Percobaan 4 PENGUBAH SANDI BCD KE PERAGA 7-SEGMEN. Oleh : Sumarna, Jurdik Fisika, FMIPA, UNY

Ukuran: px
Mulai penontonan dengan halaman:

Download "Percobaan 4 PENGUBAH SANDI BCD KE PERAGA 7-SEGMEN. Oleh : Sumarna, Jurdik Fisika, FMIPA, UNY"

Transkripsi

1 Percobaan 4 PENGUBAH SANDI BCD KE PERAGA 7-SEGMEN Oleh : Sumarna, Jurdik Fisika, FMIPA, UNY sumarna@uny.ac.id Tujuan : 1. Mengenal cara kerja dari peraga 7-segmen 2. Mengenal cara kerja rangkaian pengubah sandi (decoder) BCD ke peraga 7-segmen 3. Dapat menyusun rangkaian pengubah sandi BCD ke peraga 7-segmen dari beberapa komponen yang diperlukan. 4. Menggunakan IC BCD to Seven Segment Decoder maupun Peraga 7-Segmen dan sejenisnya menjadi rangkaian yang dapat mengubah sandi BCD ke peraga 7-segmen. Alat-alat : Catu daya (5V, 500 ma), multimeter, LED, resistor, beberapa IC dengan seri 7404, 7447/7448, peraga 7-segmen (Anoda bersama atau Katoda bersama), dan kabelkabel penghubung. Dasar Teori : Dekoder (Demultiplekser) Dalam suatu mesin digital, instruksi dan informasi (data) disajikan dalam bentuk biner, karena mesin digital hanya dapat menanggapi dan mengolah data dalam bentuk biner. Kita sering melihat atau bahkan menggunakan mesin-mesin digital seperti multimeter digital, termometer digital, jam digital, komputer, kalkulator, dan lain-lain. Tampilan yang langsung dapat kita lihat dari alat tersebut berupa angka desimal, padahal proses yang terjadi di dalamnya berbentuk biner. Instruksi ataupun informasi dalam bentuk biner tidak kita sukai, selain karena lebih rumit juga kurang praktis dan di luar kebiasaan. Kita telah terbiasa dengan huruf dari A sampai Z maupun angka-angka 0, 1, 2, Sehingga apabila disajikan angka atau kata dalam bentuk biner pada umumnya tidak segera diketahui maknanya. Misalkan disajikan sederet bit , kita tidak 1

2 segera tahu deretan bit itu menyatakan angka atau huruf. Jika angka, sederet bit tersebut dapat menunjukkan angka 17 atau bahkan angka 23 sebagaimana biasa kita kenal. Agar dapat tampil sebagai 17 atau 23 diperlukan teknik maupun rangkaian tertentu. Hal ini juga berlaku untuk langkah sebaliknya, agar angka 17 atau 23 dapat dikenali oleh suatu mesin digital sebagai diperlukan teknik dan rangkaian tertentu pula. Dalam teknik penyaluran informasi ataupun transmisi data, sering kita jumpai di mana suatu rangkaian menerima masukan dan kemudian menyalurkannya ke salah satu dari sekian banyak jalur keluaran yang tersedia. Sebaliknya juga sering dijumpai suatu rangkaian yang memiliki banyak jalur masukan dan satu jalur keluaran. Misalkan transmisi data pada jaringan telepon, lebih banyak mengirim data paralel dalam bentuk serial karena hanya diperlukan sedikit saluran, sedangkan pada penerimaan akhir data tersebut dikumpulkan kembali dalam bentuk paralel. Dalam pemakaian kalkulator, bilangan yang dimasukkan melalui tombol kunci (tuts) perlu diubah dari bentuk desimal ke dalam biner. Sebaliknya bilangan yang muncul pada tampilan kalkulator juga mengalami proses pengubahan dari bentuk biner ke dalam format 7 segmen yang pada umumnya benbentuk desimal. Perhatikan Gambar berikut = Enkoder CPU Dekoder Gambar : Diagram aliran pengubahan tampilan 2

3 Kita hendak memasukkan bilangan desimal 9 dengan cara menekan tombol kunci 9. Rangkaian enkoder mengubah desimal 9 menjadi bentuk biner sebagai CPU menerina bilangan itu dalam bentuk biner 1001 karena CPU hanya dapat mengolah bentuk biner. Selanjutnya rangkaian dekoder mengubah bilangan biber 1001 kembali menjadi bentuk desimal 9. Akhirnya yang muncul dalam tampilan keluaran adalah desimal 9 seperti mula-mula. Dari penggambaran tersebut memperlihatkan terjadinya proses pengubahan dari satu jenis (kode) sistem bilangan menjadi jenis (kode) sistem bilangan lain. Awalnya dari kode desimal menjadi kode biner, dan akhirnya dari kode biner menjadi kode desimal. Suatu rangkaian pengubah suatu pesan bermakna menjadi kode tertentu disebut enkoder (penyandi). Sedangkan rangkaian pengubah suatu kode tertentu kembali menjadi makna sebernarnya disebut dekoder (pembaca sandi). Sistem BCD (Biner Coded Decimal) Dalam kehidupan sehari-hari kita telah terbiasa dengan sistem bilangan desimal dan karenanya sistem ini dianggap sebagai kode yang paling bermakna. Dalam peralatan digital seperti pencacah frekuensi, multimeter digital, kalkulator, komputer, dan lain-lain menampilkan bilangan (angka) dalam bentuk desimal. Kita tahu bahwa mekanisme komputasi dalam alat alat tersebut terjadi dalam bentuk biner. Jika hasil komputasi tetap ditampilkan dalam bentuk biner, kita mengalami hambatan atau bahkan sulit memahaminya, karena kita tidak terbiasa dengan bilangan yang tampil dalam bentuk biner. Jadi jelaslah bahwa dalam pemakaiannya tampilan desimal lebih mudah difahami dari pada taampilan biner. Oleh karena itu diperlukan suatu cara penyandian dari biner ke desimal atau sebaliknya. Sebagai contoh, dengan menggunakan sandi biner paling sederhana, bilangan desimal 25 dan 43 masing-masing disandikan sebagai berikut 25 (10) = (2) 43 (10) = (2) Pada dasarnya dikenal dua jenis sandi biner yaitu sandi tak berbobot dan sandi berbobot. Seperti dua contoh di atas termasuk dalam sandi tak berbobot, setiap angka biner memiliki nilai sesuai dengan posisinya (satuan, duaan, empatan, dan seterusnya). Dalam sandi tak berbobot, semua digit bilangan desimal disandikan langsung, atau 3

4 sebaliknya semua pernyataan biner menyandikan suatu bilangan desimal, jadi bukan digit per digit. Dalam sandi berbobot hanya bilangan-bilangan 0, 1, 2, 3, 4, 5, 6, 7, 8, dan 9 yang disandikan. Untuk menyatakan bilangan desimal lebih dari satu digit, maka setiap digit disandikan sendiri. Salah satu sistem sandi berbobot adalah BCD (Biner Coded Dacimal) atau desimal yang disandikan biner. Untuk menyatakan setiap digit desimal diperlukan 4 bit biner. Susunan 4 bit biner tersebut menghasilkan 16 kombinasi yang berbeda, tetapi hanya diperlukan 10 kombinasi di antaranya. Untuk menyatakan bilangan desimal N digit diperlukan N x 4 bit biner. Kelompok 4 bit yang pertama (paling kanan) menyatakan satuan, kelompok 4 bit ke dua adalah puluhan, kelompok 4 bit ke tiga merupakan ratusan, dan seterusnya. Sebagai contoh bilangan desimal 468 (adalah 3 digit) memerlukan tiga kelompok 4 bit. Perhatikan Tabel berikut. Bobot Sandi BCD Digit desimal Tiga kelompok 4 bit tersebut dapat menyajikan bilangan antara 0 sanpai dengan 999 (seribu buah bilangan), dan karenanya dikatakan memiliki resolusi 1/1000 atau 0,1 %. Dekoder Biner Ke BCD Data atau bilangan dalam mesin digital diproses dalam bentuk biner dan disajikan dalam bentuk kode. Untuk mengenal arti suatu kode diperlukan suatu rangkaian yang dikenal sebagai dekoder. Untuk merancang suatu rangkaian dekoder pada prinsipnya sama dengan merancang rangkaian logika pada umumnya. Salah satu rangkaian dekoder adalah untuk mengenal (mengubah) data atau bilangan dalam bentuk biner tak berbobot menjadi sandi biner berbobot. Rangkaian tersebut dinamakan dekoder biner ke BCD. Perhatikan bilangan desimal 25 dan 43 yang disajikan dalam biner tak berbobot dan biner berbobot (BCD) seperti pada Tabel berikut. Tak berbobot Berbobot (BCD) Desimal

