Pendahuluan* Data vs Informasi
|
|
|
- Hendra Salim
- 9 tahun lalu
- Tontonan:
Transkripsi
1 MMA10991 Topik Khusus - Pendahuluan* Dr. rer. nat. Hendri Murfi * Beberapa bagian dari slide ini adalah terjemahan dari slide Data Mining oleh I. H. Witten, E. Frank dan M. A. Hall Intelligent Data Analysis (IDA) Group Departemen Matematika, Universitas Indonesia Depok Telp / , Fax , . [email protected] Data vs Informasi Interaksi dalam bermasyarakat menghasilkan data dalam jumlah yang sangat besar Sumber: bisnis, ilmu pengetahuan, kedokteran, ekonomi, geografi, lingkungan, olah raga, dll Perlu teknik tertentu untuk mengekstrak informasi dari data mentah Data: fakta-fakta yang tercatat Informasi: pola-pola stuktural yang ada pada data, misal keterhubungan (relationships) atau ketergantungan (depedencies) 2
2 Data vs Informasi Contoh 1: in vitro fertilization Diberikan: embrio yang dideskripsikan oleh 60 fitur Masalah: pemilihan embrio yang akan bertahan hidup Data: fakta historis dari embrio dan hasil akhir Contoh 2: cow culling Diberikan: sapi yang dideskripsikan oleh 700 fitur Masalah: pemilihan sapi yang akan dimusnakan Data: fakta historis dari sapi dan keputusan peternak 3 Latar Belakang Memahami keterhubungan (relationships) dan ketergantungan (depedencies) dalam suatu koleksi data adalah suatu aspek yang sangat penting dalam menganalisa data untuk mengekstrak informasi yang ada pada data tersebut. Deskripsi struktural tersebut dapat digunakan untuk: Memprediksi output pada suatu situasi yang baru Memahami dan menjelaskan bagaimana prediksi tersebut dihasilkan Ketika tidak ada pendekatan pemodelan (modelling approaches) yang mudah untuk melakukan hal tersebut, maka metodemetode cerdas, dikenal juga dengan nama machine learning, menjadi solusi alternatif 4
3 Deskripsi Struktural: Penentuan Jenis Contact Lens Age Spectacle prescription Astigmatism Tear production rate Recommended lenses rmal Soft rmal Hard If-then rules: If tear production rate = reduced then recommendation = none Otherwise, if age = young and astigmatic = no then recommendation = soft 5 Deskripsi Struktural: Penentuan Jenis Contact Lens Age Spectacle prescription Astigmatism Tear production rate rmal rmal rmal rmal rmal rmal rmal rmal rmal rmal rmal rmal Recommended lenses Soft Hard Soft hard Soft Hard Soft Hard Soft 6
4 Deskripsi Struktural: Penentuan Jenis Contact Lens If-then rules yang lengkap: If tear production rate = reduced then recommendation = none If age = young and astigmatic = no and tear production rate = normal then recommendation = soft If age = pre-presbyopic and astigmatic = no and tear production rate = normal then recommendation = soft If age = presbyopic and spectacle prescription = myope and astigmatic = no then recommendation = none If spectacle prescription = hypermetrope and astigmatic = no and tear production rate = normal then recommendation = soft If spectacle prescription = myope and astigmatic = yes and tear production rate = normal then recommendation = hard If age young and astigmatic = yes and tear production rate = normal then recommendation = hard If age = pre-presbyopic and spectacle prescription = hypermetrope and astigmatic = yes then recommendation = none If age = presbyopic and spectacle prescription = hypermetrope and astigmatic = yes then recommendation = none 7 Decision Tree: Deskripsi Struktural: Penentuan Jenis Contact Lens 8
5 Deskripsi Struktural: Prediksi Kinerja CPU Contoh: 209 konfigurasi komputer yang berbeda Cycle time (ns) Main memory (Kb) Cache (Kb) Channels Performanc e MYCT MMIN MMAX CACH CHMIN CHMAX PRP Model Linear (regresi): PRP = MYCT MMIN MMAX CACH CHMIN CHMAX 9 Deskripsi Struktural: Representasi Pola-pola struktur yang ada pada suatu koleksi data (knowledge) dapat direpresentasi/diekspresikan dalam bentuk: Tabel Aturan (If-then Rules) Pohon (Decision Trees) Fungsi Model Linear Instance 10
6 Definisi adalah metode yang dapat belajar dari data (data-driven method) sehingga menjadi cerdas. Cerdas dalam artian memiliki kemampuan generalisasi terhadap data baru yang belum dipelajari sebelumnya. Dalam tataran metode, belajar adalah proses penentuan nilai parameter-parameter dari metode tersebut. Pengembangan metode-metode machine learning menggunakan ide-ide dari: Mathematics, Statistics, Computer Science, Computational Neuroscience, Cognitive Science, Psychology 11 Tahapan Umum Proses Input Metode Output x 1 x 2 : x D f(x,w) t Diberikan data pelatihan (training data), misal x i dan/atau t i, i = 1 sd N Preprocessing: pemilihan/ekstraksi fitur dari data, misal x i = (x 1, x 2,.., x D ) T Learning: penentuan parameter metode, misal w, berdasarkan data pelatihan Testing: pengujian metode dengan data baru. Data penguji (testing data) tersebut harus dilakukan preprocessing yang sama dengan data pembelajaran sebelum dieksekusi oleh metode 12
7 Preprocessing: Pemilihan Fitur Langka pertama dalam tahapan preprocessing adalah pemilihan fitur (feature selection) dari data. Selanjutnya, data dapat direpresentasi dalam bentuk vektor, matrik atau tensor. Misal: pada perekomendasian jenis contact lens, fitur-fitur tersebut adalah age, spectacle prescription, astigmatism, tear production rate. Sehingga, data dapat direpresentasikan dalam bentuk vektor, misal x 1 = (,,, ) T Age Spectacle prescription Astigmatism Tear production rate rmal rmal Recommended lenses Soft Hard 13 Preprocessing: Pemilihan Fitur Pada beberapa jenis data, proses pemilihan fitur dan merepresentasikan data dalam bentuk vektor, matrik atau tensor membutuhkan mekanisme yang cukup kompleks, misal untuk data dalam bentuk gambar, video, suara, teks, dll [1.]
