. Kapal dengan harga CM yang lebih kecil akan mudah mengalami rolling dibanding dengan kapal bercm tinggi, oleh karenanya diperlukan bilge keel untuk mengurangi efek tersebut. Disarikan dari H, Scheekluth & V. Bertram (1998), Ship Design for Efficiency and Economy, Butterorth Heinemann halaman5
6 Desain Lambung Desain Lambung : Statement of the Problem Desain lambung pada umumnya dilakukan dengan menganggap kapal berada diperairan tenang, bentuk lambung kapal akan sangat mempengaruhi karakteristik sbb: Penambahan Tahanan pd saat berlayar Kemampuan manuver kapal Roll dumping, ketahanan thd olengan kapal Kemampuan bergerak di tengah gelombang Kemampuan menahan hempasan gelombang Volume dibawah geladak Desain lambung/garis bisa mulai dilakukan setelah ukuran utama kapal < LBP, Bmld, Tmld, Dmld & CB> didapatkan, hal penting dari desain garis adalah Froude Number (Fn), kerampingan kapal (slenderness) merupakan fungsi dari Fn, nilai Fn yang besar akan mengakibatkan bentuk lambung kapal yang lebih ramping. Passanger Liner (kapal penumpang) memiliki harga Fn yang lebih besar dibanding General Cargo (Kapal Barang) Slow Speed Cargo Cargo Liner Fruit Ships Destroyer Fn 0,15-0,18 0,21 0,24 >0,45 CB 0,80 0,70 0,65 0,46-0,54 CP 0,809-0,805 0,715 0,664 0,56-0,64 Perhatian khusus dalam hal desain garis harus diberikan pada : Lindblad(1961) & Todd (1945) Bentuk dari Sectional Area Curve (CSA) yang merupakan distribusi displasemen kesepanjang lambung kapal. Bentuk tengah Kapal (Midship Section) Bentuk station haluan, linggi haluan dan garis air haluan Bentuk station buritan, linggi buritan dan garis air buritan Parameter bentuk lambung Desain Lambung : Desain Bentuk CSA Desain Sectional Area Curve (CSA) bisa dilakukan dengan bantuan diagram Scheltema De Heere, Diagram NSP, Form Data, Diagram Hamlin dan atau dengan teknik trial and error, hal penting dari desain CSA adalah konsistensi Desplasemen dan LCB. [email protected] halaman6
7 Froude Number yang merupakan konstanta non dimensi bisa dihitung dengan Rumus : Fn = V/ ( g.l ) 0,5 Penentuan Koefisien Prismatik bisa dilakukan dengan berbagai, salah satunya dengan bantuan diagram Design lanes for prismatic coefficient and displasement-length ratio ( Saunders, 1957) dengan cara memplot nilai Fn pada diagram untuk kemudian harga CP bisa ditentukan. Desain CSA dengan bantuan diagram Hamlin mengikuti diagram dibawah ini : Main Dimension Froude Number LCB CP aft CP fore Koefisien Prismatik (CP) CB, CWP, CM Sectional Area Curve (CSA) [email protected] halaman7
8 Penentuan LCB bisa dilakukan dengan berbagai rumus pendekatan diantaranya LCB/L = (8,80-38,9 Fn)/100 LCB/L = - 0, ,194 CP untuk Kapal Tanker dan Curah Begitu juga dengan harga CM, CWP dan CB Fn = 0,595 ( 1,05 CB) Van Lammeren 1948 CWP = 0,18 + 0,86 CP Series 60 CM = CB/CP Series 60 Setelah CSA berhasil didesain dengan pengecekan terhadap konsistensi Displasemen dan LCB, dari diagram tersebut ditentukan panjang : PMB aft & PMB fore Run Body & Entrance Body Desain Lambung : Desain Bentuk Midship Hampir semua kapal barang /Cargo ship didesain dengan dasar datar/flat bottom pada bagian tengah kapal, rise of floor masih banyak dijumpai pada kapal dengan CM <0,9. Pada kapal Container Midship Section didesain dengan bentuk trapesium guna meningkatkan efisiensi ruang muat. Berbagai contoh Midship section [email protected] halaman8
9 R R r Radius Bilga tanpa rise of foor Radius Bilga dengan rise of floor R 2 = 2,33 ( 1 CM ) B. T R 2 = { 2BH ( 1 CM ) ( B. r ) } / Pada beberapa kapal kontainer midship section didesain dengan bentuk trapesium guna meningkatkan efisiensi ruang muat. R Dengan luas MSA dan sarat yang sama, bentuk trapesoid lebih lebar, kapal akan memiliki WSA yang lebih kecil dan CB yang lebih kecil sehigga tahanan menjadi lebih kecil. [email protected] halaman9
10 Desain Lambung : Linggi Depan dan Bentuk Haluan Berbagai bentuk haluan kapal Bagian depan kapal/ Bow dapat dibedakan dari bentuknya : Bentuk standar ( bulbless), Bentuk bulbous bow dan Bentuk khusus misalnya bow untuk kapal ice breaker. Tiga hal penting bentuk bow adalah Bentuk linggi depan ( stem profile ), Bentuk Station depan ( fore section shape ) dan Bentuk LWL ( Load Water Line ). Bentuk linggi depan/ stem profile Pada mula kapal memiliki bentuk linggi depan vertikal hingga kapal memiliki bentuk linggi depan seperti saat ini yang memiliki kemiringan/ rake baik diatas maupun dibawah garis air. [email protected] halaman10
11 Bentuk Station/section haluan Station/section bagian depan haluan kapal memiliki bentuk U atau V. Bentuk Station V, memiliki kelebihan-kelebihan sebagai berikut ; - Volume deck yang lebih besar - Area Deck/Fore castle deck yang lebih luas - WPA yang lebih luas sehingga momen inertianya lebih besar, VCB lebih tinggi, sehingga stabilitas kapal menjadi lebih baik - WSA yang lebih kecil, volume baja kapal menjadi lebih kecil - Bentuk kurvature lebih sederhana, mengurangi biaya produksi Masalah pada bentuk Station V, - Memiliki tahanan gelombang yang lebih besar, meski tahanan geseknya menjadi lebih kecil tahanan total yang terjadi menjadi lebih besar dibanding bentuk U untuk 0,18 < Fn < 0,25 - Bentuk V pada station haluan hanya memiliki tahanan yang baik pada Fn < 0,18 atau Fn > 0,225 untuk Normal cargo, pada kapal dengan B/T > 0,35 memiliki range yang lebih lebar Bentuk DWL haluan Bentuk DWL haluan, ditentukan oleh sudut masuknya ( half angle of entry ) / i E CP 0,55 0,60 0,75 0,70 0,75 0,80 0,85 8 o 9 o 9-10 o o o 33 o 37 o i E [email protected] halaman11
