Materi Praktikum Data Mining Decision Tree Program Studi Informatika / Matematika FMIPA Universitas Syiah Kuala
|
|
|
- Sri Setiawan
- 9 tahun lalu
- Tontonan:
Transkripsi
1 Materi Decision Tree Program Studi Informatika / Matematika FMIPA Universitas Syiah Kuala Dosen Pengasuh Dr. Taufik Fuadi Abidin, M.Tech Dr. Muhammad Subianto, M.Si {tfa,subianto}@informatika.unsyiah.ac.id PENDAHULUAN Ada dua proses penting yang dilakukan saat melakukan klasifikasi. Proses yang pertama adalah learning (training) yaitu proses pembelajaran menggunakan training set. Untuk kasus Naïve Bayesian Classifier, perhitungan probabilitas dari data berdasarkan data pembelajaran dilakukan. Proses yang kedua adalah proses testing yaitu menguji model menggunakan data testing. Gambar berikut memperlihatkan alur dari kedua proses tersebut. Gambar 1. Tahapan Proses Klasifikasi Materi praktikum ini berkaitan dengan metode Decision Tree. Ada dua tahapan yang harus dilakukan bila klasifikasi dilakukan menggunakan metode ini. Pertama adalah membangun pohon keputusan (decision tree) dan kedua, membangun aturan (rule) dari pohon keputusan yang dibangun. Tree dibangun secara top-down recursive divide-and-conquer dan data dipartisi secara rekursif berdasarkan atribut yang dipilih secdara heuristics menggunakan pengukuran statistik information gain. Partisi data berhenti jika tidak ada lagi data sampel yang tersisa, tidak ada lagi atribut yang dapat dipartisi atau semua data masuk ke dalam kelas label yang sama. Perhitungan information gain untuk menentukan atribut split dilakukan sebagai berikut: Pilih atribut dengan nilai information gain tertinggi Jika S mengandung s i sample dari class C i untuk dimana i = {1,, m} Perhitungan besar informasi yang dibutuhkan untuk melakukan proses klasifikasi adalah: m si I(s,s2,...,sm )= log S 1 2 i= 1 s i S 1
2 Entropy dari atribut A dengan nilai {a 1, a 2,,a v } E(A) = v j= 1 s 1j s S mj I(s 1j,...,s mj ) Information gain dihitung sebagai berikut: Gain(A) = I(s1,s 2,...,s m ) E(A) TUJUAN Tujuan dari praktikum ini adalah a) meningkatkan pemahaman mahasiswa terhadap metode Decision Tree (yang dalam perangkat lunak disebut dengan metode J48), b) memahami cara melakukan klasifikasi dengan metode Decision Tree (membangun tree) menggunakan perangkat lunak Weka dan c) Memahami hasil klasifikasi. Gambar 2. Tampilan GUI Weka KEGIATAN PRAKTIKUM 1. Pahami data contact-lense.arff yang disimpan dalam direktori data dimana aplikasi Weka di install. Data contact-lense.arff memiliki 4 atribut nominal (categorical) dan 1 klas label yang menerangkan apakah seseorang menggunakan hard contact lenses, soft contact lenses, atau tidak perlu menggunakan contact lenses. Buka file arff tersebut dengan menggunakan text editor (gedit, textpad atau vim) dan pelajari bagaimana data dalam format arff disusun. Perhatikan penjelasan di bagian atas file tersebut dan perhatikan pula bagian deklarasi seperti potongan pernyataan age {young, pre-presbyopic, spectacle-prescrip {myope, astigmatism {no, tear-prod-rate {reduced, contact-lenses {soft, hard, none} 2
3 @data % % 24 instances % young,myope,no,reduced,none young,myope,no,normal,soft young,myope,yes,reduced,none : : 2. Setelah anda memahami bagaimana data dalam format arff dari data contact-lense disusun, lakukan proses klasifikasi menggunakan metode J48. Sebagai acuan, berikut snapshot dari Weka setelah file contact-lense.arff dibuka. Gambar 3. Tampilan setelah dataset dibuka dalam Weka Lakukan observasi dan lanjutkan proses klasifikasi (classify) menggunakan metode Decision Tree (dalam software Weka disebut sebagai metode J48). Snapshot berikut memperlihatkan tampilan Weka setelah metode J48 dipilih. 3
