PROGRAMA DINAMIS 10/31/2012 1

Ukuran: px
Mulai penontonan dengan halaman:

Download "PROGRAMA DINAMIS 10/31/2012 1"

Transkripsi

1 PROGRAMA DINAMIS 10/31/2012 1

2 Programa Dinamis berbeda dengan programa linier yang sudah kita kenal. Persoalan bersifat dinamis apabila diarahkan kepada pemecahan secara bertahap yang masingmasingnya merupakan satu kesatuan. Ada 3 hal yang penting diketahui tentang programa dinamis, yaitu: STAGE (tahapan) dari persoalan yang dihadapi dan ingin dicari solusinya STATE (kondisi) yang menjadi faktor penentu keputusan dari tiap tahapan DECISION (keputusan) yang harus diambil dari tiap tahap untuk sampai kepada solusi keseluruhan. 10/31/2012 2

3 Keputusan tahap N sangat ditentukan oleh keputusan pada tahap-tahap sebelumnya. Decision 1 Decision 2 Decision N Stage 1 Stage 2 Stage N State 1 State 2 State N Tergantung pada jenis persoalan yang dihadapi, model/formulasi tujuan yang diharapkan pun akan berbeda. 10/31/2012 3

4 Contoh 1 : STAGE COACH Misalkan soal memilih rute angkutan barang dengan kereta kuda (stage coach) dari kota asal (A) ke kota tujuan (K). Persoalan lebih disederhanakan dengan memilah tahapan yang dapat ditempuh dengan lama waktu tempuh antar kota yang dilewati, sebagai berikut: 10/31/2012 4

5 Tahap 1 adalah pilihan rute AB atau AC Tahap 2 adalah pilihan rute antara BD, BE, BF, atau BG serta antara CD, CE, CF, atau CG Tahap 3 dan 4 bisa dibaca lanjut seperti di atas... Tahapan diperlukan sebagai penentu rute yang akan dipilih Secara keseluruhan, tujuan utama dari persoalan tersebut adalah minimasi waktu tempuh dari kota asal (A) ke kota tujuan akhir (T) Penyelesaian dapat dilakukan denga cara mundur (backward) atau maju (forward), walau pada umumnya banyak dipilih cara mundur Secara tradisional persoalan tersebut dapat diselesaikan dengan menghitung setiap alternatif rute yang mungkin (2 x 4 x 3 x 1 = 24 alternatif), kemudian pilih waktu tempuh terkecil. Cara programa dinamis lebih sistematis dan mudah dikerjakan 10/31/2012 5

6 Misalkan waktu tempuh antar kota (dalam hari) adalah sebagai berikut: Dari \ Ke B C D E F G H I J K A B C D E F G H 15 I 13 J 10 10/31/2012 6

7 Komponen waktu tempuh dapat langsung dicantumkan pada garis panah dari dari/ke kota Penyelesaian cara programa dinamis adalah dengan membuat matriks setiap tahap, dimulai dari tahap 4, ke tahap 3, ke tahap 2, dan terakhir ke tahap 1 State (kondisi penentu keputusan) adalah minimasi waktu tempuh dari rute yang dipertimbangkan. 10/31/2012 7

8 Tahap 4 : min { f4(x4) } Dari \ Ke K f 4 (x 4 ) x 4 * H HK I IK J JK Tahap 4 hanya mencantumkan waktu tempuh dari ~ ke f4(x4) adalah nilai perolehan pada tahap 4 x4* adalah rute terbaik pada tahap 4 teruskan ke tahap 3 10/31/2012 8

9 Tahap 3 : min { f3(x3) + f4*(x4) } Dari \ Ke H I J (15) (13) (10) f 3 (x 3 ) x 3 * D DJ E EJ F FH, FJ G GJ Tujuan tahap 3 adalah minimasi waktu tempuh tahap 3 ditambah yang terbaik dari tahap 4 Misal untuk DH = = 27 (dihitung mulai dari D hingga K), demikian yang lainnya f4*(x4) adalah perolehan terbaik dari tahap 4 (pakai tanda *) f3(x3) adalah nilai perolehan pada tahap 3 x3* adalah rute terbaik pada tahap 3 Dari tahap 3 ini terlihat bahwa tujuan berikutnya adalah ke J (kecuali dari F bisa juga ke H) teruskan ke tahap 2 10/31/2012 9

10 Tahap 2 : min { f2(x2) + f3*(x3) } Dari \ Ke D E F G (26) (23) (30) (25) f 2 (x 2 ) x 2 * B BE C CD Tujuan tahap 2 adalah minimasi waktu tempuh tahap 2 ditambah yang terbaik dari tahap 3 Misal untuk BE = = 40 (dihitung mulai dari B hingga K), demikian yang lainnya f3*(x3) adalah perolehan terbaik dari tahap 3 (pakai tanda *) f2(x2) adalah nilai perolehan pada tahap 2 x2* adalah rute terbaik pada tahap 2 Dari tahap 2 ini terlihat bahwa tujuan berikutnya adalah ke D (bila dari C) atau E (bila dari B) teruskan ke tahap 1 10/31/

11 Tahap 1 : min { f1(x1) + f2*(x2) } B C Dari \ Ke f (40) (44) 1 (x 1 ) x 1 * A AB Yang terbaik pada tahap 1 adalah rute AB Bila diteruskan dapat diperoleh rute terbaik (waktu tempuh 55 hari), yaitu dari A ke B ke E ke J dan berakhir di K 10/31/

12 Contoh 2 : Cargo Loading Misalkan, sebuah perusahaan angkutan mendapat order mengirimkan barang dari satu tempat ke tempat lainnya dengan menggunakan satu truk besar dengan kapasitas 15 ton. Jenis barang yang diangkut, berat, dan biayanya adalah sebagai berikut: Jenis Barang Berat (ton) Biaya (juta/item) A 2 66 B C 3 96 Barang yang harus diangkut harus utuh (tidak boleh setengah atau seperempatnya, berarti kalau mengangkut 1 barang B ~ kapasitasnya 5 ton, bila 2 barang B berarti 10 ton, dan seterusnya). 10/31/

13 JAWAB Stage dalam persoalan ini adalah jumlah barang yang harus diangkut, tanpa melampaui kapasitas, dan dapat memaksimumkan pendapatan. Ada 3 jenis barang ~ berarti ada 3 tahapan (stage). 10/31/

14 Karena berat barang C (sebagai x3) = 3 ton ~ berarti jumlah maksimum barang C yang dapat diangkut adalah 5 buah) Siapkan kolom untuk C = 0 (tanpa barang C), C = 1, C = 2, C = 3, C = 4, dan C = 5 Perhatikan kapasitasnya ~ cantumkan rupiah yang diperoleh Tahap 3 : Max { f3(x3) } Pada C=2 ~ berarti rupiahnya = 2 x 96 = 192 juta, dan seterusnya Baris kapasitas cukup diringkas untuk 0, 3, 6, 9, 12, dan 15 saja (kelipatan dari berat barang C = 3 ton) Tanda panah ke bawah berarti rupiahnya sama dengan yang di atasnya Nilai f3* (x3) berarti jawab terbaik pada tahap 3 pada kapasitas yang terpakainya 10/31/