12 Ujung depan DWL diusahakan memiliki radius sekecil mungkin untuk memberi efek hidrodinamik yang lebih baik, round bar bisa digunakan pada ujung /linggi depan, radius minimum yang memungkinkan adalah sebesar ( 3 x 4 ) x tebal plat, radius pada geladak cuaca adalah Rdeck = 0,08 B/2 untuk CP <= 0,72 Bentuk haluan kapal bisa dibedakan menjadi bentuk bow tajam atau bentuk parabolik, bentuk bow parabolik digunakan untuk kapal dengan CB > 0,8 dan L/B rendah yang pada umumnya kapal tersebut adalah Tanker atau Bulker. Desain Lambung : Linggi Buritan dan Bentuk Buritan Desain buritan kapal meliputi Linggi Buritan, Bentuk Station Buritan dan Propeller clearance. Buritan kapal niaga pada umumnya dibedakan 2 bentuk, bentuk elips (merchant) dan bentuk transom, bentuk transom memiliki keuntungan antara lain; Poop deck yang lebih lebar, Kelengkungan buritan yang lebih sederhana, Luas pelat yang lebih sedikit sehingga biaya produksinya pun lebih rendah. [email protected] halaman12
13 Berbagai bentuk transom Stern section/ station buritan kapal yang tercelup air sesuai bentuknya dibedakan menjadi 1. Bentuk U 2. Bentuk V 3. Bentuk Stern bulb Masing-masing bentuk memiliki efek tahanan yang berbeda, bentuk V memiliki tahanan yang rendah, bentuk U memiliki tahanan yang lebih besar dan bentuk Stern bulb memiliki tahanan yang paling besar. Disisi lain bentuk V menghasilkan Non uniform wake distribution yang tidak menguntungkan bagi kerja propeller sedangkan bentuk U dan Stern bulb menghasilkan Uniform wake distribution. [email protected] halaman13
14 Propeller clearance berpengaruh terhadap : 1. Kebutuhan daya mesin 2. Getaran 3. Diameter propeller dan putaran optimum propeller 4. Fluktuasi pada torsi [email protected] halaman14
15 Step by Step Merencana Garis Ukuran Utama Kapal : Jenis Kapal : Kontainer LBP : 80 m Bmld : 11,40 m Dmld : 6,10 m Tmld : 4,75 m Vs : 12 knots Fn = V / (g.lbp) 1/2 V Kecepatan Kapal (m/s) g Gravitasi (9,8 m/s 2 ) 1 knots = 0,5144 m/s Fn = (12 * 0,5144) / (9,8 * 80) 1/2 = 6,172 / 28 Fn = 0,220 Menurut Jensen 1994, CB = - 4, ,8 (Fn) 1/2 39,1 Fn + 46,6 Fn 3 untuk 0,15<Fn<0,32 CB = - 4, ,8 (0,22) 1/2 39,1 * 0, ,6 * 0,22 3 CB = 0,71 CM = 1 / ( 1 + ( 1 CB) 3,5 ) [email protected] halaman15
16 CM = 1 / ( 1 + ( 1 0,71) 3,5 ) CM = 0,987 Menurut H. Schneekluth CWP = ( CB ) / 3 CWP = ( ,71 ) / 3 CWP = 0,86 CP = CB / CM CP = 0,71 / 0,987 CP = 0,7193 Menurut Jensen 1994, LCB / LBP = ( 8,80 38,9 Fn ) / 100 LCB / LBP = - 0, ,194 * CP untuk tanker / Bulker LCB / LBP = ( 8,80 38,9 * 0,220 ) / 100 LCB / LBP = 0,00242 LCB = 0,00242 * 80 LCB = + 0,193 m LCB = + 0,242 % LBP [email protected] halaman16
17 Coefficient Prismatic Aft (CPA) dan Coefficient Prismatik Fore (CPF) bisa ditentukan dengan memplot harga LCB dan harga CP pada diagram hamlin. Hasil plotting nampak sbb; Dari diagram terbaca CPA = 0,715 CPF = 0,725 [email protected] halaman17
18 Dengan bantuan diagram Hamlin, masing-masing luas station bisa ditentukan nilainya, dengan cara memplot harga CPA dan CPF pada diagram, seperti nampak dibawah ini Plotting pada diagram ini akan menghasilkan luas masing-masing station, Perhatian!!!!!!! Penomoran station pada diagram diatas tidak sama dengan penomoran station pada umumnya sehingga perlu penyesuaian, misalnya Station 5 pada diagram sama dengan station 15 pada umumnya, Station 18 sama dengan station 2 dstnya. [email protected] halaman18
19 Tabel Luas Station No. Station pada Diagram No. Station pada Gambar - A - B 20 AP 19,5 0, ,5 1, ,5 18, ,5 19, Luas Station / Luas Midship Luas Station Station A dan station B adalah station cant part, nilainya terbaca pada diagram csa [email protected] halaman19
20 CSA bisa digambar dengan cara memplot besarnya luas station sebagai absis dan panjang kapal sebagai ordinat, akurasi CSA akan lebih baik bila menggunakan kertas milimeter, hasil plot akan menghasilkan CSA ( Curves of Sectional Area ), perlu proses fairing untuk penggambaran CSA sekaligus untuk mengoreksi deviasi pembacaan diagram. Length of Run Body Paralel Middle Body Length of Entance Body A midship B.T A B AP LBP LWL FP Setelah fairing selesai dilakukan sehingga menghasilkan kurva CSA yang fair, kemudian CSA diperiksa akurasinya dengan cara membaca ulang area station untuk kemudian dimasukkan ke tabel perhitungan Displasemen dan LCB, [email protected] halaman20
21 Perhitungan Displasemen dan LCB bisa menggunakan tabel dibawah ini No. Station Luas Station Faktor Faktor pada Gambar A Simpson (FS) Momen (FM) A 1 * x - ( x) B 4 * x - ( 10 + x ) AP ( x + 0,5 ) ,5 2-9, ,5 2-8,5 2 1, ,5 8 18,5 2 8, ,5 2 9,5 20 0,5 10 Hasil A * FS Σ 1 Σ 2 Hasil A * FM x = [( LWL + LBP ) / 2] / h h = LBP / 20 Volume Displasemen = 1/3 * h * Σ 1 ( m 3 ) LCB = Σ 1 / Σ 2 * h ( m ) Pemeriksaan akurasi ( Displ target Displ perhitungan ) / Displ target x 100 % < 0,5 % ( LCB target LCB perhitungan ) / LBP < 0,2 % [email protected] halaman21
