JURNAL SAINS DAN INFORMATIKA
|
|
|
- Bambang Sutedja
- 9 tahun lalu
- Tontonan:
Transkripsi
1 39 Fauzul Sains Amri, dan Jaringan Informatika Syaraf Vol.1 Tiruan (N0.1) untuk (2015): Memprediksi JURNAL SAINS DAN INFORMATIKA Research of Science and Informatic JARINGAN SYARAF TIRUAN UNTUK MEMPREDIKSI PERINGKAT AKREDITASI PROGRAM STUDI PERGURUAN TINGGI Fauzul Amri Program Studi Teknik Komputer, Akademi Manajemen Informatika dan Komputer (AMIK) KOSGORO Abstrak Akreditasi merupakan salah satu bentuk penilaian (evaluasi) mutu dan kelayakan institusi perguruan tinggi atau program studi yang dilakukan oleh organisasi atau badan mandiri di luar perguruan tinggi, dari hasil perhitungan berdasarkan tahapan akreditasi yang ada, penulis mendapatkan hasil menunjukkan bahwa jaringan saraf dapat membuat prediksi untuk akreditasi yang akan diperoleh oleh program studi Kata kunci: Akreditasi, JST, Program Studi Abstract Accreditation is one form of assessment (evaluation) the quality and feasibility of higher education institution or program of study conducted by an independent organization or agency outside the college. calculations based on the stages of existing accreditation, the authors get results indicate that neural networks can make predictions for the acquisition of accreditation which would be obtained by a study program Keywords: Accreditation, ANN, Artificial Neural Network, Studies Corresponding author: ISSN [email protected]
2 38 Fauzul Amri, Jaringan Syaraf Tiruan untuk Memprediksi PENDAHULUAN Bentuk penilaian mutu eksternal adalah penilaian yang berkaitan dengan akuntabilitas, pemberian izin, pemberian lisensi oleh badan tertentu. Ada juga pengumpulan data oleh badan pemerintah bagi tujuan tertentu, dan survei untuk menentukan peringkat (ranking) perguruan tinggi (BAN PT, 2007). Berbeda dari bentuk penilaian mutu lainnya, akreditasi dilakukan oleh pakar sejawat dan mereka yang memahami hakekat pengelolaan perguruan tinggi sebagai Tim atau Kelompok Asesor. Keputusan mengenai mutu didasarkan pada penilaian terhadap berbagai bukti yang terkait dengan standar yang ditetapkan dan berdasarkan nalar dan pertimbangan para pakar sejawat (judgments of informed experts). Buktibukti yang diperlukan termasuk laporan tertulis yang disiapkan oleh institusi perguruan tinggi yang akan diakreditasi untuk diverifikasi melalui kunjungan para pakar sejawat ke tempat kedudukan perguruan tinggi. METODE PENELITIAN Jaringan saraf tiruan adalah model matematika yang diilhami oleh organisasi dan fungsi neuron biologis. Ada banyak variasi jaringan saraf tiruan yang terkait dengan sifat dari tugas yang diberikan ke jaringan. Ada juga berbagai variasi dalam bagaimana neuron dimodelkan. Jaringan saraf tiruan merupakan sebuah alternatif untuk analisis diskriminan. Masalah praktis di mana perbandingan antara jaringan syaraf tiruan dan analisis diskriminan telah diterapkan mencakup prediksi pergerakan harga pasar efek, prediksi kebangkrutan perusahaan, dan penugasan peringkat untuk obligasi. Dalam semua studi ini, model jaringan syaraf tiruan mengungguli analisis diskriminan. Studi-studi di atas mangalami beberapa masalah teknis, khususnya, jumlah set data terbatas dan set data yang kecil. (Marquez, O connor, and Remus, 1993). Jaringan Syaraf Tiruan (JST) (artificial neural network (ANN), atau umumnya hanya disebut neural network (NN), adalah jaringan dari sekelompok unit pemroses kecil yang dimodelkan berdasarkan jaringan saraf manusia. JST merupakan sistem adaptif yang dapat mengubah strukturnya untuk memecahkan masalah berdasarkan informasi eksternal maupun internal yang mengalir melalui jaringan tersebut. ( af_tiruan) Berkaitan dengan pembahasan diatas mengenai akreditasi dan Jaringan syaraf tiruan, Tujuan dari penelitian ini adalah menghasilkan suatu sistem yang dapat memprediksi peringkat akreditasi yang akan diperoleh oleh program studi berdasarkan data yang dimiliki oleh program studi tersebut. Jaringan Syaraf Tiruan merupakan salah satu upaya manusia untuk memodelkan cara kerja atau fungsi sistem syaraf manusia dalam melaksanakan tugas tertentu. Pemodelan ini didasari oleh kemampuan otak manusia dalam mengorganisasikan sel-sel penyusunnya yang disebut neuron, sehingga mampu melaksanakan tugas-tugas tertentu, khususnya pengenalan pola dengan efektifitas tinggi (Suyatno, 2011). Dalam prakteknya JST dapat diimplementasikan dalam bentuk pemrograman komputer, Teknik pembuatan program yang mempunyai kecerdasan buatan sangat berbeda dengan teknik pemograman menggunakan bahasa pemograman konvensional. Dalam software konvensional, kita memerintah komputer bagaimana menyelesaikan suatu masalah. Sebaliknya dalam kecerdasan buatan kita tidak memerintahkan komputer untuk menyelesaikan masalah, tetapi memberitahu komputer tentang
3 39 Fauzul Amri, Jaringan Syaraf Tiruan untuk Memprediksi adanya masalah. (Suparman, dan Marlan, 2007) Mengadopsi esensi dasar dari system syaraf biologi, syaraf tiruan digambarkan sebagai berikut : Menerima input atau masukan (baik dari data yang dimasukkan atau dari output sel syaraf pada jaringan syaraf. Setiap input datang melalui suatu koneksi atau hubungan yang mempunyai sebuah bobot (weight). Setiap sel syaraf mempunyai sebuah nilai ambang. Jumlah bobot dari input dan dikurangi dengan nilai ambang kemudian akan mendapatkan suatu aktivasi dari sel syaraf (Post Synaptic Potential dari sel syaraf). Signal aktivasi kemudian menjadi fungsi aktivasi / fungsi transfer untuk menghasilkan output dari sel syaraf. Biasanya tahapan fungsi jarang digunakan dalan Jaringan Syaraf Tiruan. Fungsi aktivasi (f(.)) dapat dilihat pada Gambar 1 Gambar 1. Fungsi Aktifasi Bagaimana sel syaraf saling berhubungan? Jika suatu jaringan ingin digunakan untuk berbagai keperluan maka harus memiliki input (akan membawa nilai dari suatu variabel dari luar) dan output (dari prediksi atau signal kontrol). Input dan output sesuai dengan sensor dan syaraf motorik seperti signal datang dari mata kemudian diteruskan ke tangan, Dalam hal ini terdapat sel syaraf atau neuron pada lapisan tersembunyi berperan pada jaringan ini. Input, lapisan tersembunyi dan output sel syaraf diperlukan untuk saling terhubung satu sama lain. Berdasarkan dari arsitektur (pola koneksi), Jaringan Syaraf Tiruan dapat dibagi kedalam dua kategori kategori yaitu Feed Forward dan Back Propagation