5 Selanjutnya, marilah kita rancang rangkaian dekoder biner ke BCD dan dibatasi untuk bilangan biner 4 bit sehingga bilangan terbesarnya adalah biner 1111 atau desimal 15. Untuk bit atau bilagan yang lebih besar prinsipnya sama. Rangkaian yang akan dibuat memiliki 4 terminal masukan (CD) dan 8 terminal keluaran (P 3 P 2 P 1 P 0 S 3 S 2 S 1 S 0 ). Diperlukan 8 terminal keluaran karena bilangan-bilangan yang dihasilkan ada yang terdiri dari 2 digit (10, 11, 12, 13, 14, dan 15 masing-masing 2 digit). Tabel kebenaran rangkan yang dimaksud adalah tampak pada Tabel di bawah ini. Biner BCD Nomor Baris Puluhan Satuan (Desimal) A B C D P 3 P 2 P 1 P 0 S 3 S 2 S 1 S Dari tabel di atas tampak bahwa ada 8 fungsi keluaran, tetapi 3 fungsi di antaranya, yaitu P 3, P 2, dan P 1 selalu 0. Sehingga tinggal 5 fungsi masing-masing dapat dinyatakan dalam bentuk minterm sebagai : S 0 = m (1,3,5,7,9,11,13,15) S 1 = m (2,3,6,7,12,13) S 2 = m (4,5,6,7,14,15) S 3 = m (8,9) P 4 = m (10,11,12,13,14,15). 5

6 Fungsi-fungsi tersebut jika dituangkan dalam peta Karnough dapat dilihat seperti pada Gambar di bawah ini. C D C D C D C D (a) C D C D C D C D (b) C D C D C D C D (c) C D C D C D C D (d) C D C D C D C D (e) a). S 0 = D b). S 1 = A C + C c). S 2 = A B + BC d). S 3 = A B C e). P 0 = + AC. Gambar : Peta Karnough untuk keluaran-keluaran dari Tabel di atas. 6

7 Realisasi rangkaian dekoder biner ke BCD berdasarkan tabel ditunjukkan pada Gambar di bawah ini. dan gambar di atas A B C D S 0 S 1 S 2 S 3 P 0 P 1 P 2 P 3 Gambar : Diagram rangkaian dekoder biner 4 bit ke BCD 7

8 Dekode BCD ke Desimal Data atau bilangan yang disajikan baik dalam sandi biner tak berbobot maupun dalam sandi BCD masih sulit untuk difahami orang pada umumnya, karena orang telah terbiasa dengan bilangan desimal. Dengan demikian perlu rangkaian untuk mengubah dari sandi BCD ke desimal. Rangkaian inilah yang kita kenal sebagai dekoder BCD ke desimal. Marilah kita mencoba memahami pengubahan sandi BCD untuk menampilkan desimal 1 digit, misalnya desimal 9, yang tentu saja memerlukan 4 bit biner yang menyandi BCD. Operasi pengubahan ini dapat dihasilkan dengan gerbang AND 4 masukan. Perhatikan Gambar berikut ini. A = 1 (MSB) B = 0 C = 0 D = 1 (LSB) A B C D Saluran 9 Gambar : Diagram rangkaian dekoder BCD (4 bit) Ke desimal 1 digit dengan gerbang AND 4 masukan. Keluaran gerbang pada gambar di atas dalam keadaan 1 jika dan hanya jika masukanmasukan dalam sandi BCD bernilai A = 1 (MSB), B = 0, C = 0, dan D = 1 (LSB). Karena sandi ini akan menampilkan desimal 9, maka keluarannya ditandai dengan "saluran 9", (CD ). Sebuah dekoder BCD ke desimal yang lebih lengkap dapat dilihat pada Gambar di bawah nin. Pada dekoder tersebut tetap digunakan gerbang NAND sehingga sebuah keluaran 0 (rendah) untuk kode BCD yang benar dan 1 (tinggi) pada kode lain yang salah. Dekoder tersebut memiliki 4 jalur masukan A, B, C, D dan 10 jalur keluaran untuk 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Untuk mendapatkan masukan komplemen A, B,C, D dapat digunakan gerbang NOT. 8

9 S A B C D (LSB) (MSB) A B C D = A B C D = A B C D = A B C D = Gambar : Dekoder BCD ke desimal menggunakan gerbang NAND. Dekoder seperti gambar di atas juga dikenal sebagai dekoder 4 jalur ke 10 jalur (saluran), karena menunjukkan suatu kode masukan 4 bit yang memilih 1 di antara 10 9

10 saluran keluaran.dengan kata lain dekoder tersebut bekerja sebagai saklar (switch) 10 posisi yang tanggap terhadap sebuah perintah masukan BCD. Kadang-kadang diperlukan agar sebuah dekoder bekerja hanya dalam selang waktu tertentu. Dalam fungsi demikian diperlukan satu tambahan terminal masukan pada setiap gerbang NAND. Terminal tambahan itu disebut sebagai STROBE atau ENLE. Semua masukan STROBE (S) disambung bersama dan dibangkitkan dengan sinyal biner S. Jika S = 1 maka satu gerbang diijinkan (enable) dan terjadi proses penyandian. Jika S = 0 maka tidak ada kejadian yang mungkin dan proses penyandian dicegah. Suatu masukan STROBE tersebut dapat digunakan suatu dekoder yang memiliki sejumlah masukan dan keluaran sembarang. Dekode BCD ke Peraga 7 Segmen Angka-angka yang sering kita baca pada alat-alat digital ditampilkan dengan lampu peraga yang terdiri dari 7 bagian (segmen). Penampil macam itu dikenal sebagai peraga 7 segmen. Perhatikan Gambar berikut. a f g b e c d Gambar : Peraga 7 segmen Sebenarnya setiap segmen merupakan sebuah LED (Light Emitting Dyode), dan masingmasing segmen diberi nama secara berurutan sebagai segmen-segmen a, b, c, d, e, f, dan g seperti pada gambar 6.6. Angka desimal yang ditampilkan terbentuk dari segmensegmen yang menyala. Misal agar tampil angka 7 maka segmen yang dinyalakan a, b, dan c. Jika segmen-segmen f, g, b, dan c yang menyala maka akan muncul angka 4. Demikian seterusnya. 10

11 Agar peraga 7-segmen dapat menampilkan suatu angka (desimal), maka diperlukan rangkaian pengendali untuk menterjemahkan keadaan logika masukan BCD menjadi angka yang sesuai. Rangkaian pengendali itu disebut dekoder BCD ke peraga 7 segmen. Selanjutnya marilah kita merancang dekoder tersebut. Terlebih dahulu kita susun tabel kebenaran yang menyatakan hubungan antara angka yang akan ditampilkan (BCD) dengan segmen dari peraga 7 segmen yang harus dinyalakan. Untuk itu perhatikan Tabel berikut. Desimal B C D Segmen yang menyala (nomor baris) A B C D a b c d e f g Segmen yang menyala pada tabel tersebut merupakan fungsi keluaran sehingga terdapat 7 fungsi keluaran yang masing-masing dapat dinyatakan sebagai : a = m (0,2,3,5,6,7,8,9) b = m (0,1,2,3,4,7,8,9) c = m (0,1,3,4,5,6,7,8,9) d = m (0,2,3,5,8,9) e = m (0,2,6,8,9) f = m (0,4,5,6,8,9) g = m (2,3,4,5,6,8,9). 11

12 Berdasarkan fungsi-fungsi keluaran di atas kita dapat menuangkannya ke dalam peta Karnough seperti tampak pada Gambar berikut. C D 1 0 X 1 C D 0 1 X 1 C D 1 1 X X C D 1 1 X X (a) C D 1 1 X 1 C D 1 0 X 1 C D 1 1 X X C D 1 0 X X (b) C D 1 1 X 1 C D 1 1 X 1 C D 1 1 X X C D 0 1 X X (c) C D 1 0 X 1 C D 0 1 X 1 C D 1 0 X X C D 1 0 X X (d) C D 1 0 X 1 C D 0 0 X 1 C D 0 0 X X C D 1 1 X X (e) C D 1 1 X 1 C D 0 1 X 1 C D 0 0 X X C D 0 1 X X (f) C D 0 1 X 1 C D 0 1 X 1 C D 1 0 X X C D 1 1 X X (g) Gambar : Peta Karnough rangkaian dekoder BCD ke peraga 7 segmen X : tak peduli (don t care) 12

13 Persamaan logika untuk setiap jalur keluaran berdasarkan pada gambar di atas adalah : a = A + BD + B D + CD b = B + C D + CD c = B + C + D d = B D + B C D + C D + B C e = B D + C D f = C D + B D + B C + A g = B C + B C + C D + A. Realisasi rangkaian dekoder BCD ke peraga 7 segmen dapat diperhatikan pada Gambar di bawah ini. Diagram rangkaian seperti gambar berikut bukanlah satu-satunya rangkaian BCD ke peraga 7-segmen. Anda dapat mencoba rangkaian sejenis yang berbeda tergantung dari teknik penyandian, pernyataan fungsi keluaran dalam bentuk maxterm atau minterm, dan cara penggabungan atau penyederhanaan dari peta Karnuoghnya. 13