22 Parameter bentuk lambung pada dasarnya digunakan untuk mengontrol bentuk lambung sesuai dengan desain yang diinginkan, Parameter-parameter tsb adalah : 1. Panjang Paralel Midle Body 2. Panjang Run Body 3. Panjang Entrance body 4. Parallel Main Deck 5. Midship section 6. Parallel Bottom 7. Profil sisi kapal, Sheer Plan, Fore Castle deck dan Poop Deck 8. Garis Singgung Sisi ( Side Tangent ) 9. Bentuk Haluan kapal, meliputi Stem profile, Station Haluan danujung depan garis air muat 10. Bentuk Buritan kapal, meliputi Stern contour, Propeller clearance dan Station buritan Parameter ini harus didesain terlebih dulu sebelum desain masing-masing station dikerjakan. [email protected] halaman22
23 Station didesain berdasarkan data CSA dan Parameter lambung, Kurva CSA memberikan besarnya luas station, Parameter lambung memberikan informasi tentang bondary condition pada masing-masing station. halaman23
24 Berbagai Bentuk Lambung Kapal Kapal Pengangkut Kendaraan Car Carrier Kapal Tanker Tanker Kapal Penangkap Ikan Fishing Ship halaman24
25 Kapal Penumpang Passanger Ship Kapal Pengangkut LNG LNG Carrier Kapal Penyeberangan Ferry Roro halaman25
26 Kapal Kontainer Container Ship Kapal Barang Berat Heavy General Cargo Kapal Pengangkut Kendaraan Car Carrier halaman26
27 Kapal Barang Berat Heavy General Cargo Kapal Dok Ship Dock Kapal Pesiar Cruiser halaman27
28 Kapal Pengangkut Kendaraan Car Carrier Kapal Penumpang Katamaran Catamaran Passanger Ship Kapal Pengangkut Berat Heavy Lift halaman28
BAB II PERHITUNGAN RENCANA GARIS (LINES PLAN)
BAB II PERHITUNGAN RENCANA GARIS (LINES PLAN) A. PERHITUNGAN DASAR A.. Panjang Garis Air Muat (Lwl) Lwl Lpp + ( % x Lpp) 6, + ( % x,6) 8,8 m A.. Panjang Displacement (L Displ) untuk kapal berbaling-baling
PERHITUNGAN RENCANA GARIS (LINES PLAN)
PERHITUNGAN RENCANA GARIS (LINES PLAN) A. PERHITUNGAN DASAR A.. Panjang Garis Air Muat (Lwl) Lwl Lpp + % x Lpp 9,5 + % x 9,5 5, m A.. Panjang Displacement (L Displ) L Displ,5 x ( Lwl + Lpp ),5 x (5, +
BAB II PERHITUNGAN RENCANA GARIS ( LINES PLAIN )
BAB II PERHITUNGAN RENCANA GARIS ( LINES PLAIN ) C.. PERHITUNGAN DASAR A. Panjang Garis Air Muat (Lwl) Lwl Lpp + % x Lpp 5.54 + % x 5.54 7.65 m B. Panjang Displacement (L Displ) L Displ,5 x ( Lwl + Lpp
TUGAS AKHIR MV EL-JALLUDDIN RUMMY GC 3250 BRT BAB II PERHITUNGAN RENCANA GARIS (LINES PLAN)
BAB II PERHITUNGAN RENCANA GARIS (LINES PLAN) A. PERHITUNGAN DASAR A.. Panjang Garis Air Muat (Lwl) Lwl Lpp + 2 % x Lpp Lwl 6, + 2 % x 6, Lwl 8,42 m A.2. Panjang Displacement (L.Displ) L Displ 0,5 x (Lwl
BAB II PERHITUNGAN RENCANA GARIS ( LINES PLAIN )
MT LINUS 90 BRT LINES PLAN BAB II PERHITUNGAN RENCANA GARIS ( LINES PLAIN ). PERHITUNGAN DASAR. Panjang Garis Air Muat (Lwl) Lwl Lpp + % x Lpp 07,0 + % x 07,0 09, m. Panjang Displacement (L Displ) L Displ
BAB II PERHITUNGAN RENCANA GARIS (LINES PLAN)
BAB II PERHITUNGAN RENCANA GARIS (LINES PLAN) A. PERHITUNGAN DASAR A.. Panjang Garis Air Muat (Lwl) Lwl Lpp + 2 % x Lpp Lwl 3,00 + 2 % x 3,00 Lwl 5,26 m A.2. Panjang Displacement (L.Displ) L Displ 0,5
BAB II PERHITUNGAN RENCANA GARIS (LINES PLAN)
BAB II PERHITUNGAN RENCANA GARIS (LINES PLAN) A. PERHITUNGAN DASAR. Panjang Garis Air Muat (Lwl) Lwl Lpp + % x Lpp 99,5 +,98, m. Panjang Displacement (L Displ) L Displ,5 x (Lwl + Lpp),5 x (, + 99,5),5
BAB II PERHITUNGAN RENCANA GARIS
BAB II A. PERHITUNGAN DASAR A.1. Panjang Garis Muat ( LWL ) LWL = Lpp + 2 % Lpp = 78,80 + ( 2%x 78,80 ) = 80,376 m A.2. Panjang Displacement untuk kapal Baling baling Tunggal (L displ) L displ = ½ (LWL
BAB II PERHITUNGAN RENCANA GARIS (LINES PLAN)
BAB II PERHITUNGAN RENCANA GARIS () A. Perhitungan Dasar A.1. Panjang Garis Muat ( LWL ) A.2. A.3. A.4. LWL = Lpp + 2 % Lpp = 36.07 + ( 0.02 x 36.07 ) = 36.79 m Panjang Displacement untuk kapal Baling
PENDAHULUAN BAB I PENDAHULUAN
BAB I A. UMUM Untuk merencanakan sebuah kapal bangunan baru, ada beberapa masalah yang penting dan pokok untuk dijadikan dasar perencanaan, baik dari segi teknis, ekonomis maupun segi artistiknya.beberapa
PENGGUNAAN SKALA 1 : 100 DAN RUMUS PENGUKURAN SHIP SECTIONAL AREA
PENGGUNAAN SKALA 1 : 100 DAN RUMUS PENGUKURAN SHIP SECTIONAL AREA DALAM PENGGAMBARAN BENTUK BADAN KAPAL SECARA MANUAL DENGAN METODE RF. SCELTEMA DEHEERE Iswadi Nur Program Studi Teknik Perkapalan FT. UPN
PENGARUH UKURAN UTAMA KAPAL TERHADAP DISPLACEMENT KAPAL. Budi Utomo *)
PENGARUH UKURAN UTAMA KAPAL TERHADAP DISPLACEMENT KAPAL Budi Utomo *) Abstract Displacement is weight water which is replaced ship hull. The displacement influenced by dimension of in merchant ship. The
BAB I PENDAHULUAN. PENDAHULUAN MT SAFINA SYUMADHANI Tanker 3600 BRT I - 1 PROGRAM STUDI D III TEKNIK PERKAPALAN PROGRAM DIPLOMA FAKULTAS TEKNIK
BAB I PENDAHULUAN A. UMUM Untuk merencanakan sebuah kapal bangunan baru, ada beberapa masalah yang penting dan pokok untuk dijadikan dasar perencanaan, baik dari segi teknis, ekonomis maupun segi artistiknya.