4 40 Fauzul Amri, Jaringan Syaraf Tiruan untuk Memprediksi Struktur Feed forward Sebuah jaringan yang sederhana mempunyai struktur feed forward dimana signal bergerak dari input kemudian melewati lapisan tersembunyi dan akhirnya mencapai unit output (mempunyai struktur perilaku yang stabil). Tipe jaringan feed forward mempunyai sel syaraf yang tersusun dari beberapa lapisan. Lapisan input bukan merupakan sel syaraf. Lapisan ini hanya memberi pelayanan dengan mengenalkan suatu nilai dari suatu variabel. Lapisan tersembunyi dan lapisan output sel syaraf terhubung satu sama lain dengan lapisan sebelumnya. Kemungkinan yang timbul adalah adanya hubungan dengan beberapa unit dari lapisan sebelumnya atau terhubung semuanya dengan baik. Backpropagation Backpropagation merupakan salah satu dari beberapa metode yang digunakan dalam JST dan yang paling sering digunakan dalam berbagai bidang aplikasi, seperti pengenalan pola, peramalan dan optimisasi. Hal ini dimungkinkan karena metode ini menggunakan pembelajaran yang terbimbing. Pola masukan dan target diberikan sebagai sepasang data. Bobotbobot awal dilatih dengan melalui tahap maju untuk mendapatkan error keluaran yang selanjutnya error ini digunakan sebagai tahap mundur untuk memperoleh nilai bobot yang sesuai agar dapat memperkecil nilai error sehingga target keluaran yang dikehendakinya tercapai. Tujuan dari model ini adalah untuk mendapatkan keseimbangan antara kemampuan jaringan untuk mengenali pola yang digunakan selama proses pelatihan berlangsung serta kemampuan jaringan memberikan respon yang benar terhadap pola masukan yang berbeda dengan pola masukan pelatihan. Hubungan JST dengan Akreditasi Program Studi Untuk dapat mencapai tujuan dari penulisan ini, maka jaringan syaraf tiruan harus diberikan proses pembelajaran dari proses akreditasi program studi, untuk itu perlu ditetapkan kriteria yang dapat dijadikan proses input untuk program jaringan syaraf tiruan. Kriteria tersebut penulis tetapkan berdasarkan standar yang ditetapkan oleh BAN-PT, yang mana pihak BAN-PT menetapkan tujuh kriteria yaitu : 1. Standar 1. Visi, Misi, Tujuan dan Sasaran, serta Strategi Pencapaian 2. Standar 2. Tata Pamong, Kepemimpinan, Sistem Pengelolaan, dan Penjaminan Mutu 3. Standar 3. Mahasiswa dan Lulusan 4. Standar 4. Sumber Daya Manusia 5. Standar 5. Kurikulum, Pembelajaran, dan Suasana Akademik 6. Standar 6. Pembiayaan, Sarana dan Prasarana, serta Sistem Informasi 7. Standar 7. Penelitian, Pelayanan/Pengabdian kepada Masyarakat, dan Kerjasama Setelah penentuan kriteria yang akan menentukan hasil akreditasi sebuah program studi, selanjutnya kita harus menentukan data yang akan menjadi inputan pada JST, dimana data yang kita inputkan tersebut nantinya akan menjadi acuan oleh JST untuk menetapkan peringkat akreditasi yang akan didapatkan oleh sebuah program studi nantinya. Karena JST memerlukan proses pembelajaran, maka data yang kita jadikan inputan ini merupakan proses pembelajaran awal pada JST, sehingga nantinya setelah JST dapat mengenali pola tentang akreditasi program studi, maka nantinya jika diberikan sebuah data inputan, dengan sendirinya JST sudah mengetahui hasil yang akan dijadikan
5 41 Fauzul Amri, Jaringan Syaraf Tiruan untuk Memprediksi output sesuai standar sebagaimana model yang diberikan. Dalam penulisan ini penulis menggunakan data random yang diambil dari pembangkitan bilangan random dari Microsoft Office Excel dengan memperhatikan petunjuk dari BAN-PT tentang batas manimum dan batas maksimum dari masing-masing kriteria yang ditetapkan. Untuk proses pembelajaran penulis menggunakan 20 data sample, sedangkan untuk data perbandingan, penulis juga menggunakan 20 data sample. Setelah data sample ditetapkan selanjutnya adalah melakukan perhitungan data secara manual dan secara software yang dalam hal ini penulis menggunakan bahasa pemograman Matlab versi 6.0. Untuk melakukan perhitungan secara manual dilakukan dengan 5 tahap perhitungan yaitu menentukan nilai input serta bobot awal; menentukan keluaran dari hidden layer; menentukan keluaran dari unit; menentukan faktor pada unit keluaran; serta menghitung kesalahan yang terjadi pada hidden layer. Langkah awal adalah menentukan nilai input secara random pada lapisan tersembunyi dan juga pada keluaran atau output, selanjutnya menentukan keluaran dari hidden layer dengan persamaan Z_inj = bij N i 1 x i v ij Setelah keluaran pada hidden layer didapatkan, langkah selanjutnya adalah menentukan keluaran pada unit dengan persamaan Y_in k = W ko + p j 1 z j w kj Pada langkah ketiga ini kita akan mendapatkan hasil pengolahan yang menunjukkan hasil akreditasi yang akan didapatkan oleh sebuah program studi. Hasil yang didapatkan tersebut tidaklah mempunyai arti apapun jika tidak menentukan batasan yang membuat hasil tersebut mempunyai sebuah arti. Dalam penulisan ini