15 Tahap 2 ; Max { f2x2 + f3* (kapasitas - x3) } Karena barang B (disebut x2) = 5 ton ~ maksimum jumlah barang B yang bisa diangkut adalah 3 buah Siapkan B=0, B=1, B=2, dan B=3 Perhatikan kapasitasnya Formula di atas berarti: rupiah yang diharapkan adalah dari barang B ditambah dengan sisa kapasitas yang tersedia untuk tahap 3 (tanda *) yang terbaik. Hasil terbaik pada tahap 2 ini sudah mencakup hasil terbaik pada tahap 3 10/31/

16 Perhatikan cara perhitungan tabulasinya sebagai berikut: Pada kolom f2*x2 tercantum nilai rupiah terbaiknya Kolom x2* menunjukkan jumlah barang B yang harus diangkut pada tahap 2 Jumlah 10/31/2012 B yang dapat diangkut bisa 0, 1, atau 2 tergantung pada 16 kapasitasnya

17 Tahap 1 : Max { f1x1 + f2* (kapasitas - x1) } Pada tahap akhir cukup dicantumkan kapasitas maksimum (15 ton) Karena berat barang A (disebut x1) = 2 ton ~ maksimum jumlah barang yang bisa diangkut adalah 7 buah dengan sisa 1 ton Nilai rupiah terbaik dihitung dari jumlah barang A yang diangkut yang ditambah rupiah terbaik dari sisa kapasitas di tahap 2 Siapkan kolom A=0 ; A=1 ; A=2 ; A=3 ; A=4 ; A=5 ; A=6 ; A=7 Hasil terbaik dari tahap 1 secara kesuluruhan adalah 492 juta Bawa 6 buah barang A (6 x 96 juta = 396 juta) Dari tahap 2 ~ tambahan 96 juta dari kolom B = 0 (beraarti tidak ada barang B yang diangkut) Ke tahap 3 ~ nilai 96 tersebut dari kolom C = 1 (berarti bawa 1 barang C) 10/31/

18 Ringkasan : Tahap Bawa barang A=6 B=0 C=1 Tonase total = 15 ton Rupiah total = 492 juta 10/31/

Riset Operasional. Tahun Ajaran 2014/2015 ~ 1 ~ STIE WIDYA PRAJA TANA PASER

Riset Operasional. Tahun Ajaran 2014/2015  ~ 1 ~ STIE WIDYA PRAJA TANA PASER Dalam materi sebelumnya tentang Linier Program, setiap pemecahan persoalan optimasi akan selalu dirumuskan suatu formula rumusan matematika standar yang berlaku untuk semua persoalan. Materi kali ini berdasarkan

Lebih terperinci

Lecture 5 : Dynamic Programming (Programa Dinamis) Hanna Lestari, ST, M.Eng

Lecture 5 : Dynamic Programming (Programa Dinamis) Hanna Lestari, ST, M.Eng Lecture 5 : Dynamic Programming (Programa Dinamis) Hanna Lestari, ST, M.Eng Definisi Suatu teknik kuantitatif yang digunakan untuk membuat suatu rangkaian keputusan yang saling berkaitan. (Hillier & Lieberman,

Lebih terperinci

Lecture 5 : Dynamic Programming (Programa Dinamis) Hanna Lestari, ST, M.Eng

Lecture 5 : Dynamic Programming (Programa Dinamis) Hanna Lestari, ST, M.Eng Lecture 5 : Dynamic Programming (Programa Dinamis) Hanna Lestari, ST, M.Eng Definisi Suatu teknik kuantitatif yang digunakan untuk membuat suatu rangkaian keputusan yang saling berkaitan. (Hillier & Lieberman,

Lebih terperinci

Program Dinamik Ir. Djoko Luknanto, M.Sc., Ph.D. Jurusan Teknik Sipil FT UGM

Program Dinamik Ir. Djoko Luknanto, M.Sc., Ph.D. Jurusan Teknik Sipil FT UGM Program Dinamik Ir. Djoko Luknanto, M.Sc., Ph.D. Jurusan Teknik Sipil FT UGM 8/7/200 Jack la Motta Pendahuluan Tidak seperti program linier, Program Dinamik (PD) tidak mempunyai standar formulasi matematik.

Lebih terperinci

30/03/2015 DYNAMIC PROGRAMMING DYNAMIC PROGRAMMING DYNAMIC PROGRAMMING DYNAMIC PROGRAMMING DYNAMIC PROGRAMMING OPERATIONAL RESEARCH II

30/03/2015 DYNAMIC PROGRAMMING DYNAMIC PROGRAMMING DYNAMIC PROGRAMMING DYNAMIC PROGRAMMING DYNAMIC PROGRAMMING OPERATIONAL RESEARCH II 0/0/0 OPERTONL RESER gustina Eunike, ST., MT., M. ndustrial Engineering University o rawijaya Pemrograman inamis (dynamic programing / P) Prosedur matematis yang dirancang untuk memperbaiki eisiensi perhitungan

Lebih terperinci

PROGRAM STUDI S1 SISTEM KOMPUTER UNIVERSITAS DIPONEGORO. Oky Dwi Nurhayati, ST, MT

PROGRAM STUDI S1 SISTEM KOMPUTER UNIVERSITAS DIPONEGORO. Oky Dwi Nurhayati, ST, MT PROGRAM STUDI S1 SISTEM KOMPUTER UNIVERSITAS DIPONEGORO Oky Dwi Nurhayati, ST, MT email: [email protected] 1 Program Dinamis (dynamic programming): - metode pemecahan masalah dengan cara menguraikan solusi

Lebih terperinci

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA 015 CALON TIM OLIMPIADE MATEMATIKA INDONESIA 016 Prestasi itu diraih bukan didapat!!! SOLUSI SOAL Bidang Matematika Disusun oleh : 1. 015 = 5 13 31 Banyaknya faktor

Lebih terperinci

BAB 10. DESAIN RANGKAIAN BERURUT

BAB 10. DESAIN RANGKAIAN BERURUT BAB 10. DESAIN RANGKAIAN BERURUT 2 DESAIN PENCACAH NILAI SPESIFIKASI : X=1 cacahan naik 2, z= 1 jika cacahan > 5 X=0 cacahan turun 1, z= 1 jika cacahan < 0 mesin Mealy 3 0 DESAIN PENCACAH NILAI 1/1 1/0

Lebih terperinci

Model Transportasi 1

Model Transportasi 1 Model Transportasi 1 Model ini berawal dari tahun 1941 ketika F.L. Hitchkok mengetengahkan studi yang berjudul The Distribution of a Product from Several Sources to Numerous Localities Tahun 1947, T.C.Koopmans

Lebih terperinci

LAPORAN RESMI MODUL II DYNAMIC PROGRAMMING

LAPORAN RESMI MODUL II DYNAMIC PROGRAMMING LABORATORIUM STATISTIK DAN OPTIMASI INDUSTRI FAKULTAS TEKNOLOGI INDUSTRI PROGRAM STUDI TEKNIK INDUSTRI UNIVERSITAS PEMBANGUNAN NASIONAL VETERAN JAWA TIMUR LAPORAN RESMI MODUL II DYNAMIC PROGRAMMING I.