Lembar Pengesahan Laporan Tugas Gambar Kurva Hidrostatik & Bonjean (Hydrostatic & Bonjean Curves)
Lembar Pengesahan Laporan Tugas Gambar Kurva Hidrostatik & Bonjean (Hydrostatic & Bonjean Curves) Menyetujui, Dosen Pembimbing. Ir.Bmbang Teguh S. 195802261987011001 Mahasiswa : Dwiky Syamcahyadi Rahman
Metacentra dan Titik dalam Bangunan Kapal
Metacentra dan Titik dalam Bangunan Kapal 1. Titik Berat (Centre of Gravity) Setiap benda memiliki tittik berat. Titik berat inilah titik tangkap dari sebuah gaya berat. Dari sebuah segitiga, titik beratnya
II. TINJAUAN PUSTAKA Kapal Perikanan. Kapaf ikan adalah salah satu jenis dari kapal, dengan demikian sifat dan
II. TINJAUAN PUSTAKA 2.1. Kapal Perikanan Kapaf ikan adalah salah satu jenis dari kapal, dengan demikian sifat dan syarat-syarat yang diperlukan oleh suatu kapal akan diperlukan juga oleh kapal ikan, akan
HALAMAN JUDUL HALAMAN SURAT TUGAS
DAFTAR ISI HALAMAN JUDUL HALAMAN SURAT TUGAS HALAMAN PENGESAHAN DOSEN PENGUJI HALAMAN PENGESAHAN KETUA PROGRAM STUDI HALAMAN MOTTO HALAMAN PERSEMBAHAN KATA PENGANTAR DAFTAR ISI DAFTAR TABEL DAFTAR GAMBAR
ANALISA PENERAPAN BULBOUS BOW PADA KAPAL KATAMARAN UNTUK MENINGKATKAN EFISIENSI PEMAKAIAN BAHAN BAKAR
JURNAL TEKNIK SISTEM PERKAPALAN Vol. 1, No. 1, (2014) 1-6 1 ANALISA PENERAPAN BULBOUS BOW PADA KAPAL KATAMARAN UNTUK MENINGKATKAN EFISIENSI PEMAKAIAN BAHAN BAKAR Prasetyo Adi Dosen Pembimbing : Ir. Amiadji
Analisa Penerapan Bulbous Bow pada Kapal Katamaran untuk Meningkatkan Efisiensi Pemakaian Bahan Bakar
JURNAL TEKNIK POMITS Vol. 3, No. 1, (2013) ISSN: 2337-3539 (2301-9271 Print) F-13 Analisa Penerapan Bulbous Bow pada Kapal Katamaran untuk Meningkatkan Efisiensi Pemakaian Bahan Bakar Prasetyo Adi dan
ANALISA PENERAPAN BULBOUS BOW PADA KAPAL KATAMARAN UNTUK MENINGKATKAN EFISIENSI PEMAKAIAN BAHAN BAKAR O LEH :
ANALISA PENERAPAN BULBOUS BOW PADA KAPAL KATAMARAN UNTUK MENINGKATKAN EFISIENSI PEMAKAIAN BAHAN BAKAR O LEH : PRASET YO ADI (4209 100 007) OUTLINE Latar Belakang Perumusan Masalah Batasan Masalah Tujuan
BAB V BUKAAN KULIT (SHELL EXPANSION)
BAB V BUKAAN KULIT (SHELL EXPANSION) Perhitungan Shell Expansion (Bukaan Kulit) berdasarkan ketentuan BKI (Biro Klasifikasi Indonesia) Th. 2007 Volume II. A. PERKIRAAN BEBAN A.1. Beban sisi kapal a. Beban
Istilah istilah yang ada di teori bangunan kapal Istilah istilah yang ada pada konstruksi bangunan kapal Jenis-jenis kapal
Istilah istilah yang ada di teori bangunan kapal Istilah istilah yang ada pada konstruksi bangunan kapal Jenis-jenis kapal Ukuran utama ( Principal Dimension) * Panjang seluruh (Length Over All), adalah
Z = 10 (T Z) + Po C F (1 + )
BAB V BUKAAN KULIT (SHELL EXPANSION) Perhitungan Shell Expansion (Bukaan Kulit) berdasarkan ketentuan BKI (Biro Klasifikasi Indonesia) Th. 2006 Volume II. A. PERKIRAAN BEBAN A.1. Beban sisi kapal a. Beban
RANCANG EDIT MAXSURF MUHAMMAD BAQI. Oleh : Saran dan kritik sangat diharapkan oleh penulis :
RANCANG EDIT MAXSURF Oleh : MUHAMMAD BAQI 0606077831 Saran dan kritik sangat diharapkan oleh penulis : [email protected] RANCANG EDIT MAXSURF Owner Requirement : Kapal Tanker 1. Setelah mengkoreki
Desain Rencana Garis. Bukaan Kulit. (Lines Plan) dan. (Sheel Expansion) Program Studi Teknik Perencanaan dan Konstruksi Kapal
Desain Rencana Garis (Lines Plan) dan Bukaan Kulit (Sheel Expansion) Program Studi Teknik Perencanaan dan Konstruksi Kapal 016 Hendra Saputra Sapto Wiratno Satoto Daftar Pustaka 1. PENDAHULUAN... 3 1.1.
PERHITUNGAN BUKAAN KULIT SHELL EXPANTION
BAB V PERHITUNGAN BUKAAN KULIT Perhitungan Shell Expansion ( bukaan kulit ) kapal MT. SADEWA diambil dari perhitungan Rencana Profil berdasarkan Peraturan Biro Klasifikasi Indonesia Volume II, Rules for
Analisa Perhitungan Fixed Pitch Propeller (FPP) Tipe B4-55 Di PT. Dok & Perkapalan Kodja Bahari (Persero)
Analisa Perhitungan Fixed Pitch Propeller (FPP) Tipe B4-55 Di PT. Dok & Perkapalan Kodja Bahari (Persero) Nama : Geraldi Geastio Dominikus NPM : 23412119 Jurusan : Teknik Mesin Pembimbing : Eko Susetyo
BAB V SHELL EXPANSION
BAB V SHELL EXPANSION A. PERHITUNGAN BEBAN A.1. Beban Geladak Cuaca (Load and Weather Deck) Yang dianggap sebagai geladak cuaca adalah semua geladak yang bebas kecuali geladak yang tidak efektif yang terletak
2 TINJAUAN PUSTAKA 2.1 Kapal Perikanan
4 2 TINJAUAN PUSTAKA 2.1 Kapal Perikanan Kapal perikanan adalah kapal yang digunakan didalam usaha perikanan yang mencakup penggunaan atau aktivitas dalam usaha menangkap atau mengumpulkan sumberdaya perairan
Bentuk dari badan kapal umumnya ditentukan oleh: Ukuran utama Koefisien bentuk Perbandingan ukuran kapal. A.A. B. Dinariyana
A.A. B. Dinariyana Jurusan Teknik Sistem Perkapalan Fakultas Teknologi Kelautan ITS Surabaya 2011 Bentuk dari badan kapal umumnya ditentukan oleh: Ukuran utama Koefisien bentuk Perbandingan ukuran kapal.
BAB I PENDAHULUAN. baik dari segi teknis, ekonomis maupun segi artistiknya. Hal-hal dasar yang. harus diperhatikan adalah sebagai berikut :
BAB I A. Umum Dalam merencanakan atau mendesaign kapal bangunan baru, ada beberapa hal yang harus di perhatikan dalam merencanakan sebuah kapal, baik dari segi teknis, ekonomis maupun segi artistiknya.
