BAB 2 LANDASAN TEORI

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB 2 LANDASAN TEORI"

Transkripsi

1 BAB 2 LANDASAN TEORI 2.1 Definisi Kriptografi Kata kriptografi berasal dari bahasa Yunani, kryptós yang berarti tersembunyi dan gráphein yang berarti tulisan. Sehingga kata kriptografi dapat diartikan berupa frase tulisan tersembunyi. Menurut Request for Comments (RFC), kriptografi merupakan ilmu matematika yang berhubungan dengan transformasi data untuk membuat artinya tidak dapat dipahami (untuk menyembunyikan maknanya), mencegahnya dari perubahan tanpa izin, atau mencegahnya dari penggunaan yang tidak sah. Jika transformasinya dapat dikembalikan, kriptografi juga bisa diartikan sebagai proses mengubah kembali data yang terenkripsi menjadi bentuk yang dapat dipahami. Artinya, kriptografi dapat diartikan sebagai proses untuk melindungi data dalam arti yang luas (Oppliger, 2005). Dalam kamus bahasa Inggris Oxford diberikan pengertian kriptografi sebgai berikut : Sebuah teknik rahasia dalam penulisan, dengan karakter khusus, dengan mengguanakan huruf dan karakter di luar bentuk aslinya, atau dengan metode-metode lain yang hanya dapat dipahami oleh pihak-pihak yang memproses kunci, juga semua hal yang ditulis dengan cara seperti ini. Jadi, secara umun dapat diartikan sebagai seni menulis atau memecahkan cipher (Talbot dan welsh, 2006). Menezes, Oorschot dan Vanstone (1996) menyatakan bahwa kriptografi adalah suatu studi teknik matematika yang berhubungan dengan aspek keamanan informasi seperi kerahasiaan, integritas data, otentikasi entitas dan otentikasi keaslian data. Kriptografi tidak hanya berarti penyediaan keamanan informasi, melainkan sebuah himpunan taknik-teknik.

2 2.2 Sejarah Kriptografi Kriptografi mempunyai sejarah yang panjang dan menakjubkan. Informasi yang lengkap mengenai sejarah kriptografi dapat ditemukan di dalam buku David Kahn yang berjudul The Codebreakers. Buku yang tebalnya 1000 halaman ini menulis secara rinci sejarah kriptografi mulai dari penggunaan kriptografi oleh Bangsa Mesir 4000 tahun yang lalu (berupa hieroglyph yang terdapat pada piramid) hingga penggunaan kriptografi pada abad ke-20 (Menezes et al, 1996). Secara historis ada empat kelompok yang berkontribusi terhadap perkembangan kriptografi, dimana mereka menggunakan kriptografi untuk menjamin kerahasiaan dalam komunikasi pesan penting, yaitu kalangan militer (termasuk intelijen dan mata-mata), kalangan diplomatik, penulis buku harian, dan pencinta (lovers). Di antara keempat kelompok ini, kalangan militer yang memberikan kontribusi paling penting karena pengiriman pesan di dalam suasana perang membutuhkan teknik enkripsi dan dekripsi yang rumit. Kriptografi juga digunakan untuk tujuan keamanan. Kalangan gereja pada masa awal agama Kristen menggunakan kriptografi untuk menjaga tulisan relijius dari gangguan otoritas politik atau budaya yang dominan saat itu. Mungkin yang sangat terkenal adalah Angka si Buruk Rupa (Number of the Beast) di dalam Kitab Perjanjian Baru. Angka 666 menyatakan cara kriptografik (yaitu dienkripsi) untuk menyembunyikan pesan berbahaya, para ahli percaya bahwa pesan tersebut mengacu pada Kerajaan Romawi. Di India, kriptografi digunakan oleh pencinta (lovers) untuk berkomunikasi tanpa diketahui orang. Bukti ini ditemukan di dalam buku Kama Sutra yang merekomendasikan wanita seharusnya mempelajari seni memahami tulisan dengan cipher. Pada Abad ke-17, sejarah kriptografi mencatat korban ketika ratu Skotlandia, Queen Mary, dipancung setelah surat rahasianya dari balik penjara (surat terenkrpsi yang isinya rencana membunuh Ratu Elizabeth I) berhasil dipecahkan oleh seorang pemecah kode (Munir, 2006).