4 Gambar 4. Tampilan setelah metode J48 dipilih Lakukan proses testing menggunakan training set itu sendiri dengan memilih Cross-validation sebagai Test Options. Set parameter folds = 10, hal ini berarti sistem akan mengacak data training set dan mengambil sebagian dari datanya untuk dijadikan testing set. Proses ini dilakukan sebanyak 10 kali dan hasil akhir merupakan akurasi rata-rata dari kesepuluh percobaan tersebut. Diskusikan hasil yang diperoleh dengan teman dan asisten. Lakukan tuning (perubahan) pada parameter di atas dan perhatikan hasilnya. Gambar 5. Hasil klasifikasi menggunakan Decision Tree (J48 di Weka) 4
5 Klik tombol mouse-kanan pada bagian seperti yang ditunjukkan oleh gambar berikut dan pilih Visualize Tree, maka pohon yang terbentuk akan ditampilkan. Right-click Gambar 6. Right-click dan pilih visualize tree Pohon keputusan ditampilkan sebagai berikut (pahami arti dari pohon tersebut). Gambar 7. Tree yang dibangun oleh metode Decision Tree (J48) 5
6 Ulangi observasi menggunakan Cross-validation dengan parameter folds = 5. Apakah terjadi perubahan yang signifikan terhadap akurasi? Ulangi juga proses klasifikasi menggunakan data weather.arff. Perhatikan nilai precision, recall, dan F-measurenya Happy Mining
Penerapan Algoritma C4.5 Untuk Menentukan Kesesuaian Lensa Kontak dengan Mata Pasien
1 Penerapan Algoritma C4.5 Untuk Menentukan Kesesuaian Lensa Kontak dengan Mata Pasien Ketut Wisnu Antara 1, Gede Thadeo Angga Kusuma 2 Jurusan Pendidikan Teknik Informatika Universitas Pendidikan Ganesha
Bayesian Classifier. Bahan Kuliah Data Mining. Dr. Taufik Fuadi Abidin, S.Si., M.Tech. Program Studi Teknik Informatika FMIPA Universitas Syiah Kuala
Naïve Bayesian Classifier Dr. Taufik Fuadi Abidin, S.Si., M.Tech Program Studi Teknik Informatika FMIPA Universitas Syiah Kuala www.informatika.unsyiah.ac.id/tfa Bahan Kuliah Data Mining Outline Pertemuan
Classification (1) Classification (3) Classification (2) Contoh Classification. Classification (4)
Knowledge Discovery in Databases (IS704) dan Data Mining (CS704) Kuliah #5: Classification (Bagian 1) Gunawan Jurusan Teknik Informatika Sekolah Tinggi Teknik Surabaya Revisi 14 Agustus 2007 Classification
Metode Klasifikasi (SVM Light dan K-NNK. NN) Dr. Taufik Fuadi Abidin, S.Si., M.Tech. Jurusan Informatika FMIPA Universitas Syiah Kuala
Metode Klasifikasi (SVM Light dan K-NNK NN) Dr. Taufik Fuadi Abidin, S.Si., M.Tech Jurusan Informatika FMIPA Universitas Syiah Kuala www.informatika.unsyiah.ac.id/tfa Alur dan Proses Cleaning Process Dokumen
BAB I PENDAHULUAN 1.1 Latar Belakang
BAB I PENDAHULUAN 1.1 Latar Belakang Penentuan dosen pembimbing tugas akhir masih dilakukan secara manual di Jurusan Teknik Informatika UMM yang hanya mengandalkan pengetahuan personal tentang spesialisasi
BAB III METODE PENELITIAN
BAB III METODE PENELITIAN 3.1 Dasar Penelitian Penelitian ini dilakukan berdasarkan rumusan masalah yang telah dijabarkan pada bab sebelumnya yaitu untuk mengklasifikasikan kelayakan kredit calon debitur
ANALISIS PERBANDINGAN ALGORITMA DECISION TREE J48 DAN NAÏVE BAYES DALAM MENGKLASIFIKASIKAN POLA PENYAKIT SKRIPSI. Oleh :
ANALISIS PERBANDINGAN ALGORITMA DECISION TREE J48 DAN NAÏVE BAYES DALAM MENGKLASIFIKASIKAN POLA PENYAKIT SKRIPSI Oleh : Frista Yulianora 1401128832 Muchammad Hasbi Latif 1401136065 Rika Jubel Febriana
KLASIFIKASI PADA DATA MINING MENGGUNAKAN NAIVE BAYESIAN CLASSIFIER CLASSIFICATION FOR DATA MINING USING NAIVE BAYESIAN CLASSIFIER
Powered by TCPDF (www.tcpdf.org) Tugas Akhir - 2005 KLASIFIKASI PADA DATA MINING MENGGUNAKAN NAIVE BAYESIAN CLASSIFIER CLASSIFICATION FOR DATA MINING USING NAIVE BAYESIAN CLASSIFIER Agustina Ratna Puspitasari¹,
ABSTRAK. Keywords : Data Mining, Filter, Data Pre-Processing, Association, Classification, Deskriptif, Prediktif, Data Mahasiswa.