penulis menetapkan batasan dimana jika keluaran yang dihasilkan bernilai antara 0,00 sampai 0,40 maka hal tersebut dapat diartikan bahwa program studi tersebut tidak mendapatkan akreditasi, sedangkan jika keluaran yang dihasilkan bernilai 0,41 sampai dengan 1,00 maka hal tersebut dapat diartikan bahwa program studi tersebut akan mendapatkan peringkat akreditasi. Namun keluaran yang dihasilkan pada langkah ketiga tersebut d iatas masih belum bisa membuat sebuah program dapat disebut sebagai Jaringan Syaraf Tiruan, karena sampai tahap ini program tersebut belum dapat berfikir sendiri, untuk dapat membuat program tersebut dapat berfikir atau memperkirakan sesuatu hal maka diperlukan langkah keempat dan kelima, yakni pada tahap keempat kita harus menghitung factor di unit keluaran dengan persamaan : δ = (t k - y k )f (y_ink) = (t y)y(1 y) Keluaran dari tahap keempat ini adalah untuk menentukan tingkat kesalahan yang mungkin terjadi pada keluaran yang dihasilkan pada tahap ketiga. Sedangkan pada tahap kelima adalah menghitung perkiraan total kesalahan yang terjadi, karena pada jaringan syaraf tiruan ini hanya memiliki satu keluaran. HASIL DAN PEMBAHASAN Setelah penulis melakukan perhitungan berdasarkan tahap-tahap diatas maka penulis mendapatkan hasil yang menunjukkan bahwa jaringan syaraf tiruan dapat melakukan prediksi terhadap perolehan akreditasi yang akan didapatkan oleh sebuah program studi. Namun perhitungan secara manual yang telah dilakukan perlu diuji kebenarannya dengan melakukan perhitungan dan pengujian secara software, sehingga dengan pengujian secara software ini akan didapatkan hasil perhitungan yang berupa
6 42 Fauzul Amri, Jaringan Syaraf Tiruan untuk Memprediksi angka dan berupa grafik yang menunjukkan hasil keluaran serta tingkat kesalahan yang terjadi pada jaringan syaraf tiruan yang kita buat. Dari hasil perthitungan manual dan perhitungan secara software, penulis mendapatkan hasil yang cukup menggembirakan, dimana perhitungan secara manual dan perhitungan secara software mendapatkan tingkat kesalahan yang sangat kecil, yaitu antara 0,00 sampai dengan 0,01. Tabel 1 adalah hasil perhitungan secara manul dan perhitungan secara software Sedangkan secara grafik penulis mendapatkan hasil dari software sebagai berikut : Tabel 1. Perbandingan hasil perhitungan manual dan perhitungan software No Target Data Target Data Manual Software error Gambar 2. Hasil Pembelajaran atau Pelatihan sampai 5000 Epochs Gambar 2 terlihat bahwa dengan menggunakan aplikasi matlab 6.0, epoch dapat dicapai pada 81 epoch, ini menunjukkan bahwa perhitungan dapat dilakukan dalam waktu yang pendek untuk mendapatkan goal 0,0001. Sedangkan untuk mendapatkan output jaringan data pelatihan dan target dianalisis dengan regresi linier, hasilnya dapat dilihat pada gambar berikut Gambar 3. Perbandingan Data Pelatihan dengan Target
7 43 Fauzul Amri, Jaringan Syaraf Tiruan untuk Memprediksi Sedangkan untuk hasil pengujian dari data keluaran dan target, kita mendapatkan hasil yang cukup baik, dimana pada gambar.4 dapat kita lihat bahwa antara data pengujian dan target yang ingin dicapai memperlihatkan bahwa antara output dan target sudah hampir mendapatkan hasil yang sama, tingkat kesalahan hanya 0,00 sampai dengan 0,01. Suparman dan Marlan Komputer Masa Depan. Yogyakarta: Andi Suyanto Artificial Intelligence, Bandung: Informatika. Gambar 4. Perbandingan Data Pengujian dengan Target SIMPULAN Dari hasil secara grafik yang dihasilkan oleh software matlab versi 6.0, penulis mendapatkan hasil bahwa akreditasi sebuah program studi dapat diprediksi dengan program jaringan syaraf tiruan, hal ini ditunjukkan dari hasil perhitungan secara manual dan secara software mendapatkan tingkat kesalahan yang sangat kecil. UCAPAN TERIMA KASIH Ucapan terima kasih kepada Ketua Program Studi Teknik Komputer dan Direktur AMIK Kosgoro Solok. DAFTAR PUSTAKA Badan Akreditasi Nasional Perguruan Tinggi Buku1-naskah akademik akreditasi program studi diploma, Jakarta. Siang, and Jek Jaringan Syaraf Tiruan dan Pemogramannya Menggunakan Matlab, Andi, Yogyakarta
PENERAPAN JARINGAN SYARAF TIRUAN DALAM MEMPREDIKSI TINGKAT PENGANGGURAN DI SUMATERA BARAT
PENERAPAN JARINGAN SYARAF TIRUAN DALAM MEMPREDIKSI TINGKAT PENGANGGURAN DI SUMATERA BARAT Havid Syafwan Program Studi Manajemen Informatika, Amik Royal, Kisaran E-mail: [email protected] ABSTRAK:
Muhammad Fahrizal. Mahasiswa Teknik Informatika STMIK Budi Darma Jl. Sisingamangaraja No. 338 Simpanglimun Medan
IMPLEMENTASI JARINGAN SARAF TIRUAN DALAM MEMPREDIKSI SERVICE KENDARAAN RODA 4 DENGAN METODE BACKPROPAGATION (STUDI KASUS PT. AUTORENT LANCAR SEJAHTERA) Muhammad Fahrizal Mahasiswa Teknik Informatika STMIK
SATIN Sains dan Teknologi Informasi
SATIN - Sains dan Teknologi Informasi, Vol. 2, No. 1, Juni 2015 SATIN Sains dan Teknologi Informasi journal homepage : http://jurnal.stmik-amik-riau.ac.id Jaringan Syaraf Tiruan untuk Memprediksi Prestasi
SATIN Sains dan Teknologi Informasi
SATIN - Sains dan Teknologi Informasi, Vol. 2, No., Juni 206 SATIN Sains dan Teknologi Informasi journal homepage : http://jurnal.stmik-amik-riau.ac.id Jaringan Syaraf Tiruan Peramalan Inventory Barang
BAB I PENDAHULUAN. universitas swasta yang memiliki 7 Fakultas dengan 21 Program Studi yang
BAB I PENDAHULUAN A. Latar Belakang Masalah Universitas Muhammadiyah Ponorogo merupakan salah satu universitas swasta yang memiliki 7 Fakultas dengan 21 Program Studi yang terdiri dari : 3 program studi
KLASIFIKASI POLA HURUF VOKAL DENGAN MENGGUNAKAN JARINGAN SARAF TIRUAN BACKPROPAGATION. Dhita Azzahra Pancorowati