14 A B C D g f e d c b a Gambar : Diagram rangkaian dekoder BCD ke peraga 7-segmen. 14

15 Langkah-langkah Percobaan : Untuk IC seri 7447/7448 (BCD To Seven Segment \ Decoder), maka bentuk, letak dan fungsi dari kaki-kakinya (pin) adalah sebagai berikut : Vcc f g a b c d A B LT BI/RBO 7447 RBI C D e Gnd Vcc Gnd : + 5 volt : tanah Keluaran pada IC 7447 akan aktif apabila berlogika rendah. Oleh karena itu, jika menggunakan IC 7447 sebagai dekoder, maka peraga 7-segmennya menggunakan jenis anoda bersama (Commond anoda) atau kaki-kaki keluarannya sebelum dihubungkan dengan peraga 7-segmen harus terlebih dahulu dilewatkan pada INVERTER (7404) agar logika yang diterima peraga sesuai bila digunakan peraga jenis katoda bersama. Tetapi bila digunakan dekoder lain seperti 7448, maka INVERTER tidak diperlukan lagi bila menggunakan peraga jenis katoda bersama. Jadi keluaran dari 7448 langsung dihubungkan ke kaki-kaki peraga yang sesuai setelah dilewatkan pada resistor pembatas arus. Keadaan kaki-kaki IC 7448 adalah sebagai berikut : Vcc f g a b c d A B LT BI/RBO 7448 RBI C D e Gnd Vcc Gnd : + 5 volt : tanah

16 Ukurlah tegangan keluaran a,b,c,d,e,f, dan g pada 7447/7448, atau amatilah gejala yang terjadi pada indikator LED (berperan sebagai peraga 7-segmen) atau segmen-segmen pada peraga 7-segmen berdasarkan variasi masukan pada A, B, C dan D (ada 16 variasi). Pin 3 ( LT ), pin 4 ( BI / RBO ), dan pin 5 ( RBI ) dalam percobaan ini dipasang pada keadaan logika tinggi. Kemudian masukkanlah data pengamatan itu ke dalam tabel di bawah ini : Masukan Keluaran A B C D a b C d e f g Bentuk yang ditampilkan dst. dst. dst. dst. dst. dst. dst. dst. dst. dst. dst. dst. Apabila decoder 7447 dihubungkan dengan peraga 7-segmen anoda bersama (CA), maka skema rangkiannya dapat dilihat pada gambar berikut ini : A B C D a b c d e f g f e a g d b c + 5 volt Selanjutnya adalah mengulangi percobaan seperti di atas tetapi untuk nilai LT, BI / RBO, dan RBI yang bervariasi. Carilah pengaruh keadaan logik pada LT, BI / RBO, dan RBI terhadap tampilan pada peraga 7-segmen. Berdasarkan hasil pengamatan bandingkanlah hasilnya dengan hasil yang diperoleh secara teoritis. Kesimpulan apa yang dapat diperoleh setelah melakukan perbandingan tadi? 16

17 Apabila decoder 7448 dihubungkan dengan peraga 7-segmen katoda bersama (CC), maka skema rangkiannya dapat dilihat pada gambar berikut ini : + 5 volt A B C D a b c d e f g f e a g d b c Ulangi pengamatan sebagaimana langkah-langkah sebelumnya! 17

Percobaan 9 MULTIPLEKSER. Oleh : Sumarna, Jurdik Fisika, FMIPA, UNY

Percobaan 9 MULTIPLEKSER. Oleh : Sumarna, Jurdik Fisika, FMIPA, UNY Percobaan 9 MULTIPLEKSER Oleh : Sumarna, Jurdik Fisika, FMIPA, UNY E-mail : sumarna@uny.ac.id Tujuan :. Mempelajari fungsi multiplekser, 2. Mempelajari cara kerja suatu multiplekser, 3. Membuktikan tabel

Lebih terperinci

Percobaan 6 PENCACAH (COUNTER) Oleh : Sumarna, Jurdik Fisika, FMIPA, UNY

Percobaan 6 PENCACAH (COUNTER) Oleh : Sumarna, Jurdik Fisika, FMIPA, UNY Percobaan 6 PENCACAH (COUNTER) Oleh : Sumarna, urdik Fisika, FMIPA, UNY E-mail : sumarna@uny.ac.id Tujuan :. Mempelajari cara kerja pencacah biner sinkron dan tak sinkron, 2. Merealisasikan pencacah biner

Lebih terperinci

Percobaan 2 GERBANG KOMBINASIONAL DAN KOMPARATOR. Oleh : Sumarna, Jurdik Fisika, FMIPA, UNY

Percobaan 2 GERBANG KOMBINASIONAL DAN KOMPARATOR. Oleh : Sumarna, Jurdik Fisika, FMIPA, UNY Percobaan 2 GERNG KOMINSIONL DN KOMPRTOR Oleh : Sumarna, Jurdik Fisika, FMIP, UN E-mail : sumarna@uny.ac.id Tujuan : 1. Membiasakan mengenali letak dan fungsi pin (kaki) pada IC gerbang logika. 2. Menyusun

Lebih terperinci

Modul 3 : Rangkaian Kombinasional 1

Modul 3 : Rangkaian Kombinasional 1 Fakultas Ilmu Terapan, Universitas Telkom 1 Modul 3 : Rangkaian Kombinasional 1 3.1 Tujuan Mahasiswa mampu mengetahui cara kerja decoder dengan IC, dan membuat rangkaiannya. 3.2 Alat & Bahan 1. IC Gerbang

Lebih terperinci

SISTEM SANDI (KODE) Suatu rangkaian pengubah pesan bermakna (misal desimal) menjadi sandi tertentu (misal biner) disebut enkoder (penyandi).

SISTEM SANDI (KODE) Suatu rangkaian pengubah pesan bermakna (misal desimal) menjadi sandi tertentu (misal biner) disebut enkoder (penyandi). SISTEM SANDI (KODE) Pada mesin digital, baik instruksi (perintah) maupun informasi (data) diolah dalam bentuk biner. Karena mesin digital hanya dapat memahami data dalam bentuk biner. Suatu rangkaian pengubah

Lebih terperinci

PERCOBAAN DAC TANGGA R-2R ( DAC 0808 )

PERCOBAAN DAC TANGGA R-2R ( DAC 0808 ) PERCOBAAN DAC TANGGA R- ( DAC 0808 ) Oleh : Sumarna, Jurdik Fisika, FMIPA, UNY E-mail : sumarna@uny.ac.id A. TUJUAN 1. Mempelajari cara kerja DAC yang menggunakan metode Tangga R-. 2. Merancang rangkaian

Lebih terperinci

Percobaan 3 RANGKAIAN PENJUMLAH BINER. Oleh : Sumarna, Jurdik Fisika, FMIPA, UNY

Percobaan 3 RANGKAIAN PENJUMLAH BINER. Oleh : Sumarna, Jurdik Fisika, FMIPA, UNY Percobaan 3 RNGKIN PENJUMLH INER Oleh : umarna, Jurdik Fisika, FMIP, UNY E-mail : sumarna@uny.ac.id Tujuan :. Mengenal cara kerja rangkaian penjumlah biner, 2. Dapat menyusun rangkaian penjumlah Half dder

Lebih terperinci

Percobaan 8 DEMULTIPLEKSER / DEKODER. Oleh : Sumarna, Jurdik Fisika, FMIPA, UNY

Percobaan 8 DEMULTIPLEKSER / DEKODER. Oleh : Sumarna, Jurdik Fisika, FMIPA, UNY Percobaan 8 DEMULTIPLEKER / DEKODER Oleh : umarna, Jurdik Fisika, FMIPA, UNY E-mail : sumarna@uny.ac.id Tujuan :. Mempelajari fungsi demultiplekser/dekoder,. Mempelajari cara kerja dan menyusun suatu demultiplekser/dekoder,.

Lebih terperinci

PRAKTIKUM 2 DECODER-ENCODER. JOBSHEET UNTUK MEMENUHI TUGAS MATA KULIAH Digital dan Mikroprosesor Yang dibina oleh Drs. Suwasono, M.T.