8 Preprocessing: Ekstraksi Fitur Pemilihan fitur sangat mempengaruhi proses pembelajaran, baik dari segi kemudahan, kecepatan, maupun akurasi. Pemilihan fitur-fitur dari fitur-fitur yang ada dikenal juga dengan istilah ekstraksi fitur (feature extraction). Ekstraksi fitur erat kaitannya dengan mereduksi dimensi input (dimensionality reduction) untuk mengatasi masalah komputasi yang dikenal dengan istilah curse dimensionality problem 15 Preprocessing: Verifikasi Data Salah satu cara untuk melakukan verifikasi terhadap data yang ada adalah dengan melakukan visualisasi terhadap data tersebut Contoh sederhana adalah menggunakan histogram untuk menunjukkan distribusi data nominal, atau graph untuk data numerik Dengan visualisasi ini diharapkan kita akan dapat melihat outlier, yang menyatakan error pada data, atau kesalahan koding seperti tahun bernilai 9999, berat bernilai -1 kg. 16
9 Preprocessing: Verifikasi Data Contoh visualisasi distribusi kelas dari suatu fitur 17 Preprocessing: Verifikasi Data Contoh visualisasi distribusi kelas antar fitur 18
10 Learning: Jenis-Jenis Learning Diberikan data pelatihan x i, i = 1 sd N, dan/atau t i, i = 1 as N Supervised Learning. Data pelatihan disertai target, yaitu {x i, t i }, i = 1 sd N. Tujuan pembelajaran adalah membangun model yang dapat menghasilkan output yang benar untuk suatu data input, misal untuk pengklasifikasian (classification), regresi (regression), ranking Unsupervised Learning. Data pelatihan tidak disertai target, yaitu x i, i = 1 sd N. Tujuan pembelajaran adalah membagun model yang dapat menemukan komponen/variabel/fitur tersembunyi pada data pelatihan, yang dapat digunakan untuk: pengelompokan (clustering), reduksi dimensi (dimension reduction), rekomendasi, dll 19 Supervised Learning Regresi Nilai output t i bernilai kontinu (riil) Bertujuan memprediksi output dengan akurat untuk data baru Contoh: Prediksi kinerja CPU Klasifikasi Nilai output t i bernilai diskrit (kelas) Bertujuan mengklasifikasi data baru dengan akurat Contoh: Klasifikasi jenis contact lens 20
11 Supervised Learning Ranking / Regresi Ordinal Nilai output t i bernilai kontinu (riil) Bertujuan memprediksi ranking atau urutan dari data baru 21 Unsupervised Learning Bertujuan untuk menemukan variabel/komponen/fitur tersembunyi pada data pembelajaran yang dapat digunakan untuk: Clustering Dimension Reduction Recommendation Topic Modeling 22
12 Testing: Generalization Capability Kinerja Metode diukur berdasarkan kemampuan generalisasinya, yaitu akurasi pada data yang tidak digunakan pada tahap pelatihan, yang disebut juga dengan istilah kapabilitas generalisasi (generalization capability). Data dibagi menjadi dua bagian, yaitu data training dan data testing Kapabilitas generalisasi diukur pada data yang tidak terlibat dalam pembentukan model, yaitu data testing. Kapabilitas generalisasi digunakan sebagai dasar tingkat kepercayaan pada hasil yang diberikan oleh suatu model Selanjutnya, data training dan data testing digabung menjadi data training baru yang akan digunakan untuk membangun model baru untuk penggunaan aktual 23 Aplikasi Computer Vision 24
13 Aplikasi Speech Recognation 25 Aplikasi Web: Learning to Rank, Recommender System 26
14 Aplikasi Environment, Finance, Diseases, Agriculture 27 Topik Supervised Learning. Linear Model; Neural Networks; Metode Kernel, Radial Basis Function Network; Support Vector Machine: Classification, Regression, Ranking, Ordinal Regression, Density Estimation Unsupervised Learning. K-Means; Principal Component Analysis (PCA); Independent Component Analysis (ICA); Latent Semantic Analysis (LSA); Matrix Factorization Semisupervised Learning Reinformance Learning 28
15 Perangkat Lunak WEKA Dikembang dengan Java Dapat digunakan melalui GUI maupun command-line dari Java Open source dapat di unduh di scikit-learn Dikembangkan dengan Python Dapat digunakan hanya melalui command-line dari Python Open source dapat di unduh di 29 Perangkat Lunak LIBSVM Dikembang dengan C/C++ Dapat digunakan melalui command-line dari DOS, Java, Python, Matlab, R, WEKA, dll Free dapat di unduh di SVMlight Dikembangkan dengan C/C++ Dapat digunakan melalui command-line dari DOS, Java, Python, Matlab, dll Free dapat diunduh di 30