KLASIFIKASI POLA HURUF VOKAL DENGAN MENGGUNAKAN JARINGAN SARAF TIRUAN BACKPROPAGATION Dhita Azzahra Pancorowati 1110100053 Jurusan Fisika Fakultas Matematika dan Ilmu Pengetahuan Alam Institut Teknologi
BAB 2 LANDASAN TEORI. Pengenalan suara (voice recognition) dibagi menjadi dua jenis, yaitu
BAB 2 LANDASAN TEORI 2.1 Pengenalan Suara. Pengenalan suara (voice recognition) dibagi menjadi dua jenis, yaitu speech recognition dan speaker recognition. Speech recognition adalah proses yang dilakukan
PREDIKSI CURAH HUJAN DI KOTA MEDAN MENGGUNAKAN METODE BACKPROPAGATION NEURAL NETWORK
PREDIKSI CURAH HUJAN DI KOTA MEDAN MENGGUNAKAN METODE BACKPROPAGATION NEURAL NETWORK Yudhi Andrian 1, Erlinda Ningsih 2 1 Dosen Teknik Informatika, STMIK Potensi Utama 2 Mahasiswa Sistem Informasi, STMIK
JARINGAN SYARAF TIRUAN UNTUK MEMPREDIKSI CURAH HUJAN SUMATERA UTARA DENGAN METODE BACK PROPAGATION (STUDI KASUS : BMKG MEDAN)
JARINGAN SYARAF TIRUAN UNTUK MEMPREDIKSI CURAH HUJAN SUMATERA UTARA DENGAN METODE BACK PROPAGATION (STUDI KASUS : BMKG MEDAN) Marihot TP. Manalu Mahasiswa Program Studi Teknik Informatika, STMIK Budidarma
BAB II DASAR TEORI Jaringan Syaraf Tiruan. Universitas Sumatera Utara
BAB II DASAR TEORI Landasan teori adalah teori-teori yang relevan dan dapat digunakan untuk menjelaskan variabel-variabel penelitian. Landasan teori ini juga berfungsi sebagai dasar untuk memberi jawaban
MEMPREDIKSI KECERDASAN SISWA MENGGUNAKAN JARINGAN SYARAF TIRUAN BERBASIS ALGORITMA BACKPROPAGATION (STUDI KASUS DI LP3I COURSE CENTER PADANG)
MEMPREDIKSI KECERDASAN SISWA MENGGUNAKAN JARINGAN SYARAF TIRUAN BERBASIS ALGORITMA BACKPROPAGATION (STUDI KASUS DI LP3I COURSE CENTER PADANG) R. Ayu Mahessya, S.Kom, M.Kom, Fakultas Ilmu Komputer Universitas
VOL. 01 NO. 02 [JURNAL ILMIAH BINARY] ISSN :
PENERAPAN JARINGAN SYARAF TIRUAN UNTUK MEMPREDIKSI JUMLAH PRODUKSI AIR MINUM MENGGUNAKAN ALGORITMA BACKPROPAGATION (STUDI KASUS : PDAM TIRTA BUKIT SULAP KOTA LUBUKLINGGAU) Robi Yanto STMIK Bina Nusantara
MODEL PEMBELAJARAN JARINGAN SYARAF TIRUAN UNTUK OTOMATISASI PENGEMUDIAN KENDARAAN BERODA TIGA
MODEL PEMBELAJARAN JARINGAN SYARAF TIRUAN UNTUK OTOMATISASI PENGEMUDIAN KENDARAAN BERODA TIGA Ramli e-mail:[email protected] Dosen Tetap Amik Harapan Medan ABSTRAK Jaringan Syaraf Tiruan adalah pemrosesan
Model Arsitektur Backpropogation Dalam Memprediksi Faktor Tunggakan Uang Kuliah (Studi Kasus AMIK Tunas Bangsa)
IJCCS, Vol.x, No.x, July xxxx, pp. 1~5 ISSN: 1978-1520 1 Model Arsitektur Backpropogation Dalam Memprediksi Faktor Tunggakan Uang Kuliah (Studi Kasus AMIK Tunas Bangsa) Agus Perdana Windarto* 1, Dedy Hartama
PENERAPAN TEKNIK JARINGAN SYARAF TIRUAN ALGORITMA BACKPROPAGATION UNTUK PERAMALAN HARGA SAHAM Putra Christian Adyanto
PENERAPAN TEKNIK JARINGAN SYARAF TIRUAN ALGORITMA BACKPROPAGATION UNTUK PERAMALAN HARGA SAHAM Putra Christian Adyanto Teknik Informatika, Univesitas Dian Nuswantoro ABSTRACT: Peramalan saham merupakan
SATIN Sains dan Teknologi Informasi
SATIN - Sains dan Teknologi Informasi, Vol. 2, No., Juni 206 SATIN Sains dan Teknologi Informasi journal homepage : http://jurnal.stmik-amik-riau.ac.id Penerapan Jaringan Syaraf Tiruan Untuk Estimasi Needs
APLIKASI JARINGAN SYARAF TIRUAN DALAM PENGHITUNGAN PERSENTASE KEBENARAN KLASIFIKASI PADA KLASIFIKASI JURUSAN SISWA DI SMA N 8 SURAKARTA
APLIKASI JARINGAN SYARAF TIRUAN DALAM PENGHITUNGAN PERSENTASE KEBENARAN KLASIFIKASI PADA KLASIFIKASI JURUSAN SISWA DI SMA N 8 SURAKARTA Pembimbing: Desi Fitria Utami M0103025 Drs. Y. S. Palgunadi, M. Sc
STUDI ESTIMASI CURAH HUJAN, SUHU DAN KELEMBABAN UDARA DENGAN MENGGUNAKAN JARINGAN SYARAF TIRUAN BACKPROPAGATION
STUDI ESTIMASI CURAH HUJAN, SUHU DAN KELEMBABAN UDARA DENGAN MENGGUNAKAN JARINGAN SYARAF TIRUAN BACKPROPAGATION Muh. Ishak Jumarang 1), Lyra Andromeda 2) dan Bintoro Siswo Nugroho 3) 1,3) Jurusan Fisika,
PERAMALAN JUMLAH KUNJUNGAN WISATAWAN MANCANEGARA KE LOMBOK MENGGUNAKAN JARINGAN SYARAF TIRUAN
PERAMALAN JUMLAH KUNJUNGAN WISATAWAN MANCANEGARA KE LOMBOK MENGGUNAKAN JARINGAN SYARAF TIRUAN Titik Misriati AMIK BSI Jakarta Jl. R.S Fatmawati No. 24 Pondok Labu, Jakarta Selatan [email protected] ABSTRACT
BACKPROPAGATION NEURAL NETWORK AS A METHOD OF FORECASTING ON CALCULATION INFLATION RATE IN JAKARTA AND SURABAYA
BACKPROPAGATION NEURAL NETWORK AS A METHOD OF FORECASTING ON CALCULATION INFLATION RATE IN JAKARTA AND SURABAYA Anggi Purnama Undergraduate Program, Computer Science, 2007 Gunadarma Universiy http://www.gunadarma.ac.id
BAB 2 TINJAUAN PUSTAKA
BAB 2 TINJAUAN PUSTAKA Pada bab ini akan diuraikan materi yang mendukung dalam pembahasan evaluasi implementasi sistem informasi akademik berdasarkan pengembangan model fit HOT menggunakan regresi linier
Jurnal Informatika Mulawarman Vol 5 No. 1 Februari
Jurnal Informatika Mulawarman Vol 5 No. 1 Februari 2010 50 Penerapan Jaringan Syaraf Tiruan Untuk Memprediksi Jumlah Pengangguran di Provinsi Kalimantan Timur Dengan Menggunakan Algoritma Pembelajaran
UJM 3 (1) (2014) UNNES Journal of Mathematics.
UJM 3 (1) (2014) UNNES Journal of Mathematics http://journal.unnes.ac.id/sju/index.php/ujm APLIKASI JARINGAN SYARAF TIRUAN BACKPROPAGATION DALAM PERAMALAN BEBAN PUNCAK DISTRIBUSI LISTRIK DI WILAYAH PEMALANG
APLIKASI JARINGAN SYARAF TIRUAN PADA PENGENALAN POLA TULISAN DENGAN METODE BACKPROPAGATION
APLIKASI JARINGAN SYARAF TIRUAN PADA PENGENALAN POLA TULISAN DENGAN METODE BACKPROPAGATION Alvama Pattiserlihun, Andreas Setiawan, Suryasatriya Trihandaru Program Studi Fisika, Fakultas Sains dan Matematika,
PREDIKSI PENDAPATAN ASLI DAERAH KALIMANTAN BARAT MENGGUNAKAN JARINGAN SYARAF TIRUAN BACKPROPAGATION