Bentuk baku konstruksi kapal rawai tuna (tuna long liner) GT SNI Standar Nasional Indonesia. Badan Standardisasi Nasional
Standar Nasional Indonesia Bentuk baku konstruksi kapal rawai tuna (tuna long liner) 75 150 GT ICS 65.150 Badan Standardisasi Nasional Daftar isi Daftar isi...i Prakata...II pendahuluan...iii 1 Ruang
4 HASIL DAN PEMBAHASAN
21 4 HASIL DAN PEMBAHASAN 4.1 Kapal Cumi-Cumi (Squid Jigging) Kapal cumi-cumi (squid jigging) merupakan kapal penangkap ikan yang memiliki tujuan penangkapan yaitu cumi-cumi. Kapal yang sebagai objek penelitian
2. TINJAUAN PUSTAKA 2.1 Kapal Penangkap Ikan
2. TINJAUAN PUSTAKA 2.1 Kapal Penangkap Ikan Menurut Nomura dan Yamazaki (1977) kapal perikanan sebagai kapal yang digunakan dalam kegiatan perikanan yang meliputi aktivitas penangkapan atau pengumpulan
ALBACORE ISSN Volume I, No 3, Oktober 2017 Diterima: 11 September 2017 Hal Disetujui: 19 September 2017
ALBACORE ISSN 2549-1326 Volume I, No 3, Oktober 2017 Diterima: 11 September 2017 Hal 265-276 Disetujui: 19 September 2017 BENTUK KASKO DAN PENGARUHNYA TERHADAP KAPASITAS VOLUME RUANG MUAT DAN TAHANAN KASKO
2 TINJAUAN PUSTAKA. 2.1 Kapal Perikanan
2 TINJAUAN PUSTAKA 2.1 Kapal Perikanan Kapal perikanan merupakan kapal yang digunakan untuk aktivitas penangkapan ikan di laut (Iskandar dan Pujiati, 1995). Kapal perikanan adalah kapal yang digunakan
5 PEMBAHASAN 5.1 Dimensi Utama
5 PEMBAHASAN 5.1 Dimensi Utama Keterbatasan pengetahuan yang dimiliki oleh pengrajin kapal tradisional menyebabkan proses pembuatan kapal dilakukan tanpa mengindahkan kaidahkaidah arsitek perkapalan. Dasar
ANALISA TEKNIS KM PUTRA BIMANTARA III MENURUT PERATURAN KONSTRUKSI KAPAL KAYU BKI
ANALISA TEKNIS KM PUTRA BIMANTARA III MENURUT PERATURAN KONSTRUKSI KAPAL KAYU BKI Sarjito Jokosisworo*, Ari Wibawa Budi Santosa* * Program Studi Teknik Perkapalan Fakultas Teknik UNDIP ABSTRAK Mayoritas
PENGARUH BENTUK LAMBUNG KAPAL TERHADAP TAHANAN KAPAL
PROSIDING 20 13 HASIL PENELITIAN FAKULTAS TEKNIK PENGARUH BENTUK LAMBUNG KAPAL TERHADAP TAHANAN KAPAL Jurusan Fakultas Teknik Universitas Hasanuddin Jl. Perintis Kemerdekaan Km.10 Tamalanrea Makassar,
RANCANG BANGUN AIRBOAT SEBAGAI ALAT ANGKUT PENANGGULANGAN BENCANA TAHAP II
ABSTRAK RANCANG BANGUN AIRBOAT SEBAGAI ALAT ANGKUT PENANGGULANGAN BENCANA TAHAP II Arif Fadillah * ) dan Hadi Kiswanto*) *) Jurusan Teknik Perkapalan, Fak. Teknologi Kelautan, Universitas Darma Persada
BAB I PENDAHULUAN A. Umum A.1. Jenis Kapal A.2. Kecepatan Kapal A.3. Masalah Lain
BAB I PENDAHULUAN A. Umum Dalam merencanakan atau mendesain kapal bangunan baru, ada beberapa hal yang harus diperhatikan dalam merencanakan sebuah kapal, baik dari segi teknis, ekonomis maupun segi artistiknya.
Bentuk baku konstruksi kapal pukat cincin (purse seiner) GT
Standar Nasional Indonesia Bentuk baku konstruksi kapal pukat cincin (purse seiner) 75 150 GT ICS 65.150 Badan Standardisasi Nasional Daftar isi Daftar isi... I Prakata... II Pendahuluan... III 1 Ruang
PENGARUH VARIASI BENTUK BURITAN KAPAL TERHADAP HAMBATAN TOTAL MENGGUNAKAN METODE CFD
PENGARUH VARIASI BENTUK BURITAN KAPAL TERHADAP HAMBATAN TOTAL MENGGUNAKAN METODE CFD 1) Deddy Chrismianto, Berlian Arswendo A 1) Jurusan Teknik Perkapalan, Fakultas Teknik, Universitas Diponegoro, Indonesia
Study on hydrodynamics of fiberglass purse seiners made in several shipyards in North Sulawesi
Aquatic Science & Management, Vol. 2, No. 2, 48-53 (Oktober 2014) Pascasarjana, Universitas Sam Ratulangi http://ejournal.unsrat.ac.id/index.php/jasm/index ISSN 2337-4403 e-issn 2337-5000 jasm-pn00056
BAB V MIDSHIP AND SHELL EXPANSION
BAB V MIDSHIP AND SHELL EXPANSION Perhitungan Midship & Shell Expansion berdasarkan ketentuan BKI (Biro Klasifikasi Indonesia) Th. 2006 Volume II. A. PERHITUNGAN PLAT KULIT DAN PLAT GELADAK KEKUATAN B.1.
Metode Pembuatan Rencana Garis dengan Maxsurf
Metode Pembuatan Rencana Garis dengan Maxsurf 1. Memasukkan Sample Design Setelah membuka Program Maxsurf, dari menu File pilih Open dan buka sample design yang telah disediakan oleh Maxsurf pada drive
PEMBUATAN PERANGKAT LUNAK UNTUK MERANCANG LINES PLAN MENGGUNAKAN FORM DATA I DAN PENDEKATAN B-SPLINE
JURNAL TEKNIK POMITS Vol. 2, No. 1, (2013) ISSN: 2337-3539 (2301-9271 Print) 1 PEMBUATAN PERANGKAT LUNAK UNTUK MERANCANG LINES PLAN MENGGUNAKAN FORM DATA I DAN PENDEKATAN B-SPLINE Deny Purwita Putra dan
Studi Eksperimental Tahanan dan Momen Melintang Kapal Trimaran Terhadap Variasi Posisi Dan Lebar Sidehull
JURNAL TEKNIK ITS Vol. 1, No. 1(Sept. 2012) ISSN: 2301-9271 G-346 Studi Eksperimental Tahanan dan Momen Melintang Kapal Trimaran Terhadap Variasi Posisi Dan Lebar Sidehull Mochamad Adhan Fathoni, Aries
KARAKTERISTIK KM. ZAISAN STAR AKIBAT PERUBAHAN MUATAN
KARAKTERISTIK KM. ZAISAN STAR AKIBAT PERUBAHAN MUATAN Samuel 1, Eko Sasmito Hadi 1, Ario Restu Sratudaku 1, 1) Program Studi S1 Teknik Perkapalan, Fakultas Teknik, Universitas Diponegoro, Indonesia Email
4 HASIL DAN PEMBAHASAN
4 HASIL DAN PEMBAHASAN 4.1 Spesifikasi Kapal Cumi-Cumi (Squid Jigging) Kapal penangkap cumi-cumi adalah kapal yang sasaran utama penangkapannya adalah cumi-cumi. Penelitian ini bertujuan untuk melihat
ANALISA HIDROSTATIS DAN STABILITAS PADA KAPAL MOTOR CAKALANG DENGAN MODIFIKASI PENAMBAHAN KAPAL PANCING.