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Tinjauan Pustaka 2.1.1 Pengertian, Struktur, Kelebihan dan Kekurangan, serta Potensi Dynamic Programming Dynamic Programming adalah suatu teknik kuantitatif yang digunakan untuk

Lebih terperinci

Penerapan Pemrograman Dinamis dalam Perencanaan Produksi

Penerapan Pemrograman Dinamis dalam Perencanaan Produksi Penerapan Pemrograman Dinamis dalam Perencanaan Produksi Yugowati Praharsi Abstrak Pemrograman dinamis merupakan salah satu alat bantu untuk mengambil keputusan yang tidak mempunyai formulasi baku untuk

Lebih terperinci

PROGRAMA DINAMIS. Dalam Kehidupan nyata sering dijumpai masalah pengambilan keputusan yang meliputi

PROGRAMA DINAMIS. Dalam Kehidupan nyata sering dijumpai masalah pengambilan keputusan yang meliputi PROGRAMA DINAMIS Pendahuluan Dalam Kehidupan nyata sering dijumpai masalah pengambilan keputusan yang meliputi beberapa periode waktu. Program Dinamis adalah teknik untuk pengambilan keputusan yang digunakan

Lebih terperinci

Design and Analysis Algorithm. Ahmad Afif Supianto, S.Si., M.Kom. Pertemuan 09

Design and Analysis Algorithm. Ahmad Afif Supianto, S.Si., M.Kom. Pertemuan 09 Design and Analysis Algorithm Ahmad Afif Supianto, S.Si., M.Kom Pertemuan 09 Contents 1 2 5 Algoritma Program Dinamis Lintasan Terpendek (Shortest Path) Penganggaran Modal (Capital Budgeting) 1/0 Knapsack

Lebih terperinci

DESAIN RANGKAIAN BERURUT

DESAIN RANGKAIAN BERURUT SISTEM DIGITAL DESAIN RANGKAIAN BERURUT TEKNIK INFORMATIKA UNIVERSITAS TRUNOJOYO Rahmady Liyantanto, S.kom [email protected] Desain Pencacah Nilai, spesifikasi: X= cacahan naik 2, z= jika cacahan >

Lebih terperinci

BAB VIII PEMROGRAMAN DINAMIS

BAB VIII PEMROGRAMAN DINAMIS BAB VIII PEMROGRAMAN DINAMIS Pemprograman dinamis merupakan prosedur matematis yang dirancang untuk memperbaiki efisiensi perhitungan masalah pemprograman matematis tertentu dengan menguraikannya menjadi

Lebih terperinci

Program Dinamik (Dynamic Programming) Riset Operasi TIP FTP UB

Program Dinamik (Dynamic Programming) Riset Operasi TIP FTP UB Program Dinamik (Dynamic Programming) Riset Operasi TIP FTP UB Program Dinamik : Pendahuluan (1) Program dinamik merupakan suatu pendekatan solusi bukan suatu teknik Tidak terbatas pada golongan masalah

Lebih terperinci

Program Dinamis (Dynamic Programming)

Program Dinamis (Dynamic Programming) Program Dinamis (Dynamic Programming) Bahan Kuliah IF2211 Strategi Algoritma Oleh: Rinaldi Munir Program Studi Teknik Informatika STEI-ITB 1 2 Program Dinamis Program Dinamis (dynamic programming): - metode

Lebih terperinci

DESAIN FAKTORIAL FRAKSIONAL 2 k-p SERTA ANALISISNYA BERBASIS WEB. Candra Aji dan Dadan Dasari 1 Universitas Pendidikan Indonesia ABSTRAK

DESAIN FAKTORIAL FRAKSIONAL 2 k-p SERTA ANALISISNYA BERBASIS WEB. Candra Aji dan Dadan Dasari 1 Universitas Pendidikan Indonesia ABSTRAK DESAIN FAKTORIAL FRAKSIONAL k-p SERTA ANALISISNYA BERBASIS WEB Candra Aji dan Dadan Dasari Universitas Pendidikan Indonesia ABSTRAK Dalam eksperimen faktorial k, yakni eksperimen yang melibatkan k buah

Lebih terperinci

LEMBAR AKTIVITAS SISWA DIMENSI TIGA (WAJIB)

LEMBAR AKTIVITAS SISWA DIMENSI TIGA (WAJIB) Nama Siswa Kelas LEMBAR AKTIVITAS SISWA DIMENSI TIGA (WAJIB) 5. Diagonal Ruang adalah Ruas garis yang menghubungkan dua titik : sudut yang saling berhadapan dalam satu ruang. : Kompetensi Dasar (KURIKULUM

Lebih terperinci

DIKTAT MATEMATIKA II

DIKTAT MATEMATIKA II DIKTAT MATEMATIKA II (METODE SIMPLEK) Drs. A. NABABAN PURNAWAN, M.T JURUSAN PENDIDIKAN TEKNIK MESIN FAKULTAS PENDIDIKAN TEKNOLOGI DAN KEJURUAN UNIVERSITAS PENDIDIKAN INDONESIA 2004 METODE SIMPLEKS Metode

Lebih terperinci

Solusi Olimpiade Sains Tingkat Kabupaten/Kota 2015 Bidang Matematika

Solusi Olimpiade Sains Tingkat Kabupaten/Kota 2015 Bidang Matematika Solusi Olimpiade Sains Tingkat Kabupaten/Kota 01 Bidang Matematika Oleh : Tutur Widodo 1. Karena 01 = 13 31 maka banyaknya faktor positif dari 01 adalah (1 + 1) (1 + 1) (1 + 1) = 8. Untuk mencari banyak

Lebih terperinci

SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2007 TINGKAT PROVINSI TAHUN Prestasi itu diraih bukan didapat!!!

SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2007 TINGKAT PROVINSI TAHUN Prestasi itu diraih bukan didapat!!! SELEKSI OLIMPIADE MATEMATIKA INDONESIA 007 TINGKAT PROVINSI TAHUN 006 Prestasi itu diraih bukan didapat!!! SOLUSI SOAL Bidang Matematika Bagian Pertama Disusun oleh : Solusi Olimpiade Matematika Tk Provinsi

Lebih terperinci

BAB VI PROGRAMA LINIER : DUALITAS DAN ANALISIS SENSITIVITAS

BAB VI PROGRAMA LINIER : DUALITAS DAN ANALISIS SENSITIVITAS BAB VI PROGRAMA LINIER : DUALITAS DAN ANALISIS SENSITIVITAS 6.1 Teori Dualitas Teori dualitas merupakan salah satu konsep programa linier yang penting dan menarik ditinjau dari segi teori dan praktisnya.