PREDIKSI PENDAPATAN ASLI DAERAH KALIMANTAN BARAT MENGGUNAKAN JARINGAN SYARAF TIRUAN BACKPROPAGATION Dwi Marisa Midyanti Sistem Komputer Universitas Tanjungpura Pontianak Jl Prof.Dr.Hadari Nawawi, Pontianak
Research of Science and Informatic BROILER CHICKENS WEIGHT PREDICTION BASE ON FEED OUT USING BACKPROPAGATION
Sains dan Informatika Vol.2 (N0.2) (2016): 1-9 1 Andre Mariza Putra, Chickens Weight Prediction Using Backpropagation JURNAL SAINS DAN INFORMATIKA Research of Science and Informatic e-mail: [email protected]
BAB I PENDAHULUAN. paling parah dan paling lama tingkat pemulihannya akibat krisis keuangan
BAB I PENDAHULUAN 1.1 Latar Belakang Krisis keuangan yang terjadi di Asia pada pertengahan tahun 1997 diawali di Thailand dan merembet ke berbagai negara di Asia lainnya seperti di Indonesia, Malaysia,
KONSEP DAN DESAIN PERANGKAT LUNAK MATRIKS PENILAIAN BORANG PROGRAM STUDI SARJANA
KONSEP DAN DESAIN PERANGKAT LUNAK MATRIKS PENILAIAN BORANG PROGRAM STUDI SARJANA Uky Yudatama Teknik Informatika, Fakultas Teknik, Universitas Muhammadiyah Magelang Jl. Mayjen Bambang Soegeng Km 5 Mertoyudan
RANCANG BANGUN TOOL UNTUK JARINGAN SYARAF TIRUAN (JST) MODEL PERCEPTRON
RANCANG BANGUN TOOL UNTUK JARINGAN SYARAF TIRUAN (JST) MODEL PERCEPTRON Liza Afriyanti Laboratorium Komputasi dan Sistem Cerdas Jurusan Teknik Informatika, Fakultas Teknologi Industri,Universitas Islam
APLIKASI JARINGAN SYARAF TIRUAN UNTUK MEMPREDIKSI PENJUALAN OBAT Pada PT. METRO ARTHA PRAKARSA MENERAPKAN METODE BACKPROPAGATION
APLIKASI JARINGAN SYARAF TIRUAN UNTUK MEMPREDIKSI PENJUALAN OBAT Pada PT. METRO ARTHA PRAKARSA MENERAPKAN METODE BACKPROPAGATION Zulkarnain Mahasiswa Teknik Informatika STMIK Budi Darma Jl. Sisingamangaraja
ANALISIS ALGORITMA INISIALISASI NGUYEN-WIDROW PADA PROSES PREDIKSI CURAH HUJAN KOTA MEDAN MENGGUNAKAN METODE BACKPROPAGATION NEURAL NETWORK
ANALISIS ALGORITMA INISIALISASI NGUYEN-WIDROW PADA PROSES PREDIKSI CURAH HUJAN KOTA MEDAN MENGGUNAKAN METODE BACKPROPAGATION NEURAL NETWORK Yudhi Andrian 1, M. Rhifky Wayahdi 2 1 Dosen Teknik Informatika,
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 2.1 Jaringan Syaraf Biologi Jaringan Syaraf Tiruan merupakan suatu representasi buatan dari otak manusia yang dibuat agar dapat mensimulasikan apa yang dipejalari melalui proses pembelajaran
Jaringan Syaraf Tiruan Menggunakan Algoritma Backpropagation Untuk Memprediksi Jumlah Pengangguran (Studi Kasus DiKota Padang)
Jaringan Syaraf Tiruan Menggunakan Algoritma Backpropagation Untuk Memprediksi Jumlah Pengangguran (Studi Kasus DiKota Padang) Hadi Syahputra Universitas Putra Indonesia YPTK Padang E-mail: [email protected]
IMPLEMENTASI JARINGAN SYARAF TIRUAN MULTI LAYER FEEDFORWARD DENGAN ALGORITMA BACKPROPAGATION SEBAGAI ESTIMASI NILAI KURS JUAL SGD-IDR
Seminar Nasional Teknologi Informasi dan Multimedia 205 STMIK AMIKOM Yogyakarta, 6-8 Februari 205 IMPLEMENTASI JARINGAN SYARAF TIRUAN MULTI LAYER FEEDFORWARD DENGAN ALGORITMA BACKPROPAGATION SEBAGAI ESTIMASI
Prediksi Nilai Tukar Petani Menggunakan Jaringan Syaraf Tiruan Backpropagation
Scientific Journal of Informatics Vol 3, No 1, Mei 2016 p-issn 2407-7658 http://journalunnesacid/nju/indexphp/sji e-issn 2460-0040 Prediksi Nilai Tukar Petani Menggunakan Jaringan Syaraf Tiruan Backpropagation
Research of Science and Informatic
Sains dan Informatika Vol.2 (N0.1) (2016): 11-22 1 Pora, Mardan, Implementation of Artificial Neural Networks for Prediction JURNAL SAINS DAN INFORMATIKA Research of Science and Informatic e-mail: [email protected]
SISTEM PENGENALAN KARAKTER DENGAN JARINGAN SYARAF TIRUAN ALGORITMA PERCEPTRON
Jurnal Informatika Mulawarman Vol. 7 No. 3 Edisi September 2012 105 SISTEM PENGENALAN KARAKTER DENGAN JARINGAN SYARAF TIRUAN ALGORITMA PERCEPTRON Anindita Septiarini Program Studi Ilmu Komputer FMIPA,
Analisis Jaringan Saraf Tiruan Model Perceptron Pada Pengenalan Pola Pulau di Indonesia
Jurnal Ilmiah Teknologi dan Informasi ASIA (JITIKA) Vol.11, No.1, Februari 2017 ISSN: 0852-730X Analisis Jaringan Saraf Tiruan Model Perceptron Pada Pengenalan Pola Pulau di Indonesia Muhammad Ulinnuha
PERBANDINGAN ANTARA MODEL NEURAL NETWORK DAN MODEL DUANE UNTUK EVALUASI KETEPATAN PREDIKSI WAKTU KERUSAKAN SUATU KOMPONEN
Feng PERBANDINGAN ANTARA MODEL NEURAL NETWORK DAN MODEL DUANE UNTUK... 211 PERBANDINGAN ANTARA MODEL NEURAL NETWORK DAN MODEL DUANE UNTUK EVALUASI KETEPATAN PREDIKSI WAKTU KERUSAKAN SUATU KOMPONEN Tan
PENERAPAN JARINGAN SYARAF TIRUAN DALAM MEMPREDIKSI TINGKAT PENGANGGURAN DI SUMATERA UTARA MENGGUNAKAN METODE BACKPROPAGATION
PENERAPAN JARINGAN SYARAF TIRUAN DALAM MEMPREDIKSI TINGKAT PENGANGGURAN DI SUMATERA UTARA MENGGUNAKAN METODE BACKPROPAGATION Havid Syafwan 1, Herman Saputra 2 *1 Program Studi Manajemen Informatika, AMIK
IMPLEMENTASI JARINGAN SYARAF TIRUAN ALGORITMA BACKPROPAGATION UNTUK MEMPREDIKSI LAJU INFLASI DI KABUPATEN KLATEN NASKAH PUBLIKASI
IMPLEMENTASI JARINGAN SYARAF TIRUAN ALGORITMA BACKPROPAGATION UNTUK MEMPREDIKSI LAJU INFLASI DI KABUPATEN KLATEN NASKAH PUBLIKASI diajukan oleh Kurniawati Handayani 09.11.3278 kepada SEKOLAH TINGGI MANAJEMEN
APLIKASI JARINGAN SYARAF TIRUAN UNTUK MEMPREDIKSI VOLUME PEMAKAIAN AIR BERSIH DI KOTA PONTIANAK
APLIKASI JARINGAN SYARAF TIRUAN UNTUK MEMPREDIKSI VOLUME PEMAKAIAN AIR BERSIH DI KOTA PONTIANAK [1] Meishytah Eka Aprilianti, [2] Dedi Triyanto, [3] Ilhamsyah [1] [2] [3] Jurusan Sistem Komputer, Fakultas
PELATIHAN FEED FORWARD NEURAL NETWORK MENGGUNAKAN ALGORITMA GENETIKA DENGAN METODE SELEKSI TURNAMEN UNTUK DATA TIME SERIES
JURNAL GAUSSIAN, Volume 1, Nomor 1, Tahun 2012, Halaman 65-72 Online di: http://ejournal-s1.undip.ac.id/index.php/gaussian PELATIHAN FEED FORWARD NEURAL NETWORK MENGGUNAKAN ALGORITMA GENETIKA DENGAN METODE