PRAKTIKUM 2 DECODER-ENCODER. JOBSHEET UNTUK MEMENUHI TUGAS MATA KULIAH Digital dan Mikroprosesor Yang dibina oleh Drs. Suwasono, M.T. PRAKTIKUM 2 DECODER-ENCODER JOBSHEET UNTUK MEMENUHI TUGAS MATA KULIAH Digital dan Mikroprosesor Yang dibina oleh Drs. Suwasono, M.T. Nama : Fachryzal Candra Trisnawan NIM : 160533611466 Prog. Studi - Off

Lebih terperinci

MODUL I GERBANG LOGIKA

MODUL I GERBANG LOGIKA MODUL PRAKTIKUM ELEKTRONIKA DIGITAL 1 MODUL I GERBANG LOGIKA Dalam elektronika digital sering kita lihat gerbang-gerbang logika. Gerbang tersebut merupakan rangkaian dengan satu atau lebih dari satu sinyal

Lebih terperinci

GERBANG LOGIKA. Percobaan 1. Oleh : Sumarna, Jurdik Fisika, FMIPA, UNY Tujuan :

GERBANG LOGIKA. Percobaan 1. Oleh : Sumarna, Jurdik Fisika, FMIPA, UNY   Tujuan : Percobaan 1 GERNG LOGIK Oleh : Sumarna, Jurdik Fisika, FMIP, UNY E-mail : sumarna@uny.ac.id Tujuan : 1. Membiasakan mengenali letak dan fungsi pin (kaki) pada IC gerbang logika dasar. 2. Memahami cara

Lebih terperinci

BAB I : APLIKASI GERBANG LOGIKA

BAB I : APLIKASI GERBANG LOGIKA BAB I : APLIKASI GERBANG LOGIKA Salah satu jenis IC dekoder yang umum di pakai adalah 74138, karena IC ini mempunyai 3 input biner dan 8 output line, di mana nilai output adalah 1 untuk salah satu dari

Lebih terperinci

Percobaan 7 REGISTER (PENCATAT) Oleh : Sumarna, Jurdik Fisika, FMIPA, UNY

Percobaan 7 REGISTER (PENCATAT) Oleh : Sumarna, Jurdik Fisika, FMIPA, UNY Percobaan 7 REGISTER (PENCATAT) Oleh : Sumarna, Jurdik Fisika, FMIPA, UNY E-mail : sumarna@uny.ac.id Tujuan : 1. Mengenal beberapa jenis register. 2. Menyusun rangkaian register. 3. Mempelajari cara kerja

Lebih terperinci

Jobsheet Praktikum DECODER

Jobsheet Praktikum DECODER 1 DECODER A. Tujuan Kegiatan Praktikum 6 : Setelah mempraktekkan Topik ini, mahasiswa diharapkan dapat : 1) Merangkai rangkaian DECODER. 2) Mengetahui karakteristik rangkaian DECODER. B. Dasar Teori Kegiatan

Lebih terperinci

BAB IX RANGKAIAN PEMROSES DATA

BAB IX RANGKAIAN PEMROSES DATA BAB IX RANGKAIAN PEMROSES DATA 9.1 MULTIPLEXER Multiplexer adalah suatu rangkaian yang mempunyai banyak input dan hanya mempunyai satu output. Dengan menggunakan selector, dapat dipilih salah satu inputnya

Lebih terperinci

BAB I PENDAHULUAN. elektronika digital. Kita perlu mempelajarinya karena banyak logika-logika yang

BAB I PENDAHULUAN. elektronika digital. Kita perlu mempelajarinya karena banyak logika-logika yang BAB I PENDAHULUAN A. Latar Belakang Masalah Gerbang Logika merupakan blok dasar untuk membentuk rangkaian elektronika digital. Kita perlu mempelajarinya karena banyak logika-logika yang harus kita pelajari

Lebih terperinci

ABSTRAK. Kata Kunci : Counter, Counter Asinkron, Clock

ABSTRAK. Kata Kunci : Counter, Counter Asinkron, Clock ABSTRAK Counter (pencacah) adalah alat rangkaian digital yang berfungsi menghitung banyaknya pulsa clock atau juga berfungsi sebagai pembagi frekuensi, pembangkit kode biner Gray. Pada counter asinkron,

Lebih terperinci

RANGKAIAN PEMBANDING DAN PENJUMLAH

RANGKAIAN PEMBANDING DAN PENJUMLAH RANGKAIAN PEMBANDING DAN PENJUMLAH Gerbang-gerbang logika digunakan dalam peralatan digital dan sistem informasi digital untuk : a. mengendalikan aliran informasi, b. menyandi maupun menerjemahkan sandi

Lebih terperinci

Dalam pengukuran dan perhitungannya logika 1 bernilai 4,59 volt. dan logika 0 bernilai 0 volt. Masing-masing logika telah berada pada output

Dalam pengukuran dan perhitungannya logika 1 bernilai 4,59 volt. dan logika 0 bernilai 0 volt. Masing-masing logika telah berada pada output BAB IV HASIL DAN PEMBAHASAN 4.1 Pengukuran Alat Dalam pengukuran dan perhitungannya logika 1 bernilai 4,59 volt dan logika 0 bernilai 0 volt. Masing-masing logika telah berada pada output pin kaki masing-masing

Lebih terperinci

BAB VI RANGKAIAN KOMBINASI

BAB VI RANGKAIAN KOMBINASI BAB VI RANGKAIAN KOMBINASI Di dalam perencanaan rangkaian kombinasi, terdapat beberapa langkah prosedur yang harus dijalani, yaitu :. Pernyataan masalah yang direncanakan 2. Penetapan banyaknya variabel

Lebih terperinci

FAKULTAS TEKNIK UNIVERSITAS NEGERI YOGYAKARTA LAB SHEET PRAKTIK TEKNIK DIGITAL

FAKULTAS TEKNIK UNIVERSITAS NEGERI YOGYAKARTA LAB SHEET PRAKTIK TEKNIK DIGITAL No. LST/PTI/PTI6205/04 Revisi: 00 Tgl: 8 September 2014 Page 1 of 6 1. Kompetensi Dengan mengikuti perkuliahan praktek, diharapkan mahasiswa memiliki kedisiplinan, tanggung jawab dan dapat berinteraksi

Lebih terperinci

1. FLIP-FLOP. 1. RS Flip-Flop. 2. CRS Flip-Flop. 3. D Flip-Flop. 4. T Flip-Flop. 5. J-K Flip-Flop. ad 1. RS Flip-Flop

1. FLIP-FLOP. 1. RS Flip-Flop. 2. CRS Flip-Flop. 3. D Flip-Flop. 4. T Flip-Flop. 5. J-K Flip-Flop. ad 1. RS Flip-Flop 1. FLIP-FLOP Flip-flop adalah keluarga Multivibrator yang mempunyai dua keadaaan stabil atau disebut Bistobil Multivibrator. Rangkaian flip-flop mempunyai sifat sekuensial karena sistem kerjanya diatur

Lebih terperinci

PENCACAH. Gambar 7.1. Pencacah 4 bit

PENCACAH. Gambar 7.1. Pencacah 4 bit DIG 7 PENCACAH 7.. TUJUAN. Mengenal, mengerti dan memahami operasi dasar pencacah maju maupun pencacah mundur menggunakan rangkaian gerbang logika dan FF. 2. Mengenal beberapa jenis IC pencacah. 7.2. TEORI

Lebih terperinci

Rangkaian Adder dengan Seven Segment

Rangkaian Adder dengan Seven Segment Rangkaian Adder dengan Seven Segment Diajukan untuk memenuhi kelulusan mata kuliah Teknik Rangkaian Terintegrasi Dosen : Ni matul Ma muriyah, M.Eng Disusun oleh: Thursy Rienda Aulia Satriani (1221009)

Lebih terperinci

LED dapat menyala pada arus searah (DC) maupun arus bolak balik (AC), yang membedakan adalah

LED dapat menyala pada arus searah (DC) maupun arus bolak balik (AC), yang membedakan adalah anoda katoda Antarmuka LED Edi Permadi edipermadi@gmail.com President University, Electrical Engineering 2005 tulisan ini tidak akan menjelaskan LED secara detail, hanya untuk menggambarkan karakteristik

Lebih terperinci

MODUL I PENGENALAN ALAT

MODUL I PENGENALAN ALAT MODUL PRAKTIKUM SISTEM DIGITAL 1 I. DASAR TEORI 1. Konsep Dasar Breadboard MODUL I PENGENALAN ALAT Breadboard digunakan untuk mengujian dan eksperimen rangkaian elektronika. Breadboard sangat baik sekali

Lebih terperinci

BAB II PENDEKATAN PEMECAHAN MASALAH. Tombol kuis dengan Pengatur dan Penampil Nilai diharapkan memiliki fiturfitur

BAB II PENDEKATAN PEMECAHAN MASALAH. Tombol kuis dengan Pengatur dan Penampil Nilai diharapkan memiliki fiturfitur 6 BAB II PENDEKATAN PEMECAHAN MASALAH A. Tombol Kuis dengan Pengatur dan Penampil Nilai Tombol kuis dengan Pengatur dan Penampil Nilai diharapkan memiliki fiturfitur sebagai berikut: 1. tombol pengolah

Lebih terperinci

Laporan Praktikum. Gerbang Logika Dasar. Mata Kuliah Teknik Digital. Dosen pengampu : Pipit Utami

Laporan Praktikum. Gerbang Logika Dasar. Mata Kuliah Teknik Digital. Dosen pengampu : Pipit Utami Laporan Praktikum Gerbang Logika Dasar Mata Kuliah Teknik Digital Dosen pengampu : Pipit Utami Oeh : Aulia Rosiana Widiardhani 13520241044 Kelas F1 Pendidikan Teknik Informatika Fakultas Teknik Universitas

Lebih terperinci

BAB II SISTEM BILANGAN DAN KODE BILANGAN

BAB II SISTEM BILANGAN DAN KODE BILANGAN BAB II SISTEM BILANGAN DAN KODE BILANGAN 2.1 Pendahuluan Komputer dan sistem digital lainnya mempunyai fungsi utama mengolah informasi. Sehingga diperlukan metode-metode dan sistem-sistem untuk merepresentasikan