16 Buku Referensi Witten, I. H., et. al., Data Mining: Practical Tools and Techniques, Elsevier Inc., 2011 Bishop, C. H., Pattern Recognition and, Springer, 2006 Schoelkopf and Smola, Learning with Kernels, MIT Press, 2002 C. E. Rasmussen & C. K. I. Williams, Gaussian Process for Machine Learning, MIT Press, 2006 Vapnik, The Nature of Statistical Learning Theory, Spinger, 2000 Jolliffe, Principal Component Analysis, Springer, 2000 Hyvaerinen, Karhunen & Oja, Independent Component Analysis, Wiley, 2001 Landauer,T. K., McNamara, D.S., Dennis, S. and Kintsch W. (Eds), Handbook of Latent Semantic Analysis, Mahwah NJ: Lawrence Erlbaum Associates, Grup Riset Menjadi topik penelitian pada banyak grup riset, misal: Google ( Microsoft ( Yahoo ( TU Berlin (
17 Konferensi dan Jurnal International Conference on (ICML) European Conference on (ECML) Asian Conference on (ACML) Conference on Neural Infomation Processing System (NIPS) Annual Conference on Learning Theory (COLT) Journal on Research ( diterbitkan oleh Springer 33
Neural Networks. Machine Learning
MMA10991 Topik Khusus - Machine Learning Dr. rer. nat. Hendri Murfi Intelligent Data Analysis (IDA) Group Departemen Matematika, Universitas Indonesia Depok 16424 Telp. +62-21-7862719/7863439, Fax. +62-21-7863439,
Metode Kernel. Machine Learning
MMA10991 Topik Khusus Machine Learning Metode Kernel Dr. rer. nat. Hendri Murfi Intelligent Data Analysis (IDA) Group Departemen Matematika, Universitas Indonesia Depok 16424 Telp. +62-21-7862719/7863439,
Model Linear untuk Regresi
MMA10991 Topik Khusus - Machine Learning Model Linear untuk Regresi Dr. rer. nat. Hendri Murfi Intelligent Data Analysis (IDA) Group Departemen Matematika, Universitas Indonesia Depok 16424 Telp. +62-21-7862719/7863439,
Model Linear untuk Klasifikasi
MMA10991 Topik Khusus - Machine Learning Model Linear untuk Klasifikasi Dr. rer. nat. Hendri Murfi Intelligent Data Analysis (IDA) Group Departemen Matematika, Universitas Indonesia Depok 16424 Telp. +62-21-7862719/7863439,
SVM untuk Regresi. Machine Learning
MMA10991 Topik Khusus - Machine Learning Dr. rer. nat. Hendri Murfi Intelligent Data Analysis (IDA) Group Departemen Matematika, Universitas Indonesia Depok 16424 Telp. +62-21-7862719/7863439, Fax. +62-21-7863439,
BUKU RANCANGAN PEMBELAJARAN
BUKU RANCANGAN PEMBELAJARAN Mata Kuliah Machine Learning oleh Dr. rer. nat. Hendri Murfi Program Studi Magister Matematika Departemen Matematika - FMIPA Universitas Indonesia 2013 DAFTAR ISI DAFTAR ISI
Classification (1) Classification (3) Classification (2) Contoh Classification. Classification (4)
Knowledge Discovery in Databases (IS704) dan Data Mining (CS704) Kuliah #5: Classification (Bagian 1) Gunawan Jurusan Teknik Informatika Sekolah Tinggi Teknik Surabaya Revisi 14 Agustus 2007 Classification
SVM untuk Regresi Ordinal
MMA10991 Topik Khusus - Machine Learning Dr. rer. nat. Hendri Murfi Intelligent Data Analysis (IDA) Group Departemen Matematika, Universitas Indonesia Depok 16424 Telp. +62-21-7862719/7863439, Fax. +62-21-7863439,
Support Vector Machine
MMA10991 Topik Khusus Machine Learning Dr. rer. nat. Hendri Murfi Intelligent Data Analysis (IDA) Group Departemen Matematika, Universitas Indonesia Depok 16424 Telp. +62-21-7862719/7863439, Fax. +62-21-7863439,
Studi Kasus Sistem Rekomendasi
MMA10991 Topik Khusus - Machine Learning Studi Kasus Sistem Rekomendasi Dr. rer. nat. Hendri Murfi Intelligent Data Analysis (IDA) Group Departemen Matematika, Universitas Indonesia Depok 16424 Telp. +62-21-7862719/7863439,
Penerapan Algoritma C4.5 Untuk Menentukan Kesesuaian Lensa Kontak dengan Mata Pasien
1 Penerapan Algoritma C4.5 Untuk Menentukan Kesesuaian Lensa Kontak dengan Mata Pasien Ketut Wisnu Antara 1, Gede Thadeo Angga Kusuma 2 Jurusan Pendidikan Teknik Informatika Universitas Pendidikan Ganesha
Algoritma Data Mining
Algoritma Data Mining Algoritma Estimasi Algoritma estimasi mirip dengan algoritma klasifikasi, tapi variabel target adalah berupa bilangan numerik (kontinyu) dan bukan kategorikal (nominal atau diskrit)
Radial Basis Function Networks
MMA099 Topik Khusus Machine Learning Radial Basis Function Networks Dr. rer. nat. Hendri Murfi Intelligent Data Analysis (IDA) Group Departemen Matematika, Universitas Indonesia Depok 6424 Telp. +62-2-786279/7863439,
Perangkat Lunak - Weka*
MMA10991 Topik Khusus - Machine Learning Perangkat Lunak - Weka* Dr. rer. nat. Hendri Murfi * Beberapa bagian dari slide ini adalah terjemahan dari slide Data Mining oleh I. H. Witten, E. Frank dan M.
Matrix Factorization. Machine Learning
MMA10991 Topik Khusus - Machine Learning Matrix Factorization Dr. rer. nat. Hendri Murfi Intelligent Data Analysis (IDA) Group Departemen Matematika, Universitas Indonesia Depok 16424 05.11.13 1 Telp.