3 Seperti yang telah disebutkan di atas bahwa kriptografi umum digunakan di kalangan militer. Pada Perang Dunia ke II, Pemerintah Nazi Jerman membuat mesin enkripsi yang dinamakan Enigma. Mesin yang menggunakan beberapa buah rotor (roda berputar) ini melakukan enkripsi dengan cara yang sangat rumit. Namun Enigma cipher berhasil dipecahkan oleh pihak Sekutu dan keberhasilan memecahkan Enigma sering dikatakan sebagai faktor yang memperpendek perang dunia ke-2 (Churchhouse, 2004). Dimulai dari usaha Feistel dari IBM di awal tahun 70-an dan mencapai puncaknya pada 1977 dengan pengangkatan DES (Data Encryption Standard) sebagai standar pemrosesan informasi federal Amerika Serikat untuk mengenkripsi informasi yang tidak belum diklasifikasi. DES merupakan mekanisme kriptografi yang paling dikenal sepanjang sejarah. Pengembangan paling mengejutkan dalam sejarah kriptografi terjadi pada 1976 saat Diffie dan Hellman mempublikasikan New Directions in Cryptography. Tulisan ini memperkenalkan konsep revolusioner kriptografi kunci publik dan juga memberikan metode baru untuk pertukaran kunci, keamanan yang berdasar pada kekuatan masalah logaritma diskret. Meskipun Diffie dan Hellman tidak memiliki realisasi praktis pada ide enkripsi kunci publik saat itu, idenya sangat jelas dan menumbuhkan ketertarikan yang luas pada komunitas kriptografi. Pada 1978 Rivest, Shamir dan Adleman menemukan rancangan enkripsi kunci publik yang sekarang disebut RSA. Rancangan RSA berdasar pada masalah faktorisasi bilangan yang sulit, dan menggiatkan kembali usaha untuk menemukan metode yang lebih efisien untuk pemfaktoran. Tahun 80-an terjadi peningkatan luas di area ini, sistem RSA masih aman. Sistem lain yang merupakan rancangan kunci publik ditemukan oleh Taher ElGamal pada tahun Rancangan ini berdasar pada masalah logaritma diskret. Salah satu kontribusi penting dari kriptografi kunci publik adalah tanda tangan digital. Pada 1991 standar internasional pertama untuk tanda tangan digital diadopsi. Standar ini berdasar pada rancangan kunci publik RSA. Pada 1994 pemerintah

4 Amerika Serikat mengadopsi Digital Signature Standard, sebuah mekanisme kriptografi yang berdasar pada algoritma ElGamal (Menezes et al, 1996). 2.3 Tujuan Kriptografi Tujuan dari kriptografi yang juga merupakan aspek keamanan informasi adalah sebagai berikut (Menezes et al, 1996) (Schneier, 1996) : a) Kerahasiaan (confidentiality) adalah layanan yang digunakan untuk menjaga isi informasi dari semua pihak kecuali pihak yang memiliki otoritas terhadap informasi. Ada beberapa pendekatan untuk menjaga kerahasiaan, dari pengamanan secara fisik hingga penggunaan algoritma matematika yang membuat data tidak dapat dipahami. Istilah lain yang senada dengan confidentiality adalah secrecy dan privacy. b) Integritas data adalah layanan penjagaan pengubahan data dari pihak yang tidak berwenang. Untuk menjaga integritas data, sistem harus memiliki kemampuan untuk mendeteksi manipulasi pesan oleh pihak-pihak yang tidak berhak, antara lain penyisipan, penghapusan, dan pensubsitusian data lain kedalam pesan yang sebenarnya. Di dalam kriptografi, layanan ini direalisasikan dengan menggunakan tanda-tangan digital (digital signature). Pesan yang telah ditandatangani menyiratkan bahwa pesan yang dikirim adalah asli. c) Otentikasi adalah layanan yang berhubungan dengan identifikasi, baik mengidentifikasi kebenaran pihak-pihak yang berkomunikasi (user authentication atau entity authentication) maupun mengidentifikasi kebenaran sumber pesan (data origin authentication). Dua pihak yang saling berkomunikasi harus dapat mengotentikasi satu sama lain sehingga ia dapat memastikan sumber pesan. Pesan yang dikirim melalui saluran komunikasi juga harus diotentikasi asalnya. Otentikasi sumber pesan secara implisit juga memberikan kepastian integritas data, sebab jika pesan telah dimodifikasi berarti sumber pesan sudah tidak benar. Oleh karena itu, layanan integritas data selalu dikombinasikan dengan layanan

