PERANCANGAN ELEMENTER GENERATOR AXIAL TIPE ROTOR GANDA ABSTRAK
|
|
|
- Siska Rachman
- 9 tahun lalu
- Tontonan:
Transkripsi
1 PERANCANGAN ELEMENTER GENERATOR AXIAL TIPE ROTOR GANDA Satria Putra Mahasiswa Teknik Elektro, FT, UMRAH, Ibnu Kahfi Bachtiar Dosen Pembimbing, Teknik Elektro, FT UMRAH, ABSTRAK Pengembangan teknologi sistem elektromekanik turbin angin dilakukan dengan tujuan menciptakan pembangkit listrik energi angin yang dapat menghasilkan daya yang maksimal pada kecepatan angin rendah. Sistem elektromekanik yang banyak digunakan adalah generator fluks axial tipe rotor ganda. Oleh sebab itu, peneliti melakukan analisis terhadap output yang dihasilkan oleh rancangan elementer generator axial tipe rotor ganda. Perancangan generator axial tipe rotor ganda dilakukan berdasarkan observasi pada penelitian penelitian terdahulu. Konstruksi generator axial tipe rotor ganda memiliki 3 bagian utama yaitu rotor, stator dan celah udara (air gap). Rancang rotor yang digunakan memiliki jumlah 12 magnet permanen Neodynium-Iron-Boron (NdFeB) pada setiap rotornya. Rancangan stator memiliki 12 kumparan dengan 150 lilitan pada setiap kumparannya, sedangkan panjang celah udara yang digunakan ± 10 mm. Pengujian generator dilakukan pada kecepatan rotasi 50 rpm, 100 rpm, 150 rpm, 200 rpm dan 250 rpm. Pengambilan data dilakukan dengan cara perhitungan dan pengukuran langsung sebanyak 5 kali pada generator. Perhitungan kesalahan data menggunakan metode standar deviasi dan persentase kesalahan. Berdasarkan data yang diperoleh menunjukan setiap kenaikan 50 rpm menghasilkan 5 Hz, 110 mv dan 3 ma. Grafik dan persamaan linier dari masing masing data output menjadi dasar karakterisasi generator axial yang telah dirancang. Kata kunci : generator axial, kecepatan rotasi, fluks magnet I. PENDAHULUAN A. Latar Belakang Setiap tahun kebutuhan energi listrik di Indonesia selalu saja meningkat. Data statistik PLN tahun 2013 menunjukan bahwa jumlah total energi listrik di Indonesia yang diproduksi sendiri (termasuk sewa) sebesar GWh meningkat 9,49% dibandingkan tahun sebelumnya, sedangkan total pemakaian energi listrik di Indonesia sebesar GWh meningkat 7,79% dibandingkan tahun sebelumnya. Beban puncak yang terjadi pada tahun 2013 mencapai MW, meningkat 6,76% dibandingkan tahun sebelumnya. Peningkatan jumlah energi listrik diperkirakan akan terus terjadi pada setiap tahunnya. Peningkatan kebutuhan energi listrik akan berdampak pada peningkatan kebutuhan energi konvensioanal. Dalam hal ini, persediaan energi konvensioanal yang ada akan berkurang dan tidak menutup kemungkinan akan terjadi kelangkaan. Berdasarkan data statistik OPEC Annual statistical Report 2014, Indonesia mengalami penurunan persediaan minyak bumi sekitar 10,9% dari tahun 2012 ke Minyak bumi yang diproduksi dari tahun dapat dikatakan tidak 1
2 seimbang, bahkan menunjukan penurunan produksi sebesar 6,8%. Solulsi yang didapat dari permasalahan peningkatan kebutuhan energi listrik yang terjadi ialah pemanfaatan energi terbarukan (renewable). Pembangkit listrik dengan memanfaatkan energi alam dapat digunakan untuk membantu pasokan energi listrik yang terus meningkat, salah satunya yaitu pembangkit listrik tenaga angin. Berdasarkan data dari World Wind Energy Association tahun 2014, lebih dari 336 GW kapasitas energi angin yang telah terpasang di seluruh dunia. Kapasitas energi yang dihasilkan juga mengalami peningkatan setiap tahunnya yaitu sekitar 7%. Hal ini membuktikan pemanfaatan energi angin di dunia cukup berkembang pesat. Pemanfaatan energi angin di Indonesia sendiri masih terbilang minim, berdasarkan data dari Departemen Energi dan Sumber Daya Mineral (ESDM) tahun 2012 total kapasitas terpasang dalam sistem konversi energi angin sekitar 900 kw. Pengambilan contoh salah satu wilayah di Indonesia yaitu Kepulauan Riau bisa dikatakan nihil dalam pemanfaatan energi angin. Berdasarkan data kecepatan angin dari Badan Meteorologi Klimatilogi dan Geofisika Tanjungpinang tahun 2014, wilayah Kepulauan Riau memiliki rata rata kecepatan angin sekitar 3 6 m/s. Kecepatan angin tersebut dapat dikategorikan pada kecepatan angin rendah menurut skala beaufort. Salah satu solusi yang ditemukan dari permasalahan kecilnya sumber energi angin yang ada yaitu pengembangan yang dilakukan pada sistem teknologi turbin angin. Salah satu bagian yang memiliki pengaruh besar pada turbin angin dalam menghasilkan energi listrik yaitu sistem elektromekanik yang digunakan. Salah satu tipe generator yang digunakan untuk turbin angin dengan putaran rendah adalah generator sinkron axial tipe rotor ganda. B. Perumusan Masalah Adapun perumusan masalah yang dapat disimpulkan dari penjabaran latar belakang tersebut ialah : a. Perancangan konstruksi generator axial tipe rotor ganda. b. Proses pengolahan data output yang dihasilkan oleh generator axial. c. Pengkarakterisasian generator axial yang telah dirancang. C. Batasan Masalah Penelitian ini memiliki beberapa batasan masalah sebagai berikut : a. Penelitian tidak mencakup bagian turbin angin lainnya, seperti baling baling, inverter dan BCCU. b. Penelitian yang dilakukan mengenai generator axial tipe rotor ganda. c. Tidak ada penentuan kapasiatas output yang dihasilkan oleh generator. D. Tujuan Penelitian Tujuan dari penelitian ini yaitu : a. Merancang konstruksi generator axial tipe rotor ganda. b. Memperoleh spesifikasi data output yang dihasilkan. 2
3 c. Mengkarakterisai generator axial yang telah dirancang. E. Manfaat Penelitian Manfaat yang diharapkan dari penelitian yang dilakukan antara lain : 1 Pemanfaatan energi angin kecepatan rendah secara maksimal. 2 Membantu dalam penghematan energi konvesional. 3 Pengembangan teknologi dalam pemanfaatan energi terbarukan. II. PRINSIP DASAR GENERATOR SINKRON AXIAL A. Konstruksi Generator Sinkron Axial Konstruksi generator sinkron axial terdiri dari 3 bagian utama yaitu rotor, stator dan celah udara (air gap). Ketiga bagian konstruksi tersebut memiliki diameter yang melebar untuk memperbesar daya keluarannya (Prisandi, 2011). 1. Stator Pada dasarnya stator merupakan tempat penginduksian medan magnet terjadi. Rancangan stator tanpa inti besi biasanya digunakan pada generator putaran dan torsi beban yang rendah. Hal ini disebabkan tidak adanya inti besi pada kumparan. Keunggulan yang diperoleh yakni dapat meminimalisir rugi rugi fluks magnet yang terjadi karena efek tarik menarik antara inti besi dengan magnet permanen yang disebut dengan efek coging torque (Sofian, 2011). Pada stator tanpa inti besi susunan kumparannya terbagi menjadi 2 jenis, yaitu tersusun secara overlapping dan nonoverlapping. Gambar 1. Tipe kumparan overlapping (kiri) dan non-overlapping (kanan) (Sumber: Rossouw, 2009) Perancangan bentuk kumparan terdiri dari 4 jenis bentuk kumparan. Bentuk pertama yaitu trapezoidal yang mempunyai flux linkage yang maksimum tetapi membutuhkan ujung sambungan yang panjang. Bentuk kedua yaitu rectangular / rhomboidal yaitu memiliki ujung sambungan yang lebih pendek namum kemampuan flux linkage yang lebih kecil. Adapun gabungan dari kedua bentuk trapezoidal dan rectangular yaitu hexagonal dan bentuk yang terakhir yaitu cicular yang tidak memiliki sudut sama sekali (Prisandi, 2011). 2. Rotor Gambar 2. Bentuk bentuk kumparan stator (Sumber: Husum, 2008) Rotor terdiri dari 2 komponen utama yaitu magnet permanen dan tatakan penyangga magnet permanen (yoke). Rotor pada generator axial tidak memerlukan arus eksitasi dari luar dikarenakan medan magnet yang dihasilkan berasal dari magnet permanen (Atmojo, 2011). 3