SVM untuk Ranking. Model Linear
MMA10991 Topik Khusus - Machine Learning Dr. rer. nat. Hendri Murfi Intelligent Data Analysis (IDA) Group Departemen Matematika, Universitas Indonesia Depok 16424 Telp. +62-21-7862719/7863439, Fax. +62-21-7863439,
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 1.1 Data Mining Data mining adalah proses yang menggunakan teknik statistik, matematika, kecerdasan buatan, dan machine learning untuk mengekstrasi dan mengidentifikasi informasi
Materi Praktikum Data Mining Decision Tree Program Studi Informatika / Matematika FMIPA Universitas Syiah Kuala
Materi Decision Tree Program Studi Informatika / Matematika FMIPA Universitas Syiah Kuala Dosen Pengasuh Dr. Taufik Fuadi Abidin, M.Tech Dr. Muhammad Subianto, M.Si {tfa,subianto}@informatika.unsyiah.ac.id
PRODI S1 STATISTIKA FMIPA-ITS RENCANA PEMBELAJARAN Data Mining Kode/SKS: SS / (2/1/0) Dosen : SWP, KF Semester : VII
RPS1SK08 Kurikulum 2014, Edisi : September2014 No.Revisi : 00 Hal: 1 dari 6 A. : 1. CP 3.2 : Melakukan analisis data dengan menggunakan program statistik 2. CP 10.3 : Mampu menganalisis big data dengan
BAB III METODOLOGI 3.1. Prosedur Penelitian Identifikasi Masalah
BAB III METODOLOGI Dalam penelitian ini metodologi memegang peranan penting guna mendapatkan data yang obyektik, valid dan selanjutnya digunakan untuk memecahkan permasalahan yang telah dirumuskan. Maka
Pendahuluan : Evaluasi*
MMA10991 Topik Khusus - Machine Learning Pendahuluan : Evaluasi* Dr. rer. nat. Hendri Murfi * Beberapa bagian dari slide ini adalah terjemahan dari slide Data Mining oleh I. H. Witten, E. Frank dan M.
Data Mining. Fajar Agung Nugroho, S.Kom, M.CS
Data Mining Fajar Agung Nugroho, S.Kom, M.CS [email protected] Textbooks Pretest 1. Jelaskan apa yang dimaksud dengan data mining? 2. Sebutkan peran data mining dan algoritma apa saja
1. Pendahuluan. 1.1 Latar Belakang
1. Pendahuluan 1.1 Latar Belakang Persaingan dalam dunia bisnis, terlebih lagi bagi perusahaan besar, tidak lepas dari adanya proses jual beli saham. Saham secara umum merupakan surat berharga yang dapat
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 2.1 Data Mining Data Mining adalah proses yang mempekerjakan satu atau lebih teknik pembelajaran komputer (machine learning) untuk menganalisis dan mengekstraksi pengetahuan (knowledge)
RENCANA PEMBELAJARAN SEMESTER (RPS)
RENCANA PEMBELAJARAN SEMESTER (RPS) CIG4A3 Pembelajaran Mesin Disusun oleh: Agung Toto Wibowo Said Al Faraby PROGRAM STUDI S1 TEKNIK INFORMATIKA FAKULTAS INFORMATIKA TELKOM UNIVERSITY LEMBAR PENGESAHAN
Data Mining Terapan dengan Matlab
Pendahuluan i ii Data Mining Terapan dengan Matlab Pendahuluan iii DATA MINING TERAPAN DENGAN MATLAB Oleh : Budi Santosa Edisi Pertama Cetakan Pertama, 2007 Hak Cipta 2007 pada penulis, Hak Cipta dilindungi
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI Dalam bab ini dibahas teori yang digunakan sebagai landasan pengerjaan Support Vector Backpropagation. Pembahasan bertujuan untuk menguraikan teori dan algoritma yang digunakan dalam
BAB 3 METODOLOGI. seseorang. Hal inilah yang mendorong adanya perkembangan teknologi
BAB 3 METODOLOGI 3.1. Kerangka Berpikir Pengenalan ekspresi wajah adalah salah satu bentuk representasi kecerdasan manusia yang dapat digunakan untuk mendeteksi kondisi emosi seseorang. Hal inilah yang
RENCANA PEMBELAJARAN SEMESTER
RENCANA PEMBELAJARAN SEMESTER Mata Kuliah Big Data and Data Analytics Semester Tujuh Kode SMXXXXXX Prodi MBTI Dosen Andry Alamsyah SKS 4 Capaian Pembelajaran 1. Memahami fenomena, framework, peluang dan
UJI KINERJA FACE RECOGNITION MENGGUNAKAN EIGENFACES
1 Uji Kinerja Face Recognition Menggunakan Eigenfaces UJI KINERJA FACE RECOGNITION MENGGUNAKAN EIGENFACES ABDUL AZIS ABDILLAH 1 1STKIP Surya, Tangerang, Banten, [email protected] Abstrak. Pada paper
Analisis Akurasi Support Vector Machine...