JARINGAN SYARAF TIRUAN MENGGUNAKAN ALGORITMA BACKPROPAGATION UNTUK MEMPREDIKSI NILAI UJIAN AKHIR SEKOLAH (STUDI KASUS DI MAN 2 PADANG)
Jurnal Teknologi Vol 7, No 2, Oktober 2017, Hal 183-192 E- ISSN : 2541-1535 ISSN : 2301-4474 JARINGAN SYARAF TIRUAN MENGGUNAKAN ALGORITMA BACKPROPAGATION UNTUK MEMPREDIKSI NILAI UJIAN AKHIR SEKOLAH (STUDI
JARINGAN SARAF TIRUAN DENGAN BACKPROPAGATION UNTUK MENDETEKSI PENYALAHGUNAAN NARKOTIKA
JARINGAN SARAF TIRUAN DENGAN BACKPROPAGATION UNTUK MENDETEKSI PENYALAHGUNAAN NARKOTIKA Dahriani Hakim Tanjung STMIK POTENSI UTAMA Jl.K.L.Yos Sudarso Km 6.5 Tanjung Mulia Medan [email protected] Abstrak
Klasifikasi Pola Huruf Vokal dengan Menggunakan Jaringan Saraf Tiruan
JURNAL TEKNIK POMITS 1-7 1 Klasifikasi Pola Huruf Vokal dengan Menggunakan Jaringan Saraf Tiruan Dhita Azzahra Pancorowati, M. Arief Bustomi Jurusan Fisika, Fakultas Matematika dan Ilmu Pengetahuan Alam,
SISTEM PENGENALAN BARCODE MENGGUNAKAN JARINGAN SYARAF TIRUAN BACKPROPAGATION
SISTEM PENGENALAN BARCODE MENGGUNAKAN JARINGAN SYARAF TIRUAN BACKPROPAGATION Barcode Rcognition System Using Backpropagation Neural Networks M. Kayadoe, Francis Yuni Rumlawang, Yopi Andry Lesnussa * Jurusan
PENENTUAN MODEL RETURN HARGA SAHAM DENGAN MULTI LAYER FEED FORWARD NEURAL NETWORK MENGGUNAKAN ALGORITMA RESILENT BACKPROPAGATION SKRIPSI
PENENTUAN MODEL RETURN HARGA SAHAM DENGAN MULTI LAYER FEED FORWARD NEURAL NETWORK MENGGUNAKAN ALGORITMA RESILENT BACKPROPAGATION (Studi Kasus : Harga Penutupan Saham Unilever Indonesia Tbk. Periode September
BAB II TINJAUAN PUSTAKA
BAB II TINJAUAN PUSTAKA 2.1 JARINGAN SARAF SECARA BIOLOGIS Jaringan saraf adalah salah satu representasi buatan dari otak manusia yang selalu mencoba untuk mensimulasikan proses pembelajaran pada otak
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI Pada bab ini akan dielaskan mengenai teori-teori yang berhubungan dengan penelitian ini, sehingga dapat diadikan sebagai landasan berpikir dan akan mempermudah dalam hal pembahasan
Prediksi Curah Hujan Di Kota Pontianak Menggunakan Parameter Cuaca Sebagai Prediktor Pada Skala Bulanan, Dasarian Dan Harian Asri Rachmawati 1)*
Prediksi Curah Hujan Di Kota Pontianak Menggunakan Parameter Cuaca Sebagai Prediktor Pada Skala Bulanan, Dasarian Dan Harian Asri Rachmawati 1)* 1)Stasiun Meteorologi Supadio Pontianak Badan Meteorologi
MENGENALI FUNGSI LOGIKA AND MELALUI PEMROGRAMAN PERCEPTRON DENGAN MATLAB
POLITEKNOSAINS VOL. X NO. 2 Juni 2011 MENGENALI FUNGSI LOGIKA AND MELALUI PEMROGRAMAN PERCEPTRON DENGAN MATLAB Yaya Finayani Teknik Elektro, Politeknik Pratama Mulia, Surakarta 57149, Indonesia ABSTRACT
MODEL N EURON NEURON DAN
1 MODEL NEURON DAN ARSITEKTUR JARINGAN 1 1 Model Neuron Mengadopsi esensi dasar dari system syaraf biologi, syaraf tiruan digambarkan sebagai berikut : Menerima input atau masukan (baikdari data yang dimasukkan
PENERAPAN JARINGAN SYARAF TIRUAN UNTUK MEMPREDIKSI JUMLAH PESERTA KB BARU DI KABUPATEN SEMARANG DENGAN METODE BACKPROPAGATION
PENERAPAN JARINGAN SYARAF TIRUAN UNTUK MEMPREDIKSI JUMLAH PESERTA KB BARU DI KABUPATEN SEMARANG DENGAN METODE BACKPROPAGATION Restiana Putri Abstract - On a government agencies Badan Keluarga Berencana
PREDIKSI PERHITUNGAN DOSIS RADIASI PADA PEMERIKSAAN MAMMOGRAFI MENGGUNAKAN ALGORITMA JARINGAN SYARAF TIRUAN PROPAGASI BALIK
Berkala Fisika ISSN : 1410-9662 Vol.18, No.4, Oktober 2015, hal 151-156 PREDIKSI PERHITUNGAN DOSIS RADIASI PADA PEMERIKSAAN MAMMOGRAFI MENGGUNAKAN ALGORITMA JARINGAN SYARAF TIRUAN PROPAGASI BALIK Zaenal
Metode Jaringan Saraf Tiruan Propagasi Balik Untuk Estimasi Curah Hujan Bulanan di Ketapang Kalimantan Barat
Prosiding Semirata FMIPA Universitas Lampung, 2013 Metode Jaringan Saraf Tiruan Propagasi Balik Untuk Estimasi Curah Hujan Bulanan di Ketapang Kalimantan Barat Andi Ihwan Prodi Fisika FMIPA Untan, Pontianak
PERANCANGAN APLIKASI MENGIDENTIFIKASI PENYAKIT MATA DENGAN MENGGUNAKAN METODE BACKPROPAGATION
Jurnal Riset Komputer (JURIKOM), Volume : 3, Nomor:, Februari 206 ISSN : 2407-389X PERANCANGAN APLIKASI MENGIDENTIFIKASI PENYAKIT MATA DENGAN MENGGUNAKAN METODE BACKPROPAGATION Fahmi Hasobaran Dalimunthe
BAB 1 PENDAHULUAN. 1.1 Latar Belakang Masalah
BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah Jaringan Syaraf Tiruan (artificial neural network), atau disingkat JST menurut Hermawan (2006, hlm.37) adalah sistem komputasi dimana arsitektur dan operasi
2 2 ... v... 3 Santoso... 21 abawa... 29... 37... 53... 59... 67... 77 Yohakim Marwanta... 85... 89... 101 ... 109... 117 D. Jaringan Komputer Amirudd... 135 andha... 141... 151... 165 Syahrir... 171...
BAB 2 KONSEP DASAR PENGENAL OBJEK
BAB 2 KONSEP DASAR PENGENAL OBJEK 2.1 KONSEP DASAR Pada penelitian ini, penulis menggunakan beberapa teori yang dijadikan acuan untuk menyelesaikan penelitian. Berikut ini teori yang akan digunakan penulis
JARINGAN SYARAF TIRUAN PREDIKSI PENYAKIT LUDWIG ANGINA
doi: https://doi.org/10.5281/zenodo.1207339 JARINGAN SYARAF TIRUAN PREDIKSI PENYAKIT LUDWIG ANGINA Siti Aisyah (1), Abdi Dharma (2), Mardi Turnip (3) Sistem Informasi Fakultas Teknologi dan Ilmu Komputer
Estimasi Suhu Udara Bulanan Kota Pontianak Berdasarkan Metode Jaringan Syaraf Tiruan
Estimasi Suhu Udara Bulanan Kota Pontianak Berdasarkan Metode Jaringan Syaraf Tiruan Andi Ihwan 1), Yudha Arman 1) dan Iis Solehati 1) 1) Prodi Fisika FMIPA UNTAN Abstrak Fluktuasi suhu udara berdasarkan
APLIKASI JARINGAN SYARAF TIRUAN UNTUK MEMPREDIKSI PENJUALAN HANDPHONE DENGAN MENGGUNAKAN METODE BACKPROPAGATION (Studi Kasus : CV.