ABSTRAK Kemajuan teknologi membuat begitu mudahnya dalam pengolahan suatu informasi. Waktu tidak lagi menjadi hambatan dalam pengolahan data yang sangat banyak. Hal ini didukung pula dengan adanya perkembangan
BAB III PEMBAHASAN. Sumber data diperoleh dari Koperasi X yang terdiri dari 3 file excel
BAB III PEMBAHASAN A. Sumber Data Sumber data diperoleh dari Koperasi X yang terdiri dari 3 file excel peminjam dengan jaminan sertifikat tanah, tunjuk, dan Buku Pemilik Kendaraan Bermotor (BPKB) serta
Tugas Ujian Tengah Semester (UTS) Data Mining Lanjut ABSTRAK
PERBANDINGAN KLASIFIKASI KNN DAN NAIVE BAYESIAN SERTA PERBANDINGAN CLUSTERING SIMPLE K-MEANS YANG MENGGUNAKAN DISTANCE FUNCTION MANHATTAN DISTANCE DAN EUCLIDIAN DISTANCE PADA DATASET Dresses_Attribute_Sales
Data ini berisi 13 atribut, yaitu. Dengan tipe atribut, yaitu
Hai khalayak ramai, pada kesempatan kali ini aku mau ngasik tutorial yang berkaitan dengan data mining. Apa sih itu data mining?? Data mining adalah suatu proses menemukan knowledge atau informasi dari
ANALISIS KLASIFIKASI PADA NASABAH KREDIT KOPERASI X MENGGUNAKAN DECISION TREE C4.5 DAN NAÏVE BAYES SKRIPSI
ANALISIS KLASIFIKASI PADA NASABAH KREDIT KOPERASI X MENGGUNAKAN DECISION TREE C4.5 DAN NAÏVE BAYES SKRIPSI Diajukan Kepada Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Yogyakarta Sebagai
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 2.1 Decision Tree Definisi Decision tree adalah sebuah diagram alir yang berbentuk seperti struktur pohon yang mana setiap internal node menyatakan pengujian terhadap suatu atribut,
DIAGNOSA KETERLAMBATAN PERKEMBANGAN PADA ANAK BALITA DENGAN ACUAN DENVER II DAN PENGAMBIL KEPUTUSAN DENGAN METODE DECISION TREE BERBASIS JSP
DIAGNOSA KETERLAMBATAN PERKEMBANGAN PADA ANAK BALITA DENGAN ACUAN DENVER II DAN PENGAMBIL KEPUTUSAN DENGAN METODE DECISION TREE BERBASIS JSP Endah Rakhmawati 1, Entin Martiana K, M.Kom 2, Nur Rosyid Mubtadai,
BAB III METODOLOGI PENELITIAN. Dataset
BAB III METODOLOGI PENELITIAN Metodologi penelitian diuraikan dalam skema tahap penelitian untuk memberikan petunjuk atau gambaran yang jelas, teratur, dan sistematis seperti yang ditunjukkan pada Gambar
Moch. Ali Machmudi 1) 1) Stmik Bina Patria
UJI PENGARUH KARAKTERISTIK DATASET PADA PERFORMA ALGORITMA KLASIFIKASI Moch. Ali Machmudi 1) 1) Stmik Bina Patria 1) Jurusan Manjemen Informatika-D3 Email : 1 [email protected] 1) Abstrak Tujuan utama
PENERAPAN ALGORITMA C5.0 DALAM PENGKLASIFIKASIAN DATA MAHASISWA UNIVERSITAS NEGERI GORONTALO
PENERAPAN ALGORITMA C5.0 DALAM PENGKLASIFIKASIAN DATA MAHASISWA UNIVERSITAS NEGERI GORONTALO Wandira Irene, Mukhlisulfatih Latief, Lillyan Hadjaratie Program Studi S1 Sistem Informasi / Teknik Informatika
BAB 1 PENDAHULUAN 1.1 LATAR BELAKANG
BAB 1 PENDAHULUAN 1.1 LATAR BELAKANG Era komunikasi dengan menggunakan fasilitas internet memberikan banyak kemudahan dalam mendapatkan informasi yang dikehendaki. Dengan demikian semakin banyak orang,
Perangkat Lunak - Weka*
MMA10991 Topik Khusus - Machine Learning Perangkat Lunak - Weka* Dr. rer. nat. Hendri Murfi * Beberapa bagian dari slide ini adalah terjemahan dari slide Data Mining oleh I. H. Witten, E. Frank dan M.
Modul Praktikum WEKA. Pembaca modul ini diasumsikan telah mengerti dasar-dasar datamining.
Modul Praktikum WEKA Yudi Wibisono (e: [email protected] ); t: @yudiwbs Ilmu Komputer Universitas Pendidikan Indonesia (cs.upi.edu) Versi BETA : Oktober 2013 http://creativecommons.org/licenses/by-nc-sa/3.0/
DAFTAR ISI PHP... 15
DAFTAR ISI HALAMAN JUDUL... i LEMBAR PERSETUJUAN... ii LEMBAR PENGESAHAN... iii HALAMAN PERSEMBAHAN... iv HALAMAN MOTTO... v KATA PENGANTAR... vi INTISARI... viii DAFTAR ISI... ix DAFTAR GAMBAR... xii
ANALISIS KLASIFIKASI PADA NASABAH KREDIT KOPERASI X MENGGUNAKAN DECISION TREE C4.5 DAN NAÏVE BAYES
Analisis Klasifikasi pada Nasabah... (Ahadiyah Nurul Kholifah) 1 ANALISIS KLASIFIKASI PADA NASABAH KREDIT KOPERASI X MENGGUNAKAN DECISION TREE C4.5 DAN NAÏVE BAYES CLASSIFICATION ANALYSIS OF CREDIT CUSTOMERS
PEMBENTUKAN DECISION TREE DATA LAMA STUDI MAHASISWA MENGGUNAKAN ALGORITMA NBTREE DAN C4.5
PEMBENTUKAN DECISION TREE DATA LAMA STUDI MAHASISWA MENGGUNAKAN ALGORITMA NBTREE DAN C4.5 Syam Gunawan 1, Pritasari Palupiningsih 2 1,2 Jurusan Sistem Informasi, STMIK Indonesia 1 [email protected],
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 1.1 Data Mining Data mining adalah proses yang menggunakan teknik statistik, matematika, kecerdasan buatan, dan machine learning untuk mengekstrasi dan mengidentifikasi informasi
BAB II TINJAUAN PUSTAKA
BAB II TINJAUAN PUSTAKA 2.1 Penelitian terkait Penelitian ini sebelumnya dilakukan studi kepustakaan dari penelitian terdahulu sebagai dasar atau acuan untuk menyelesaikan tugas akhir. Dari studi kepustakaan
BAB IV METODOLOGI PENELITIAN. Penelitian ini dilakukan dengan melalui empat tahap utama, dimana
BAB IV METODOLOGI PENELITIAN Penelitian ini dilakukan dengan melalui empat tahap utama, dimana tahap pertama adalah proses pengumpulan dokumen teks yang akan digunakan data training dan data testing. Kemudian
KLASIFIKASI PENENTUAN TIM UTAMA OLAHRAGA HOCKEY MENGGUNAKAN ALGORITMA C4.5 (STUDI KASUS : HOCKEY KABUPATEN KENDAL)
KLASIFIKASI PENENTUAN TIM UTAMA OLAHRAGA HOCKEY MENGGUNAKAN ALGORITMA C4.5 (STUDI KASUS : HOCKEY KABUPATEN KENDAL) Budi Utami 1, Yuniarsi Rahayu, 2 1,2 Program Studi Teknik Informatika, Fakultas Ilmu Komputer,
BAB IV HASIL DAN PEMBAHASAN. dan fakor-faktor penyebab masalah tersebut bisa terjadi diantaranya. dimanfaatkan dan dikelola dengan baik.