ANALISIS AKURASI SUPPORT VECTOR MACHINE DENGAN FUNGSI KERNEL GAUSSIAN RBF UNTUK PRAKIRAAN BEBAN LISTRIK HARIAN SEKTOR INDUSTRI Luqman Assaffat 1 * 1 Jurusan Teknik Elektro, Fakultas Teknik, Universitas
1. Pendahuluan Perumusan Masalah Dari latar belakang yang dipaparkan di atas, masalah yang dapat dirumuskan adalah:
1. Pendahuluan 1.1. Latar Belakang Wajah manusia dapat menunjukkan dimorfisme seksual yang cukup jelas [1][2][3][4][5]. Wajah pria dan wanita memiliki bentuk dan tekstur yang berbeda, dan petunjuk yang
INTEGRASI PERINGKAS DOKUMEN OTOMATIS SEBAGAI FEATURE REDUCTION PADA CLUSTERING DOKUMEN
INTEGRASI PERINGKAS DOKUMEN OTOMATIS SEBAGAI FEATURE REDUCTION PADA CLUSTERING DOKUMEN Abu Salam 1, Catur Supriyanto 2, Amiq Fahmi 3 1,2 Magister Teknik Informatika, Univ. Dian Nuswantoro Email: [email protected]
Studi Kasus Klasifikasi Hutan
MMA10991 Topik Khusus Machine Learning Studi Kasus Klasifikasi Hutan Dr. rer. nat. Hendri Murfi Intelligent Data Analysis (IDA) Group Departemen Matematika, Universitas Indonesia Depok 16424 Telp. +62
Educational Data Mining untuk Mengetahui Pola Minat Kerja Mahasiswa
Educational Data Mining untuk Mengetahui Pola Minat Kerja Mahasiswa Daniel Swanjaya 1, Abidatul Izzah 2 1,2 Universitas Nusantara PGRI Kediri Kontak Person: Daniel Swanjaya 1, Abidatul Izzah 2 1,2 Kampus
KLASIFIKASI & PENGENALAN POLA. Tatap Muka 2
KLASIFIKASI & PENGENALAN POLA Tatap Muka 2 1 Pendahuluan Bagaimana manusia mengenali Wajah Kata yang didengar Huruf yang ditulis tangan/mesin Bentuk benda Buah yang sudah masak (masih mentah?) Pengenalan
BAB I PENDAHULUAN 1.1. Latar Belakang
BAB I PENDAHULUAN 1.1. Latar Belakang Dalam mencapai tujuan pembangunan ekonomi diperlukan peran serta lembaga keuangan untuk membiayai pembangunan tersebut. Lembaga keuangan memegang peranan penting dalam
PENERAPAN DATA MINING UNTUK EVALUASI KINERJA AKADEMIK MAHASISWA MENGGUNAKAN ALGORITMA NAÏVE BAYES CLASSIFIER
PENERAPAN DATA MINING UNTUK EVALUASI KINERJA AKADEMIK MAHASISWA MENGGUNAKAN ALGORITMA NAÏVE BAYES CLASSIFIER I. PENDAHULUAN Mahasiswa merupakan salah satu aspek penting dalam evaluasi keberhasilan penyelenggaraan
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 2.1. Pendahuluan Didalam bab ini menceritakan semua teori-teori yang digunakan didalam proses algoritma decision tree, algoritma Random tree dan Random Florest serta teoriteori dan
STUDI KOMPARASI METODE KLASIFIKASI DUA KELAS
Program Studi MMT-ITS, Surabaya Pebruari 007 STUDI KOMPARASI METODE KLASIFIKASI DUA KELAS Budi Santosa dan Devi Rosita Hanum Teknik Industri Institut Teknologi Sepuluh Nopember Email: [email protected],
Jaringan syaraf dengan lapisan tunggal
Jaringan syaraf adalah merupakan salah satu representasi buatan dari otak manusia yang mencoba untuk mensimulasikan proses pembelajaran pada otak manusia. Syaraf manusia Jaringan syaraf dengan lapisan
BAB II KAJIANPUSTAKA
BAB II KAJIANPUSTAKA 2.1 Klasifikasi Klasifikasi adalah proses pengelompokan data menjadi suatu kelas berdasarkan kesamaan karakteristik pada data data yang ada. Ada 2 jenis metode yang dapat digunakan
BAB III ANALISIS DAN PENYELESAIAN MASALAH
BAB III ANALISIS DAN PENYELESAIAN MASALAH 3.1 Deskripsi Sistem Gambar III-1 Deskripsi Umum Sistem Pada gambar III-1 dapat dilihat deskripsi sistem sederhana yang mendeteksi intrusi pada jaringan menggunakan
PENGENALAN POLA TANDA TANGAN MENGGUNAKAN METODE MOMENT INVARIANT DAN JARINGAN SYARAF RADIAL BASIS FUNCTION (RBF)
Prosiding Seminar Nasional Penelitian, Pendidikan dan Penerapan MIPA, Fakultas MIPA, Universitas Yogyakarta, 14 Mei 2011 PENGENALAN POLA TANDA TANGAN MENGGUNAKAN METODE MOMENT INVARIANT DAN JARINGAN SYARAF
BAB I PENDAHULUAN 1.1 Latar Belakang
BAB I PENDAHULUAN 1.1 Latar Belakang Meningkatnya perkembangan teknologi juga diikuti dengan berkembangnya penggunaan berbagai situs jejaring sosial. Salah satu jejaring sosial yang sangat marak digunakan
SATUAN ACARA PERKULIAHAN UNIVERSITAS GUNADARMA
Mata Kuliah Kode / SKS Program Studi Fakultas : Konsep Data Mining : IT012274 / 2 SKS : Sistem Komputer : Ilmu Komputer & Teknologi Informasi 1 Pengenalan RDBMS 2 SQL Mahasiswa dapat mnegrti dan memahami
BAB 1 PENDAHULUAN. Sistem Pakar (Expert System), Jaringan Saraf Tiruan (Artificial Neural Network), Visi
BAB 1 PENDAHULUAN 1.1 Latar Belakang Di era yang semakin maju ini, teknologi telah memegang peranan penting dalam kehidupan manusia sehari-hari, sehingga kemajuannya sangat dinantikan dan dinikmati para
ANALISIS PERBANDINGAN IMPLEMENTASI KERNEL PADA LIBRARY LibSVM UNTUK KLASIFIKASI SENTIMEN MENGGUNAKAN WEKA
ANALISIS PERBANDINGAN IMPLEMENTASI KERNEL PADA LIBRARY LibSVM UNTUK KLASIFIKASI SENTIMEN MENGGUNAKAN WEKA Prawidya Destarianto 1, Wahyu Kurnia Dewanto 2, Hermawan Arief Putranto 3 1,2,3 Jurusan, Teknologi