4 Neodynium-iron-boron (NdFeB) menjadi jenis magnet yang paling baik dibandingkan dengan jenis lainnya. Terdapat dua cara penempatan magnet permanen pada tatakan penyangga, yaitu surface mounted dan embedded. Gambar 3. Surface mounted (kiri) dan (kanan) embedded (Sumber: Rossouw, 2009) 3. Celah Udara (Air Gap) Celah udara (air gap) pada generator axial merupakan jarak antara rotor dan stator. Celah udara (air gap) juga menjadi tempat perpindahan medan magnet melewati kumparan pada stator sehingga menghasilkan nilai fluks magnet yang mempengaruhi tegangan induksi pada kumparan (Atmojo, 2011). magnetik yang berubah terhadap waktu maka pada simpul atau kumparan kawat konduktor tersebut akan timbul gaya gerak listrik induksi dan arus induksi. Proses itu sendiri disebut sebagai induksi magnetik (Tipler, 2001). 1. Fluks Magnetik Fluks magnetik berkaitan dengan jumlah garis medan magnet yang melewati luasan yang diketahui. Dalam hal ini, fluks magnet (Φ m ) didefinisikan sebagai perkalian medan magnetik B dengan luasan A yang dibatasi oleh rangkaiannya. Jika garis garis medan magnet melewati suatu luasan yang terdiri atas sebuah kumparan dengan jumlah N lilitan, maka besar fluks magnet yang dihasilkan yaitu sebesar (Tipler, 2001) : Φm = N.B.A (1) Dimana : Φ m N A = Fluks magnet (weber) = Jumlah lilitan pada kumparan = Luas penampang (meter) Perhitungan fluks magnet yang terdiri dari beberapa kumparan dan magnet permanen yang saling terhubung sebagai berikut (Nurhadi, 2012) : B max = B r. (2) Gambar 4. Variabel air gap (Sumber: Mahmoudi et al., 2011) B. Prinsip Kerja Generator Sinkron Axial Hukum Faraday menjadi dasar dari prinsip kerja generator dalam mengkonversi energi mekanik menjadi energi listrik. Penelitian Faraday dan Henry membuktikan bahwa jika sebuah simpul atau kumparan kawat kondukor dilewati oleh fluks Dimana : B max B r lm A magnet = Dimana : = Medan magnet maksimal (tesla) = Madan magnet relatif (tesla) = Tinggi magnet (meter) = Panjang celah udara (meter) A magnet = Luasan medan magnet (m 2 ) = Konstanta (3.14) (3) 4
5 ro = Radius luar magnet (meter) ri = Radius dalam magnet (meter) f = Jarak antar magnet (meter) Nm = Jumlah magnet Φ max = A magnet. B max (4) Dimana : Φ max = Nilai fluks maksimal yang akan diinduksikan (Wb) A magnet = Luasan medan magnet (meter 2 ) B max = Medan magnet maksimal (tesla) 2. Putaran Rotor Generator sinkron axial dirancang untuk beroperasi pada putaran rotor yang rendah, yaitu pada kecepatan < 1000 rpm. Kecepatan putaran rotor tidak mempengarui besarnya nilai maksimun pada fluks magnet, tetapi kecepatan putaran rotor berpengaruh terhadap frekuensi yang dihasilkan (Budiman et al., 2013 dan Prisandi, 2011). f = (5) Dimana : f = Frekuensi yang dihasilkan (Hz) P =Jumlah kutub magnet pada rotor n = Kecepatan putaran rotor (rpm) 3. Daya Keluaran Generator Axial Besar tegangan induksi yang dihasilkan dalam satu kumparan sebagai berikut : (6) Dimana : = Tegangan induksi (volt) N = Jumlah lilitan = Perubahan fluks magnet terhadap satuan waktu (Wb/s) Tanda negatif pada rumus berkenaan dengan arah tegangan induksi dihasilkan. Jika memperhitungkan total keseluruhan tegangan induksi yang dihasilkan suatu generator dapat menggunakan rumus sebagai berikut (Tipler, 2001 dan Nurhadi, 2012) : Dimana : E A = 4,44. N. f. Φ max. (7) E A = Tegangan induksi yang N f Φ max Ns Nph dihasilkan (Volt) = Jumlah lilitan per kumparan = Frekuensi (Herz) = Fluks magnet (Weber) = Jumlah kumparan = Jumlah phasa III. PERANCANGAN GENERATOR AXIAL TIPE ROTOR GANDA A. Rancangan Konstruksi Generator Axial 1. Rancangan Stator Stator yang akan dirancang merupakan jenis stator yang tidak memiliki inti besi pada kumparan. Hal ini mengacu pada referensi yang menyatakan jenis stator tanpa inti besi lebih sesuai dengan generator axial putaran rendah (Sofian, 2011), sehingga konstruksi pada stator hanya terdiri dari kumparan konduktor dan tatakan penyangga (yoke). Tabel 1. Ukuran stator No. Keteranagn Ukuran 1. Diamater stator 280 mm 2. Ketebalan stator 15 mm Stator dengan ukuran diameter 28 cm dapat memuat 12 kumparan berbentuk trapezoidal secara maksimal dengan ukuran 5
6 kumparan yang disesuaikan dan memiliki 150 lilitan per kumparan. Tabel 2. Ukuran kumparan No. Simbol Keterangan Ukuran 1. wso Lebar bagian luar 50 mm 2. wsi Lebar bagian dalam 15 mm 3. wco Lebar lubang bagian luar 30 mm 4. wci Lebar lubang bagian dalam 5 mm 5. pk Panjang 70 mm 6. tk Tebal 10 mm Gambar 5. Skematik ukuran kumparan Kumparan yang dirancang memiliki tipe non-overlapping yang bertujuan memaksimalkan induksi medan magnet pada kumparan dan menghindari penambahan ketebalan pada stator (Rossouw, 2009). Gambar 6. Skematik ukuran kumparan dengan stator Untuk penentuan bahan tatakan penyangga yang ditinjau dari beberapa referensi dapat digunakan minyak resin fiberglass sebagai pengganti inti besi pada kumparan. Gambar 7. Stator hasil rancangan Tabel 3. Ukuran jari jari stator No. Simbol Keterangan Ukuran 1. rco 2. rci 3. rso 4. rsi Jari jari lubang stator bagian luar Jari jari lubang stator bagian dalam Jari jari bagian luar stator Jari jari bagian dalam stator 105 mm 55 mm 115 mm 45 mm 2. Rancangan Rotor dan Celah Udara Rancangan ukuran rotor dapat disesuaikan dengan ukuran stator, dimana magnet permanen saling berhadapan ditengah tengah sisi depan dan belakang kumparan. Bahan yang digunakan sebagai tatakan penyangga rotor yaitu besi (Fe), sehingga magnet dapat diletakan pada tatakan penyangga tanpa harus menanam magnet permanen tersebut. Tabel 4. Ukuran yoke rotor No. Keteranagn Ukuran 1. Diamater 210 mm 2. Ketebalan 2,5 mm 6
7 Jenis magnet permanen yang akan digunakan dalam perancangan rotor tersebut adalah jenis magnet permanen neodyniumiron-boron (NdFeB). Magnet permanen jenis ini memiliki nilai medan magnet dan kerapatan fluks magnet yang lebih besar dibandingkan jenis magnet permanen lainnya yaitu sebasar 1,2 tesla. Penggunaan jenis magnet permanen neodynium-ironboron (NdFeB) bertujuan untuk memperoleh nilai fluks magnet yang maksimal sehingga memperoleh tegangan induksi yang maksimal. Penentuan ukuran magnet permanen yang digunakan berdasarkan kemampuan peneliti dalam memperoleh magnet permanen tersebut. Gambar 8. Magnet permanen neodynium-iron-boron (NdFeB) Tabel 5. Ukuran magnet permanen No. Simbol Keterangan Ukuran 1. pm Panjang 30 mm 2. lm Lebar 25 mm 3. tm Tinggi 5 mm Rancangan rotor menggunakan 12 kutub magnet disetiap sisi bagian dalam rotor tersebut. Perancangan jumlah kumparan dan magnet permanen yang maksimum akan memperbesar nilai frekuensi dan tegangan induksi yang dihasilkan. Kombinasi pemasangan antara kutub magnet dilakukan sesuai dengan tipe NS yang bertujuan untuk memperbasar nilai kerapatan fluks magnet diantara kedua rotor. Gambar 9. Skematik rancangan rotor Gambar 10. Hasil rancangan rotor ganda Tabel 6. Ukuran jari jari rotor No. Simbol Keterangan Ukuran 1. ryo 2. ryi 3. ro 4. ri Jari jari bagian luar yoke rotor Jari jari bagian dalam yoke rotor Jari jari bagian luar magnet Jari jari bagian dalam magnet 105 mm 8,5 mm 100 mm 70 mm Celah udara (air gap) yang akan dirancang pada stator dan rotor memiliki panjang ± 10 mm. 3. Perakitan Konstruksi Generator Axial Perakitan stator dan rotor dilakukan menggunakan batang besi stenlis berbentuk slinder dengan diameter 17 mm dan panjang 200 mm sebagai penghubung diantara keduanya. Pengelasan dilakukan pada rotor dan batang besi sedangkan stator diberi bearing pada tengah stator agar stator tidak ikut berputar pada saat rotor berputar. Untuk kedudukan berdirinya generator dirancang 7
8 menggunakan besi padat yang terdiri dari 2 kaki belakang dan 1 kaki depan dengan ukuran yang disesuaikan. Kedudukan ini juga bertujuan untuk menahan stator agar tidak ikut berputar pada saat generator dioperasikan. Gambar 11. Hasil rancanngan generator axial tipe rotor ganda B. Perancangan Simulasi Pengujian Generator Axial Pengujian generator axial yang telah dirancang diperlukan simulasi untuk mengoperasikan generator axial tersebut. Hal ini dikarenakan perancangan generator axial tidak mengikutsertakan perancangan baling baling pada turbin angin. Peralatan simulasi yang akan digunakan untuk mengoperasikan generator axial tersebut yaitu melakukan putaran secara manual. Skala kecepatan rotasi yang akan diterapkan pada pengujian generator axial berada diantara 50 rpm, 100 rpm, 150 rpm, 200 rpm dan 250 rpm. 1. Peralatan Pengujian Generator Axial Peralatan simulasi yang digunakan untuk pengoperasian secara manual menggunakan besi berbentuk siku yang dihubungkan pada shaft generator sebagai pegangan dalam memutar rotor. Pada simulasi ini generator axial hanya beroperasi pada kecepatan rotasi yang telah ditetapkan. Gambar 12. Simulasi generator axial secara manual Peralatan simulasi lainnya yang akan digunakan yaitu berupa alat ukur seperti tachometer, multimeter dan osiloskop. Tachometer digunakan sebagai pengukur kecepatan rotasi rotor pada generator axial, pengukuran dilakukan pada shaft generator axial yang berputar. Multimeter digunakan sebagai pengukur tegangan dan arus efektif, sedangkan osiloskop digunakan sebagai pengukur frekuensi dan tegangan maksimal. Gambar 13. Peralatan pengujian generator axial C. Metode Pengolahan Data Adapun metode yang digunakan dalam pengolahan data sebagai berikut : 1. Persentase kesalahan Persentase kesalahan merupakan perbedaan diantara 2 nilai yang salah satunya menjadi acuan. Adapun persamaan yang dapat digunakan untuk mencari persentase kesalahan yaitu : 8