BAB IV HASIL DAN PEMBAHASAN 4.1. Identifikasi Masalah Dalam menentukan status calon dosen dan dosen tetap terdapat masalahmasalah dan fakor-faktor penyebab masalah tersebut bisa terjadi diantaranya sebagai
REKOMENDASI TOPIK TUGAS AKHIR MAHASISWA TEKNIK INFORMATIKA DI UNIVERSITAS MUHAMMADIYAH JEMBER MENGGUNAKAN METODE NAÏVE BAYESIAN CLASSIFIER
REKOMENDASI TOPIK TUGAS AKHIR MAHASISWA TEKNIK INFORMATIKA DI UNIVERSITAS MUHAMMADIYAH JEMBER MENGGUNAKAN METODE NAÏVE BAYESIAN CLASSIFIER Titis Suwartiningsih (11 1065 1116) 1, Bagus Setya Rintyarna,
IMPLEMENTASI ALGORITMA ID3 UNTUK KLASIFIKASI PERFORMANSI MAHASISWA (STUDI KASUS ST3 TELKOM PURWOKERTO)
IMPLEMENTASI ALGORITMA ID3 UNTUK KLASIFIKASI PERFORMANSI MAHASISWA (STUDI KASUS ST3 TELKOM PURWOKERTO) Andika Elok Amalia 1), Muhammad Zidny Naf an 2) 1), 2) Program Studi Informatika ST3 Telkom Jl D.I.
LEARNING ARTIFICIAL INTELLIGENT. Dr. Muljono, S.Si, M. Kom
LEARNING ARTIFICIAL INTELLIGENT Dr. Muljono, S.Si, M. Kom Outline Decision tree learning Jaringan Syaraf Tiruan K-Nearest Neighborhood Naïve Bayes Decision Tree Learning : Klasifikasi untuk penerimaan
BAB I PENDAHULUAN 1.1 Latar Belakang 1.2 Perumusan Masalah
BAB I PENDAHULUAN 1.1 Latar Belakang Saat ini sering terjadi data explosion problem yaitu data data yang tersimpan dalam database berjumlah sangat besar namun dari data data tersebut belum banyak dimanfaatkan
Universitas Putra Indonesia YPTK Padang Fakultas Ilmu Komputer Program Studi Teknik Informatika. Classification Decision Tree
Universitas Putra Indonesia YPTK Padang Fakultas Ilmu Komputer Program Studi Teknik Informatika Classification Decision Tree Classification Decision Tree Pengertian Pohon Keputusan Pohon keputusan adalah
KLASIFIKASI PADA TEXT MINING
Text dan Web Mining - FTI UKDW - BUDI SUSANTO 1 KLASIFIKASI PADA TEXT MINING Budi Susanto Text dan Web Mining - FTI UKDW - BUDI SUSANTO 2 Tujuan Memahami konsep dasar sistem klasifikasi Memahami beberapa
Jurnal String Vol. 1 No. 1 Tahun 2016 ISSN:
KAJIAN KOMPARASI ALGORITMA C4.5, NAÏVE BAYES DAN NEURAL NETWORK DALAM PEMILIHAN PENERIMA BEASISWA (Studi Kasus pada SMA Muhammadiyah 4 Jakarta ) Ulfa Pauziah Program Studi Teknik Informatika, Universitas
4.1. Pengambilan Data
BAB IV HASIL PENGUJIAN DAN PEMBAHASAN Hasil pengujian adalah hasil final yang berarti penelitian telah selesai dilakukan, semua yang berkaitan dengan pengujian akan dibahas pada bab ini mulai dari pengolahan
BAB IV HASIL DAN PEMBAHASAN
BAB IV HASIL DAN PEMBAHASAN 4.1 Data E-mail Pada bagian ini akan disajikan detail jumlah keseluruhan dataset yang digunakan untuk penelitian. Dataset diambil CSDMC21 yang disediakan oleh http://www.csmining.org/
Pendahuluan* Data vs Informasi
MMA10991 Topik Khusus - Pendahuluan* Dr. rer. nat. Hendri Murfi * Beberapa bagian dari slide ini adalah terjemahan dari slide Data Mining oleh I. H. Witten, E. Frank dan M. A. Hall Intelligent Data Analysis
Scientific Journal of Informatics Vol. 2, No. 1, Mei 2015
Scientific Journal of Informatics Vol. 2, No. 1, Mei 2015 p-issn 2407-7658 http://journal.unnes.ac.id/nju/index.php/sji e-issn 2460-0040 JUDUL ARTIKEL Identifikasi Kualitas Beras dengan Citra Digital Arissa
Research of Science and Informatic
Sains dan Informatika Vol.1 (N0.1) (2015): 20-29 22 Nisfa Ridha Yani, Gunadi Widi Nurcahyo, Implementasi Data Mining JURNAL SAINS DAN INFORMATIKA Research of Science and Informatic e-mail: [email protected]
TINJAUAN PUSTAKA. Definisi Data Mining
TINJAUAN PUSTAKA Definisi Data Mining Sistem Manajemen Basis Data tingkat lanjut dan teknologi data warehousing mampu untuk mengumpulkan banjir data dan untuk mentransformasikannya ke dalam basis data
Penggunaan Pohon Keputusan untuk Data Mining
Penggunaan Pohon Keputusan untuk Data Mining Indah Kuntum Khairina NIM 13505088 Program Studi Teknik Teknik Informatika, Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jalan Ganesha