2. Adanya resiko pemumpukan barang pada gudang.
BAB 3 PROSEDUR DAN METODOLOGI 3.1. Analisis Masalah 3.1.1. Deskripsi Masalah Pemenuhan keinginan atau permintaan pasar merupakan hal yang krusial bagi setiap perusahaan. Perusahaan yang siap berkompetisi
PEMANFAATAAN BIOMETRIKA WAJAH PADA SISTEM PRESENSI MENGGUNAKAN BACKPROPAGATION NEURAL NETWORK
PEMANFAATAAN BIOMETRIKA WAJAH PADA SISTEM PRESENSI MENGGUNAKAN BACKPROPAGATION NEURAL NETWORK Program Studi Matematika FMIPA Universitas Negeri Semarang Abstrak. Saat ini, banyak sekali alternatif dalam
BAB I PENDAHULUAN Latar Belakang
BAB I PENDAHULUAN 1.1. Latar Belakang Pertukaran informasi di zaman modern ini telah sampai pada era digital. Hal ini ditandai dengan semakin dibutuhkannya teknologi berupa komputer dan jaringan internet
1. Pendahuluan. 1.1 Latar belakang
1. Pendahuluan 1.1 Latar belakang Keamanan data pribadi merupakan salah satu hal terpenting bagi setiap orang yang hidup di era dimana Teknologi Informasi (TI) berkembang dengan sangat pesat. Setiap orang
BAB I PENDAHULUAN. ada tiga, yaitu association rules, classification dan clustering.
BAB I PENDAHULUAN 1.1. Latar Belakang Data mining adalah serangkaian proses untuk menggali nilai tambah berupa informasi yang selama ini tidak diketahui secara manual dari suatu basis data. Informasi yang
KOMPRESI DAN PENGENALAN CITRA WAJAH DENGAN PENDEKATAN NON-NEGATIVE MATRIX FACTORIZATION
KOMPRESI DAN PENGENALAN CITRA WAJAH DENGAN PENDEKATAN NON-NEGATIVE MATRIX FACTORIZATION Christianto Mewlando Binus University, Jakarta, DKI Jakarta, Indonesia Fictor Benny Kurniawan Usodo Binus University,
PENGGOLONGAN UANG KULIAH TUNGGAL MENGGUNAKAN SUPPORT VECTOR MACHINE
E-Jurnal Matematika Vol. 6 (4), November 2017, pp. 220-225 ISSN: 2303-1751 DOI: https://doi.org/10.24843/mtk.2017.v06.i04.p169 PENGGOLONGAN UANG KULIAH TUNGGAL MENGGUNAKAN SUPPORT VECTOR MACHINE I Gede
BAB I PENDAHULUAN. Sistem penglihatan manusia memiliki akurasi yang besar dalam mengenali
BAB I PENDAHULUAN 1.1. Latar Belakang Sistem penglihatan manusia memiliki akurasi yang besar dalam mengenali objek 3 dimensi. Sistem penglihatan manusia dapat membedakan berbagai macam objek 3 dimensi
PENGENALAN WAJAH MENGGUNAKAN ALGORITMA EIGENFACE DAN EUCLIDEAN DISTANCE
PENGENALAN WAJAH MENGGUNAKAN ALGORITMA EIGENFACE DAN EUCLIDEAN DISTANCE Widodo Muda Saputra, Helmie Arif Wibawa, S.Si, M.Cs, dan Nurdin Bahtiar, S.Si, M.T Fakultas Sains dan Matematika, Jurusan Ilmu Komputer
BAB 3 PROSEDUR DAN METODOLOGI. menawarkan pencarian citra dengan menggunakan fitur low level yang terdapat
BAB 3 PROSEDUR DAN METODOLOGI 3.1 Permasalahan CBIR ( Content Based Image Retrieval) akhir-akhir ini merupakan salah satu bidang riset yang sedang berkembang pesat (Carneiro, 2005, p1). CBIR ini menawarkan
TAKARIR. : Mengelompokkan suatu objek yang memiliki kesamaan. : Kelompok atau kelas
TAKARIR Data Mining Clustering Cluster Iteratif Random Centroid : Penggalian data : Mengelompokkan suatu objek yang memiliki kesamaan. : Kelompok atau kelas : Berulang : Acak : Pusat area KDD (Knowledge
Pretest dan Posttest untuk Mengukur Kompetensi Kognifif Mahasiwa
Data Mining Learning Design Pretest dan Posttest untuk Mengukur Kompetensi Kognifif Mahasiwa Penugasan berbasis Self- Contained Project atau Literatur Review Penyajian Materi dengan Model Minimalism berbasis
Moch. Ali Machmudi 1) 1) Stmik Bina Patria
UJI PENGARUH KARAKTERISTIK DATASET PADA PERFORMA ALGORITMA KLASIFIKASI Moch. Ali Machmudi 1) 1) Stmik Bina Patria 1) Jurusan Manjemen Informatika-D3 Email : 1 [email protected] 1) Abstrak Tujuan utama
Data Mining II Estimasi
Data Mining II Estimasi Matakuliah Data warehouse Universitas Darma Persada Oleh: Adam AB Data Mining-2012-a@b 1 Tahapan proses datamining Input (Data) Metode (Algoritma Data Mining) Output (Pola/Model/
BAB II TINJAUAN PUSTAKA Indeks Prestasi Kumulatif dan Lama Studi. menggunakan dokumen/format resmi hasil penilaian studi mahasiswa yang sudah
BAB II TINJAUAN PUSTAKA 2.1 Landasan Teori 2.1.1 Indeks Prestasi Kumulatif dan Lama Studi Mahasiswa yang telah menyelesaikan keseluruhan beban program studi yang telah ditetapkan dapat dipertimbangkan
BAB III LANDASAN TEORI