Lebih terperinci

Dynamic Programming. Pemrograman Dinamis

Dynamic Programming. Pemrograman Dinamis Pemrograman Dinamis Pemrograman dinamis merupakan suatu teknik analisa kuantitatif untuk membuat tahapan keputusan yang saling berhubungan. Teknik ini menghasilkan prosedur yang sistematis untuk mencari

Lebih terperinci

Materi W9b GEOMETRI RUANG. Kelas X, Semester 2. B. Menggambar dan Menghitung jarak.

Materi W9b GEOMETRI RUANG. Kelas X, Semester 2. B. Menggambar dan Menghitung jarak. Materi W9b GEOMETRI RUANG Kelas X, Semester 2 B. Menggambar dan Menghitung jarak www.yudarwi.com B. Menggambar dan Menghitung Jarak Jarak dua objek dalam dimensi tiga adalah jarak terpendek yang ditarik

Lebih terperinci

Mata Kuliah TKE 113. Ir. Pernantin Tarigan, M.Sc Fahmi, S.T, M.Sc Departemen Teknik Elektro Universitas Sumatera Utara USU

Mata Kuliah TKE 113. Ir. Pernantin Tarigan, M.Sc Fahmi, S.T, M.Sc Departemen Teknik Elektro Universitas Sumatera Utara USU Mata Kuliah Dasar Teknik Digital TKE 113 10. DESAIN RANGKAIAN BERURUT Ir. Pernantin Tarigan, M.Sc Departemen Teknik Elektro Universitas Sumatera Utara USU 2006 Desain Pencacah Nilai, spesifikasi: i X=1

Lebih terperinci

Program Dinamis (dynamic programming):

Program Dinamis (dynamic programming): Materi #0 Ganjil 0/05 (Materi Tambahan) Program Dinamis (Dynamic Programming) Program Dinamis Program Dinamis (dynamic programming): metode pemecahan masalah dengan cara menguraikan solusi menjadi sekumpulan

Lebih terperinci

Program Dinamis. Oleh: Fitri Yulianti

Program Dinamis. Oleh: Fitri Yulianti Program Dinamis Oleh: Fitri Yulianti 1 Program Dinamis Program Dinamis (dynamic programming): - metode pemecahan masalah dengan cara menguraikan solusi menjadi sekumpulan tahapan (stage) - sedemikian sehingga

Lebih terperinci

Program Dinamis (Dynamic Programming)

Program Dinamis (Dynamic Programming) Program Dinamis (Dynamic Programming) Program Dinamis Program Dinamis (dynamic programming): metode pemecahan masalah dengan cara menguraikan solusi menjadi sekumpulan langkah (step) atau tahapan (stage)

Lebih terperinci

TIN102 - Pengantar Teknik Industri Materi #10 Ganjil 2015/2016 TIN102 PENGANTAR TEKNIK INDUSTRI

TIN102 - Pengantar Teknik Industri Materi #10 Ganjil 2015/2016 TIN102 PENGANTAR TEKNIK INDUSTRI Materi #10 TIN102 PENGANTAR TEKNIK INDUSTRI Pendahuluan 2 Permasalahan pemrograman dinamis secara umum memiliki proses keputusan yang bersifat multi tahapan (multi-stage). I1 D1 I2 D2 In Dn R1 R2 Rn 6623

Lebih terperinci

P 54 TRY OUT 4 UJIAN NASIONAL TAHUN PELAJARAN 2011/2012 MATEMATIKA (E-3) SMK KELOMPOK KEAHLIAN TEKNOLOGI, KESEHATAN DAN PERTANIAN UTAMA

P 54 TRY OUT 4 UJIAN NASIONAL TAHUN PELAJARAN 2011/2012 MATEMATIKA (E-3) SMK KELOMPOK KEAHLIAN TEKNOLOGI, KESEHATAN DAN PERTANIAN UTAMA TRY OUT 4 UJIAN NASIONAL TAHUN PELAJARAN 2011/2012 MATEMATIKA (E-3) SMK KELOMPOK KEAHLIAN TEKNOLOGI, KESEHATAN DAN PERTANIAN P 54 UTAMA SMK NEGERI 2 MAGELANG PROVINSI JAWA TENGAH TAHUN 2012 Mata Pelajaran

Lebih terperinci

Bentuk fungsi umum dari pemrograman dinamis ini adalah :

Bentuk fungsi umum dari pemrograman dinamis ini adalah : Bab 7 Pemrograman Dinamis Pemrograman dinamis ini pertama kali dikembangkan oleh seorang ilmuwan benama Richard Bellman pada tahun 1957. Apabila dalam riset operasional yang lain, memiliki formulasi standar

Lebih terperinci

Soal Babak Penyisihan 7 th OMITS SOAL PILIHAN GANDA

Soal Babak Penyisihan 7 th OMITS SOAL PILIHAN GANDA Soal Babak Penyisihan 7 th OMITS SOAL PILIHAN GANDA 1) Sebuah barisan baru diperoleh dari barisan bilangan bulat positif 1, 2, 3, 4, dengan menghilangkan bilangan kuadrat yang ada di dalam barisan tersebut.

Lebih terperinci

BAB 3 METODOLOGI PENELITIAN

BAB 3 METODOLOGI PENELITIAN BAB 3 METODOLOGI PENELITIAN 3.1 Desain Penelitian Penelitian ini bersifat literatur dan melakukan studi kepustakaan untuk mengkaji dan menelaah berbagai buku, jurnal, karyai lmiah, laporan dan berbagai

Lebih terperinci

TRANSPORTASI & PENUGASAN

TRANSPORTASI & PENUGASAN TRANSPORTASI & PENUGASAN 66 - Taufiqurrahman Metode Transportasi Suatu metode yang digunakan untuk mengatur distribusi dari sumbersumber yang menyediakan produk yang sama, ke tempat-tempat yang membutuhkan

Lebih terperinci

BAB 2 LANDASAN TEORI. 2.1 Program Dinamik

BAB 2 LANDASAN TEORI. 2.1 Program Dinamik 5 BAB 2 LANDASAN TEORI 2.1 Program Dinamik Pemrograman dinamik adalah suatu teknik matematis yang biasanya digunakan untuk membuat suatu keputusan dari serangkaian keputusan yang saling berkaitan. Pemrograman

Lebih terperinci

BIAYA MINIMUM PADA PERENCANAAN PRODUKSI DAN PENGENDALIAN PERSEDIAAN UD. HAMING MAKASSAR DENGAN PROGRAM DINAMIK

BIAYA MINIMUM PADA PERENCANAAN PRODUKSI DAN PENGENDALIAN PERSEDIAAN UD. HAMING MAKASSAR DENGAN PROGRAM DINAMIK BIAYA MINIMUM PADA PERENCANAAN PRODUKSI DAN PENGENDALIAN PERSEDIAAN UD. HAMING MAKASSAR DENGAN PROGRAM DINAMIK Irwan Prodi Matematika, FST-UINAM [email protected] Tenrianna Prodi Matematika,