BAB III METODE PENELITIAN
BAB III METODE PENELITIAN Penelitian ini adalah penelitian eksperimen dengan langkah-langkah atau metode penelitian sebagai berikut: 1. Penentuan Masalah Penentuan masalah ini diperoleh dari studi literature
Model Data Mining sebagai Prediksi Penyakit Hipertensi Kehamilan dengan Teknik Decision Tree
Scientific Journal of Informatics Vol. 3, No. 1, Mei 2016 p-issn 2407-7658 http://journal.unnes.ac.id/nju/index.php/sji e-issn 2460-0040 Model Data Mining sebagai Prediksi Penyakit Hipertensi Kehamilan
PENERAPAN KLASIFIKASI DENGAN ALGORITMA CART UNTUK PREDIKSI KULIAH BAGI MAHASISWA BARU
PENERAPAN KLASIFIKASI DENGAN ALGORITMA CART UNTUK PREDIKSI KULIAH BAGI MAHASISWA BARU Mardiani Jurusan Sistem Informasi, STMIK MDP Palembang Jln. Rajawali No.14 Palembang 30113 Telp. (0711) 376400, Faks.
Klasifikasi. Diadaptasi dari slide Jiawei Han
Klasifikasi Diadaptasi dari slide Jiawei Han http://www.cs.uiuc.edu/~hanj/bk2/ Pengantar Classification Memprediksi kelas suatu item Membuat model berdasarkan data pelatihan dan digunakan untuk mengklasifikasi
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 2.1 Data mining 2.1.1 Pengertian Data mining Data mining adalah kegiatan yang meliputi pengumpulan, pemakaian data historis yang menemukan keteraturan, pola dan hubungan dalam set
Penerapan Data Mining dalam Memprediksi Pembelian cat
Konferensi Nasional Sistem & Informatika 2015 STMIK STIKOM Bali, 9 10 Oktober 2015 Penerapan Data Mining dalam Memprediksi Pembelian cat Fitriana Harahap STMIK POTENSI UTAMA Jl. KL. Yos Sudarso KM 6,5
LEARNING ARTIFICIAL INTELLIGENT
LEARNING ARTIFICIAL INTELLIGENT Outline Decision tree learning Jaringan Syaraf Tiruan K-Nearest Neighborhood Naïve Bayes Data Latih 1 Decision Tree??? Pelamar IPK Wawancara Diterima P1 Bagus Tinggi P2
PENENTUAN PENERIMAAN SISWA BARU MENGGUNAKAN DECISION TREE
PENENTUAN PENERIMAAN SISWA BARU MENGGUNAKAN DECISION TREE 1 Fitroh Rizky Muwardah, 2 Ricardus Anggi Pramunendar, M.Cs Program Studi Teknik Informatika S1 Fakultas Ilmu Komputer Universitas Dian Nuswantoro,
Decision Tree Learning Untuk Penentuan Jalur Kelulusan Mahasiswa
Decision Tree Learning Untuk Penentuan Jalur Kelulusan Mahasiswa Winda Widya Ariestya 1, Yulia Eka Praptiningsih 2, Wahyu Supriatin 3 Program Studi Sistem Informasi Fakultas Ilmu Komputer dan Teknologi
Seminar Nasional Aplikasi Teknologi Informasi 2012 (SNATI 2012) ISSN: 1907-5022 Yogyakarta, 15-16 Juni 2012 PENERAPAN KLASIFIKASI DENGAN ALGORITMA CART UNTUK PREDIKSI KULIAH BAGI MAHASISWA BARU Mardiani
Klasifikasi. Diadaptasi dari slide Jiawei Han
Klasifikasi Diadaptasi dari slide Jiawei Han http://www.cs.uiuc.edu/~hanj/bk2/ [email protected] / Okt 2012 Pengantar Classification Memprediksi kelas suatu item Membuat model berdasarkan data pelatihan dan
Modul IV KLASIFIKASI
LABORATORIUM DATA MINING JURUSAN TEKNIK INDUSTRI FAKULTAS TEKNOLOGI INDUSTRI UNIVERSITAS ISLAM INDONESIA Modul IV KLASIFIKASI TUJUAN PRAKTIKUM Setelah mengikuti praktikum modul ini diharapkan: 1. Mahasiswa
Decision Tree Learning Untuk Penentuan Jalur Kelulusan Mahasiswa
Decision Tree Learning Untuk Penentuan Jalur Kelulusan Mahasiswa Winda Widya Ariestya 1, Yulia Eka Praptiningsih 2, Wahyu Supriatin 3 Program Studi Sistem Informasi Fakultas Ilmu Komputer dan Teknologi
Jurnal Informatika Mulawarman Vol. 12, No. 1, Februari ISSN
Jurnal Informatika Mulawarman Vol. 12, No. 1, Februari 2017 50 APLIKASI KLASIFIKASI ALGORITMA C4.5 (STUDI KASUS MASA STUDI MAHASISWA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS MULAWARMAN
PERBANDINGAN KINERJA ALGORITMA KLASIFIKASI NAÏVE BAYESIAN, LAZY-IBK, ZERO-R, DAN DECISION TREE- J48
PERBANDINGAN KINERJA ALGORITMA KLASIFIKASI NAÏVE BAYESIAN, LAZY-IBK, ZERO-R, DAN DECISION TREE- J48 Sulidar Fitri Teknik Informatika STMIK AMIKOM Yogyakarta email : [email protected] Abstraksi Penelitian