ANALISA HIDROSTATIS DAN STABILITAS PADA KAPAL MOTOR CAKALANG DENGAN MODIFIKASI PENAMBAHAN KAPAL PANCING Kiryanto, Samuel 1 1) Program Studi S1 Teknik Perkapalan, Fakultas Teknik, Universitas Diponegoro
Stabilitas Statis Kapal Bottom Gillnet di Pelabuhan Perikanan Nusantara Sungailiat Bangka Belitung
3 R. Nopandri et al. / Maspari Journal 02 (2011) 3-9 Maspari Journal 01 (2011) 3-9 http://jurnalmaspari.blogspot.com Stabilitas Statis Kapal Bottom Gillnet di Pelabuhan Perikanan Nusantara Sungailiat Bangka
BAB IV PERHITUNGAN & ANALISA
BAB IV PERHITUNGAN & ANALISA 4.1 Data Utama Kapal Tabel 4.1 Prinsiple Dimention NO. PRINCIPLE DIMENTION 1 Nama Proyek Kapal 20.7 CATAMARAN CB. KUMAWA JADE 2 Owner PT. PELAYARAN TANJUNG KUMAWA 3 Class BV
Stabilitas Statis Kapal Bottom Gillnet di Pelabuhan Perikanan Nusantara Sungailiat Bangka belitung
3 R. Nopandri et al. / Maspari Journal 02 (2011) 3-9 Maspari Journal 01 (2011) 3-9 http://masparijournal.blogspot.com Stabilitas Statis Kapal Bottom Gillnet di Pelabuhan Perikanan Nusantara Sungailiat
BAB V RENCANA BUKAAN KULIT (SHEEL EXPANSION) Beban sisi geladak dihitung menurut rumus BKI 2006 Vol II Sect.
BAB V RENCANA BUKAAN KULIT () A. Perhitungan Beban A.1 Beban Sisi Beban sisi geladak dihitung menurut rumus BKI 2006 Vol II Sect. 4.B.2.1 A.1.1. Dibawah Garis Air Muat Beban sisi geladak dibawah garis
2 TINJAUAN PUSTAKA 2.1 Kapal Perikanan
2 TINJAUAN PUSTAKA 2.1 Kapal Perikanan Kapal merupakan suatu bangunan terapung yang berfungsi sebagai wadah, tempat bekerja (working area) serta sarana transportasi, dan kapal ikan termasuk didalamnya
DINAMIKA KAPAL. SEA KEEPING Kemampuan unjuk kerja kapal dalam menghadapi gangguan-gangguan disaat beroperasi di laut
DINAMIKA KAPAL Istilah-istilah penting dalam dinamika kapal : Seakeeping Unjuk kerja kapal pada saat beroperasi di laut Manouveribility Kemampuan kapal untuk mempertahankan posisinya dibawah kendali operator
3 METODOLOGI. Gambar 9 Peta lokasi penelitian.
3 METODOLOGI 3.1 Waktu dan Tempat Penelitian Pengambilan data dilakukan pada bulan Juli 2011 sampai September 2011 di galangan kapal PT Proskuneo Kadarusman Muara Baru, Jakarta Utara. Selanjutnya pembuatan
PENGARUH KARAKTERISTIK GEOMETRI TERHADAP STABILITAS KAPAL
PENGARUH KARAKTERISTIK GEOMETRI TERHADAP STABILITAS KAPAL Daeng PAROKA *1, Syamsul ASRI 1, Misliah 1, M. Ardi SARNA 1 and Haswar 1 1 Department of Naval Architecture, Faculty of Engineering, Unhas-Makassar.
BAB 2 TINJAUAN PUSTAKA
BAB 2 TINJAUAN PUSTAKA 2.1. Tinjauan Pustaka Karakteristik desain lambung kapal sangat penting untuk diketahui dalam proses desain ulang lambung kapal maka pada bab 2 ini penulis menjabarkan beberapa penelitian
KONSEP DASAR PERKAPALAN RENCANA GARIS C.20.02
KONSEP DASAR PERKAPALAN RENCANA GARIS C.20.02 BAGIIAN PROYEK PENGEMBANGAN KURIIKULUM DIIREKTORAT PENDIIDIIKAN MENENGAH KEJURUAN DIIREKTORAT JENDERAL PENDIIDIIKAN DASAR DAN MENENGAH DEPARTEMEN PENDIIDIIKAN
UPN "VETERAN" JAKARTA
UPN "ETERAN" JAKARTA METODE SEDERHANA UNTUK MEMILIH JENIS LAMBUNG KAPAL KECIL (BOAT) SESUAI DENGAN FUNGSINYA BERDASARKAN PERTIMBANGAN STABILITAS YANG COCOK AGAR DAPAT MENGHINDARI KECELAKAAN DI LAUT Iswadi
Oleh : Febriani Rohmadhana. Pembimbing : Ir. Hesty Anita Kurniawati, M.Sc. Selasa, 16 Februari
Analisis Teknis dan Ekonomis Konversi Landing Craft Tank (LCT) Menjadi Kapal Motor Penyeberangan (KMP) Tipe Ro-ro untuk Rute Ketapang (Kabupaten Banyuwangi) Gilimanuk (Kabupaten Jembrana) Oleh : Febriani
Awak tidak memperhatikan bangunan dan stabilitas kapal. Kecelakaan kapal di laut atau dermaga. bahaya dalam pelayaran
Bagian-bagian Kapal Awak tidak memperhatikan bangunan dan stabilitas kapal Kecelakaan kapal di laut atau dermaga bahaya dalam pelayaran merugikan harta benda, kapal, nyawa manusia bahkan dirinya sendiri.
K.J. Rawson and E.C. Tupper, Basic Ship Theory, 5 th Edition, Volume 1 Hydrostatics and Strength, Butterworth-Heinemann, Oxford, 2001.