9 PK =. 100% 2. Standar deviasi Standar deviasi merupakan nilai suatu ukuran yang menggambarkan tingkat penyebaran data dari nilai rata-rata. Semakin kecil nilai standar deviasi yang didapat maka semakin akurat nilai yang diperoleh. Adapun persamaan yang dapat digunakan untuk mencari standar deviasi yaitu : S = Nilai variansi = Nilai SD = Standar eror C. Proses Kerja Penelitian Gambar 14. Flowchart proses kerja Penelitian nilai Proses kerja penelitian dilakukan bedasarkan flowchart yang telah disusun. Penelitian dilakukan di laboratorium Jurusan Teknik Elektro, Universitas Maritim Raja Ali Haji. Metode penelitian yang dilakukan berdasarkan hasil obervasi penelitian penelitian terdahulu dan tinjauan ke lapangan. IV. PENGUMPULAN DATA DAN ANALISIS A. Analisis Frekuensi yang Dihasilkan 1. Perhitungan dan Pengukuran Frekuensi Perhitungan nilai frekuensi dapat dilakukan menggunakan persamaan (5) sesuai dengan penjabaran landasan teori. Adapun salah satu perhitungan nilai frekuensi pada kecepatan rotasi rotor 50 rpm sebagai berikut : f = = = 5 Hz Setelah melakukan perhitungan pada setiap skala kecepatan rotasi rotor, dilakukan pengukuran nilai frekuensi menggunakan osiloskop sebanyak 5 kali pengukuran. Hasil dari 5 kali pengukuran tersebut dirata ratakan sehingga diperoleh nilai frekuensi berdasarkan pengukuran. Adapun hasil perhitungan dan pengukuran nilai frekuensi ditampilkan pada tabel 7. Tabel 7. Data frekuensi yang diperoleh Kec. Nilai Frekuensi (Hz) Rotasi No. Berdasarkan Berdasarkan Rotor Perhitungan Pengukuan (rpm) < , , , ,82 9
10 2. Perbandingan Nilai Frekuensi Perbandingan kedua data frekuensi dapat dilakukan dengan mengunakan 2 metode perhitungan kesalahan yaitu persentase kesalahan dan standar deviasi. Kedua metode ini bertujuan untuk melihat keakuratan nilai frekuensi yang didapat sehingga pengelolaan data lebih jelas dan dapat dianalisis. Perhitungan kesalahan standar deviasi dilakukan dengan tujuan melihat keakuratan hasil pengukuran nilai frekuensi yang dilakukan sebanyak 5 kali pada masing masing skala kecepatan rotasi rotor. Perhitungan nilai standar deviasi dapat dilakukan berdasarkan persamaan yang telah ditentukan pada metode pengolahaan data. Selanjutnya untuk perhitungan persentase kesalahan dilakukan dengan tujuan melihat keakuratan hasil perhitungan nilai frekuensi terhadap hasil pengukuran. Setelah dilakukan perhitungan kesalahan menggunakan kedua metode tersebut diperoleh nilai rata - rata standar deviasi sebesar 0,24 dan nilai rata - rata persentase kesalahan sebesar 5,7%. Berdasarkan hasil tersebut perhitungan dan pengukuran nilai frekuensi terbilang akurat. Jika dianalisis, kecepatan rotasi rotor merupakan hal yang sama terhadap satuan frekuensi. Hal ini disebabkan, satu frekuensi yang dibangkitkan oleh generator axial merupakan satu putaran penuh sebesar 360 atau 2π. Pada tabel 7 menunjukan nilai yang berbeda diantara nilai putaran dengan nilai frekuensi yang dibangkitkan pada generator axial. Hal ini disebabkan oleh sebuah faktor yang mempengaruhi nilai frekuensi yang dibangkitkan oleh generator axial. Untuk menentukan faktor tersebut dapat dilakukan perbandingan diantara kecepatan rotasi rotor dengan frekuensi yang dibangkitkan oleh generator axial. Hasil perbandingan dapat dilihat pada tabel 8. Tabel 8. Perbandingan nilai frekuensi Kec. No. Rotasi Frekuensi Rotor (Hz) (rps) 1. 0, , , , ,16 25 Berdasarkan data pada tabel 8, dapat disimpulkan bahwa satu putaran rotor sama dengan 6 Hz frekuensi yang dibangkitkan oleh generator axial. Hal ini sesuai dengan jumlah pasangan kutub magnet permanen pada setiap rotor yaitu sebanyak 6 pasang. Keenam pasang kutub magnet permanen tersebut menjadi faktor yang mempengaruhi perbedaan nilai kecepatan rotasi pada rotor dengan nilai frekuensi yang dibangkitkan oleh generator. Hal ini sesuai dengan proses terbentuknya satu gelombang penuh sinusoidal pada generator. Gambar 15. Bentuk gelombang yang dihasilkan 10
11 Gambar diatas merupakan salah satu hasil pengukuran frekuensi pada kecepatan rotasi rotor 100 rpm. Jika dilihat dari hasil pengukuran tersebut, bentuk gelombang yang dihasilkan mendekati gelombang sinusoidal (tidak sempurna). B. Analisis Tegangan Induksi yang Dihasilkan 1. Perhitungan dan Pengukuran Tegangan Induksi Perhitungan nilai tegangan efektif dapat dilakukan menggunakan persamaan (7) sesuai dengan penjabaran landasan teori. Adapun salah satu perhitungan nilai tegangan efektif pada kecepatan rotasi rotor 50 rpm sebagai berikut : B max = B r. = 1,2. = 0,4 Tesla A magnet = = = 1, m 2 Φ max = A magnet. B max = 1, ,4 = 5, weber Losses Φ m = (A bm : A bk ). 100% = {(3. 2,5) : (5. 7 : 2)}. 100% = 43% Φ m = Φ max. Losses Φ m = 5, % = 2, V rms = 4,44. N. f. Φ m. = 4, , = 0,097 volt Setelah melakukan perhitungan pada setiap skala kecepatan rotasi rotor, dilakukan pengukuran nilai tegangan efektif menggunakan multimeter sebanyak 5 kali pengukuran. Hasil dari 5 kali pengukuran tersebut dirata ratakan sehingga diperoleh nilai tegangan efektif berdasarkan pengukuran. Adapun hasil perhitungan dan pengukuran nilai tegangan efektif ditampilkan pada tabel 9. Tabel 9. Data tegangan induksi yang didapat Kec. Tegangan Efektif Rotasi (mv) No. Rotor Perhitungan Pengukuran (rpm) Perbandingan Nilai Tegangan Induksi Perhitungan kesalahan dilakukan dengan menggunakan 2 metode yang sama dengan perhitungan kesalahan pada nilai frekuensi. Setelah dilakukan perhitungan kesalahan menggunakan kedua metode tersebut diperoleh nilai rata - rata standar deviasi sebesar 16,78 dan nilai rata - rata persentase kesalahan sebesar 9,16%. Dalam hal ini, terdapat perbedaan nilai antara perhitungan dan pengukuran nilai tegangan efektif. Hal ini disebabkan oleh nilai rugi rugi fluks magnet yang tidak tetap pada setiap kumparan. Ketidaktetapan nilai rugi rugi fluks magnet disebabkan oleh posisi magnet dan kumparan yang tidak simetris. Ditinjau dari nilai tegangan efektif yang dihasilkan oleh generator axial dapat dikatakan sangat kecil walaupun kecepatan 11
12 rotasi yang diterapkan pada generator axial terbilang sangat rendah. Penyebab kecilnya tegangan induksi yang dihasilkan oleh generator axial dapat diperkirakan berdasarkan analisis. Nilai rugi rugi fluks magnetik yang dihasilkan cukup besar yaitu hampir mendekati 50%. Hal ini diperkirakan perancangan luas bidang magnet permanen dengan kumparan tidak sebanding sehingga aliran fluks magnet tidak maksimal. Gambar 16. Perbandingan daerah magnet permanen dengan kumparan Perancangan rotor pada generator axial juga diperkirakan memiliki daerah yang dapat mempengaruhi aliran fluks magnet. Daerah tersebut terletak pada yoke rotor yang terbuat dari besi. Oleh sebab itu, aliran fluks magnet pada kumparan semakin tidak maksimal. Gambar 17. Perbandingan luasan magnet permanen dengan yoke rotor C. Arus Induksi yang Dihasilkan Proses pendataan arus induksi dilakukan berdasarkan pengukuran sebanyak 5 kali secara langsung menggunakan alat ukur multimeter. Pengukuran dilakukan dengan menggunakan beban berupa resistor sebesar 10 Ω. Hasil dari 5 kali pengukuran tersebut dirata ratakan sehingga diperoleh nilai arus induksi berdasarkan pengukuran. Adapun hasil pengukuran arus induksi ditampilkan pada tabel 10. Tabel 10. Data arus induksi yang diperoleh No. Kec. Rotasi Arus Induksi Rotor (rpm) (ma) Berdasarkan data arus induksi pada tabel 10, dapat lihat nilai arus induksi yang dihasilkan oleh generator axial terbilang sangat kecil. Hal ini sebanding dengan nilai tegangan induksi yang dihasilkan oleh generator tersebut. Terdapat beberapa faktor yang mempengaruhi nilai arus induksi yang dihasilkan yaitu nilai resistansi kumparan, induktansi diri, impedansi dan rugi rugi fluks magnet. Keempat faktor tersebut akan memperkecil nilai arus induksi yang dihasilkan oleh generator axial. Jika dianalisis lebih lanjut, keempat faktor tersebut akan menjadi total hambatan pada aliran arus induksi yang dihasilkan oleh generator axial. D. Karakterisasi Output yang Dihasilkan Output yang dihasilkan oleh generator axial masing masing dapat dibentuk sebuah grafik yang sesuai dengan 12