Lebih terperinci

BAHAN AJAR SISTEM DIGITAL

BAHAN AJAR SISTEM DIGITAL BAHAN AJAR SISTEM DIGITAL JURUSAN TEKNOLOGI KIMIA INDUSTRI PENDIDIKAN TEKNOLOGI KIMIA INDUSTRI MEDAN Disusun oleh : Golfrid Gultom, ST Untuk kalangan sendiri 1 DASAR TEKNOLOGI DIGITAL Deskripsi Singkat

Lebih terperinci

GERBANG UNIVERSAL. I. Tujuan : I.1 Merangkai NAND Gate sebagai Universal Gate I.2 Membuktikan table kebenaran

GERBANG UNIVERSAL. I. Tujuan : I.1 Merangkai NAND Gate sebagai Universal Gate I.2 Membuktikan table kebenaran GERBANG UNIVERSAL I. Tujuan : I.1 Merangkai NAND Gate sebagai Universal Gate I.2 Membuktikan table kebenaran II. PENDAHULUAN Gerbang universal adalah salah satu gerbang dasar yang dirangkai sehingga menghasilkan

Lebih terperinci

TINJAUAN PUSTAKA. Sistem kontrol adalah suatu alat yang berfungsi untuk mengendalikan,

TINJAUAN PUSTAKA. Sistem kontrol adalah suatu alat yang berfungsi untuk mengendalikan, 5 II. TINJAUAN PUSTAKA 2.1 Sistem kontrol (control system) Sistem kontrol adalah suatu alat yang berfungsi untuk mengendalikan, memerintah dan mengatur keadaan dari suatu sistem. [1] Sistem kontrol terbagi

Lebih terperinci

TEKNIK KENDALI DIGITAL PERCOBAAN 2 PERANGKAT DISPLAY. DOSEN : DR. Satria Gunawan Zain, M.T TANGGAL KUMPUL PENDIDIKAN TEKNIK INFORMATIKA DAN KOMPUTER

TEKNIK KENDALI DIGITAL PERCOBAAN 2 PERANGKAT DISPLAY. DOSEN : DR. Satria Gunawan Zain, M.T TANGGAL KUMPUL PENDIDIKAN TEKNIK INFORMATIKA DAN KOMPUTER KELAS PTIK 05 2014 LAPORAN PRAKTIKUM TEKNIK KENDALI DIGITAL PERCOBAAN 2 PERANGKAT DISPLAY DOSEN : DR. Satria Gunawan Zain, M.T NAMA NIM TANGGAL KUMPUL TANDA TANGAN PRAKTIKAN ASISTEN ABD.MALIK RAUF 1429040053

Lebih terperinci

PERCOBAAN DIGITAL 01 GERBANG LOGIKA DAN RANGKAIAN LOGIKA

PERCOBAAN DIGITAL 01 GERBANG LOGIKA DAN RANGKAIAN LOGIKA PERCOBAAN DIGITAL GERBANG LOGIKA DAN RANGKAIAN LOGIKA .. TUJUAN PERCOBAAN. Mengenal berbagai jenis gerbang logika 2. Memahami dasar operasi logika untuk gerbang AND, NAND, OR, NOR. 3. Memahami struktur

Lebih terperinci

Papan Pergantian Pemain Sepak Bola Berbasis Digital Menggunakan IC4072 dan IC7447

Papan Pergantian Pemain Sepak Bola Berbasis Digital Menggunakan IC4072 dan IC7447 Volume 10 No 1, April 2017 Hlm. 44-50 ISSN 0216-9495 (Print) ISSN 2502-5325 (Online) Papan Pergantian Pemain Sepak Bola Berbasis Digital Menggunakan IC4072 dan IC7447 Teguh Arifianto Program Studi Teknik

Lebih terperinci

BAB V PENGUJIAN DAN ANALISIS. dapat berjalan sesuai perancangan pada bab sebelumnya, selanjutnya akan dilakukan

BAB V PENGUJIAN DAN ANALISIS. dapat berjalan sesuai perancangan pada bab sebelumnya, selanjutnya akan dilakukan BAB V PENGUJIAN DAN ANALISIS Pada bab ini akan diuraikan tentang proses pengujian sistem yang meliputi pengukuran terhadap parameter-parameter dari setiap komponen per blok maupun secara keseluruhan, dan

Lebih terperinci

Contoh Bentuk LCD (Liquid Cristal Display)

Contoh Bentuk LCD (Liquid Cristal Display) Display elektronik adalah salah satu komponen elektronika yang berfungsi sebagai tampilan suatu data, baik karakter, huruf ataupun grafik. LCD (Liquid Cristal Display) adalah salah satu jenis display elektronik

Lebih terperinci

BAB VI ENCODER DAN DECODER

BAB VI ENCODER DAN DECODER BAB VI ENCODER DAN DECODER 6.1. TUJUAN EKSPERIMEN Memahami prinsip kerja dari rangkaian Encoder Membedakan prinsip kerja rangkaian Encoder dan Priority Encoder Memahami prinsip kerja dari rangkaian Decoder

Lebih terperinci

Percobaan 5 FLIP-FLOP (MULTIVIBRATOR BISTABIL) Oleh : Sumarna, Jurdik Fisika, FMIPA, UNY

Percobaan 5 FLIP-FLOP (MULTIVIBRATOR BISTABIL) Oleh : Sumarna, Jurdik Fisika, FMIPA, UNY Percobaan 5 FLIP-FLOP (MULTIVIBRATOR BISTABIL) Oleh : Sumarna, Jurdik Fisika, FMIPA, UNY E-mail : sumarna@uny.ac.id Tujuan : 1. Mempelajari cara kerja berbagai rangkaian flip flop 2. Membuat rangkaian

Lebih terperinci

4/27/2012 GALAT/ ERROR SIMPANGAN ATAU SELISIH DARI NILAI SEBENARNYA PADA VARIABEL YANG DIUKUR GALAT BERBEDA DENGAN SALAH GALAT DALAM PENGUKURAN

4/27/2012 GALAT/ ERROR SIMPANGAN ATAU SELISIH DARI NILAI SEBENARNYA PADA VARIABEL YANG DIUKUR GALAT BERBEDA DENGAN SALAH GALAT DALAM PENGUKURAN GALAT/ ERROR SIMPANGAN ATAU SELISIH DARI NILAI SEBENARNYA PADA VARIABEL YANG DIUKUR GALAT DALAM PENGUKURAN GALAT BERBEDA DENGAN SALAH SALAH BERHUBUNGAN ERAT DENGAN BAGAIMANA PENGUKURAN ITU DILAKUKAN, CONTOH:

Lebih terperinci

Gambar 4.1. Rangkaian Dasar MUX.

Gambar 4.1. Rangkaian Dasar MUX. PERCOBAAN DIGITAL 4 MULTIPLEXER DAN DEMULTIPLEXER 4.. TUJUAN PERCOBAAN. Mengenal, mengerti, dan memahami cara kerja Multiplekser dan Demultiplekser.. Mengenal berbagai macam rangkaian terintegrasi Multiplekser

Lebih terperinci

BAB IV ANALISIS DAN PENGUJIAN. Pada bab ini akan dijelaskan mengenai pengujian terhadap keseluruhan

BAB IV ANALISIS DAN PENGUJIAN. Pada bab ini akan dijelaskan mengenai pengujian terhadap keseluruhan BAB IV ANALISIS DAN PENGUJIAN Pada bab ini akan dijelaskan mengenai pengujian terhadap keseluruhan sistem. Materi pengujian meliputi pengujian sistem terhadap berbagai macam pengujian pemilih saluran,

Lebih terperinci

BAB IV CARA KERJA DAN PERANCANGAN SISTEM. ketiga juri diarea pertandingan menekan keypad pada alat pencatat score, setelah

BAB IV CARA KERJA DAN PERANCANGAN SISTEM. ketiga juri diarea pertandingan menekan keypad pada alat pencatat score, setelah BAB IV CARA KERJA DAN PERANCANGAN SISTEM 4.1 Diagram Blok Sistem Blok diagram dibawah ini menjelaskan bahwa ketika juri dari salah satu bahkan ketiga juri diarea pertandingan menekan keypad pada alat pencatat

Lebih terperinci

Peraga 7-segmen berfungsi untuk menampilkan angka 0 sampai 9. Segmen-segmen diberi label : a, b, c, d, e, f dan g.