Data Mining Pengklasifikasian: Konsep Dasar, Pohon Keputusan, and Evaluasi Model. Pengklasifikasian: Definisi. Catatan Kuliah untuk Bab 4
Data Mining Pengklasifikasian: Konsep Dasar, Pohon Keputusan, and Evaluasi Catatan Kuliah untuk Bab 4 Pengantar Data Mining oleh Tan, Steinbach, Kumar dialihbahasakan oleh Tim Pengajar Konsep Data Mining
Materi III Praktikum Data Mining Program Studi Matematika FMIPA Universitas Syiah Kuala
Materi III Praktikum Data Mining Program Studi Matematika FMIPA Universitas Syiah Kuala Dosen Pengasuh Dr. Taufik Fuadi Abidin, M.Tech Dr. Muhammad Subianto, M.Si {tfa,subianto}@informatika.unsyiah.ac.id
HASIL DAN PEMBAHASAN. Setiap tahapan di dalam penelitian ini akan ditunjukkan di dalam Tabel 2.
6 tahap ini, pola yang telah ditemukan dipresentasikan ke pengguna dengan teknik visualisasi agar pengguna dapat memahaminya. Deskripsi aturan klasifikasi akan dipresentasikan dalam bentuk aturan logika
KLASIFIKASI PADA TEXT MINING
Budi Susanto KLASIFIKASI PADA TEXT MINING Text dan Web Mining - FTI UKDW - BUDI SUSANTO 1 Tujuan Memahami konsep dasar sistem klasifikasi Memahami beberapa algoritma klasifikasi: KNN Naïve Bayes Decision
Sistem Pakar Diagnosa Penyakit Diabetes Melitus Menggunakan Algoritma Iterative Dichotomiser Three (ID3) Berbasis Android.
Sistem Pakar Diagnosa Penyakit Diabetes Melitus Menggunakan Algoritma Iterative Dichotomiser Three (ID3) Berbasis Android Artikel Ilmiah Diajukan kepada Fakultas Teknologi Informasi Untuk memperoleh Gelar
BAB II KAJIAN TEORI. Pada bab ini berisi tentang teori-teori dasar mengenai kredit, database,
BAB II KAJIAN TEORI Pada bab ini berisi tentang teori-teori dasar mengenai kredit, database, penambangan data (data mining), aturan klasifikasi, decision tree C4.5, naïve bayes, metode evaluasi model,
PENERAPAN DECISION TREEALGORITMA C4.5 DALAM PENGAMBILAN KEPUTUSAN HUNIAN TEMPAT TINGGAL
PENERAPAN DECISION TREEALGORITMA C4.5 DALAM PENGAMBILAN KEPUTUSAN HUNIAN TEMPAT TINGGAL Besse Helmi Mustawinar Teknik Informatika FTKOM Universitas Cokroaminoto Palopo Jl Latamacelling Nomor 19 Palopo,
BAB IV HASIL PENELITIAN DAN PEMBAHASAN
BAB IV HASIL PENELITIAN DAN PEMBAHASAN 1.1 Data Training Data training adalah data yang digunakan untuk pembelajaran pada proses data mining atau proses pembentukan pohon keputusan.pada penelitian ini
TEKNIK KLASIFIKASI POHON KEPUTUSAN UNTUK MEMPREDIKSI KEBANGKRUTAN BANK BERDASARKAN RASIO KEUANGAN BANK
TEKNIK KLASIFIKASI POHON KEPUTUSAN UNTUK MEMPREDIKSI KEBANGKRUTAN BANK BERDASARKAN RASIO KEUANGAN BANK 1 Nurma Jayanti Sulistyo Puspitodjati 3 Tety Elida 1 jurusan sistem informasi, universitas gunadarma
BAB II TINJAUAN PUSTAKA
BAB II TINJAUAN PUSTAKA 2.1 Data Mining 2.1.1 Pengertian Data Mining Dengan semakin besarnya jumlah data dan kebutuhan akan analisis data yang akurat maka dibutuhkan metode analisis yang tepat. Data mining
BAB II TINJAUAN PUSTAKA DAN DASAR TEORI. Dalam tinjauan pustaka dibawah ini terdapat 6 referensi sebagai berikut : - Algoritma Naïve Bayes Classifier
BAB II TINJAUAN PUSTAKA DAN DASAR TEORI 2.1 Tinjauan Pustaka Dalam tinjauan pustaka dibawah ini terdapat 6 referensi sebagai berikut : Tabel 2.1 Penelitian sebelumnya Parameter Penulis Objek Metode Hasil
IMPLEMENTASI DATA MINING UNTUK KLASIFIKASI NASABAH KREDIT BANK"X" MENGGUNAKAN CLASSIFICATION RULE
IMPLEMENTASI DATA MINING UNTUK KLASIFIKASI NASABAH KREDIT BANK"X" MENGGUNAKAN CLASSIFICATION RULE Hendra Marcos 1,2), Indriana Hidayah 1) 1) Jurusan Teknik Elektro Dan Teknik Informatika, Universitas Gadjah
Metode Iterative Dichotomizer 3 ( ID3 ) Untuk Penyeleksian Penerimaan Mahasiswa Baru
Metode Iterative Dichotomizer 3 ( ID3 ) Untuk Penyeleksian Penerimaan Mahasiswa Baru Wahyudin Program Pendidikan Ilmu Komputer, Universitas Pendidikan Indonesia Abstrak Konsep pohon merupakan salah satu
BAB I PENDAHULUAN Latar Belakang