13 data outputnya. Grafik tersebut dapat dianalisis berdasarkan persamaan linier yang terbentuk oleh masing masing data. Persamaan linier tersebut akan menjadi dasar pengkarakterisasian output yang dihasilkan oleh generator axial yang telah dirancang. Berdasarkan data frekuensi, data tegangan efektif dan data arus induksi dapat dibentuk masing masing sebuah grafik dan persamaan linier sebagai berikut : 1. Grafik frekuensi dan persamaan liniernya. y = 9,5615x 0,9572 Gambar 18. Grafik frekuensi 2. Grafik tegangan efektif dan persamaan liniernya. y = 0,4524x 0,6379 Gambar 19. Grafik tegangan efektif 3. Grafik arus induksi dan persamaan liniernya. y = 15,564x + 6,8093 Gambar 20. Grafik arus induksi Berdasarkan dari ketiga grafik dan persamaan linier di atas, terdapat 2 nilai variabel yaitu y dan x. Nilai variabel y merupakan data kecepatan rotasi rotor, sedangkan nilai variabel x merupakan data dari masing masing output generator. V. KESIMPULAN DAN SARAN A. Kesimpulan Adapun rangkuman kesimpulan yang didapat setelah melakukan proses pengumpulan data dan analisis sebagai berikut : 1. Hasil pengukuran frekuensi memiliki kesalahan SD sebesar 0,24 dan persentase kesalahan sebesar 5,7%, sedangkan hasil pengukuran arus induksi memiliki kesalahan SD sebesar 16,78 dan persentase kesalahan sebesar 9,16% 2. Generator axial tipe rotor ganda yang telah dirancang dapat menghasilkan frekuensi ± 5 Hz, tegangan efektif ± 110 mv dan arus efektif ± 3 ma dalam setiap kenaikan 50 rpm dengan bentuk gelombang tegangan yang 13
14 dihasilkan mendekati bentuk sinusoidal. 3. Pengkarakterisasian output yang B. Saran dihasilkan oleh generator axial hasil rancangan dapat menggunakan grafik dan persamaan linier pada masing masing data output yang telah ditentukan. Generator axial hasil rancangan tentunya belum dapat diterapkan langsung pada turbin angin. Oleh sebab itu, peneliti menyarankan hal sebagai berikut : 1. Diharapkan dalam perancangan generator axial selanjutnya dapat menggunakan baling baling turbin angin secara langsung dengan kapasitas daya tertentu. DAFTAR PUSTAKA Atmojo, P.A Analisis Unjuk Kerja Rancang Bangun Generator Axial Cakram Tunggal sebagai Pembangkit Listrik Turbin Angin Poros Vertikal Tipe Sarvonius, Skripsi, Program Studi Teknik Elektro, Universitas Indonesia, Depok. Badan Meteorologi Klimatologi dan Geofisika Data Arah Angin dan Kecepatan Angin, Tanjungpinang, Kepulauan Riau. Budiman, A., Aji, Y.D., dan Asy'ari, H Pembuatan dan Pengujian Awal Generator Axial Magnet Permanen Kecepatan Rendah, Program Studi Teknik Elektro, Fakultas Teknik, Universitas Muhammadiyah Surakarta. Firdausi, K.M Simulasi Pengaruh Desain Magnet Permanen pada Generator Sinkron Fluks Aksial Rotor Cakram Ganda Stator Tanpa Inti, Skripsi, Program Studi Teknik Elektro, Universitas Indonesia, Depok. Fuadi, I Studi Desain Stator Generator Sinkron Magnet Permanen Fluks Aksial Jenis Cakram, Skripsi, Program Studi Teknik Elektro, Universitas Indonesia, Depok. Howey, A.D Thermal Design of Aircooled Axial Flux Permanent Magnet Machines, thesis, Department of Electrical and Electronic Engineering Imperial College, London. Cgs (diakses pada jam WIB, Selasa, 5 Mei 2015). Husum, M.E Design of a Lab Setup for Testing Stator Windings in Ironless Axial Flux Machines, Department of Electrical Power Engineering, Norwegian University of Science and Technology (NTNU). Kementrian Energi & Sumber Daya Mineral Kajian Supply Demand Energy, Jakarta, Desember Mahmoudi, A., Rahim, N.A., and Hew, W.P Axial-flux Permanentmagnet Machine Modeling, Design, Simulation and Analysis, Full Length Research Paper, Electrical Engineering Department, University of Malaya, Kuala Lumpur, Malaysia. Nugroho, N.D Analisis Pengisian Baterai pada Rancang Bangun Turbin Angin Poros Veretikal Tipe Savonius untuk Pencatuan Beban Listrik, Skripsi, Departemen Teknik Elektro, Universitas Indonesia, Depok. Nurhadi, A Perancangan Generator Putaran Rendah Magnet Permanen 14
15 Jenis Fe Fluks Aksial, Jurusan Teknik Elektro, Universitas Diponegoro, Semarang. Organization of the Petroleum Exporting Countries Annual Statistical Bulletin, OPEC Internatinal Seminar, Hofburg Palace Vienna, Austria, 3 4 June Price, F.G., Batzel, D.T, Comanescu, M., and Muller, A.B Design and Testing of a Permanent Magnet Axial Flux Wind Power Generator, Paper 190, ENT 202, Pennsylvania State University, Altoona College. Prisandi, H.C Studi Desain Kumparan Stator pada Generator Sinkron Magnet Permanen Fluks Axial Tanpa Inti Stator, Skripsi, Program Studi Teknik Elektro, Universitas Indonesia, Depok. Rossouw, G.F Analysis and Design of Axial Fluks Permanent Magnet Wind Generator System for Direct Battery Charging Applications, thesis, Department of Electrical and Electronic Engineering Stellenbosch University, South Africa. Sofian, E Studi Bentuk Rotor Magnet pada Generator Sinkron Magnet Permanen Fluks Axial Tanpa Inti Stator, Skripsi, Program Studi Teknik Elektro, Universitas Indonesia, Depok. Statistik PLN Pembangkitan Tenaga Listrik, Sekretariat Perusahaan PT PLN (Persero), Jakarta, Mei Tipler, A.P Fisika untuk Sains dan Teknik, Penerbit Erlangga, Jakarta. World Wind Energy Association Half-year Report. WWEA Head Office, Charles-de-Gaulle-Str Bonn, Germany. 15
Perancangan Prototype Generator Magnet Permanen 1 Fasa Jenis Fluks Aksial pada Putaran Rendah
Perancangan Prototype Generator Magnet Permanen 1 Fasa Jenis Fluks Aksial pada Putaran Rendah Leo Noprizal #1, Mahdi Syukri #2, Syahrizal Syahrizal #3 # Jurusan Teknik Elektro dan Komputer, Universitas
Generator Magnet Permanen Sebagai Pembangkit Listrik Putaran Rendah
Generator Magnet Permanen Sebagai Pembangkit Listrik Putaran Rendah Permanent Magnet Generator as Low Speed Electric Power Plant Hari Prasetijo #1, Ropiudin #, Budi Dharmawan #3 [email protected] #1
RANCANG BANGUN GENERATOR MAGNET PERMANEN FLUKS AKSIAL TIGA FASE BERDAYA KECIL
RANCANG BANGUN GENERATOR MAGNET PERMANEN FLUKS AKSIAL TIGA FASE BERDAYA KECIL Agus Supardi 1*, Rahajeng Hafidz Bastian 2 1,2 Teknik Elektro, Fakultas Teknik, Universitas Muhammadiyah Surakarta Jl. A. Yani
PROTOTIPE GENERATOR MAGNET PERMANEN AXIAL AC 1 FASA PUTARAN RENDAH SEBAGAI KOMPONEN PEMBANGKIT LISTRIK TENAGA PIKO HIDRO
Techno, ISSN 141-867 Volume 15 No. 2 Oktober 214 Hal. 3 36 PROTOTIPE GENERATOR MAGNET PERMANEN AXIAL AC 1 FASA PUTARAN RENDAH SEBAGAI KOMPONEN PEMBANGKIT LISTRIK TENAGA PIKO HIDRO Prototype of 1-Phase
BAB III PERANCANGAN SISTEM
BAB III PERANCANGAN SISTEM 3.1 Objek Penelitian Objek penelitian ini adalah sebuah generator magnet permanen fluks axial yang dirangkai dengan keluaran 1 fase. Cara kerja dari generator axial ini adalah
Rancang Bangun Generator Portable Fluks Aksial Magnet Permanen Jenis Neodymium (NdFeB)
Rancang Bangun Generator Portable Fluks Aksial Magnet Permanen Jenis Neodymium (NdFeB) Fithri Muliawati 1, Taufiq Ramadhan 2 1 Dosen Tetap Program Studi Teknik Elektro Fakultas Teknik Universitas Ibn Khaldun
GENERATOR LISTRIK MAGNET PERMANEN TIPE AKSIAL FLUKS PUTARAN RENDAH DAN UJI PERFORMA
GENERATOR LISTRIK MAGNET PERMANEN TIPE AKSIAL FLUKS PUTARAN RENDAH DAN UJI PERFORMA Mulyadi (1*), Priyo Sardjono (1), Djuhana (1), Karyaman H Z (2), M Situmorang (3) (1) Program Studi Teknik Mesin, Universitas
BAB 4 HASIL DAN PEMBAHASAN
BAB 4 HASIL DAN PEMBAHASAN Generator fluks radial yang telah dirancang kemudian dilanjutkan dengan pembuatan dan perakitan alat. Pada stator terdapat enam buah kumparan dengan lilitan sebanyak 650 lilitan.