APLIKASI JARINGAN SYARAF TIRUAN UNTUK MEMPREDIKSI PENJUALAN HANDPHONE DENGAN MENGGUNAKAN METODE BACKPROPAGATION (Studi Kasus : CV. Bryan Ponsel) Des Indeks Giawa Mahasiswa Teknik Informatika STMIK Budi
Analisis Prediksi Indeks Harga Konsumen Berdasarkan Kelompok Kesehatan Dengan Menggunakan Metode Backpropagation
Analisis Prediksi Indeks Harga Konsumen Berdasarkan Kelompok Kesehatan Dengan Menggunakan Metode Backpropagation Anjar Wanto STIKOM Tunas Bangsa Pematangsiantar Pematangsiantar, Indonesia [email protected]
PENGENALAN POLA HURUF ROMAWI DENGAN JARINGAN SARAF TIRUAN PERSEPTRON LAPIS JAMAK
PENGENALAN POLA HURUF ROMAWI DENGAN JARINGAN SARAF TIRUAN PERSEPTRON LAPIS JAMAK Eko Budi Wahyono*), Suzuki Syofian**) *) Teknik Elektro, **) Teknik Informatika - Fakultas Teknik Abstrak Pada era modern
Analisis Prediksi Indeks Harga Konsumen Berdasarkan Kelompok Kesehatan Dengan Menggunakan Metode Backpropagation
Analisis Prediksi Indeks Harga Konsumen Berdasarkan Kelompok Kesehatan Dengan Menggunakan Metode Backpropagation Anjar Wanto STIKOM Tunas Bangsa Pematangsiantar Pematangsiantar, Indonesia [email protected]
JARINGAN SYARAF TIRUAN PROPAGASI BALIK DALAM PREDIKSI PERSEDIAAN TERNAK SAPI POTONG ( STUDI KASUS DI WILAYAH SUMATERA BARAT )
JARINGAN SYARAF TIRUAN PROPAGASI BALIK DALAM PREDIKSI PERSEDIAAN TERNAK SAPI POTONG ( STUDI KASUS DI WILAYAH SUMATERA BARAT ) Rima Liana Gema, S.Kom, M.Kom, Fakultas Ilmu Komputer Universitas Putra Indonesia
KLASIFIKASI KELAINAN JANTUNG ANAK MENGGUNAKAN JARINGAN SARAF TIRUAN ALGORITMA BACKPROPAGATION A B S T R A K
KLASIFIKASI KELAINAN JANTUNG ANAK MENGGUNAKAN JARINGAN SARAF TIRUAN ALGORITMA BACKPROPAGATION Oleh : Gunawan Abdillah, Agus Komarudin, Rachim Suherlan A B S T R A K Kelainan jantung anak merupakan salah
PREDIKSI ANGKA PARTISIPASI SEKOLAH DI JAWA TENGAH UMUR TAHUN DENGAN METODE JARINGAN SYARAF TIRUAN PERAMBATAN-BALIK
PREDIKSI ANGKA PARTISIPASI SEKOLAH DI JAWA TENGAH UMUR 16-18 TAHUN DENGAN METODE JARINGAN SYARAF TIRUAN PERAMBATAN-BALIK R. Mh. Rheza Kharis *), R. Rizal Isnanto, and Ajub Ajulian Zahra Jurusan Teknik
APLIKASI JARINGAN SARAF TIRUAN METODE PERCEPTRON PADA PENGENALAN POLA NOTASI
APLIKASI JARINGAN SARAF TIRUAN METODE PERCEPTRON PADA PENGENALAN POLA NOTASI Muhamad Arifin SMK Telkom Malang Email: [email protected] Khoirudin Asfani Fakultas Teknik, Universitas Negeri Malang
BAB I PENDAHULUAN I-1
BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Kabupaten Purworejo adalah daerah agraris karena sebagian besar penggunaan lahannya adalah pertanian. Dalam struktur perekonomian daerah, potensi daya dukung
MATERI DAN METODE. Cara Pengambilan Data
MATERI DAN METODE Lokasi dan Waktu Penelitian ini dilaksanakan di Laboratorium Lapang Bagian Ilmu Produksi Ternak Perah, Fakultas Peternakan Institut Pertanian Bogor. Penelitian dilaksanakan selama dua
Sebelumnya... Pembelajaran Mesin/Machine Learning Pembelajaran dengan Decision Tree (ID3) Teori Bayes dalam Pembelajaran
Sebelumnya... Pembelajaran Mesin/Machine Learning Pembelajaran dengan Decision Tree (ID3) Teori Bayes dalam Pembelajaran Kecerdasan Buatan Pertemuan 11 Jaringan Syaraf Tiruan (Artificial Neural Network)
lalu menghitung sinyal keluarannya menggunakan fungsi aktivasi,
LAMPIRAN 15 Lampiran 1 Algoritme Jaringan Syaraf Tiruan Propagasi Balik Standar Langkah 0: Inisialisasi bobot (bobot awal dengan nilai random yang paling kecil). Langkah 1: Menentukan maksimum epoch, target
PERBANDINGAN ALGORITMA PARTICLE SWARM OPTIMIZATION DAN REGRESI PADA PERAMALAN WAKTU BEBAN PUNCAK
Jurnal POROS TEKNIK, Volume 6, No. 2, Desember 2014 : 55-10 PERBANDINGAN ALGORITMA PARTICLE SWARM OPTIMIZATION DAN REGRESI PADA PERAMALAN WAKTU BEBAN PUNCAK Nurmahaludin (1) (1) Staff Pengajar Jurusan
PENERAPAN ALGORITMA JARINGAN SYARAF TIRUAN BACKPROPAGATION DALAM MEMPREDIKSI TINGKAT SUKU BUNGA BANK
PENERAPAN ALGORITMA JARINGAN SYARAF TIRUAN BACKPROPAGATION DALAM MEMPREDIKSI TINGKAT SUKU BUNGA BANK Badrul Anwar Program Studi Sistem Komputer, STMIK Triguna Dharma [email protected] ABSTRAK: Prediksi
ARTIFICIAL NEURAL NETWORK TEKNIK PERAMALAN - A
ARTIFICIAL NEURAL NETWORK CAHYA YUNITA 5213100001 ALVISHA FARRASITA 5213100057 NOVIANTIANDINI 5213100075 TEKNIK PERAMALAN - A MATERI Neural Network Neural Network atau dalam bahasa Indonesia disebut Jaringan
Implementasi jaringan syaraf tiruan untuk menilai kelayakan tugas akhir mahasiswa (studi kasus di amik bukittinggi)
10 Implementasi jaringan syaraf tiruan untuk menilai kelayakan tugas akhir mahasiswa (studi kasus di amik bukittinggi) Novia Lestari 1, Lucky Lhaura Van FC 2 1 Program Studi Manajemen Informatika AMIK
ANALISIS PERBANDINGAN METODE BACKPROPAGATION DAN RADIAL BASIS FUNCTION UNTUK MEM PREDIKSI CURAH HUJAN DENGAN JARINGAN SYARAF TIRUAN
ANALISIS PERBANDINGAN METODE BACKPROPAGATION DAN RADIAL BASIS FUNCTION UNTUK MEM PREDIKSI CURAH HUJAN DENGAN JARINGAN SYARAF TIRUAN Abstrak Vinsensius Rinda Resi - NIM : A11.2009.04645 Program Studi Teknik
BAB 2 LANDASAN TEORI. fuzzy logic dengan aplikasi neuro computing. Masing-masing memiliki cara dan proses
8 BAB 2 LANDASAN TEORI 2.1 Teori Neuro Fuzzy Neuro-fuzzy sebenarnya merupakan penggabungan dari dua studi utama yaitu fuzzy logic dengan aplikasi neuro computing. Masing-masing memiliki cara dan proses
PENENTUAN MODEL RETURN HARGA SAHAM DENGAN MULTI LAYER FEED FORWARD NEURAL NETWORK MENGGUNAKAN ALGORITMA RESILENT BACKPROPAGATION
ISSN: 2339-2541 JURNAL GAUSSIAN, Volume 5, Nomor 1, Tahun 2016, Halaman 203-209 Online di: http://ejournal-s1.undip.ac.id/index.php/gaussian PENENTUAN MODEL RETURN HARGA SAHAM DENGAN MULTI LAYER FEED FORWARD
KEANDALAN BALOK STATIS TERTENTU DENGAN ARTIFICIAL NEURAL NETWORKS
KEANDALAN BALOK STATIS TERTENTU DENGAN ARTIFICIAL NEURAL NETWORKS Martinus S.P. Abednego [1], Yosafat Aji Pranata [2] Jurusan Teknik Sipil, Universitas Kristen Maranatha Jln. Prof. drg. Suria Sumantri,
MEMBANGUN PERANGKAT LUNAK MATRIKS PENILAIAN PADA BORANG PROGRAM STUDI SARJANA
MEMBANGUN PERANGKAT LUNAK MATRIKS PENILAIAN PADA BORANG PROGRAM STUDI SARJANA Uky Yudatama 1, Andi Widiyanto 2, Maimunah 3 1,2 Teknik Informatika, Fakultas Teknik, Universitas Muhammadiyah Magelang Jl.