BAB I PENDAHULUAN 1.1. Latar Belakang Pertukaran informasi di zaman modern ini telah sampai pada era digital. Hal ini ditandai dengan semakin dibutuhkannya teknologi berupa komputer dan jaringan internet
EDY KURNIAWAN DOSEN PEMBIMBING Dr. I Ketut Eddy Purnama, S.T., M.T Dr. Surya Sumpeno, S.T., MS.c
EDY KURNIAWAN 2209205007 DOSEN PEMBIMBING Dr. I Ketut Eddy Purnama, S.T., M.T Dr. Surya Sumpeno, S.T., MS.c PROGRAM MAGISTER BIDANG KEAHLIAN JARINGAN CERDAS MULTIMEDIA (DATA MINING) JURUSAN TEKNIK ELEKTRO
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI 2.1 Database Database (Connoly dan Begg, 2010 : 54-66) adalah suatu pembagian kumpulan data yang berisi secara logika, dan keterangan dari masing-masing data yang didesain untuk mendapatkan
BAB IV HASIL DAN PEMBAHASAN. Data yang digunakan dalam penelitian ini adalah data warehouse
1.1.Pengumpulan data BAB IV HASIL DAN PEMBAHASAN Data yang digunakan dalam penelitian ini adalah data warehouse Graduation Universitas Muhammadiyah Yogyakarta pada Fakultas Teknik UMY tahun kelulusan 2013,
Pohon Keputusan. 6.1 Inductive Learning
6 Pohon Keputusan Sometimes you make the right decision, sometimes you make the decision right. Phil McGraw Bab ini akan menelaskan salah satu varian pohon keputusan yaitu ID3 oleh Quinlan [27, 28] yang
IMPLEMENTASI ALGORITMA C4.5 UNTUK KLASIFIKASI BIDANG KERJA ALUMNI DI STMIK LPKIA BANDUNG
IMPLEMENTASI ALGORITMA C4.5 UNTUK KLASIFIKASI BIDANG KERJA ALUMNI DI STMIK LPKIA BANDUNG 1 Ati Suci Dian Martha, 2 Afryanto Redy 1 Program Studi Sistem Informasi STMIK LPKIA 1 Program Studi Sistem Informasi
BAB III ANALISA DAN DESAIN SISTEM
BAB III ANALISA DAN DESAIN SISTEM Pada bab ini akan dibahas mengenai Perancangan Sistem Pendukung Keputusan Pemberian Bonus Berdasarkan Penilaian Kinerja Karyawan Pada PT. Telkom, Tbk Medan Dengan Metode
PENCARIAM JURUSAN SUBANG DENGAN ALGORITMA C 4.5 DAN DATA MINING STMIK SUBANG Timbo Faritcan Parlaungan Siallagan
PENCARIAM JURUSAN SUBANG DENGAN ALGORITMA C 4.5 DAN DATA MINING STMIK SUBANG Timbo Faritcan Parlaungan Siallagan Program Studi Teknik Informatika, STMIK Subang Jl. Marsinu No. 5 - Subang, Tlp. 0206-417853
S1 Teknik Informatika Fakultas Teknologi Informasi Universitas Kristen Maranatha
S1 Teknik Informatika Fakultas Teknologi Informasi Universitas Kristen Maranatha Pendahuluan Classification Decision tree induction Bayesian classification 2 Classification : klasifikasi data berdasarkan
BAB III METODOLOGI 3.1. Prosedur Penelitian Identifikasi Masalah
BAB III METODOLOGI Dalam penelitian ini metodologi memegang peranan penting guna mendapatkan data yang obyektik, valid dan selanjutnya digunakan untuk memecahkan permasalahan yang telah dirumuskan. Maka
BAB I PENDAHULUAN 1.1 Latar Belakang
BAB I PENDAHULUAN 1.1 Latar Belakang Education data mining merupakan penelitian didasarkan data di dunia pendidikan untuk menggali dan memperoleh informasi tersembunyi dari data yang ada. Pemanfaatan education
Versi Online tersedia di : JURNAL TECH-E (Online)
JURNAL TECH-E - VOL. 1 NO. 1 (2017) Versi Online tersedia di : http://bsti.ubd.ac.id/e-jurnal JURNAL TECH-E 2581-116 (Online) Artikel Perancangan Aplikasi Prediksi Kelulusan Mahasiswa Tepat Waktu Pada
BAB II TINJAUAN PUSTAKA Indeks Prestasi Kumulatif dan Lama Studi. menggunakan dokumen/format resmi hasil penilaian studi mahasiswa yang sudah
BAB II TINJAUAN PUSTAKA 2.1 Landasan Teori 2.1.1 Indeks Prestasi Kumulatif dan Lama Studi Mahasiswa yang telah menyelesaikan keseluruhan beban program studi yang telah ditetapkan dapat dipertimbangkan
POHON KEPUTUSAN DENGAN ALGORITMA C4.5
POHON KEPUTUSAN DENGAN ALGORITMA C4.5 1. Pengantar Algoritma C4.5 Klasifikasi merupakan salah satu proses pada data mining yang bertujuan untuk menemukan pola yang berharga dari data yang berukuran relatif
IDENTIFIKASI MAHASISWA YANG MEMPUNYAI KECENDERUNGAN LULUS TIDAK TEPAT WAKTU PADA PROGRAM STUDI MMT-ITS DENGAN MENGGUNAKAN ALGORITMA C4.