BAB III LANDASAN TEORI 3.1. Citra Digital Citra digital adalah suatu citra elektronik yang diambil dari dokumen, seperti foto, buku, maupun sebuah video. Proses perubahan citra analog menjadi citra digital
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 2.1 Klasifikasi Klasifikasi merupakan suatu pekerjaan menilai objek data untuk memasukkannya ke dalam kelas tertentu dari sejumlah kelas yang tersedia. Dalam klasifikasi ada dua pekerjaan
PERSYARATAN PRODUK. 1.1 Pendahuluan Latar Belakang Tujuan
BAB 1 PERSYARATAN PRODUK Bab ini membahas mengenai hal umum dari produk yang dibuat, meliputi tujuan, ruang lingkup proyek, perspektif produk, fungsi produk dan hal umum yang lainnya. 1.1 Pendahuluan Hal
KLASIFIKASI CITRA FORMULIR MENGGUNAKAN METODE SUPPORT VECTOR MACHINE (SVM) PADA PROSES DIGITALISASI FORMULIR
KLASIFIKASI CITRA FORMULIR MENGGUNAKAN METODE SUPPORT VECTOR MACHINE (SVM) PADA PROSES DIGITALISASI FORMULIR Dewi Pramudi Ismi 1), Ardiansyah 2) 1 Program Studi Teknik Informatika, Fakultas Teknologi Industri,
SISTEM PENGENALAN WAJAH DENGAN METODE EIGENFACE DAN JARINGAN SYARAF TIRUAN (JST)
Berkala Fisika ISSN : 1410-9662 Vol. 15, No. 1, Januari 2012, hal 15-20 SISTEM PENGENALAN WAJAH DENGAN METODE EIGENFACE DAN JARINGAN SYARAF TIRUAN (JST) Tri Mulyono, Kusworo Adi dan Rahmat Gernowo Jurusan
BAB 1 PENDAHULUAN Latar Belakang
BAB 1 PENDAHULUAN 1.1. Latar Belakang Data mining adalah proses mengeksplorasi dan menganalisis data dalam jumlah besar untuk menemukan pola dan rule yang berarti (Berry & Linoff, 2004). Klasifikasi adalah
http://www.brigidaarie.com proses menganalisa data untuk mencari polapola tersembunyi dengan menggunakan metodologi otomatis Istilah lain : Machine Learning Knowledge Discovery in Database (KDD) Predictive
Data Mining. Romi Satria Wahono. WA/SMS:
Data Mining Romi Satria Wahono [email protected] http://romisatriawahono.net/dm WA/SMS: +6281586220090 1 Romi Satria Wahono SD Sompok Semarang (1987) SMPN 8 Semarang (1990) SMA Taruna Nusantara
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 2.1 Data Mining Data mining mengacu pada proses ekstraksi atau menggali pengetahuan dari sekumpulan data yang besar. Data mining mempunyai nama lain yang dikenal secara popular dengan
BAB II TINJAUAN PUSTAKA
BAB II TINJAUAN PUSTAKA 2.1 Data Mining 2.1.1 Pengertian Data Mining Dengan semakin besarnya jumlah data dan kebutuhan akan analisis data yang akurat maka dibutuhkan metode analisis yang tepat. Data mining
Penerapan Algoritme C4.5 Pada Klasifikasi Produksi Ubi Jalar di Pulau Jawa
Penerapan Algoritme C4.5 Pada Klasifikasi Produksi Ubi Jalar di Pulau Jawa Seno Setiyawan 1, Yuliana Susanti 2,Tri Atmojo Kusmayadi 3 1,3 Program Studi Matematika FMIPA, Universitas Sebelas Maret 2 Program
PERBANDINGAN DECISION TREE
84 2015 Jurnal Krea-TIF Vol: 03 No: 02 PERBANDINGAN DECISION TREE PADA ALGORITMA C 4.5 DAN ID3 DALAM PENGKLASIFIKASIAN INDEKS PRESTASI MAHASISWA (Studi Kasus: Fasilkom Universitas Singaperbangsa Karawang)
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 2.1 Data Mining Secara sederhana data mining adalah penambangan atau penemuan informasi baru dengan mencari pola atau aturan tertentu dari sejumlah data yang sangat besar. Data mining
PENERAPAN TEKNIK DATA MINING UNTUK MENENTUKAN HASIL SELEKSI MASUK SMAN 1 GIBEBER UNTUK SISWA BARU MENGGUNAKAN DECISION TREE
PENERAPAN TEKNIK DATA MINING UNTUK MENENTUKAN HASIL SELEKSI MASUK SMAN 1 GIBEBER UNTUK SISWA BARU MENGGUNAKAN DECISION TREE Castaka Agus Sugianto Program Studi Teknik lnformatika Politeknik TEDC Bandung
Tahapan Proses KDD (Peter Cabena) Business Objective Determination (#1) Business Objective Determination (#2) Business Objective Determination (#4)
Knowledge Discovery in Databases (IS704) dan Data Mining (CS704) Kuliah #2 Gunawan Jurusan Teknik Informatika Sekolah Tinggi Teknik Surabaya Tahapan Proses KDD (Peter Cabena) Penentuan Sasaran Bisnis (
Plot Multivariate Menggunakan Kernel Principal Component Analysis (KPCA) dengan Fungsi Power Kernel
Plot Multivariate Menggunakan Kernel Principal Component Analysis (KPCA) dengan Fungsi Power Kernel Vitawati Bawotong, Hanny Komalig, Nelson Nainggolan 3 Program Studi Matematika, FMIPA, UNSRAT, [email protected]
BAB III PERANCANGAN SISTEM