USULAN PENELITIAN PEMBINA
Kode/Nama Rumpun Ilmu : 452/ Teknik Tenaga USULAN PENELITIAN PEMBINA SIMULASI GENERATOR AXIAL FLUX PERMANENT MAGNET (AFPM) DENGAN MENGGUNAKAN ANSYS MAXWELL TIM PENGUSUL NUNDANG BUSAERI, MT (NIDN. 0030066203)
Perancangan Generator Magnet Permanen dengan Arah Fluks Aksial untuk Aplikasi Pembangkit Listrik
Jurnal Reka Elkomika 2337-439X Juli 2016 Jurnal Online Institut Teknologi Nasional Teknik Elektro Itenas Vol.4 No.2 Perancangan Generator Magnet Permanen dengan Arah Fluks Aksial untuk Aplikasi Pembangkit
Aspek Perancangan Generator Magnet Permanen Fluks Aksial 1 Fasa Untuk Mengakomodir Kecepatan Putar RPM
Aspek Perancangan Generator Magnet Permanen Fluks Aksial 1 Fasa Untuk Mengakomodir Kecepatan Putar 500-600 RPM Azmi Alfarisi, Indra Yasri Jurusan Teknik Elektro Fakultas Teknik Universitas Riau Kampus
1BAB I PENDAHULUAN. contohnya adalah baterai. Baterai memberikan kita sumber energi listrik mobile yang
1BAB I PENDAHULUAN 1.1 LatarBelakang Dewasa ini penggunaan energi listrik berubah dari energi listrik yang statis (berasal dari pembangkitan) menjadi energi listrik yang dapat dibawa kemana saja, contohnya
PEMBUATAN DAN PENGUJIAN AWAL GENERATOR AXIAL MAGNET PERMANEN KECEPATAN RENDAH
PEMBUATAN DAN PENGUJIAN AWAL GENERATOR AXIAL MAGNET PERMANEN KECEPATAN RENDAH Aris Budiman, Dhanar Yuwono Aji, Hasyim Asy'ari Program Studi Teknik Elektro, Fakultas Teknik, Universitas Muhammadiyah Surakarta
UNIVERSITAS INDONESIA
UNIVERSITAS INDONESIA SIMULASI PENGARUH DISAIN MAGNET PERMANEN PADA GENERATOR SINKRON FLUKS AKSIAL ROTOR CAKRAM GANDA STATOR TANPA INTI SKRIPSI Diajukan sebagai salah satu syarat memperoleh gelar sarjana
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 2.1 Sebagai Sumber angin telah dimanfaatkan oleh manusaia sejak dahulu, yaitu untuk transportasi, misalnya perahu layar, untuk industri dan pertanian, misalnya kincir angin untuk
LEMBAR KERJA SISWA (LKS) /TUGAS TERSTRUKTUR - - INDUKSI ELEKTROMAGNET - INDUKSI FARADAY DAN ARUS
LEMBAR KERJA SISWA (LKS) /TUGAS TERSTRUKTUR Diberikan Tanggal :. Dikumpulkan Tanggal : Induksi Elektromagnet Nama : Kelas/No : / - - INDUKSI ELEKTROMAGNET - INDUKSI FARADAY DAN ARUS BOLAK-BALIK Induksi
1 BAB I PENDAHULUAN. energi alternatif yang dapat menghasilkan energi listrik. Telah diketahui bahwa saat
1 BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Krisis energi yang melanda dunia khususnya di Indonesia, telah membuat berbagai pihak mencari solusi dan melakukan penelitian untuk mencari sumber energi
NASKAH PUBLIKASI DESAIN GENERATOR AXIAL KECEPATAN RENDAH MENGGUNAKAN 8 BUAH MAGNET PERMANEN DENGAN DIMENSI 10 X 10 X 1 CM
NASKAH PUBLIKASI DESAIN GENERATOR AXIAL KECEPATAN RENDAH MENGGUNAKAN 8 BUAH MAGNET PERMANEN DENGAN DIMENSI 10 X 10 X 1 CM Disusun untuk Melengkapi Tugas Akhir dan Memenuhi Syarat-syarat untuk Mencapai
BAB III PERANCANGAN SISTEM DAN PEMBUATAN ALAT
38 BAB III PERANCANGAN SISTEM DAN PEMBUATAN ALAT Bab ini membahas rancangan diagram blok alat, rancangan Konstruksi Kumparan Stator dan Kumparan Rotor, rancangan Konstruksi Magnet Permanent pada Rotor
PERANCANGAN MINI GENERATOR TURBIN ANGIN 200 W UNTUK ENERGI ANGIN KECEPATAN RENDAH. Jl Kaliurang km 14,5 Sleman Yogyakarta
PERANCANGAN MINI GENERATOR TURBIN ANGIN 200 W UNTUK ENERGI ANGIN KECEPATAN RENDAH Wahyudi Budi Pramono 1*, Warindi 2, Achmad Hidayat 1 1 Program Studi Teknik Elektro, Fakultas Teknologi Industri, Universitas
BAB II MOTOR INDUKSI TIGA PHASA
BAB II MOTOR INDUKSI TIGA PHASA II.1 Umum Motor induksi merupakan motor arus bolak balik ( AC ) yang paling luas digunakan dan dapat dijumpai dalam setiap aplikasi industri maupun rumah tangga. Penamaannya
Optimasi Lebar Celah Udara Generator Axial Magnet Permanen Putaran Rendah 1 Fase
Optimasi Lebar Celah Udara Generator Axial Magnet Permanen Putaran Rendah 1 Fase Hari Prasetijo 1, Sugeng Waluyo 2 Abstract-- This study designs a 1-phase permanent magnet generator with double-sided axial
PRINSIP KERJA MOTOR. Motor Listrik
Nama : Gede Teguh Pradnyana Yoga NIM : 1504405031 No Absen/ Kelas : 15 / B MK : Teknik Tenaga Listrik PRINSIP KERJA MOTOR A. Pengertian Motor Listrik Motor listrik merupakan sebuah perangkat elektromagnetis
BAB II DASAR TEORI. Teknik Konversi Energi Politeknik Negeri Bandung
BAB II DASAR TEORI 2.1 Energi Listrik Energi adalah kemampuan untuk melakukan kerja. Salah satu bentuk energi adalah energi listrik. Energi listrik adalah energi yang berkaitan dengan akumulasi arus elektron,
BAB II DASAR TEORI. searah. Energi mekanik dipergunakan untuk memutar kumparan kawat penghantar
BAB II DASAR TEORI 2.1 Umum Generator arus searah mempunyai komponen dasar yang hampir sama dengan komponen mesin-mesin lainnya. Secara garis besar generator arus searah adalah alat konversi energi mekanis
BAB II MOTOR INDUKSI TIGA PHASA
BAB II MOTOR INDUKSI TIGA PHASA II.1 UMUM Faraday menemukan hukum induksi elektromagnetik pada tahun 1831 dan Maxwell memformulasikannya ke hukum listrik (persamaan Maxwell) sekitar tahun 1860. Pengetahuan
1. BAB I PENDAHULUAN
1. BAB I PENDAHULUAN 1.1 Latar Belakang Dewasa ini, listrik merupakan kebutuhan primer masyarakat pada umumnya. Faktor yang paling berpengaruh pada peningkatan kebutuhan listrik adalah majunya teknologi
BAB II HARMONISA PADA GENERATOR. Generator sinkron disebut juga alternator dan merupakan mesin sinkron yang
BAB II HARMONISA PADA GENERATOR II.1 Umum Generator sinkron disebut juga alternator dan merupakan mesin sinkron yang digunakan untuk menkonversikan daya mekanis menjadi daya listrik arus bolak balik. Arus