5 otentikasi sumber pesan. Di dalam kriptografi, layanan ini direalisasikan dengan menggunakan tanda-tangan digital (digital signature). Tanda-tangan digital menyatakan sumber pesan. d) Nirpenyangkalan (non-repudiation) adalah layanan untuk mencegah entitas yang berkomunikasi melakukan penyangkalan, yaitu pengirim pesan menyangkal melakukan pengiriman atau penerima pesan menyangkal telah menerima pesan. Tujuan dasar dari kriptografi adalah mewujudkan keempat aspek keamanan informasi tersebut dalam teori dan praktek. 2.4 Terminologi dan Konsep Dasar Kriptografi Di dalam kriptografi kita akan sering menemukan berbagai istilah atau terminologi. Beberapa istilah yang penting untuk diketahui diberikan di bawah ini: Pesan, Plainteks, dan Cipherteks Pesan (message) adalah data atau informasi yang dapat dibaca dan dimengerti maknanya. Nama lain untuk pesan adalah plainteks atau teks jelas (cleartext) (Schneier, 1996). Pesan dapat berupa data atau informasi yang dikirim (melalui kurir, saluran telekomunikasi, dsb) atau yang disimpan di dalam media perekaman (kertas, storage, dan sebagainya). Pesan yang tersimpan tidak hanya berupa teks, tetapi juga dapat berbentuk citra (image), suara/bunyi (audio), dan video, atau berkas biner lainnya. Agar pesan tidak dapat dimengerti maknanya oleh pihak lain, maka pesan perlu disandikan ke bentuk lain yang tidak dapat dipahami (enkripsi). Bentuk pesan yang tersandi disebut ciphertext atau kriptogram. Proses pembalikan dimana ciphertext diubah kembali menjadi plainteks di sebut dekripsi (Stamp, 2007).

6 2.4.2 Peserta Komunikasi a) Entitas atau peserta adalah orang atau sesuatu yang mengirim, menerima, atau memanipulasi informasi. Entitas bisa berupa orang, terminal komputer, kartu kredit, dan sebagainya. Jadi, orang bisa bertukar pesan dengan orang lainnya (contoh: Alice berkomunikasi dengan Bob) sedangkan di dalam jaringan komputer, mesin (komputer) berkomunikasi dengan mesin (contoh: mesin ATM berkomunikasi dengan komputer server di bank). b) Pengirim adalah entitas dalam komunikasi yang mengirimkan informasi kepada entitas lainnya lainnya. c) Penerima adalah entitas dalam komunikasi yang diharapkan menerima informasi. d) Penyusup (adversary) adalah entitas diluar pengirim dan penerima yang mencoba untuk membobol keamanan informasi. Penyusup biasanya bertindak seolah-olah sebagai pengirim yang sah ataupun penerima yang sah Kriptologi Kriptologi berasal dari bahasa Yunani, kryptós yang berarti tersembunyi dan lógos yang berarti kata. Jadi, kriptologi dapat diartikan sebagai frase kata yang tersembunyi (Oppliger, 2005). Kriptologi dapat juga diartikan sebagai seni dan ilmu untuk membuat dan memecahkan kode rahasia. Kriptologi dibagi menjadi kriptografi (seni dan ilmu membuat kode rahasia), kriptanalisis (ilmu dan seni untuk memecahkan chiperteks menjadi plainteks tanpa mengetahui kunci yang digunakan) (Stamp, 2007) dan steganografi (metoda menyembunyikan pesan atau data lainnya) (Oppliger, 2005). Pelaku kriptanalisis disebut kriptanalis. Jika seorang kriptografer mentransformasikan plainteks menjadi cipherteks dengan suatu algoritma dan kunci maka sebaliknya seorang kriptanalis berusaha untuk memecahkan ciphertext tersebut untuk menemukan plaintext atau kunci.

7 2.5 Algoritma dan Kunci Algoritma menggambarkan sebuah prosedur komputasi yang terdiri dari variabel input dan menghasilkan output yang berhubungan (Oppliger, 2005). Algoritma kriptografi atau sering disebut dengan cipher adalah suatu fungsi matematis yang digunakan untuk melakukan enkripsi dan dekripsi (Schneier, 1996). Algoritma kriptografi ini bekerja dalam kombinasi dengan menggunakan kunci (key) seperti kata, nomor atau frase tertentu. Bila keamanan algoritma bergantung pada kerahasian algoritma yang bekerja, maka algoritma tersebut dikatakan sebagai algoritma terbatas (terbatas kemampuannya). Algoritma terbatas mempunyai sejarah yang menarik. Algoritma terbatas biasanya digunakan oleh sekelompok orang untuk bertukar pesan satu sama lain. Mereka membuat suatu algoritma enkripsi dan algoritma enkripsi tersebut hanya diketahui oleh anggota kelompok itu saja. Tetapi, algoritma terbatas tidak cocok lagi saat ini, sebab setiap kali ada anggota kelompok keluar, maka algoritma kriptografi harus diganti lagi. Kerahasian algoritmanya menjadi titik kelemahan karena tidak mengijinkan adanya kontrol kualitas atau standarisasi. Kriptografi modern mengatasi masalah di atas dengan penggunaan kunci, dimana algoritma yang diguakan tidak lagi dirahasiakan, tetapi kunci harus dijaga kerahasiaannya. Kunci adalah parameter yang digunakan untuk transformasi enciphering dan dechipering. Kunci biasanya berupa string atau deretan bilangan. Dengan menggunakan kunci K, maka fungsi enkripsi dan dekripsi dapat ditulis sebagai E K P = C dan D K C = P (2.1) dan kedua fungsi ini memenuhi D K (E K P) = P (2.2)