ITEM CAKUPAN MATERI 1 Pengertian kura hidrostatik & bonjean 2 Tabulasi kalkulasi kura hidrostatik & bonjean 3 Pengukuran dan pemasukan data setengah lebar kapal 4 Pengukuran dan pemasukan data setengah
ANALISA PERUBAHAN SISTEM PROPULSI DARI SCHOTTLE MENJADI TWIN SCREW PADA KAPAL PENUMPANG KMP NIAGA FERRY II
FIELD PROJECT ANALISA PERUBAHAN SISTEM PROPULSI DARI SCHOTTLE MENJADI TWIN SCREW PADA KAPAL PENUMPANG KMP NIAGA FERRY II INDRA ARIS CHOIRUR. R 6308030015 D3 Teknik Permesinan Kapal Politeknik Perkapalan
PERUBAHAN BENTUK LAMBUNG KAPAL TERHADAP KINERJA MOTOR INDUK. Thomas Mairuhu * Abstract
PERUBAHAN BENTUK LAMBUNG KAPAL TERHAAP KINERJA MOTOR INUK Thomas Mairuhu * Abstract One of traditional wooden ship, type cargo passenger has been changed its form according to the will of ship owner. The
PENGARUH FREE SURFACE TERHADAP STABILITAS KAPAL PENGANGKUT IKAN HIDUP. Oleh: Yopi Novita 1*
BULETIN PSP ISSN: 0251-286X Volume XIX No. 2 Edisi Juli 2011 Hal 35-43 PENGARUH FREE SURFACE TERHADAP STABILITAS KAPAL PENGANGKUT IKAN HIDUP Oleh: Yopi Novita 1* ABSTRAK Muatan utama kapal pengangkut ikan
KARAKTERISTIK KM. ZAISAN STAR AKIBAT PERUBAHAN MUATAN
KARAKTERISTIK KM. ZAISAN STAR AKIBAT PERUBAHAN MUATAN Samuel, Eko Sasmito Hadi, Ario Restu Sratudaku Program Studi S1 Teknik Perkapalan, Fakultas Teknik, Universitas Diponegoro, Indonesia Abstrak KM. Zaisan
STUDI PERANCANGAN KAPAL GENERAL CARGO 2000 DWT UNTUK RUTE PELAYARAN JAKARTA - MAKASAR
STUDI PERANCANGAN KAPAL GENERAL CARGO 2000 DWT UNTUK RUTE PELAYARAN JAKARTA - MAKASAR Rausyan Fikri 1, Berlian arswendo A 1, Deddy Chrismianto 1 1 Program Studi S1 Teknik Perkapalan, Fakultas Teknik, Universitas
HALAMAN PENGESAHAN DOSEN PENGUJI
HALAMAN PENGESAHAN DOSEN PENGUJI Yang bertanda tangan dibawah ini, tim dosen penguji Tugas Akhir telah menguji dan menyetujui Laporan Tugas Akhir yang telah disusun oleh : Nama : NIN INDIARTO NIM : L0G
PENGARUH ELEMEN BANGUNAN KAPAL TERHADAP KOREKSI LAMBUNG TIMBUL MINIMUM
PENGARUH ELEMEN BANGUNAN KAPAL TERHADAP KOREKSI LAMBUNG TIMBUL MINIMUM Daeng PAROKA 1 dan Ariyanto IDRUS 1 1 Jurusan Perkapalan Fakultas Teknik Universitas Hasanuddin, Jl. Perintis Kemerdekaan Km. 10 Tamalanrea
KONTRUKSI KAPAL PERIKANAN DAN UKURAN-UKURAN UTAMA DALAM PENENTUAN KONSTRUKSI KAPAL
KONTRUKSI KAPAL PERIKANAN DAN UKURAN-UKURAN UTAMA DALAM PENENTUAN KONSTRUKSI KAPAL RULLY INDRA TARUNA 230110060005 FAKULTAS PERIKANAN DAN ILMU KELAUTAN UNIVERSITAS PADJADJARAN JATINANGOR 2012 0 PENDAHULUAN
OPTIMISASI UKURAN UTAMA BULK CARRIER UNTUK PERAIRAN SUNGAI DENGAN MUATAN BERSIH MAKSIMAL TON
OPTIMISASI UKURAN UTAMA BULK CARRIER UNTUK PERAIRAN SUNGAI DENGAN MUATAN BERSIH MAKSIMAL 10000 TON Yopi Priyo Utomo (1), Wasis Dwi Aryawan (2). Jurusan Teknik Perkapalan, Fakultas Teknologi Kelautan, Institut
2 TINJAUAN PUSTAKA 2.1 Kapal Perikanan
4 2 TINJAUAN PUSTAKA 2.1 Kapal Perikanan Terdapat beberapa definisi mengenai kapal perikanan, menurut Undang- Undang Nomor 31 Tahun 2004 tentang Perikanan, kapal perikanan adalah kapal, perahu, atau alat
Pengaruh Bulbous bow Terhadap Pengurangan Tahanan Kapal Kayu Tradisional
Prosiding Penelitian Teknologi Kelautan 2010 Jurusan Perkapalan Fakultas Teknik Universitas Hasanuddin, 13 Juli 2010 Pengaruh Bulbous bow Terhadap Pengurangan Tahanan Kapal Kayu Tradisional Andi Haris
PERANCANGAN KAPAL CATAMARAN MULTI PURPOSE UNTUK PELAYARAN BAWEAN GRESIK PADA CUACA EKSTRIM
PERANCANGAN KAPAL CATAMARAN MULTI PURPOSE UNTUK PELAYARAN BAWEAN GRESIK PADA CUACA EKSTRIM Nama Mahasiswa: I Kadek Yasa Permana Putra NRP: 4208 100 501 Jurusan : Teknik Sistem Perkapalan FTK-ITS Dosen
BAB II TINJAUAN PUSTAKA
BAB II TINJAUAN PUSTAKA 2.1. Tinjauan Umum. 2.1.1 Defenisi Stabilitas Stabilitas adalah merupakan masalah yang sangat penting bagi sebuah kapal yang terapung dilaut untuk apapun jenis penggunaannya, untuk
TUGAS AKHIR BAB I PENDAHULUAN
BAB I PENDAHULUAN A. UMUM Dalam merencanakan atau mendesain kapal bangunan baru, ada beberapa hal yang harus diperhatikan dalam merencanakan sebuah kapal, baik dari segi teknis, ekonomis maupun segi artistiknya.
HALAMAN PENGESAHAN DOSEN PENGUJI
HALAMAN PENGESAHAN DOSEN PENGUJI Yang bertanda tangan dibawah ini, Tim Dosen Penguji Tugas Akhir telah menguji dan menyetujui Laporan Tugas Akhir yang telah disusun oleh : Nama : DRAJAT TAUFIK P NIM :
III. METODE PENELITIAN Waktu dan Tempat. Penelitian ini dilakukan pada minggu awal Mei sampai dengan bulan Juni
III. METODE PENELITIAN 3.1. Waktu dan Tempat Penelitian ini dilakukan pada minggu awal Mei sampai dengan bulan Juni 2009 yang bertempat di Kelurahan Kota Bengkalis Kecamatan Bengkalis Kabupaten Bengkalis
DESAIN ULANG KAPAL IKAN DI DAERAH BRONDONG LAMONGAN
PROPOSAL TUGAS AKHIR DESAIN ULANG KAPAL IKAN DI DAERAH BRONDONG LAMONGAN Oleh: 1. Eka widya A. NRP : 6107030011 2. Mistar Afandi NRP : 6107030012 TEKNIK PERANCANGAN DAN KONTRUKSI KAPAL JURUSAN TEKNIK BANGUNAN
FUNGSI KURVA BONJEAN PADA PELUNCURAN KAPAL SECARA END LAUNCHING
METANA, Vol. 10 No. 01, Juli 2014, Hal. 25-33 FUNGSI KURVA BONJEAN PADA PELUNCURAN KAPAL SECARA END LAUNCHING Indro Dwi Cahyo PSD III Teknik Perkapalan, Fakultas Teknik Universitas Diponegoro Abstract
Analisa Pengaruh Trim terhadap Konsumsi Bahan Bakar
JURNAL TEKNIK POMITS Vol. 2, No. 3, (2013) ISSN: 2337-3539 (2301-9271 Print) G-213 Analisa Pengaruh Trim terhadap Konsumsi Bahan Bakar Nur Salim Aris, Indrajaya Gerianto, dan I Made Ariana Jurusan Teknik
ANALISA GERAKAN SEAKEEPING KAPAL PADA GELOMBANG REGULER
ANALISA GERAKAN SEAKEEPING KAPAL PADA GELOMBANG REGULER Parlindungan Manik Program Studi Teknik Perkapalan, Fakultas Teknik, Universitas Diponegoro ABSTRAK Ada enam macam gerakan kapal dilaut yaitu tiga
Perancangan Aplikasi Perhitungan dan Optimisasi Konstruksi Profil pada Midship Kapal Berdasar Rule Biro Klasifikasi Indonesia
JURNAL TEKNIK ITS Vol. 7, No. 1 (2018), 27-520 (201-928X Print) G 12 Perancangan Aplikasi Perhitungan dan Optimisasi Konstruksi Profil pada Midship Kapal Berdasar Rule Biro Klasifikasi Indonesia Aditya
Optimasi Kinerja Propulsi pada Kapal Ikan Studi Kasus : Kapal Ikan di Perairan Brondong, Lamongan
Optimasi Kinerja Propulsi pada Kapal Ikan Studi Kasus : Kapal Ikan di Perairan Brondong, Lamongan Ahmad Nawawi 1, I K A P Utama 1, Andi Jamaluddin 2 1 Jurusan Teknik Perkapalan, FTK ITS 2 UPT. Balai Pengkajian
Oleh : Fadhila Sahari Dosen Pembimbing : Budianto, ST. MT.