Peraga 7-segmen berfungsi untuk menampilkan angka 0 sampai 9. Segmen-segmen diberi label : a, b, c, d, e, f dan g. Peraga 7-segmen Peraga 7-segmen berfungsi untuk menampilkan angka 0 sampai 9. Segmen-segmen diberi label : a, b, c, d, e, f dan g. a f e g b c Dengan menyalakan segmen tertentu maka dapat ditampilkan karakter

Lebih terperinci

TEORI DASAR DIGITAL OTOMASI SISTEM PRODUKSI 1

TEORI DASAR DIGITAL OTOMASI SISTEM PRODUKSI 1 TEORI DASAR DIGITAL Leterature : (1) Frank D. Petruzella, Essentals of Electronics, Singapore,McGrraw-Hill Book Co, 1993, Chapter 41 (2) Ralph J. Smith, Circuit, Devices, and System, Fourth Edition, California,

Lebih terperinci

COUNTER ASYNCHRONOUS

COUNTER ASYNCHRONOUS COUNTER ASYNCHRONOUS A. Tujuan Kegiatan Praktikum 3 : Setelah mempraktekkan Topik ini, anda diharapkan dapat : ) Merangkai rangkaian SYNCHRONOUS COUNTER 2) Mengetahui cara kerja rangkaian SYNCHRONOUS COUNTER

Lebih terperinci

BLOK DIAGRAM DAN GAMBAR RANGKAIAN

BLOK DIAGRAM DAN GAMBAR RANGKAIAN BAB III BLOK DIAGRAM DAN GAMBAR RANGKAIAN 3.1 Blok Diagram SWITCH BUZZER MIKROKONTROLLER AT89S52 DTMF DECODER KUNCI ELEKTRONIK POWER SUPPLY 1 2 3 4 5 6 7 8 9 * 0 # KEYPAD 43 3.2 Gambar Rangkaian 44 3.3

Lebih terperinci

Aplikasi Mikro-Kontroller AT89C51 Pada Pengukur Kecepatan Kendaraan

Aplikasi Mikro-Kontroller AT89C51 Pada Pengukur Kecepatan Kendaraan Aplikasi Mikro-Kontroller AT89C51 Pada Pengukur Kecepatan Kendaraan Pamungkas Daud Pusat Penelitian Elektronika dan Telekomunikasi pmkdaud@ppet.lipi.go.id Abstrak Topik penulisan kali ini adalah mengenai

Lebih terperinci

BAB IV VOLTMETER DIGITAL DENGAN MENGGUNAKAN ICL7107

BAB IV VOLTMETER DIGITAL DENGAN MENGGUNAKAN ICL7107 BAB IV VOLTMETER DIGITAL DENGAN MENGGUNAKAN ICL7107 Berkaitan dengan pembuatan alat percobaan efek fotolistrik, diperlukan sebuah alat ukur yang bisa mengukur arus dan tegangan DC dengan polarisasi positif

Lebih terperinci

Review Sistem Digital : Logika Kombinasional

Review Sistem Digital : Logika Kombinasional JURUSAN PENDIDIKAN TEKNIK ELEKTRONIKA FAKULTAS TEKNIK UNY Sem 5 9/ Review Sistem Digital : Logika Kombinasional S dan D3 Mata Kuliah : Elektronika Industri 2 5 Lembar Kerja 2. Jaringan Pensaklaran (Switching

Lebih terperinci

Percobaan 11 RANGKAIAN ANALOG PEMBANGUN GERBANG LOGIKA. Oleh : Sumarna, Jurdik Fisika, FMIPA, UNY

Percobaan 11 RANGKAIAN ANALOG PEMBANGUN GERBANG LOGIKA. Oleh : Sumarna, Jurdik Fisika, FMIPA, UNY Percobaan 11 RNGKIN NLOG PEMNGUN GERNG LOGIK Oleh : Sumarna, Jurdik Fisika, FMIP, UN E-mail : sumarna@uny.ac.id Tujuan : 1. Menyusun gerbang logika dari komponen diskrit, 2. Mengamati hubungan antara keadaan

Lebih terperinci

BAB 3 PERANCANGAN SISTEM

BAB 3 PERANCANGAN SISTEM BAB 3 PERANCANGAN SISTEM 3.1 Perancangan Perangkat Keras Perancangan perangkat keras pada sistem keamanan ini berupa perancangan modul RFID, modul LCD, modul motor. 3.1.1 Blok Diagram Sistem Blok diagram

Lebih terperinci

INSTRUMENTASI INDUSTRI (NEKA421) JOBSHEET 14 (DAC 0808)

INSTRUMENTASI INDUSTRI (NEKA421) JOBSHEET 14 (DAC 0808) INSTRUMENTASI INDUSTRI (NEKA421) JOBSHEET 14 (DAC 0808) I. TUJUAN 1. Mahasiswa dapat memahami karakteristik pengkondisi sinyal DAC 0808 2. Mahasiswa dapat merancang rangkaian pengkondisi sinyal DAC 0808

Lebih terperinci

Jobsheet Praktikum ENCODER

Jobsheet Praktikum ENCODER 1 ENCODER A. Tujuan Kegiatan Praktikum 5 : Setelah mempraktekkan Topik ini, mahasiswa diharapkan dapat : 1) Merangkai rangkaian ENCODER. 2) Mengetahui karakteristik rangkaian ENCODER. B. Dasar Teori Kegiatan

Lebih terperinci

MODUL 2 SISTEM PENGKODEAN BILANGAN

MODUL 2 SISTEM PENGKODEAN BILANGAN STMIK STIKOM BALIKPAPAN 1 MODUL 2 SISTEM PENGKODEAN BILANGAN A. TEMA DAN TUJUAN KEGIATAN PEMBELAJARAN 1. Tema : Sistem Pengkodean Bilangan 2. Fokus Pembahasan Materi Pokok 3. Tujuan Kegiatan Pembelajaran

Lebih terperinci

GERBANG LOGIKA. A. Tujuan Praktikum. B. Dasar Teori

GERBANG LOGIKA. A. Tujuan Praktikum. B. Dasar Teori GERBANG LOGIKA Tugas Pra Praktikum 1. Apa yang dimaksud dengan gerbang logika? Jelaskan! 2. Ada berapa jenis gerbang logika dasar? Sebutkan dan jelaskan! 3. Sebutkan macam-macam gerbang logika jika ditinjau

Lebih terperinci

PERTEMUAN 9 RANGKAIAN KOMBINASIONAL

PERTEMUAN 9 RANGKAIAN KOMBINASIONAL PERTEMUAN 9 RANGKAIAN KOMBINASIONAL Sasaran Pertemuan 9 Mahasiswa diharapkan mengerti tentang Rangkaian Kombinasional yang terdiri dari : - Multiplexer - Demultiplexer - Decoder - Encoder - Seven Segment

Lebih terperinci

2. Gambarkan gerbang logika yang dinyatakan dengan ekspresi Boole di bawah, kemudian sederhanakan dan gambarkan bentuk sederhananya.

2. Gambarkan gerbang logika yang dinyatakan dengan ekspresi Boole di bawah, kemudian sederhanakan dan gambarkan bentuk sederhananya. Tugas! (Materi Aljabar Boolean). Gambarkan jaringan switching yang dinyatakan dengan polinominal Boole di bawah, kemudian sederhanakan dan gambarkan bentuk sederhananya, kapan jaringan tsb on atau off.

Lebih terperinci

TSK205 Sistem Digital. Eko Didik Widianto

TSK205 Sistem Digital. Eko Didik Widianto TSK205 Sistem Digital Eko Didik Teknik Sistem Komputer - Universitas Diponegoro Review Kuliah Di kuliah sebelumnya dibahas tentang representasi bilangan, operasi aritmatika (penjumlahan dan pengurangan),

Lebih terperinci

BAB II ALJABAR BOOLEAN DAN GERBANG LOGIKA

BAB II ALJABAR BOOLEAN DAN GERBANG LOGIKA BAB II ALJABAR BOOLEAN DAN GERBANG LOGIKA Alokasi Waktu : 8 x 45 menit Tujuan Instruksional Khusus : 1. Mahasiswa dapat menjelaskan theorema dan sifat dasar dari aljabar Boolean. 2. Mahasiswa dapat menjelaskan

Lebih terperinci

BAB V b SISTEM PENGOLAHAN DATA KOMPUTER (Representasi Data) "Pengantar Teknologi Informasi" 1

BAB V b SISTEM PENGOLAHAN DATA KOMPUTER (Representasi Data) Pengantar Teknologi Informasi 1 BAB V b SISTEM PENGOLAHAN DATA KOMPUTER (Representasi Data) "Pengantar Teknologi Informasi" 1 SISTEM BILANGAN Bilangan adalah representasi fisik dari data yang diamati. Bilangan dapat direpresentasikan

Lebih terperinci

METODE PENELITIAN. Elektro Universitas Lampung. Penelitian di mulai pada bulan Oktober dan berakhir pada bulan Agustus 2014.