IDENTIFIKASI MAHASISWA YANG MEMPUNYAI KECENDERUNGAN LULUS TIDAK TEPAT WAKTU PADA PROGRAM STUDI MMT-ITS DENGAN MENGGUNAKAN ALGORITMA C4.5 Amelia Halim 1) dan Joko Lianto Buliali 2) 1) Program Studi Magister
PRAKTIKUM KE-5 KLASIFIKASI I
PRAKTIKUM KE-5 KLASIFIKASI I 1. Tujuan Praktikum 1) Mahasiswa mempunyai pengetahuan dan kemampuan dasar mengenai metode pencarian pengetahuan / pola data dari sejumlah data dengan menggunakan teknik klasifikasi.
IMPLEMENTASI TEKNIK DATA MINING UNTUK MEMPREDIKSI TINGKAT KELULUSAN MAHASISWA PADA UNIVERSITAS BINA DARMA PALEMBANG
IMPLEMENTASI TEKNIK DATA MINING UNTUK MEMPREDIKSI TINGKAT KELULUSAN MAHASISWA PADA UNIVERSITAS BINA DARMA PALEMBANG Andri 1), Yesi Novaria Kunang 2), Sri Murniati 3) 1,2,3) Jurusan Sistem Informasi Universitas
SISTEM PENDUKUNG KEPUTUSAN PEMINATAN JURUSAN SISWA DI SMA MENGGUNAKAN ALGORITMA KLASIFIKASI DATA MINING C4.5 THE DECISION SUPPORT SYSTEM FOR SUBJECT SPECIALIZATION STUDENTS IN HIGH SCHOOL USING DATA MINING
Bab I Pendahuluan. 1.1 Latar Belakang
Bab I Pendahuluan 1.1 Latar Belakang Klasifikasi merupakan task dari data mining yang bertujuan untuk memberikan label kelas terhadap suatu data. Pemberian label kelas ini dilakukan oleh classifier. Suatu
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 2.1 Data Mining Data Mining adalah proses yang mempekerjakan satu atau lebih teknik pembelajaran komputer (machine learning) untuk menganalisis dan mengekstraksi pengetahuan (knowledge)
LEARNING. Program Studi Ilmu Komputer FPMIPA UPI RNI IK460(Kecerdasan Buatan)
LEARNING Jiawei Han and Micheline Kamber. 2006. Data Mining Concepts and Techniques. San Fransisco : Elsevier M.Tim Jones. Artificial Intelligence A System Approach. Slide Kuliah Data Mining - Klasifikasi,
BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI. yang tepat. Sistem data mining mampu memberikan informasi yang tepat dan
BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI 2.1. Tinjauan Pustaka Sistem data mining akan lebih efektif dan efisiensi dengan komputerisasi yang tepat. Sistem data mining mampu memberikan informasi yang
KLASIFIKASI NASABAH ASURANSI JIWA MENGGUNAKAN ALGORITMA NAIVE BAYES BERBASIS BACKWARD ELIMINATION
KLASIFIKASI NASABAH ASURANSI JIWA MENGGUNAKAN ALGORITMA NAIVE BAYES BERBASIS BACKWARD ELIMINATION Betrisandi [email protected] Universitas Ichsan Gorontalo Abstrak Pendapatan untuk perusahaan asuransi
PERBANDINGAN ALGORITMA ID3 DAN C5.0 DALAM INDENTIFIKASI PENJURUSAN SISWA SMA
PERBANDINGAN ALGORITMA ID3 DAN C5.0 DALAM INDENTIFIKASI PENJURUSAN SISWA SMA *Holisatul Munawaroh, **Bain Khusnul K,S.T.,M.Kom ***Yeni Kustiyahningsih,S.Kom.,M.Kom Program Studi Teknik Informatika, Universitas
IMPLEMENTASI DATA MINING DENGAN ALGORITMA C4.5 UNTUK PENJURUSAN SISWA (STUDI KASUS: SMA NEGERI 1 PONTIANAK)
IMPLEMENTASI DATA MINING DENGAN ALGORITMA C4.5 UNTUK PENJURUSAN SISWA (STUDI KASUS: SMA NEGERI 1 PONTIANAK) [1] Beti Novianti, [2] Tedy Rismawan [3] Syamsul Bahri [1][2][3] Jurusan Sistem Komputer, Fakultas
PENERAPAN DATA MINING MENGGUNAKAN ALGORITME C4.5 DALAM PENENTUAN JURUSAN SISWA SMA NEGERI 2 SURAKARTA
PENERAPAN DATA MINING MENGGUNAKAN ALGORITME C4.5 DALAM PENENTUAN JURUSAN SISWA SMA NEGERI 2 SURAKARTA oleh NADYA AL FITRIANI M0111060 SKRIPSI ditulis dan diajukan untuk memenuhi sebagian persyaratan memperoleh