PEMBUATAN DAN UJI KELISTRIKAN GENERATOR MAGNET PERMANEN FLUKS AKSIAL
PEMBUATAN DAN UJI KELISTRIKAN GENERATOR MAGNET PERMANEN FLUKS AKSIAL SKRIPSI KARYAMAN HARTO ZEBUA 120801038 DEPARTEMEN FISIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS SUMATERA UTARA MEDAN
DESAIN DAN UJI KINERJA GENERATOR AC FLUKS RADIAL MENGGUNAKAN 12 BUAH MAGNET PERMANEN TIPE NEODYMIUM (NdFeB) SEBAGAI PEMBANGKIT LISTRIK
DESAIN DAN UJI KINERJA GENERATOR AC FLUKS RADIAL MENGGUNAKAN 12 BUAH MAGNET PERMANEN TIPE NEODYMIUM (NdFeB) SEBAGAI PEMBANGKIT LISTRIK Gatot Eka Pramono 1, Fithri Muliawati 2, Nur Fajri Kurniawan 3 1 Dosen
BAB III PERANCANGAN ALAT
BAB III PERANCANGAN ALAT 3.1 Prinsip Kerja Turbin Angin Prinsip kerja dari turbin angin adalah mengubah energi mekanis dari angin menjadi energi putar pada kincir. Lalu putaran kincir digunakan untuk memutar
DESAIN GENERATOR MAGNET PERMANEN RPM RENDAH DENGAN MEMANFAATKAN MOTOR KIPAS
DESAIN GENERATOR MAGNET PERMANEN RPM RENDAH DENGAN MEMANFAATKAN MOTOR KIPAS PUBLIKASI ILMIAH Disusun sebagai salah satu syarat menyelesaikan Program Studi Strata I pada Jurusan Teknik Elektro Fakultas
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 2.1 Turbin Angin Turbin angin adalah suatu sistem konversi energi angin untuk menghasilkan energi listrik dengan proses mengubah energi kinetik angin menjadi putaran mekanis rotor
LATIHAN FISIKA DASAR 2012 LISTRIK STATIS
Muatan Diskrit LATIHAN FISIKA DASAR 2012 LISTRIK STATIS 1. Ada empat buah muatan titik yaitu Q 1, Q 2, Q 3 dan Q 4. Jika Q 1 menarik Q 2, Q 1 menolak Q 3 dan Q 3 menarik Q 4 sedangkan Q 4 bermuatan negatif,
BAB III PERANCANGAN SISTEM
BAB III PERANCANGAN SISTEM Pada bab ini akan dijelaskan perancangan sistem serta realisasi perangkat keras pada perancangan skripsi ini. 3.1. Gambaran Alat Alat yang akan direalisasikan adalah sebuah alat
BAB II TINJAUAN PUSTAKA
BAB II TINJAUAN PUSTAKA II.1 Pembangkit Listrik Tenaga Angin Pembangkit Listrik Tenaga Angin memberikan banyak keuntungan seperti bersahabat dengan lingkungan (tidak menghasilkan emisi gas), tersedia dalam
PERANCANGAN PEMBANGKIT LISTRIK MENGGUNAKAN GENERATOR MAGNET PERMANEN DENGAN MOTOR DC SEBAGAI PRIME MOVER
PERANCANGAN PEMBANGKIT LISTRIK MENGGUNAKAN GENERATOR MAGNET PERMANEN DENGAN MOTOR DC SEBAGAI PRIME MOVER Oleh : Mustofa, Prof. Dr. Ir. H. Didik Notosudjono, M.Sc. 1), Ir. Dede Suhendi, MT. 2) Program Studi
Perancangan Generator Magnet Permanen Fluks Aksial Putaran Rendah
Perancangan Generator Magnet Permanen Fluks Aksial Putaran Rendah F. Danang Wijaya 1, Yusuf Susilo W 2, Ryan Adi Nugroho 2 1 Dosen Jurusan Teknik Elektro dan Teknologi Informasi, FT UGM 2 Mahasiswa Jurusan
Teknik Tenaga Listrik(FTG2J2)
Teknik Tenaga Listrik(FTG2J2) Bagian 9: Motor Sinkron Ahmad Qurthobi, MT. Teknik Fisika Telkom University Outline Pendahuluan Konstruksi Kondisi Starting Rangkaian Ekivalen dan Diagram Fasor Rangkaian
ULANGAN AKHIR SEMESTER GANJIL 2015 KELAS XII. Medan Magnet
ULANGAN AKHIR SEMESTER GANJIL 2015 KELAS XII gaya F. Jika panjang kawat diperpendek setengah kali semula dan kuat arus diperbesar dua kali semula, maka besar gaya yang dialami kawat adalah. Medan Magnet
MAKALAH INDUKSI ELEKTROMAGNETIK
MAKALAH INDUKSI ELEKTROMAGNETIK Mata Kuliah Fisika II ME091204 Disusun oleh: Aldrin Dewabrata 4210100042 Rambo T Silaban 4210100081 Renaldi 4210100096 JURUSAN T. SISTEM PERKAPALAN FAKULTAS TEKNOLOGI KELAUTAN
MODUL 3 TEKNIK TENAGA LISTRIK PRODUKSI ENERGI LISTRIK (1)
MODUL 3 TEKNIK TENAGA LISTRIK PRODUKSI ENERGI LISTRIK (1) 1. 1. SISTEM TENAGA LISTRIK 1.1. Elemen Sistem Tenaga Salah satu cara yang paling ekonomis, mudah dan aman untuk mengirimkan energi adalah melalui
BAB I PENDAHULUAN. maka semakin maju suatu negara, semakin besar energi listrik yang dibutuhkan.
BAB I PENDAHULUAN 1.1 Latar Belakang Energi listrik merupakan suatu kebutuhan utama yang sangat dibutuhkan pada zaman modern ini. Jika dilihat dari kebutuhan energi listrik tiap negara, maka semakin maju
PENGARUH PENGATURAN TAHANAN SHUNT DAN SERI TERHADAP PUTARAN DAN EFISIENSI MOTOR ARUS SEARAH KOMPON
PENGARUH PENGATURAN TAHANAN SHUNT DAN SERI TERHADAP PUTARAN DAN EFISIENSI MOTOR ARUS SEARAH KOMPON (Aplikasi pada Laboratorium Departemen Listrik P4TK, Medan) Andri Sitorus,Syamsul Amien Konsentrasi Teknik
BAB II MOTOR INDUKSI 3 FASA
BAB II MOTOR INDUKSI 3 FASA 2.1 Umum Motor listrik merupakan beban listrik yang paling banyak digunakan di dunia, motor induksi tiga fasa adalah suatu mesin listrik yang mengubah energi listrik menjadi
Universitas Medan Area
BAB II TINJAUAN PUSTAKA 2.1 Landasan teori Generator listrik adalah suatu peralatan yang mengubah enersi mekanis menjadi enersi listrik. Konversi enersi berdasarkan prinsip pembangkitan tegangan induksi
MODUL 10 DASAR KONVERSI ENERGI LISTRIK. Motor induksi
MODUL 10 DASAR KONVERSI ENERGI LISTRIK Motor induksi Motor induksi merupakan motor yang paling umum digunakan pada berbagai peralatan industri. Popularitasnya karena rancangannya yang sederhana, murah
PROTOTYPE GENERATOR MAGNET PERMANEN MENGGUNAKAN KUMPARAN STATOR GANDA
Berkala Fisika ISSN : 141-9662 Vol. 17, No. 4, Oktober 214, hal 115-12 PROTOTYPE GENERATOR MAGNET PERMANEN MENGGUNAKAN KUMPARAN STATOR GANDA Hartono *, Sugito dan Wihantoro Program Studi Fisika, Fakultas
LATIHAN UAS 2012 LISTRIK STATIS
Muatan Diskrit LATIHAN UAS 2012 LISTRIK STATIS 1. Dua buah bola bermuatan sama (2 C) diletakkan terpisah sejauh 2 cm. Gaya yang dialami oleh muatan 1 C yang diletakkan di tengah-tengah kedua muatan adalah...