8 2.6 Jenis Algoritma Kriptografi Berdasarkan jenis kunci yang digunakannya, algoritma.kriptografi dikelompokan menjadi dua bagian, yaitu algoritma simetris (algoritma konvensional) dan algoritma asimetris (algoritma kunci publik) (Schneier, 1996) (Kurniawan, 2004) (Munir, 2006) (Menezes et al, 1996) Algoritma Simetris Algoritma simetris adalah algoritma kriptografi yang menggunakan kunci enkripsi yang sama dengan kunci dekripsinya. Istilah lain untuk kriptografi kunci-simetri adalah kriptografi kunci privat (private-key cryptography), kriptografi kunci rahasia (secret-key cryptography), atau kriptografi konvensional (conventional cryptography). Sistem kriptografi kunci-simetri (atau disingkat menjadi kriptografi simetri saja), mengasumsikan pengirim dan penerima pesan sudah berbagi kunci yang sama sebelum bertukar pesan. Keamanan sistem kriptografi simetri terletak pada kerahasiaan kuncinya. Kriptografi simetri merupakan satu-satunya jenis kriptografi yang dikenal dalam catatan sejarah hingga tahun Semua algoritma kriptografi klasik termasuk ke dalam sistem kriptografi simetri. Kelebihan algoritma simetris ini adalah proses enkripsi dan deskripsinya yang jauh lebih cepat dibandingkan dengan algoritma asimetris. Sedangkan kelemahan algoritma ini adalah permasalahan distribusi kunci (key distribution). Seperti yang telah dibahas, proses enkripsi dan deskripsi menggunakan kunci yang sama. Sehingga muncul persoalan menjaga kerahasian kunci, yaitu pada saat pengiriman kunci pada media yang tidak aman seperti internet. Tentunya jika kunci ini sampai hilang atau sudah dapat ditebak oleh orang lain (orang yang tidak berhak), maka kriptosistem ini sudah tidak aman lagi.

9 Kelemahan lain adalah masalah efisiensi jumlah kunci. Jika terdapat n user, maka diperlukan n(n-1)/2 kunci, sehingga untuk jumlah user yang sangat banyak, sistem ini tidak efisien lagi (Menezes et al, 1996). Gambar 2.1 Skema Kriptografi Simetri Algoritma Asimetris Algoritma asimetris atau kunci publik didesain sehingga kunci yang digunakan untuk enkripsi berbeda dengan kunci untuk dekripsi dimana kunci untuk enkripsi tidak rahasia dan dapat diketahui oleh siapapun (diumumkan ke publik), sementara kunci untuk dekripsi hanya diketahui oleh penerima pesan (rahasia). Pada kriptografi jenis ini, setiap orang yang berkomunikasi mempunyai sepasang kunci, yaitu kunci privat dan kunci publik. Pengirim mengenkripsi pesan dengan menggunakan kunci publik si penerima pesan. Hanya penerima pesan yang dapat mendekripsi pesan karena hanya ia yang mengetahui kunci privatnya sendiri. Kriptografi kunci-publik dapat dianalogikan seperti kotak surat yang terkunci dan memiliki lubang untuk memasukkan surat. Setiap orang dapat memasukkan surat ke dalam kotak surat tersebut, tetapi hanya pemilik kotak yang dapat membuka kotak dan membaca surat di dalamnya karena ia yang memiliki kunci. Keuntungan sistem ini ada dua. Pertama, tidak ada kebutuhan untuk mendistribusikan kunci privat sebagaimana pada sistem kriptografi simetri. Kunci publik dapat dikirim ke penerima melalui saluran yang sama dengan saluran yang digunakan untuk mengirim pesan. Saluran untuk mengirim pesan umumnya tidak aman. Kedua, jumlah kunci dapat ditekan. Untuk berkomunikasi secara rahasia dengan banyak orang tidak perlu kunci rahasia sebanyak jumlah orang tersebut, cukup