Lebih terperinci

Prof. Dr. Ir. ZULKIFLI ALAMSYAH, M.Sc. Program Studi Agribisnis Fakultas Pertanian Universitas Jambi

Prof. Dr. Ir. ZULKIFLI ALAMSYAH, M.Sc. Program Studi Agribisnis Fakultas Pertanian Universitas Jambi Prof. Dr. Ir. ZULKIFLI ALAMSYAH, M.Sc. Program Studi Agribisnis Fakultas Pertanian Universitas Jambi Merupakan salah satu bentuk dari model jaringan kerja (network). Suatu model yang berhubungan dengan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Sistem Distribusi Distribusi merupakan proses pemindahan barang-barang dari tempat produksi ke berbagai tempat atau daerah yang membutuhkan. Kotler (2005) mendefinisikan bahwa

Lebih terperinci

Metode Simpleks Minimum

Metode Simpleks Minimum Metode Simpleks Minimum Perhatian Untuk menyelesaikan Persoalan Program Linier dengan Metode Simpleks untuk fungsi tujuan memaksimumkan dan meminimumkan caranya BERBEDA. Perhatian Model matematika dari

Lebih terperinci

PROGRAMA INTEGER 10/31/2012 1

PROGRAMA INTEGER 10/31/2012 1 PROGRAMA INTEGER 10/31/2012 1 Programa linier integer (integer linear programming/ilp) pada intinya berkaitan dengan program-program linier dimana beberapa atau semua variabel memiliki nilai-nilai integer

Lebih terperinci

Mata Kuliah Penelitian Operasional II OPERATIONS RESEARCH AN INTRODUCTION SEVENTH EDITION BY HAMDY A. TAHA BAB 6.

Mata Kuliah Penelitian Operasional II OPERATIONS RESEARCH AN INTRODUCTION SEVENTH EDITION BY HAMDY A. TAHA BAB 6. Mata Kuliah Penelitian Operasional II OPERATIONS RESEARCH AN INTRODUCTION SEVENTH EDITION BY HAMDY A. TAHA BAB 6 Analisis Jaringan Dipresentasikan oleh: Herman R. Suwarman, S.Si Pendahuluan- Ilustrasi

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Bab II dalam penelitian ini terdiri atas vehicle routing problem, teori lintasan dan sirkuit, metode saving matriks, matriks jarak, matriks penghematan, dan penentuan urutan konsumen.

Lebih terperinci

Pengubahan Model Ketidaksamaan Persamaan

Pengubahan Model Ketidaksamaan Persamaan METODA SIMPLEKS Metoda Simpleks Suatu metoda yang menggunakan prosedur aljabar untuk menyelesaikan programa linier. Proses penyelesaiannya dengan melakukan iterasi dari fungsi pembatasnya untuk mencapai

Lebih terperinci

Tentukan alokasi hasil produksi dari pabrik pabrik tersebut ke gudang gudang penjualan dengan biaya pengangkutan terendah.

Tentukan alokasi hasil produksi dari pabrik pabrik tersebut ke gudang gudang penjualan dengan biaya pengangkutan terendah. PENJELASAN METODE STEPPING STONE Metode ini dalam merubah alokasi produk untuk mendapatkan alokasi produksi yang optimal menggunakan cara trial and error atau coba coba. Walaupun mengubah alokasi dengan

Lebih terperinci

18/09/2013. Ekonomi Teknik / Sigit Prabawa / 1. Ekonomi Teknik / Sigit Prabawa / 2

18/09/2013. Ekonomi Teknik / Sigit Prabawa / 1. Ekonomi Teknik / Sigit Prabawa / 2 PENERAPAN PROGRAM LINIER dalam OPTIMASI PRODUKSI Ekonomi Teknik / Sigit Prabawa / 1 MASALAH yg banyak dihadapi oleh INDUSTRI adalah BAGAIMANA MENGGUNAKAN atau MENENTUKAN ALOKASI PENGGUNAAN SUMBER DAYAYG

Lebih terperinci

MATA PELAJARAN. SELAMAT MENGERJAKAN Berdoalah sebelum mengerjakan soal. Kerjakan dengan jujur, karena kejujuran adalah cermin kepribadian.

MATA PELAJARAN. SELAMAT MENGERJAKAN Berdoalah sebelum mengerjakan soal. Kerjakan dengan jujur, karena kejujuran adalah cermin kepribadian. 1 Mata Pelajaran : Matematika Jenjang : SMA/MA Program Studi : IPS MATA PELAJARAN WAKTU PELAKSANAAN Hari/Tanggal : Selasa, 1 Oktober 2017 Jam : 120 menit PETUNJUK UMUM 1. Periksalah Naskah Soal yang Anda

Lebih terperinci

10 DESAIN RANGKAIAN BERURUT

10 DESAIN RANGKAIAN BERURUT 10 DESAIN RANGKAIAN BERURUT Desain rangkaian berurut pada umumnya dimulai dari uraian dengan katakata (verbal) tentang perilaku (behaviour) daripada rangkaian berurut yang akan dibangun. Uraian kebutuhan

Lebih terperinci

Manajemen Sains. Eko Prasetyo. Teknik Informatika UMG Modul 5 MODEL TRANSPORTASI. 5.1 Pengertian Model Transportasi

Manajemen Sains. Eko Prasetyo. Teknik Informatika UMG Modul 5 MODEL TRANSPORTASI. 5.1 Pengertian Model Transportasi Modul 5 MODEL TRANSPORTASI 5.1 Pengertian Model Transportasi Model transportasi adalah kelompok khusus program linear yang menyelesaikan masalah pengiriman komoditas dari sumber (misalnya pabrik) ke tujuan

Lebih terperinci

Pelatihan-osn.com Konsultan Olimpiade Sains Nasional contact person : ALJABAR

Pelatihan-osn.com Konsultan Olimpiade Sains Nasional  contact person : ALJABAR ALJABAR 1. Diberikan a 4 + a 3 + a 2 + a + 1 = 0. Tentukan a 2000 + a 2010 + 1. 2. Diberikan sistem persamaan 2010(x y) + 2011(y z) + 2012(z x) = 0 2010 2 (x y) + 2011 2 (y z) + 2012 2 (z x) = 2011 Tentukan

Lebih terperinci

Perbandingan Algoritma Dijkstra dan Algoritma Bellman Ford pada Routing Jaringan Komputer

Perbandingan Algoritma Dijkstra dan Algoritma Bellman Ford pada Routing Jaringan Komputer Perbandingan Algoritma Dijkstra dan Algoritma Bellman Ford pada Routing Jaringan Komputer Ginanjar Fahrul Muttaqin Teknik Informatika Institut Teknologi Bandung, Ganeca 10, e-mail: [email protected]