9/10/2015. Motor Induksi
9/10/015 Motor induksi disebut juga motor tak serempak Motor Induksi Merupakan motor AC yang paling banyak dipakai di industri baik 1 phasa maupun 3 phasa Lab. istem Tenaga Lab. istem Tenaga Keuntungan
UNIVERSITAS INDONESIA STUDI JARAK ANTAR ROTOR MAGNET PERMANEN PADA GENERATOR SINKRON MAGNET PERMANEN FLUKS AKSIAL TANPA INTI STATOR SKRIPSI
UNIVERSITAS INDONESIA STUDI JARAK ANTAR ROTOR MAGNET PERMANEN PADA GENERATOR SINKRON MAGNET PERMANEN FLUKS AKSIAL TANPA INTI STATOR SKRIPSI RAMADHAN JAREKSON 0606074262 FAKULTAS TEKNIK PROGRAM STUDI TEKNIK
Momentum, Vol. 10, No. 2, Oktober 2014, Hal ISSN
Momentum, Vol. 10, No. 2, Oktober 2014, Hal. 62-68 ISSN 0216-7395 PERANCANGAN PARAMETER PADA MOTOR INDUKSI TIGA FASA TIPE ROTOR BELITAN UNTUK PENINGKATAN UNJUK KERJA Tejo Sukmadi Jurusan Teknik Elektro
Dasar Teori Generator Sinkron Tiga Fasa
Dasar Teori Generator Sinkron Tiga Fasa Hampir semua energi listrik dibangkitkan dengan menggunakan mesin sinkron. Generator sinkron (sering disebut alternator) adalah mesin sinkron yangdigunakan untuk
STUDI DESAIN KUMPARAN STATOR PADA GENERATOR SINKRON MAGNET PERMANEN FLUKS AKSIAL TANPA INTI STATOR
UNIVERSITAS INDONESIA STUDI DESAIN KUMPARAN STATOR PADA GENERATOR SINKRON MAGNET PERMANEN FLUKS AKSIAL TANPA INTI STATOR SKRIPSI Diajukan sebagai salah satu syarat memperoleh gelar sarjana CHATRA HAGUSTA
PERANCANGAN POWER BANK DENGAN MENGGUNAKAN DINAMO SEPEDA SEDERHANA
DOI: doi.org/10.21009/03.snf2017.02.ere.07 PERANCANGAN POWER BANK DENGAN MENGGUNAKAN DINAMO SEPEDA SEDERHANA Alfi Ridwanto 1,a), Wisnu Broto 2,b) Prodi Elektro Fakultas Teknik Universitas Pancasila, Srengseng
SMA/MA IPA kelas 12 - FISIKA IPA BAB 7 GAYA GERAK LISTRIK INDUKSILatihan Soal 7.1
SMA/MA IPA kelas 12 - FISIKA IPA BAB 7 GAYA GERAK LISTRIK INDUKSILatihan Soal 7.1 1. Sebuah kumparan lawat dengan luas 50 cm 2 terletak dalam medan magnetik yang induksi magnetiknya 1,4 T. Jika garis normal
Mesin Arus Bolak Balik
Teknik Elektro-ITS Surabaya share.its.ac.id 1 Mesin Arus Bolak balik TE091403 Part 3 : Dasar Mesin Listrik Berputar Institut Teknologi Sepuluh Nopember August, 2012 Teknik Elektro-ITS Surabaya share.its.ac.id
Hubungan Antara Tegangan dan RPM Pada Motor Listrik
1 Hubungan Antara Tegangan dan RPM Pada Motor Listrik Pada motor DC berlaku persamaan-persamaan berikut : V = E+I a Ra, E = C n Ф, n =E/C.Ф Dari persamaan-persamaan diatas didapat : n = (V-Ra.Ra) / C.Ф
V. Medan Magnet. Ditemukan sebuah kota di Asia Kecil (bernama Magnesia) lebih dahulu dari listrik
V. Medan Magnet Ditemukan sebuah kota di Asia Kecil (bernama Magnesia) lebih dahulu dari listrik Di tempat tersebut ada batu-batu yang saling tarik menarik. Magnet besar Bumi [sudah dari dahulu dimanfaatkan
BAB II TINJAUAN PUSTAKA
BAB II TINJAUAN PUSTAKA 2.1 Motor Arus Searah Sebuah mesin yang mengubah energi listrik arus searah menjadi energi mekanik dikenal sebagai motor arus searah. Cara kerjanya berdasarkan prinsip, sebuah konduktor
Pembuatan Alternator Axial Flux Coreless Dengan Menggunakan Magnet Permanen
JURNAL TEKNIK ITS Vol. 6, No. 2, (217) ISSN: 2337-3539 (231-9271 Print) B-256 Pembuatan Alternator Axial Flux Coreless Dengan Menggunakan Magnet Permanen Clarissa Amelia Sitorus dan Yono Hadi Pramono Departemen
LEMBAR DISKUSI SISWA MATER : INDUKSI ELEKTROMAGNETIK IPA TERPADU KELAS 9 SEMESTER 2
Halaman 1 LEMBAR DISKUSI SISWA MATER : INDUKSI ELEKTROMAGNETIK IPA TERPADU KELAS 9 SEMESTER 2 SMP NEGERI 55 JAKARTA A. GGL INDUKSI Sebelumnya telah diketahui bahwa kelistrikan dapat menghasilkan kemagnetan.
Gambar 2.1. Grafik hubungan TSR (α) terhadap efisiensi turbin (%) konvensional
BAB II DASAR TEORI Bab ini berisi dasar teori yang berhubungan dengan perancangan skripsi antara lain daya angin, daya turbin angin, TSR (Tip Speed Ratio), aspect ratio, overlap ratio, BHP (Break Horse
Makalah Mata Kuliah Penggunaan Mesin Listrik
Makalah Mata Kuliah Penggunaan Mesin Listrik KARAKTERISTIK MOTOR UNIVERSAL DAN MOTOR COMPOUND Tatas Ardhy Prihanto (21060110120039) [email protected] Jurusan Teknik Elektro, Fakultas Teknik, Universitas
Pendahuluan Motor DC mengkonversikan energi listrik menjadi energi mekanik. Sebaliknya pada generator DC energi mekanik dikonversikan menjadi energi l
Mesin DC Pendahuluan Motor DC mengkonversikan energi listrik menjadi energi mekanik. Sebaliknya pada generator DC energi mekanik dikonversikan menjadi energi listrik. Prinsip kerja mesin DC (dan AC) adalah
BAB II MOTOR ARUS SEARAH
BAB II MOTOR ARUS SEARAH 2.1 Umum Motor arus searah (motor DC) adalah mesin yang mengubah energi listrik arus searah menjadi energi mekanis. Pada prinsip pengoperasiannya, motor arus searah sangat identik
BAB IV HASIL DAN PEMBAHASAN
BAB IV HASIL DAN PEMBAHASAN Pada penelitian ini, penggerak generator adalah dari kayuhan sepeda untuk menghasilkan listrik yang disimpan dalam akumulator 12 Volt 10Ah yang akan digunakan sebagai sumber
SOAL SOAL TERPILIH 1 SOAL SOAL TERPILIH 2
SOAL SOAL TERPILIH 1 1. Sebuah kumparan mempunyai 50 lilitan dalam waktu 0,02 s kumparan dimasuki fluks 310 mwb, yang kemudian turun hingga 100 mwb. Berapakah GGL induksi rata rata yang dibangkitkan oleh
BAB II. 1. Motor arus searah penguatan terpisah, bila arus penguat medan rotor. dan medan stator diperoleh dari luar motor.
BAB II MOTOR ARUS SEARAH II.1. Umum (8,9) Motor arus searah adalah suatu mesin yang berfungsi mengubah energi listrik menjadi energi mekanik, dimana energi gerak tersebut berupa putaran dari motor. Ditinjau
Vol 9 No. 2 Oktober 2014
GENERATOR TURBIN ANGIN PUTARAN RENDAH Frasongko Budiyanto¹, Mustaqim², Hadi Wibowo³ ¹Mahasiswa Teknik Mesin_ ²,³ Dosen Fakultas Teknik Jurusan Teknik Mesin, Universitas Pancasakti Tegal ABSTRAK Pemanfaatan
PENGUJIAN PERFORMANCE MOTOR LISTRIK AC 3 FASA DENGAN DAYA 3 HP MENGGUNAKAN PEMBEBANAN GENERATOR LISTRIK
PENGUJIAN PERFORMANCE MOTOR LISTRIK AC 3 FASA DENGAN DAYA 3 HP MENGGUNAKAN PEMBEBANAN GENERATOR LISTRIK Zainal Abidin, Tabah Priangkoso *, Darmanto Jurusan Teknik Mesin Fakultas Teknik Universitas Wahid
i : kuat arus listrik (A) a : jarak dari kawat berarus (m)
INDUKSI MAGNETIK Hans Christian Oersted pada tahun 18 menemukan bahwa arus listrik dalam sebuah kawat penghantar dapat menghasilkan efek magnetik. Efek magnetik yang ditimbulkan oleh arus tersebut dapat
MAKALAH ANALISIS SISTEM KENDALI INDUSTRI Synchronous Motor Derives. Oleh PUSPITA AYU ARMI
MAKALAH ANALISIS SISTEM KENDALI INDUSTRI Synchronous Motor Derives Oleh PUSPITA AYU ARMI 1304432 PENDIDIKAN TEKNOLOGI DAN KEJURUAN PASCASARJANA FAKULTAS TEKNIK UNIVERSITAS NEGERI PADANG 2013 SYNCHRONOUS
TUGAS PERTANYAAN SOAL
Nama: Soni Kurniawan Kelas : LT-2B No : 19 TUGAS PERTANYAAN SOAL 1. Jangkar sebuah motor DC tegangan 230 volt dengan tahanan 0.312 ohm dan mengambil arus 48 A ketika dioperasikan pada beban normal. a.