JARINGAN SYARAF TIRUAN DAN NAIVE BAYES UNTUK MENDETEKSI PENYAKIT GAGAL GINJAL DI RSUD Dr. ADHYATMA TUGUREJO SEMARANG
JARINGAN SYARAF TIRUAN DAN NAIVE BAYES UNTUK MENDETEKSI PENYAKIT GAGAL GINJAL DI RSUD Dr. ADHYATMA TUGUREJO SEMARANG Yudi Setyawan 1 *, Zulfikar Adi Nugroho 2 1,2 Prodi Statistika, Fakultas Sains Terapan,
ANALISIS JARINGAN SYARAF TIRUAN UNTUK MEMPREDIKSI JUMLAH RESERVASI KAMAR HOTEL DENGAN METODE BACKPROPAGATION (Studi Kasus Hotel Grand Zuri Padang)
ANALISIS JARINGAN SYARAF TIRUAN UNTUK MEMPREDIKSI JUMLAH RESERVASI KAMAR HOTEL DENGAN METODE BACKPROPAGATION (Studi Kasus Hotel Grand Zuri Padang) 1 Musli Yanto, 2 Sarjon Defit, 3 Gunadi Widi Nurcahyo
JARINGAN SARAF TIRUAN (ARTIFICIAL NEURAL NETWORK) ERWIEN TJIPTA WIJAYA, ST, M.KOM
JARINGAN SARAF TIRUAN (ARTIFICIAL NEURAL NETWORK) ERWIEN TJIPTA WIJAYA, ST, M.KOM INTRODUCTION Jaringan Saraf Tiruan atau JST adalah merupakan salah satu representasi tiruan dari otak manusia yang selalu
ANALISIS PENAMBAHAN NILAI MOMENTUM PADA PREDIKSI PRODUKTIVITAS KELAPA SAWIT MENGGUNAKAN BACKPROPAGATION
ANALISIS PENAMBAHAN NILAI MOMENTUM PADA PREDIKSI PRODUKTIVITAS KELAPA SAWIT MENGGUNAKAN BACKPROPAGATION Eka Irawan1, M. Zarlis2, Erna Budhiarti Nababan3 Magister Teknik Informatika, Universitas Sumatera
METODOLOGI PENELITIAN
III. METODOLOGI PENELITIAN A. Kerangka Pemikiran Perusahaan dalam era globalisasi pada saat ini, banyak tumbuh dan berkembang, baik dalam bidang perdagangan, jasa maupun industri manufaktur. Perusahaan
ANALISIS DAN IMPLEMENTASI GABUNGAN ALGORITMA GENETIKA DAN JARINGAN SYARAF TIRUAN BACKPROPAGATION (STUDY KASUS PERAMALAN SAHAM)
ANALISIS DAN IMPLEMENTASI GABUNGAN ALGORITMA GENETIKA DAN JARINGAN SYARAF TIRUAN BACKPROPAGATION (STUDY KASUS PERAMALAN SAHAM) Hanura Ian Pratowo¹, Retno Novi Dayawati², Agung Toto Wibowo³ ¹Teknik Informatika,,
PREDIKSI ANGKA PARTISIPASI SEKOLAH DI JAWA TENGAH UMUR TAHUN DENGAN METODE JARINGAN SYARAF TIRUAN PERAMBATAN-BALIK
PREDIKSI ANGKA PARTISIPASI SEKOLAH DI JAWA TENGAH UMUR 16-18 TAHUN DENGAN METODE JARINGAN SYARAF TIRUAN PERAMBATAN-BALIK R.Mh.Rheza Kharis *), R. Rizal Isnanto, Ajub Ajulian Zahra Jurusan Teknik Elektro,
ANALISA NILAI UJIAN MASUK STT WASTUKANCANA BERDASARKAN NILAI UJIAN NASIONAL MENGGUNAKAN METODE BACKPROPAGATION
ANALISA NILAI UJIAN MASUK STT WASTUKANCANA BERDASARKAN NILAI UJIAN NASIONAL MENGGUNAKAN METODE BACKPROPAGATION Program Studi Teknik Informatika STT Wastukancana Jl. Raya Cikopak No.53, Sadang, Purwakarta
Aplikasi Jaringan Saraf Tiruan Backpropagation untuk Memprediksi Prestasi Siswa SMA (Studi kasus: Prediksi Prestasi Siswa SMAN 4 Ambon)
Jurnal Matematika Integratif ISSN 42-684 Volume No 2, Oktober 205, pp 49 60 Aplikasi Jaringan Saraf Tiruan Backpropagation untuk Memprediksi Prestasi Siswa SMA (Studi kasus: Prediksi Prestasi Siswa SMAN
POSITRON, Vol. IV, No. 2 (2014), Hal ISSN :
Modifikasi Estimasi Curah Hujan Satelit TRMM Dengan Metode Jaringan Syaraf Tiruan Propagasi Balik Studi Kasus Stasiun Klimatologi Siantan Fanni Aditya 1)2)*, Joko Sampurno 2), Andi Ihwan 2) 1)BMKG Stasiun
PENGGUNAAN MATLAB DALAM PENYELESAIAN SISTEM PERSAMAAN LINEAR MENGGUNAKAN JARINGAN HOPFIELD LINEAR ABSTRAK
PENGGUNAAN MATLAB DALAM PENYELESAIAN SISTEM PERSAMAAN LINEAR MENGGUNAKAN JARINGAN HOPFIELD LINEAR Rosihan Ari Yuana Program Studi Pendidikan Matematika Universitas Sebelas Maret ABSTRAK Aplikasi jaringan
BAB II NEURAL NETWORK (NN)
BAB II NEURAL NETWORK (NN) 2.1 Neural Network (NN) Secara umum Neural Network (NN) adalah jaringan dari sekelompok unit pemroses kecil yang dimodelkan berdasarkan jaringan syaraf manusia. NN ini merupakan
Perbaikan Metode Prakiraan Cuaca Bandara Abdulrahman Saleh dengan Algoritma Neural Network Backpropagation
65 Perbaikan Metode Prakiraan Cuaca Bandara Abdulrahman Saleh dengan Algoritma Neural Network Backpropagation Risty Jayanti Yuniar, Didik Rahadi S. dan Onny Setyawati Abstrak - Kecepatan angin dan curah
SISTEM PAKAR DIAGNOSA PENYAKIT DEMAM BERDARAH DENGUE BERBASIS ANDROID MENGGUNAKAN JARINGAN SARAF TIRUAN
SISTEM PAKAR DIAGNOSA PENYAKIT DEMAM BERDARAH DENGUE BERBASIS ANDROID MENGGUNAKAN JARINGAN SARAF TIRUAN Ahyuna 1), Komang Aryasa 2) 1), 2) Jurusan Teknik Informatika, STMIK Dipanegara Makassar 3) Jl. Perintis
134 Sutikno, Indriyati, Sukmawati N.E, Priyo S.S., Helmie A.W., Indra W., Nurdin B., Tri Wardati K., Raditya L.R. dan Diah Putu D.
134 Sutikno, Indriyati, Sukmawati N.E, Priyo S.S., Helmie A.W., Indra W., Nurdin B., Tri Wardati K., Raditya L.R. dan Diah Putu D. Chapter 7 Backpropagation dan Aplikasinya Sutikno, Indriyati, Sukmawati
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI 2.6. Jaringan Syaraf Tiruan Jaringan syaraf tiruan atau neural network merupakan suatu sistem informasi yang mempunyai cara kerja dan karakteristik menyerupai jaringan syaraf pada