Lebih terperinci

Soal-soal dan Pembahasan Matematika Dasar SBMPTN - SNMPTN 2007

Soal-soal dan Pembahasan Matematika Dasar SBMPTN - SNMPTN 2007 Soal-soal dan Pembahasan Matematika Dasar SBMPTN - SNMPTN 007. Jika a > 0 dan a memenuhi a 4 b ( ) a, maka log b A. B. C. D. E. a a 4 b ( ) a 4 ( b a ) a 4 b a b 4 4 log b log 4 log ( ) log log. Jawabannya

Lebih terperinci

Siswa dapat menyebutkan dan mengidentifikasi bagian-bagian lingkaran

Siswa dapat menyebutkan dan mengidentifikasi bagian-bagian lingkaran KISI-KISI PENULISAN SOAL DAN URAIAN ULANGAN KENAIKAN KELAS Jenis Sekolah Penulis Mata Pelajaran Jumlah Soal Kelas Bentuk Soal AlokasiWaktu Acuan : SMP/MTs : Gresiana P : Matematika : 40 nomor : VIII (delapan)

Lebih terperinci

TRANSPORTATION PROBLEM

TRANSPORTATION PROBLEM Media Informatika Vol. No. (27) TRANSPORTATION PROBLEM Dahlia Br Ginting Sekolah Tinggi Manajemen Informatika dan Komputer LIKMI Jl. Ir. Juanda 9 Bandung 2 E-mail : [email protected] Abstrak Di sini akan

Lebih terperinci

PENERAPAN METODE FEAR PADA ANALISIS DATA PERCOBAAN DENGAN RANCANGAN FAKTORIAL PECAHAN DUA TARAF HARIZ EKO WIBOWO

PENERAPAN METODE FEAR PADA ANALISIS DATA PERCOBAAN DENGAN RANCANGAN FAKTORIAL PECAHAN DUA TARAF HARIZ EKO WIBOWO PENERAPAN METODE FEAR PADA ANALISIS DATA PERCOBAAN DENGAN RANCANGAN FAKTORIAL PECAHAN DUA TARAF HARIZ EKO WIBOWO DEPARTEMEN STATISTIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR

Lebih terperinci

ANALYTICAL HIERARCHY PROCESS (AHP) Amalia, ST, MT

ANALYTICAL HIERARCHY PROCESS (AHP) Amalia, ST, MT ANALYTICAL HIERARCHY PROCESS (AHP) Amalia, ST, MT Multi-Attribute Decision Making (MADM) Permasalahan untuk pencarian terhadap solusi terbaik dari sejumlah alternatif dapat dilakukan dengan beberapa teknik,

Lebih terperinci

log Soal Paket B adalah. A. 7 B. (2 C. 5 D. 11 E Bentuk sederhana dari adalah. B. 5 D Bentuk sederhana dari A. 2( C.

log Soal Paket B adalah. A. 7 B. (2 C. 5 D. 11 E Bentuk sederhana dari adalah. B. 5 D Bentuk sederhana dari A. 2( C. Soal Paket B. Nilai dari 6 () (9) adalah. A. B. C. D. E.. Bentuk sederhana dari 0 0 adalah. A. B. C. D. E. 9. Bentuk sederhana dari A. ( ) B. ( ) C. ( ) D. ( ) E. ( ). Nilai dari log A. B. 6 C. D. E..

Lebih terperinci

MODEL TRANSPORTASI MATAKULIAH RISET OPERASIONAL Pertemuan Ke-11

MODEL TRANSPORTASI MATAKULIAH RISET OPERASIONAL Pertemuan Ke-11 MODEL TRANSPORTASI MATAKULIAH RISET OPERASIONAL Pertemuan Ke-11 Riani Lubis JurusanTeknik Informatika Universitas Komputer Indonesia 1 2 PENGANTAR Terdapat bermacam-macam network model. Network : Suatu

Lebih terperinci

PERTEMUAN 9 MENENTUKAN SOLUSI FISIBEL BASIS AWAL

PERTEMUAN 9 MENENTUKAN SOLUSI FISIBEL BASIS AWAL PERTEMUAN 9 MENENTUKAN SOLUSI FISIBEL BASIS AWAL 1). Metode Pojok Kiri Atas / Pojok Barat Laut (North West Corner) Metode ini mula-mula diperkenalkan oleh Charnes dan Cooper kemudian diperluas oleh Danziq.

Lebih terperinci

Pembahasan OSN Tingkat Provinsi Tahun 2012 Jenjang SMP Bidang Matematika

Pembahasan OSN Tingkat Provinsi Tahun 2012 Jenjang SMP Bidang Matematika Pembahasan OSN Tingkat Provinsi Tahun 202 Jenjang SMP Bidang Matematika Bagian A : Soal Isian Singkat. Sebuah silinder memiliki tinggi 5 cm dan volume 20 cm 2. Luas permukaan bola terbesar yang mungkin

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Proses Alokasi Andaikan terdapat sejumlah sumber daya modal tertentu, yaitu dapat berupa uang untuk investasi, mesin cetak, bahan bakar untuk kendaraan dan lain sebagainya. Suatu

Lebih terperinci

Analisis Penerapan Algoritma Kruskal dalam Pembuatan Jaringan Distribusi Listrik

Analisis Penerapan Algoritma Kruskal dalam Pembuatan Jaringan Distribusi Listrik Analisis Penerapan Algoritma Kruskal dalam Pembuatan Jaringan Distribusi Listrik Maureen Linda Caroline (13508049) Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi

Lebih terperinci

OPERATIONS RESEARCH. Industrial Engineering

OPERATIONS RESEARCH. Industrial Engineering OPERATIONS RESEARCH Industrial Engineering TRANSPORTASI METODE ANALISA TRANSPORTASI PROGRAMA LINEAR Metode transportasi programa linear merupakan metode yang cukup sederhana dalam memecahkan permasalahan

Lebih terperinci

Kelompok : SMK Tingkat : XII ( Duabelas ) Bidang Keahlian : Ti, Kes, Sos Hari/Tanggal : Prog. Keahlian : Ti, Kes, Sos W a k t u : 0

Kelompok : SMK Tingkat : XII ( Duabelas ) Bidang Keahlian : Ti, Kes, Sos Hari/Tanggal : Prog. Keahlian : Ti, Kes, Sos W a k t u : 0 Kelompok : SMK Tingkat : XII ( Duabelas ) Bidang Keahlian : Ti, Kes, Sos Hari/Tanggal : Prog. Keahlian : Ti, Kes, Sos W a k t u : 0 PETUNJUK UMUM :. Isikan identitas Anda ke dalam Lembar Jawaban Komputer

Lebih terperinci

Analisis Input-Output dengan Microsoft Office Excel

Analisis Input-Output dengan Microsoft Office Excel Analisis Input-Output dengan Microsoft Office Excel Junaidi, Junaidi (Staf Pengajar Fakultas Ekonomi dan Bisnis Universitas Jambi) Tulisan ini membahas simulasi/latihan analisis Input-Output (I-O) dengan