METODE PENELITIAN. Elektro Universitas Lampung. Penelitian di mulai pada bulan Oktober dan berakhir pada bulan Agustus 2014. 22 III. METODE PENELITIAN 3. Waktu dan Tempat Penelitian Penelitian tugas akhir ini dilakukan di Laboratorium Terpadu Teknik Elektro Universitas ng. Penelitian di mulai pada bulan Oktober 202 dan berakhir

Lebih terperinci

2.1 Desimal. Contoh: Bilangan 357.

2.1 Desimal. Contoh: Bilangan 357. 2.Sistem Bilangan Ada beberapa sistem bilangan yang digunakan dalam sistem digital. Yang paling umum adalah sistem bilangan desimal, biner, oktal, dan heksadesimal. Sistem bilangan desimal merupakan sistem

Lebih terperinci

PRAKTIKUM RANGKAIAN DIGITAL

PRAKTIKUM RANGKAIAN DIGITAL PRAKTIKUM RANGKAIAN DIGITAL RANGKAIAN LOGIKA TUJUAN 1. Memahami berbagai kombinasi logika AND, OR, NAND atau NOR untuk mendapatkan gerbang dasar yang lain. 2. Menyusun suatu rangkaian kombinasi logika

Lebih terperinci

DECODER. Pokok Bahasan : 1. Pendahuluan 2. Dasar-dasar rangkaian Decoder. 3. Mendesain rangkaian Decoder

DECODER. Pokok Bahasan : 1. Pendahuluan 2. Dasar-dasar rangkaian Decoder. 3. Mendesain rangkaian Decoder DECODER Pokok Bahasan : 1. Pendahuluan 2. Dasar-dasar rangkaian Decoder. 3. Mendesain rangkaian Decoder Tujuan Instruksional Khusus : 1. Mahasiswa dapat menerangkan dan memahami rangkaian Decoder. 2. Mahasiswa

Lebih terperinci

FPGA DAN VHDL TEORI, ANTARMUKA DAN APLIKASI

FPGA DAN VHDL TEORI, ANTARMUKA DAN APLIKASI FPGA DAN VHDL TEORI, ANTARMUKA DAN APLIKASI Chapter 1 Prinsip-Prinsip Sistem Digital Ferry Wahyu Wibowo Outlines Sistem digital Persamaan dan perbedaan elektronika analog dan elektronika digital Sistem

Lebih terperinci

Dari tabel kebenaran half adder, diperoleh rangkaian half adder sesuai gambar 4.1.

Dari tabel kebenaran half adder, diperoleh rangkaian half adder sesuai gambar 4.1. PERCOBAAN DIGITAL 03 PENJUMLAH (ADDER) 3.1. TUJUAN PERCOBAAN Mahasiswa mengenal, mengerti, dan memahami: 1. Operasi half adder dan full adder. 2. Operasi penjumlahan dan pengurangan biner 4 bit. 3.2. TEORI

Lebih terperinci

RANCANGAN ALAT UKUR WAKTU TUNDA RELE ARUS LEBIH

RANCANGAN ALAT UKUR WAKTU TUNDA RELE ARUS LEBIH RANCANGAN ALAT UKUR WAKTU TUNDA RELE ARUS LEBIH T. Ahri Bahriun 1) 1) Staf Pengajar Departemen Teknik Elektro, Fakultas Teknik USU Abstrak Rele arus lebih berfungsi untuk membuka circuit breaker jika terjadi

Lebih terperinci

BAB II DASAR TEORI 2.1. Mikrokontroler Tipe Atmega 644p

BAB II DASAR TEORI 2.1. Mikrokontroler Tipe Atmega 644p BAB II DASAR TEORI Pada bab ini akan dibahas beberapa teori pendukung yang digunakan sebagai acuan dalam merealisasikan sistem dan penjelasan mengenai perangkat-perangkat yang digunakan untuk merealisasikan

Lebih terperinci

Dari tabel diatas dapat dibuat persamaan boolean sebagai berikut : Dengan menggunakan peta karnaugh, Cy dapat diserhanakan menjadi : Cy = AB + AC + BC

Dari tabel diatas dapat dibuat persamaan boolean sebagai berikut : Dengan menggunakan peta karnaugh, Cy dapat diserhanakan menjadi : Cy = AB + AC + BC 4. ALU 4.1. ALU (Arithmetic and Logic Unit) Unit Aritmetika dan Logika merupakan bagian pengolah bilangan dari sebuah komputer. Di dalam operasi aritmetika ini sendiri terdiri dari berbagai macam operasi

Lebih terperinci

COUNTER ASYNCHRONOUS

COUNTER ASYNCHRONOUS COUNTER ASYNCHRONOUS A. Tujuan Kegiatan Praktikum 2 : Setelah mempraktekkan Topik ini, anda diharapkan dapat : ) Merangkai rangkaian ASYNCHRONOUS COUNTER 2) Mengetahui cara kerja rangkaian ASYNCHRONOUS

Lebih terperinci

Laboratorium Sistem Komputer dan Otomasi Departemen Teknik Elektro Otomasi Fakultas Vokasi Institut Teknologi Sepuluh November

Laboratorium Sistem Komputer dan Otomasi Departemen Teknik Elektro Otomasi Fakultas Vokasi Institut Teknologi Sepuluh November PRAKTIKUM 1 COUNTER (ASINKRON) A. OBJEKTIF 1. Dapat merangkai rangkaian pencacah n bit dengan JK Flip-Flop 2. Dapat mendemonstrasikan operasi pencacah 3. Dapat mendemonstrasikan bagaimana modulus dapat

Lebih terperinci

LAB PTE - 05 (PTEL626) JOBSHEET 8 (ADC-ANALOG TO DIGITAL CONVERTER)

LAB PTE - 05 (PTEL626) JOBSHEET 8 (ADC-ANALOG TO DIGITAL CONVERTER) LAB PTE - 05 (PTEL626) JOBSHEET 8 (ADC-ANALOG TO DIGITAL CONVERTER) A. TUJUAN 1. Mahasiswa dapat mengetahui prinsip kerja dan karakteristik rangkaian ADC 8 Bit. 2. Mahasiswa dapat merancang rangkaian ADC

Lebih terperinci

BAB V UNTAI NALAR KOMBINATORIAL

BAB V UNTAI NALAR KOMBINATORIAL TEKNIK DIGITAL-UNTAI NALAR KOMBINATORIAL/HAL. BAB V UNTAI NALAR KOMBINATORIAL Sistem nalar kombinatorial adalah sistem nalar yang keluaran dari untai nalarnya pada suatu saat hanya tergantung pada harga

Lebih terperinci

BAB I GERBANG LOGIKA DASAR & ALJABAR BOOLEAN

BAB I GERBANG LOGIKA DASAR & ALJABAR BOOLEAN BAB I GERBANG LOGIKA DASAR & ALJABAR BOOLEAN A. Tabel Kebenaran (Truth Table) Tabel kebenaran merupakan tabel yang menunjukkan pengaruh pemberian level logika pada input suatu rangkaian logika terhadap

Lebih terperinci

MAKALAH SISTEM BILANGAN BINER DAN SANDI (KODE) ELEKTRONIKA DIGITAL. (Untuk memenuhi tugas mata kuliah Elektronika Digital)

MAKALAH SISTEM BILANGAN BINER DAN SANDI (KODE) ELEKTRONIKA DIGITAL. (Untuk memenuhi tugas mata kuliah Elektronika Digital) MAKALAH SISTEM BILANGAN BINER DAN SANDI (KODE) ELEKTRONIKA DIGITAL (Untuk memenuhi tugas mata kuliah Elektronika Digital) Dosen Pengampu: Agus Krisbiantoro, M.T OLEH Nur Khamidah 11640030 Mochamad Aji

Lebih terperinci

MULTIPLEXER. Pokok Bahasan : 1. Pendahuluan 2. Dasar-dasar rangkaian Multiplexer. 3. Mendesain rangkaian Multiplexer

MULTIPLEXER. Pokok Bahasan : 1. Pendahuluan 2. Dasar-dasar rangkaian Multiplexer. 3. Mendesain rangkaian Multiplexer MULTIPLEXER Pokok Bahasan :. Pendahuluan 2. Dasar-dasar rangkaian Multipleer. 3. Mendesain rangkaian Multipleer Tujuan Instruksional Khusus :. Mahasiswa dapat menerangkan dan memahami rangkaian Multipleer.

Lebih terperinci

BAB III GERBANG LOGIKA DAN ALJABAR BOOLEAN

BAB III GERBANG LOGIKA DAN ALJABAR BOOLEAN A III GERANG LOGIKA DAN ALJAAR OOLEAN 3. Pendahuluan Komputer, kalkulator, dan peralatan digital lainnya kadang-kadang dianggap oleh orang awam sebagai sesuatu yang ajaib. Sebenarnya peralatan elektronika

Lebih terperinci

Diode) Blastica PAR LED. Par. tetapi bisa. hingga 3W per. jalan, tataa. High. dan White. Jauh lebih. kuat. Red. White. Blue. Yellow. Green.

Diode) Blastica PAR LED. Par. tetapi bisa. hingga 3W per. jalan, tataa. High. dan White. Jauh lebih. kuat. Red. White. Blue. Yellow. Green. Par LED W PAR LED (Parabolic Light Emitting Diode) Tidak bisa dielakkan bahwa teknologi lampu LED (Light Emitting Diode) akan menggantikan lampu pijar halogen, TL (tube lamp) dan yang lain. Hal ini karena

Lebih terperinci

BAB I SISTEM BILANGAN DAN PENGKODEAN

BAB I SISTEM BILANGAN DAN PENGKODEAN BAB I SISTEM BILANGAN DAN PENGKODEAN I.. Sistem Bilangan Untuk memahami cara kerja komputer, kita membutuhkan konsep mengenai sistem bilangan dan sistem pengkodean (coding systems) karena adanya perbedaan

Lebih terperinci

6.1. TUJUAN PERCOBAAN Mahasiswa/i mengenal, mengerti dan memahami cara kerja register.

6.1. TUJUAN PERCOBAAN Mahasiswa/i mengenal, mengerti dan memahami cara kerja register. PERCOBAAN DIGITAL 6 SHIFT REGISTER 6.. TUJUAN PERCOBAAN Mahasiswa/i mengenal, mengerti dan memahami cara kerja register. 6.2. TEORI DASAR Register adalah suatu rangkaian logika yang berfungsi untuk menyimpan

Lebih terperinci

Jurnal Skripsi. Mesin Mini Voting Digital

Jurnal Skripsi. Mesin Mini Voting Digital Jurnal Skripsi Alat mesin mini voting digital ini adalah alat yang digunakan untuk melakukan pemilihan suara, dikarenakan dalam pelaksanaanya banyaknya terjadi kecurangan dalam perhitungan jumlah hasil

Lebih terperinci

Output b akan ada aliran arus dari a jika saklar x ditutup dan sebaliknya Output b tidak aliran arus dari a jika saklar x dibuka.