BAB II TINJAUAN PUSTAKA
BAB II TINJAUAN PUSTAKA 2.1. Dasar Teori Pompa Sentrifugal 2.1.1. Definisi Pompa Sentrifugal Pompa sentrifugal adalah suatu mesin kinetis yang mengubah energi mekanik menjadi energi fluida menggunakan
PEMODELAN PEMBANGKIT LISTRIK TENAGA ANGIN 1kW BERBANTUAN SIMULINK MATLAB
PEMODELAN PEMBANGKIT LISTRIK TENAGA ANGIN 1kW BERBANTUAN SIMULINK MATLAB Subrata Program Studi Teknik Elektro Jurusan Teknik Elektro Fakultas Teknik Universitas Tanjungpura Pontianak, 2014 E-mail : [email protected]
KONSTRUKSI GENERATOR DC
KONSTRUKSI GENERATOR DC Disusun oleh : HENDRIL SATRIYAN PURNAMA 1300022054 PROGRAM STUDI TEKNIK ELEKTRO FAKULTAS TEKNOLOGI INDUSTRI UNIVERSITAS AHMAD DAHLAN YOGYAKARTA 2015 I. DEFINISI GENERATOR DC Generator
PERBANDINGAN PENGARUH TAHANAN ROTOR TIDAK SEIMBANG DAN SATU FASA ROTOR TERBUKA : SUATU ANALISIS TERHADAP EFISIENSI MOTOR INDUKSI TIGA FASA
PERBANDINGAN PENGARUH TAHANAN ROTOR TIDAK SEIMBANG DAN SATU FASA ROTOR TERBUKA : SUATU ANALISIS TERHADAP EFISIENSI MOTOR INDUKSI TIGA FASA Wendy Tambun, Surya Tarmizi Kasim Konsentrasi Teknik Energi Listrik,
Dampak Perubahan Putaran Terhadap Unjuk Kerja Motor Induksi 3 Phasa Jenis Rotor Sangkar
Jurnal Kompetensi Teknik Vol.1, No. 2, Mei 2010 57 Dampak Perubahan Putaran Terhadap Unjuk Kerja Motor Induksi 3 Phasa Jenis Rotor Sangkar Isdiyarto Jurusan Teknik Elektro, Universitas Negeri Semarang
UNIVERSITAS INDONESIA
UNIVERSITAS INDONESIA ANALISIS UNJUK KERJA RANCANG BANGUNN GENERATOR AXIAL CAKRAM TUNGGAL SEBAGAI PEMBANGKIT LISTRIK TURBIN ANGIN POROS VERTIKAL TIPE SAVONIUS SKRIPSI ANDRE PASCA ATMOJO 0706166604 FAKULTAS
NASKAH PUBLIKASI PEMANFAATAN SEPEDA STATIS SEBAGAI SUMBER ENERGI ALTERNATIF MENGGUNAKAN SEPUL SEPEDA MOTOR
NASKAH PUBLIKASI PEMANFAATAN SEPEDA STATIS SEBAGAI SUMBER ENERGI ALTERNATIF MENGGUNAKAN SEPUL SEPEDA MOTOR TUGAS AKHIR Disusun Sebagai Salah Satu Syarat Menyelesaikan Program Studi Strata 1 Jurusan Teknik
GENERATOR DC HASBULLAH, MT, Mobile :
GENERATOR DC HASBULLAH, MT, 2009 ELECTRICAL ENGINEERING DEPT. ELECTRICAL POWER SYSTEM Email : [email protected] [email protected] Mobile : 081383893175 Definisi Generator DC Sebuah perangkat mesin
BAB II MOTOR ARUS SEARAH. tersebut berupa putaran rotor. Proses pengkonversian energi listrik menjadi energi
BAB II MOTOR ARUS SEARAH II.1 Umum Motor arus searah ialah suatu mesin listrik yang berfungsi mengubah energi listrik arus searah (listrik DC) menjadi energi gerak atau energi mekanik, dimana energi gerak
BAB II GENERATOR SINKRON
BAB II GENERATOR SINKRON 2.1 Pendahuluan Generator arus bolak balik berfungsi mengubah tenaga mekanis menjadi tenaga listrik arus bolak balik. Generator arus bolak balik sering disebut juga sebagai alternator,
DESAIN JARAK STATOR DENGAN ROTOR YANG PALING OPTIMAL PADA GENERATOR MAGNET PERMANEN
DESAIN JARAK STATOR DENGAN ROTOR YANG PALING OPTIMAL PADA GENERATOR MAGNET PERMANEN TUGAS AKHIR Disusun untuk Melengkapi Tugas Akhir dan Syarat-syarat untuk Mencapai Gelar Sarjana Teknik Jurusan Teknik
OPTIMASI JARAK CELAH UDARA GENERATOR SINKRON MAGNET PERMANEN FLUKS AKSIAL ROTOR CAKRAM GANDA DENGAN STATOR TANPA INTI SKRIPSI
UNIVERSITAS INDONESIA OPTIMASI JARAK CELAH UDARA GENERATOR SINKRON MAGNET PERMANEN FLUKS AKSIAL ROTOR CAKRAM GANDA DENGAN STATOR TANPA INTI SKRIPSI RAJA TINJO 06 06 07 4256 FAKULTAS TEKNIK PROGRAM STUDI
LAPORAN AKHIR PROGRAM KREATIVITAS MAHASISWA MINI POWER STATION : NANOHIDRO BIDANG KEGIATAN: PKM-KARSA CIPTA
81 LAPORAN AKHIR PROGRAM KREATIVITAS MAHASISWA MINI POWER STATION : NANOHIDRO BIDANG KEGIATAN: PKM-KARSA CIPTA Diusulkan Oleh: Edyanto G24100019/2010 Resti Salmayenti G24100046/2010 Dewi Sulistyowati G24100059/2010
LAPORAN PRAKTIKUM LISTRIK MAGNET Praktikum Ke 1 KUMPARAN INDUKSI
1 LAPORAN PRAKTIKUM LISTRIK MAGNET Praktikum Ke 1 KUMPARAN INDUKSI A. TUJUAN 1. Mempelajari watak kumparan jika dialiri arus listrik searah (DC).. Mempelajari watak kumparan jika dialiri arus listrik bolak-balik
BAB IV ANALISA DAN PEMBAHASAN
BAB IV ANALISA DAN PEMBAHASAN 4.1 Data Hasil Pengukuran Setelah melakukan pengujian di PT. Emblem Asia dengan menggunakan peralatan penguji seperti dijelaskan pada bab 3 didapatkan sekumpulan data berupa
Rancang Bangun Generator Sinkron 1 Fasa Magnet Permanen Kecepatan Rendah 750 RPM
Rancang Bangun Generator Sinkron Fasa Magnet Permanen Kecepatan Rendah 750 RPM Herudin, Wahyu Dwi Prasetyo Jurusan Teknik Elektro Universitas Sultan Ageng Tirtayasa E-mail: [email protected], [email protected]
LAPORAN PRAKTIKUM TEKNIK TENAGA LISTRIK NO LOAD AND LOAD TEST GENERATOR SINKRON EXPERIMENT N.2 & N.4
LAPORAN PRAKTIKUM TEKNIK TENAGA LISTRIK NO LOAD AND LOAD TEST GENERATOR SINKRON EXPERIMENT N.2 & N.4 DOSEN PEMBIMBING : Bp. DJODI ANTONO, B.Tech. Oleh: Hanif Khorul Fahmy LT-2D 3.39.13.3.09 PROGRAM STUDI
MOTOR LISTRIK 1 & 3 FASA
MOTOR LISTRIK 1 & 3 FASA I. MOTOR LISTRIK 1 FASA Pada era industri modern saat ini, kebutuhan terhadap alat produksi yang tepat guna sangat diperlukan untuk dapat meningkatkan effesiensi waktu dan biaya.
PERANCANGAN KINCIR ANGIN TIPE AXIAL SEBAGAI PEMBANGKIT TENAGA LISRIK
PERANCANGAN KINCIR ANGIN TIPE AXIAL SEBAGAI PEMBANGKIT TENAGA LISRIK NASKAH PUBLIKASI Diajukan Untuk Melengkapi Tugas Akhir dan Memenuhi Syarat-syarat Untuk Mencapai Gelar Sarjana Teknik Fakultas Teknik
BAB III PERANCANGAN ALAT
BAB III PERANCANGAN ALAT 3.1 Perancangan Alat Perancangan merupakan suatu tahap yang sangat penting dalam pembuatan suatu alat, sebab dengan menganalisa komponen yang digunakan maka alat yang akan dibuat
Transformator (trafo)
Transformator (trafo) ф 0 t Transformator adalah : Suatu peralatan elektromagnetik statis yang dapat memindahkan tenaga listrik dari rangkaian a.b.b (arus bolak-balik) primer ke rangkaian sekunder tanpa
Mesin Arus Bolak Balik
Teknik Elektro-ITS Surabaya share.its.ac.id 1 Mesin Arus Bolak balik TE091403 Institut Teknologi Sepuluh Nopember August, 2012 Teknik Elektro-ITS Surabaya share.its.ac.id ACARA PERKULIAHAN DAN KOMPETENSI
ANALISIS PENGARUH JATUH TEGANGAN TERHADAP KINERJA MOTOR INDUKSI TIGA FASA ROTOR BELITAN (Aplikasi pada Laboratorium Konversi Energi Listrik FT-USU)
ANALISIS PENGARUH JATUH TEGANGAN TERHADAP KINERJA MOTOR INDUKSI TIGA FASA ROTOR BELITAN (Aplikasi pada Laboratorium Konversi Energi Listrik FT-USU) M. Arfan Saputra, Syamsul Amien Konsentrasi Teknik Energi
BAB IV PENGUJIAN, ANALISA DAN PEMBAHASAN
26 BAB IV PENGUJIAN, ANALISA DAN PEMBAHASAN 4.1 Pengujian Generator Pengujian ini dilakukan untuk dapat memastikan generator bekerja dengan semestinya. pengujian ini akan dilakukan pada keluaran yang dihasilakan
BAB III MAGNETISME. Tujuan Penmbelajaran : - Memahami dan mengerti tentang sifat-sifat magnet, bahan dan kegunaannya.
BAB III MAGNETISME Tujuan Penmbelajaran : - Memahami dan mengerti tentang sifat-sifat magnet, bahan dan kegunaannya. Magnetisme (kemagnetan) tercakup dalam sejumlah besar operasi alat listrik, seperti
BAB II DASAR TEORI. Motor asinkron atau motor induksi biasanya dikenal sebagai motor induksi
BAB II DASAR TEORI 2.1 Umum Motor asinkron atau motor induksi biasanya dikenal sebagai motor induksi yang merupakan motor arus bolak-balik yang paling luas penggunaannya. Penamaan ini berasal dari kenyataan