Oleh : Fadhila Sahari 6108 030 028 Dosen Pembimbing : Budianto, ST. MT. PROGRAM STUDI TEKNIK PERENCANAAN DAN KONSTRUKSI KAPAL JURUSAN TEKNIK BANGUNAN KAPAL POLITEKNIK PERKAPALAN NEGERI SURABAYA INSTITUT
Study on boat resistance of several Fiberglass Reinforced Plastic (FRP) boat shapes modelled in PT. Cipta Bahari Nusantara, Tanawangko, North Sulawesi
Aquatic Science & Management, Vol. 3, No. 1, 8-13 (April 2015) Fakultas Perikanan dan Ilmu Kelautan, UNSRAT Asosiasi Pengelola Sumber Daya Perairan Indonesia (Online submissions http://ejournal.unsrat.ac.id/index.php/jasm/index)
Pengaruh Pemasangan Vivace Terhadap Intact Stability Kapal Swath sebagai Fleksibel Struktur Hydropower Plan untuk Pembangkit Listrik Tenaga Arus Laut
Pengaruh Pemasangan Vivace Terhadap Intact Stability Kapal Swath sebagai Fleksibel Struktur Hydropower Plan untuk Pembangkit Listrik Tenaga Arus Laut L/O/G/O Contents PENDAHULUAN TINJAUAN PUSTAKA METODOLOGI
5 PEMBAHASAN 5.1 Desain Perahu Katamaran General arrangement (GA)
5 PEMBAHASAN 5.1 Desain Perahu Katamaran 5.1.1 General arrangement (GA) Pembuatan desain perahu katamaran disesuaikan berdasarkan fungsi yang diinginkan yaitu digunakan sebagai perahu pancing untuk wisata
HALAMAN PENGESAHAN DOSEN PENGUJI
HALAMAN PENGESAHAN DOSEN PENGUJI Yang bertanda tangan dibawah ini, Tim Dosen Penguji Tugas Akhir telah menguji dan menyetujui Laporan Tugas Akhir yang telah disusun oleh : Nama : ALI MUNAWAR NIM : L0G
6 KESELAMATAN OPERASIONAL KAPAL POLE AND LINE PADA GELOMBANG BEAM SEAS
6 KESELAMATAN OPERASIONAL KAPAL POLE AND LINE PADA GELOMBANG BEAM SEAS 6.1 Keragaan Kapal Bentuk dan jenis kapal ikan berbeda-beda bergantung dari tujuan usaha penangkapan. Setiap jenis alat penangkapan
KLASTER TONASE KAPAL FERRY RO-RO DAN PENGARUHNYA TERHADAP KEBUTUHAN LAHAN PERAIRAN PELABUHAN PENYEBERANGAN
Jurnal Riset dan Teknologi Kelautan (JRTK) Volume 14, Nomor 1, Januari - Juni 2016 KLASTER TONASE KAPAL FERRY RO-RO DAN PENGARUHNYA TERHADAP KEBUTUHAN LAHAN PERAIRAN PELABUHAN PENYEBERANGAN Syamsul Asri
JURNAL TEKNIK PERKAPALAN Jurnal Hasil Karya Ilmiah Lulusan S1 Teknik Perkapalan Universitas Diponegoro
http://ejournal3.undip.ac.id/index.php/naval JURNAL TEKNIK PERKAPALAN Jurnal Hasil Karya Ilmiah Lulusan S1 Teknik Perkapalan Universitas Diponegoro ISSN 2338-0322 Analisa Pengaruh Geometri Lunas Berbentuk
Teori Bangunan Kapal Nama bagian badan kapal (hull) Buku acuan:
Teori Bangunan Kapal Buku acuan: V. V. Semyonov-Tyan-Shansky, Statics and Dynamics of the Ship, Peace Publishers, Moscow, 96? R. F. Scheltema de Heere, A. R. Bakker, Bouyancy and Stability of Ships, George
6 RANCANGAN UMUM KPIH CLOSED HULL
211 6 RANCANGAN UMUM KPIH CLOSED HULL Berdasarkan hasil kajian dan uji coba hasil kajian mitigasi risiko, maka KPIH yang direkomendasikan untuk mengangkut benih ikan kerapu adalah KPIH Closed hull. Dimana
Analisa Kekuatan Konstruksi Corrugated Watertight Bulkhead Dengan Transverse Plane Watertight Bulkhead Pada Pemasangan Pipa di Ruang Muat Kapal Tanker
1 Analisa Kekuatan Konstruksi Corrugated Watertight Bulkhead Dengan Transverse Plane Watertight Bulkhead Pada Pemasangan Pipa di Ruang Muat Kapal Tanker Stevan Manuky Putra, Ir. Agoes Santoso, M.Sc., M.Phil.,
BAB IV HASIL DAN PEMBAHASAN. displacement dari kapal tersebut. Adapun hasil perhitungan adalah : 2. Coefisien Blok (Cb) = 0,688
BAB IV HASIL DAN PEMBAHASAN 4.1. Karakteristik Hidrostatika Kapal Tunda Sesuai dengan gambar rencana garis dan bukaan kulit kapal tunda TB. Bosowa X maka dapat dihitung luas garis air, luas bidang basah,
Desain Kapal Khusus Pengangkut Daging Sapi Rute Nusa Tenggara Timur (NTT) Jakarta
1 Desain Kapal Khusus Pengangkut Daging Sapi Rute Nusa Tenggara Timur (NTT) Jakarta Angger Bagas Prakoso dan Hesty Anita Kurniawati Jurusan Teknik Perkapalan, Fakultas Teknologi Kelautan, Institut Teknologi