Lebih terperinci

Pada perkembangannya ternyata model transportasi ini dapat juga digambarkan dan diselesaikan dalam suatu bentuk jaringan

Pada perkembangannya ternyata model transportasi ini dapat juga digambarkan dan diselesaikan dalam suatu bentuk jaringan MODEL ARUS JARINGAN DEFINISI Jaringan (network) = (N, A); N=node, A=arc = sisi=busur. Arc (sisi) terarah mempunyai arah. Jaringan terarah mempunyai semua sisi yang terarah. Path (lintasan) = sekumpulan

Lebih terperinci

BAB 2 LANDASAN TEORI. 2.1 Pengertian Program Linier (Linear Programming)

BAB 2 LANDASAN TEORI. 2.1 Pengertian Program Linier (Linear Programming) BAB 2 LANDASAN TEORI 2.1 Pengertian Program Linier (Linear Programming) Menurut Sri Mulyono (1999), Program Linier (LP) merupakan metode matematik dalam mengalokasikan sumber daya yang langka untuk mencapai

Lebih terperinci

Doc. Name: SPMB2007MATDAS999 Doc. Version :

Doc. Name: SPMB2007MATDAS999 Doc. Version : SPMB 007 Matematika Kode Soal Doc. Name: SPMB007MATDAS999 Doc. Version : 0-0 halaman 0. Solusi persamaan 5 ( x ) adalah (D) 4 5 6 5 5 0. Jika x dan x adalah akar-akar persamaan : (5 - log x) log x = log

Lebih terperinci

A. KUBUS Definisi Kubus adalah bangun ruang yang dibatasi enam sisi berbentuk persegi yang kongruen.

A. KUBUS Definisi Kubus adalah bangun ruang yang dibatasi enam sisi berbentuk persegi yang kongruen. A. KUBUS Definisi Kubus adalah bangun ruang yang dibatasi enam sisi berbentuk persegi yang kongruen. Gambar 1.1 Kubus Sifat-sifat Kubus 1. Semua sisi kubus berbentuk persegi. Kubus mempunyai 6 sisi persegi

Lebih terperinci

Assocation Rule. Data Mining

Assocation Rule. Data Mining Assocation Rule Data Mining Association Rule Analisis asosiasi atau association rule mining adalah teknik data mining untuk menemukan aturan assosiatif antara suatu kombinasi item. Aturan yang menyatakan

Lebih terperinci

SOAL UJIAN SELEKSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2014 TINGKAT PROVINSI

SOAL UJIAN SELEKSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2014 TINGKAT PROVINSI HAK CIPTA DILINDUNGI UNDANG-UNDANG SOAL UJIAN SELEKSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2014 TINGKAT PROVINSI BIDANG MATEMATIKA Waktu : 210 menit KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN DIREKTORAT JENDERAL

Lebih terperinci

SPMB 2004 Matematika Dasar Kode Soal

SPMB 2004 Matematika Dasar Kode Soal SPMB 00 Matematika Dasar Kode Soal Doc. Name: SPMB00MATDAS999 Version : 0- halaman 0. Nilai x yang memenuhi persamaan : 3 x ( ) adalah. 0 - - 0. Dalam bentuk pangkat positif dan bentuk akar, x y x y...

Lebih terperinci

Penelitian Operasional II Programa Dinamik 1 1. PROGRAM DINAMIK

Penelitian Operasional II Programa Dinamik 1 1. PROGRAM DINAMIK Penelitian Operasional II Programa Dinamik. PROGRAM DINAMIK. PENDAHULUAN Definisi.: Program dinamik adalah suatu teknik matematik untuk menentukan serangkaian keputusan yang saling terkait, serta memberikan

Lebih terperinci

Prof. Dr. Ir. ZULKIFLI ALAMSYAH, M.Sc. Program Magister Agribisnis Universitas Jambi

Prof. Dr. Ir. ZULKIFLI ALAMSYAH, M.Sc. Program Magister Agribisnis Universitas Jambi Prof. Dr. Ir. ZULKIFLI LMSYH, M.Sc. Program Magister gribisnis Universitas Jambi Merupakan salah satu bentuk dari model jaringan kerja (network). Suatu model yang berhubungan dengan distribusi suatu barang

Lebih terperinci

MASALAH TRANSPORTASI

MASALAH TRANSPORTASI MASALAH TRANSPORTASI Transportasi pada umumnya berhubungan dengan distribusi suatu produk, menuju ke beberapa tujuan, dengan permintaan tertentu, dan biaya transportasi minimum. Transportasi mempunyai

Lebih terperinci

PENCARIAN ALIRAN MAKSIMUM DENGAN ALGORITMA FORD-FULKERSON DAN MODIFIKASINYA

PENCARIAN ALIRAN MAKSIMUM DENGAN ALGORITMA FORD-FULKERSON DAN MODIFIKASINYA Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 6, No. 01 (2017), hal 29-36. PENCARIAN ALIRAN MAKSIMUM DENGAN ALGORITMA FORD-FULKERSON DAN MODIFIKASINYA Fransiska Sumarti INTISARI Algoritma

Lebih terperinci

Riset Operasi dengan Solver Excel

Riset Operasi dengan Solver Excel Riset Operasi dengan Solver Excel Junaidi, Junaidi I. Pengantar Riset Operasi (operation research) pada awalnya dimulai dikalangan militer dalam permulaan Perang Dunia Kedua. Konsep ini diperkenalkan dalam

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Adapun landasan teori yang dibutuhkan dalam pembahasan tugas akhir ini di antaranya adalah definisi graf, lintasan terpendek, lintasan terpendek fuzzy, metode rangking fuzzy, algoritma

Lebih terperinci

Pembahasan Soal Final Kompetisi Matematika Pasiad ( KMP ) VIII Tahun 2012 Tingkat SMP

Pembahasan Soal Final Kompetisi Matematika Pasiad ( KMP ) VIII Tahun 2012 Tingkat SMP Pembahasan Soal Final Kompetisi Matematika Pasiad ( KMP ) VIII Tahun 01 Tingkat SMP Oleh Tutur Widodo I. Soal Pilihan Ganda (Cara Penilaian : Benar = 1 poin, Kosong = 0, Salah = 0.5 poin) 1. Terdapat berapa

Lebih terperinci

Model Transportasi /ZA 1

Model Transportasi /ZA 1 Model Transportasi 1 Model Transportasi: Merupakan salah satu bentuk dari model jaringan kerja (network). Suatu model yang berhubungan dengan distribusi suatu barang tertentu dari sejumlah sumber (sources)

Lebih terperinci

SOAL UN DAN PENYELESAIANNYA 2005

SOAL UN DAN PENYELESAIANNYA 2005 1. Keliling segitiga ABC pada gambar adalah 8 cm. Panjang sisi AB =... 4 D. (8-2 ) cm (4 - ) cm E. (8-4 ) cm (4-2 ) cm Diketahui segitiga sama kaki = AB = AC Misalkan : AB = AC = a BC² = a² + a² = 2 a²