BAB III PERANCANGAN SISTEM 3.1 Definisi Masalah Dalam beberapa tahun terakhir perkembangan Computer Vision terutama dalam bidang pengenalan wajah berkembang pesat, hal ini tidak terlepas dari pesatnya
Kombinasi KPCA dan Euclidean Distance untuk Pengenalan Citra Wajah
Kombinasi KPCA dan Euclidean Distance untuk Pengenalan Citra Wajah Rima Tri Wahyuningrum 1,2 Prodi Teknik Informatika, Fakultas Teknik, Universitas Trunojoyo Jl. Raya Telang, PO BOX 2 Kamal, Bangkalan
KAJIAN KEMAMPUAN GENERALISASI SUPPORT VECTOR MACHINE DALAM PENGENALAN JENIS SPLICE SITES PADA BARISAN DNA
KAJIAN KEMAMPUAN GENERALISASI SUPPORT VECTOR MACHINE DALAM PENGENALAN JENIS SPLICE SITES PADA BARISAN DNA Djati Kerami dan Hendri Murfi Departemen Matematika, FMIPA, Universitas Indonesia, Depok 16424,
IMPLEMENTASI DEEP LEARNING BERBASIS TENSORFLOW UNTUK PENGENALAN SIDIK JARI
Royani Darma Nurfita, Gunawan Ariyanto, Implementasi Deep Learning Berbasis Tensorflow Untuk Pengenalan Sidik Jari IMPLEMENTASI DEEP LEARNING BERBASIS TENSORFLOW UNTUK PENGENALAN SIDIK JARI Royani Darma
PENGENALAN CITRA TULISAN TANGAN DOKTER DENGAN MENGGUNAKAN SVM DAN FILTER GABOR
PENGENALAN CITRA TULISAN TANGAN DOKTER DENGAN MENGGUNAKAN SVM DAN FILTER GABOR Angga Lisdiyanto (1), Lukman Zaman P.C.S.W (2) Teknik Informatika, Universitas Islam Lamongan (1) Teknik Informatika, Sekolah
Integrasi Peringkas Dokumen Otomatis Dengan Penggabungan Metode Fitur dan Metode Latent Semantic Analysis (LSA) Sebagai Feature Reduction
Integrasi Peringkas Dokumen Otomatis Dengan Penggabungan Metode Fitur dan Metode Latent Semantic Analysis (LSA) Sebagai Feature Reduction Junta Zeniarja 1, Abu Salam 2, Ardytha Luthfiarta 3, L Budi Handoko
PERBANDINGAN ANALISIS KLASIFIKASI ANTARA DECISION TREE DAN SUPPORT VECTOR MACHINE MULTICLASS UNTUK PENENTUAN JURUSAN PADA SISWA SMA
PERBANDINGAN ANALISIS KLASIFIKASI ANTARA DECISION TREE DAN SUPPORT VECTOR MACHINE MULTICLASS UNTUK PENENTUAN JURUSAN PADA SISWA SMA (Studi Kasus Nilai Mata Pelajaran Pokok di SMA Negeri 1 Jepara) SKRIPSI
Penerapan Data Mining dalam Memprediksi Pembelian cat
Konferensi Nasional Sistem & Informatika 2015 STMIK STIKOM Bali, 9 10 Oktober 2015 Penerapan Data Mining dalam Memprediksi Pembelian cat Fitriana Harahap STMIK POTENSI UTAMA Jl. KL. Yos Sudarso KM 6,5
Versi Online tersedia di : JURNAL TECH-E (Online)
JURNAL TECH-E - VOL. 1 NO. 1 (2017) Versi Online tersedia di : http://bsti.ubd.ac.id/e-jurnal JURNAL TECH-E 2581-116 (Online) Artikel Perancangan Aplikasi Prediksi Kelulusan Mahasiswa Tepat Waktu Pada
BAB 3 METODE PENELITIAN
BAB 3 METODE PENELITIAN Tahap 1 : Identifikasi Permasalahan Mencari literatur-literatur yang berhubungan dengan bahan penelitian. Tahap 2 : Pengambilan Data Training : Testing 5 : 1 150 : 30 Dari 10 responden
PENERAPAN METODE KLASIFIKASI SUPPORT VECTOR MACHINE (SVM) PADA DATA AKREDITASI SEKOLAH DASAR (SD) DI KABUPATEN MAGELANG
ISSN: 2339-2541 JURNAL GAUSSIAN, Volume 3, Nomor 4, Tahun 2014, Halaman 811-820 Online di: http://ejournal-s1.undip.ac.id/index.php/gaussian PENERAPAN METODE KLASIFIKASI SUPPORT VECTOR MACHINE (SVM) PADA
BAB II DASAR TEORI. Pada bab ini akan dibahas teori-teori pendukung yang digunakan sebagai acuan dalam merancang algoritma.
BAB II DASAR TEORI Pada bab ini akan dibahas teori-teori pendukung yang digunakan sebagai acuan dalam merancang algoritma. 2.1. Microsoft Visual Studio Microsoft Visual Studio adalah sebuah software yang
MENGGUNAKAN DATA MINING
E.11 MENGGUNAKAN DATA MINING UNTUK SEGMENTASI CUSTOMER PADA BANK UNTUK MENINGKATKAN CUSTOMER RELATIONSHIP MANAGEMENT (CRM) DENGAN METODE KLASIFIKASI (AGORITMA J-48, ZERO-R DAN NAIVE BAYES) Maghfirah, Teguh
Model Data Mining sebagai Prediksi Penyakit Hipertensi Kehamilan dengan Teknik Decision Tree
Scientific Journal of Informatics Vol. 3, No. 1, Mei 2016 p-issn 2407-7658 http://journal.unnes.ac.id/nju/index.php/sji e-issn 2460-0040 Model Data Mining sebagai Prediksi Penyakit Hipertensi Kehamilan
Penggunaan Kernel PCA Gaussian dalam Penyelesaian Plot Multivariat Non Linier. The Use of Gaussian PCA Kernel in Solving Non Linier Multivariate Plot
Penggunaan Kernel PCA Gaussian dalam Penyelesaian Plot Multivariat Non Linier Bernhard M. Wongkar 1, John S. Kekenusa 2, Hanny A.H. Komalig 3 1 Program Studi Matematika, FMIPA, UNSRAT Manado, [email protected]