Output b akan ada aliran arus dari a jika saklar x ditutup dan sebaliknya Output b tidak aliran arus dari a jika saklar x dibuka. A. TUJUAN : FAKULTAS TEKNIK Semester 5 LOGIKA KOMBINASIONAL 2 4 5 No. LST/EKA/PTE23 Revisi : Tgl : 7-2-2 Hal dari 22 Setelah selesai pembelajaran diharapkan mahasiswa dapat. Menjelaskan kembali prinsip-prinsip

Lebih terperinci

GERBANG LOGIKA & SISTEM BILANGAN

GERBANG LOGIKA & SISTEM BILANGAN GERBANG LOGIKA & SISTEM BILANGAN I. GERBANG LOGIKA Gerbang-gerbang dasar logika merupakan elemen rangkaian digital dan rangkaian digital merupakan kesatuan dari gerbang-gerbang logika dasar yang membentuk

Lebih terperinci

BAB III RANGKAIAN LOGIKA

BAB III RANGKAIAN LOGIKA BAB III RANGKAIAN LOGIKA BAB III RANGKAIAN LOGIKA Alat-alat digital dan rangkaian-rangkaian logika bekerja dalam sistem bilangan biner; yaitu, semua variabel-variabel rangkaian adalah salah satu 0 atau

Lebih terperinci

A0 B0 Σ COut

A0 B0 Σ COut A. Judul : PARALEL ADDER B. Tujuan Kegiatan Belajar 8 : Setelah mempraktekkan Topik ini, mahasiswa diharapkan dapat : ) Merangkai rangkaian PARALEL ADDER. ) Mempelajari penjumlahan dan pengurangan bilangan

Lebih terperinci

Gambar 5(a).Tabel Kebenaran Full Adder

Gambar 5(a).Tabel Kebenaran Full Adder . Full dder Gambar 5 merupakan bentuk singkat dari tabel penambahan biner, dengan situasi 1 + 1 + 1. tabel kebenaran pada gambar 5(a) memperlihatkan semua kombinasi yang mungkin dari,, dan Cin (masukan

Lebih terperinci

Aljabar Boolean. Bahan Kuliah Matematika Diskrit

Aljabar Boolean. Bahan Kuliah Matematika Diskrit Aljabar Boolean Bahan Kuliah Matematika Diskrit Definisi Aljabar Boolean Misalkan terdapat - Dua operator biner: + dan - Sebuah operator uner:. - B : himpunan yang didefinisikan pada operator +,, dan -

Lebih terperinci

Definisi Aljabar Boolean

Definisi Aljabar Boolean Aljabar Boolean Definisi Aljabar Boolean Misalkan terdapat - Dua operator biner: + dan - Sebuah operator uner:. - B : himpunan yang didefinisikan pada operator +,, dan - dan adalah dua elemen yang berbeda

Lebih terperinci

7.1. TUJUAN Mengenal, mengerti dan memahami operasi dasar pencacah maju maupun pencacah mundur menggunakan rangkaian gerbang logika dan FF.

7.1. TUJUAN Mengenal, mengerti dan memahami operasi dasar pencacah maju maupun pencacah mundur menggunakan rangkaian gerbang logika dan FF. PERCOBAAN DIGITAL 7 PENCACAH (COUNTER) 7.. TUJUAN Mengenal, mengerti dan memahami operasi dasar pencacah maju maupun pencacah mundur menggunakan rangkaian gerbang logika dan FF. 7.2. TEORI DASAR Pencacah

Lebih terperinci

A. SISTEM DESIMAL DAN BINER

A. SISTEM DESIMAL DAN BINER SISTEM BILANGAN A. SISTEM DESIMAL DAN BINER Dalam sistem bilangan desimal, nilai yang terdapat pada kolom ketiga pada Tabel., yaitu A, disebut satuan, kolom kedua yaitu B disebut puluhan, C disebut ratusan,

Lebih terperinci

VOLTMETER DAN MULTIMETER DIGITAL

VOLTMETER DAN MULTIMETER DIGITAL Pengukuran Besaran Listrik (TC22082) Pertemuan 6 VOLTMETER DAN MULTIMETER DIGITAL Voltmeter Digital (DVM : Digital VoltMeter) Pada dasarnya DVM terdiri atas konverter analog ke digital (ADC), seven segment

Lebih terperinci

Sistem Digital. Sistem Angka dan konversinya

Sistem Digital. Sistem Angka dan konversinya Sistem Digital Sistem Angka dan konversinya Sistem angka yang biasa kita kenal adalah system decimal yaitu system bilangan berbasis 10, tetapi system yang dipakai dalam computer adalah biner. Sistem Biner

Lebih terperinci

Aljabar Boolean. Rinaldi Munir/IF2151 Mat. Diskrit 1

Aljabar Boolean. Rinaldi Munir/IF2151 Mat. Diskrit 1 Aljabar Boolean Rinaldi Munir/IF25 Mat. Diskrit Definisi Aljabar Boolean Misalkan terdapat - Dua operator biner: + dan - Sebuah operator uner:. - B : himpunan yang didefinisikan pada operator +,, dan -

Lebih terperinci

BAB IV PENGUJIAN DAN ANALISA. mana sistem berfungsi sesuai dengan rancangan serta mengetahui letak

BAB IV PENGUJIAN DAN ANALISA. mana sistem berfungsi sesuai dengan rancangan serta mengetahui letak BAB IV PENGUJIAN DAN ANALISA Langkah pengujian bertujuan untuk mendapatkan data-data sejauh mana sistem berfungsi sesuai dengan rancangan serta mengetahui letak kesalahan bila sistem yang dibuat ternyata

Lebih terperinci

PENCACAH (COUNTER) DAN REGISTER

PENCACAH (COUNTER) DAN REGISTER PENCACAH (COUNTER) DAN REGISTER Aplikasi flip-flop yang paling luas pemakaiannya adalah sebagai komponen pembangun pencacah dan register. Pencacah termasuk dalam kelompok rangkaian sekuensial yang merupakan

Lebih terperinci

Jobsheet Praktikum REGISTER

Jobsheet Praktikum REGISTER REGISTER A. Tujuan Kegiatan Praktikum - : Setelah mempraktekkan Topik ini, anda diharapkan dapat :. Mengetahui fungsi dan prinsip kerja register.. Menerapkan register SISO, PISO, SIPO dan PIPO dalam rangkaian

Lebih terperinci

SISTEM DIGITAL; Analisis, Desain dan Implementasi, oleh Eko Didik Widianto Hak Cipta 2014 pada penulis GRAHA ILMU Ruko Jambusari 7A Yogyakarta 55283

SISTEM DIGITAL; Analisis, Desain dan Implementasi, oleh Eko Didik Widianto Hak Cipta 2014 pada penulis GRAHA ILMU Ruko Jambusari 7A Yogyakarta 55283 SISTEM DIGITAL; Analisis, Desain dan Implementasi, oleh Eko Didik Widianto Hak Cipta 2014 pada penulis GRAHA ILMU Ruko Jambusari 7A Yogyakarta 55283 Telp: 0274-889398; Fax: 0274-889057; E-mail: info@grahailmu.co.id

Lebih terperinci

PRAKTIKUM RANGKAIAN LOGIKA PERCOBAAN 2 & 3 LABORATORIUM KOMPUTER JURUSAN TEKNIK ELEKTRO F.T.I. USAKTI. Th Akd. 1998/1999

PRAKTIKUM RANGKAIAN LOGIKA PERCOBAAN 2 & 3 LABORATORIUM KOMPUTER JURUSAN TEKNIK ELEKTRO F.T.I. USAKTI. Th Akd. 1998/1999 PRAKTIKUM RANGKAIAN LOGIKA PERCOBAAN 2 & 3 LABORATORIUM KOMPUTER JURUSAN TEKNIK ELEKTRO F.T.I. USAKTI Th Akd. 1998/1999 Nama Praktikan :... Nomor Induk :... Kelas : Jadual Percobaan 1 : - - 98. Hari :

Lebih terperinci

SISTEM DIGITAL 1. PENDAHULUAN

SISTEM DIGITAL 1. PENDAHULUAN SISTEM DIGITAL Perkembangan teknologi dalam bidang elektronika sangat pesat, kalau beberapa tahun lalu rangkaian elektronika menggunakan komponen tabung hampa, komponen diskrit, seperti dioda, transistor,

Lebih terperinci