Lebih terperinci

SELEKSI OLIMPIADE TINGKAT PROVINSI 2014 TIM OLIMPIADE MATEMATIKA INDONESIA Waktu : 210 Menit

SELEKSI OLIMPIADE TINGKAT PROVINSI 2014 TIM OLIMPIADE MATEMATIKA INDONESIA Waktu : 210 Menit SELEKSI OLIMPIADE TINGKAT PROVINSI 2014 TIM OLIMPIADE MATEMATIKA INDONESIA 2015 Waktu : 210 Menit KEMENTERIAN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL MANAJEMEN PENDIDIKAN DASAR DAN MENENGAH DIREKTORAT

Lebih terperinci

BAB III LANDASAN TEORI

BAB III LANDASAN TEORI BAB III LANDASAN TEORI 3.1. Konsep Supply Chain Supply Chain adalah jaringan perusahaan-perusahaan yang secara bersama-sama bekerja untuk menciptakan dan menghantarkan suatu produk ke tangan pemakai akhir.

Lebih terperinci

Lembar Kerja Mahasiswa

Lembar Kerja Mahasiswa Lembar Kerja Mahasiswa MEMAHAMI KONSEP TEORI PERMAINAN Nama Anggota Kelompok : 1 2 4 Program Studi Pendidikan Matematika Fakultas Keguruan dan Ilmu Pendidikan Universitas Jember 2016 LEMBAR KERJA SISWA

Lebih terperinci

1.Tentukan solusi dari : Rubrik Penskoran :

1.Tentukan solusi dari : Rubrik Penskoran : 1.Tentukan solusi dari : 1 7 1 Rubrik Penskoran : Skor Kriteria Langkah langkah untuk membentuk persamaan kuadrat telah benar. 4 Langkah pemfaktoran telah benar. (jika digunakan) Terdapat dua solusi yang

Lebih terperinci

A. Pengertian Matriks

A. Pengertian Matriks A. Pengertian Matriks Pada 17 April 2003, Universitas Pendidikan Literatur Indonesia (UPLI), mewisuda 2.630 mahasiswanya. 209 wisudawan di antaranya adalah wisudawan dari Fakultas Pendidikan Matematika

Lebih terperinci

Model Arus Jaringan. Rudi Susanto

Model Arus Jaringan. Rudi Susanto Model Arus Jaringan Rudi Susanto Pengertian Jaringan Jaringan adalah suatu susunan garis edar (path) yang terhubung pada berbagai titik, dimana satu atau beberapa barang bergerak dari satu titik ke titik

Lebih terperinci

Keliling segitiga ABC pada gambar adalah 8 cm. Panjang sisi AB =... A. 4

Keliling segitiga ABC pada gambar adalah 8 cm. Panjang sisi AB =... A. 4 1. Keliling segitiga ABC pada gambar adalah 8 cm. Panjang sisi AB =... A. 4 D. (8-2 ) cm B. (4 - ) cm E. (8-4 ) cm C. (4-2 ) cm Jawaban : E Diketahui segitiga sama kaki = AB = AC Misalkan : AB = AC = a

Lebih terperinci

Riset Operasional JAWABAN KISI-KISI UAS PENAWARAN G N O PERMINTAAN = 140

Riset Operasional JAWABAN KISI-KISI UAS PENAWARAN G N O PERMINTAAN = 140 Riset Operasional JAWABAN KISI-KISI UAS 1. Dengan berdasarkan data biaya transportasi dari pabrik ke gudang di samping, hitunglah biaya transportasinya dengan menggunakan METODE SUDUT BARAT LAUT & VAM!

Lebih terperinci

BAB II KAJIAN PUSTAKA

BAB II KAJIAN PUSTAKA 5 BAB II KAJIAN PUSTAKA 2.1. Kajian Teori 2.1.1. Pengertian Luas Permukaan Bangun Ruang Luas daerah permukaan bangun ruang adalah jumlah luas daerah seluruh permukaannya yaitu luas daerah bidang-bidang

Lebih terperinci

BAB IV PENGUJIAN DAN ANALISIS

BAB IV PENGUJIAN DAN ANALISIS BAB IV PENGUJIAN DAN ANALISIS Pada bagian ini merupakan pembahasan mengenai pengujian sistem dimana hasil pengujian yang akan dilakukan oleh sistem nantinya akan dibandingkan dengan perhitungan secara

Lebih terperinci

BAB 2 LANDASAN TEORI. 2.1 Matrix Rotasi 3D dengan Representasi Euler

BAB 2 LANDASAN TEORI. 2.1 Matrix Rotasi 3D dengan Representasi Euler 5 BAB LANDASAN TEOI.1 Matri otasi 3D dengan epresentasi Euler Matriks otasi untuk grafik 3D dengan representasi euler euler angle terdiri atas rotasi terhadap sumbu,, dan X v 3 v Z v v 1 Y Gambar.1 Vektor

Lebih terperinci

PERTEMUAN 5 METODE SIMPLEKS KASUS MINIMUM

PERTEMUAN 5 METODE SIMPLEKS KASUS MINIMUM PERTEMUAN 5 METODE SIMPLEKS KASUS MINIMUM PERTEMUAN 5 Metode Simpleks Kasus Minimum Untuk menyelesaikan Persoalan Program Linier dengan Metode Simpleks untuk fungsi tujuan memaksimumkan dan meminimumkan

Lebih terperinci

MODEL TRANSPORTASI - I MATAKULIAH RISET OPERASIONAL Pertemuan Ke-6

MODEL TRANSPORTASI - I MATAKULIAH RISET OPERASIONAL Pertemuan Ke-6 MODEL TRANSPORTASI - I MATAKULIAH RISET OPERASIONAL Pertemuan Ke-6 Riani Lubis Jurusan Teknik Informatika Universitas Komputer Indonesia 1 2 PENGANTAR Terdapat bermacam-macam network model. Network : Suatu

Lebih terperinci

MAKALAH BANGUN RUANG. Diajukan Untuk Memenuhi Salah Satu Tugas Guru Bidang Matematika. Disusun Oleh: 1. Titin 2. Silvi 3. Ai Riska 4. Sita 5.

MAKALAH BANGUN RUANG. Diajukan Untuk Memenuhi Salah Satu Tugas Guru Bidang Matematika. Disusun Oleh: 1. Titin 2. Silvi 3. Ai Riska 4. Sita 5. MAKALAH BANGUN RUANG Diajukan Untuk Memenuhi Salah Satu Tugas Guru Bidang Matematika Disusun Oleh: 1. Titin 2. Silvi 3. Ai Riska 4. Sita 5. Ayu YAYASAN PENDIDIKAN TERPADU PONDOK PESANTREN MADRASAH THASANAWIYAH

Lebih terperinci