10 membuat dua buah kunci, yaitu kunci publik bagi para koresponden untuk mengenkripsi pesan, dan kunci privat untuk mendekripsi pesan. Berbeda dengan kriptografi kunci-simetris yang dibuat adalah sebanyak jumlah pihak yang diajak berkorespondensi. Contoh penggunaan, misalkan jaringan komputer menghubungkan komputer karyawan di kantor cabang dengan komputer manejer di kantor pusat. Seluruh kepala cabang diberitahu bahwa kalau mereka mengirim laporan ke manejer di kantor pusat, mereka harus mengenkripsi laporan tersebut dengan kunci publik manejer (kunci publik menejer diumumkan kepada seluruh kepala cabang). Untuk mengembalikan laporan tersandi ke laporan semula, hanya manejer yang dapat melakukan dekripsi, karena hanya dialah yang memegang kunci privat. Selama proses transmisi ciphertext dari kantor cabang ke kantor pusat melalui saluran komunikasi mungkin saja data yang dikirim disadap oleh pihak ketiga, namun pihak ketiga ini tidak dapat mengembalikan ciphertext ke plainteksnya karena ia tidak mengetahui kunci untuk dekripsi. Meski berusia relatif muda (sejak 1976), kriptografi kunci-publik mempunyai kontribusi yang luar biasa dibandingkan dengan sistem kriptografi simetri. Kontribusi yang paling penting adalah tanda-tangan digital pada pesan untuk memberikan aspek keamanan otentikasi, integritas data, dan nirpenyangkalan. Tanda-tangan digital adalah nilai kriptografis yang bergantung pada isi pesan dan kunci yang digunakan. Pengirim pesan mengenkripsi pesan (yang sudah diringkas) dengan kunci privatnya, hasil enkripsi inilah yang dinamakan tanda-tangan digital. Tanda-tangan digital dilekatkan (embed) pada pesan asli. Penerima pesan memverifikasi tanda-tangan digital dengan menggunaklan kunci publik. Gambar 2.2 Skema Kriptografi Asimetri

11 2.7 Keamanan Sistem Kriptografi Suatu sistem kriptografi merupakan sebuah himpunan algoritma, seluruh kemungkinan plaintext, ciphertext, kunci, dan proses manajemen kunci yang digunakan (Oppliger, 2005) Jenis-Jenis Ancaman Keamanan Terdapat banyak faktor yang mengancam keamanan data. Ancaman-ancaman tersebut menjadi masalah terutama dengan semakin meningkatnya komunikasi data yang bersifat rahasia seperti pemindahan dana secara elektronik pada dunia perbankan atau pengiriman dokumen rahasia pada instansi pemerintah. Untuk mengantisipasi ancaman-ancaman tersebut perlu dilakukan usaha untuk melindungi data yag dikirim melalui saluran komunikasi. Salah satunya adalah dengan teknik enkripsi. Dari sekian banyak faktor-faktor yang dapat mengancam keamanan dari suatu data, maka berdasarkan tekniknya, faktor-faktor tersebut dapat dikelompokkan ke dalam empat jenis ancaman, yaitu: a) Interruption Interruption terjadi bila data yang dikirimkan dari A tidak sampai pada orang yang berhak (B). Interruption merupakan pola penyerangan terhadap sifat availability (ketersediaan data), yaitu data dan informasi yang berada dalam sistem komputer dirusak atau dibuang, sehinggga menjadi tidak ada dan tidak berguna. Contohnya, hard disk yang dirusak atau memotong jalur komunikasi. b) Interception Serangan ini terjadi jika pihak ketiga berhasil mendapatkan akses informasi dari dalam sistem komputer. Contohnya, dengan menyadap data yang melalui jaringan public (wiretapping) atau menyalin secara tidak sah file atau program Interception merupakan pola penyerangan terhadap sifat confidentially/secrecy (kerahasiaan data).

12 c) Modification Pada serangan ini pihak ketiga yang tidak hanya berhasil mendapatkan akses informasi dari dalam sistem komputer, tetapi juga dapat melakukan perubahan terhadap informasi. Contohnya, merubah program berhasil merubah pesan yang dikirimkan. Modification merupakan pola penyerangan terhadap sifat integrity (keaslian data). d) Fabrication Fabrication merupakan ancaman terhadap integritas, yaitu orang yang tidak berhak yang meniru atau memalsukan suatu objek ke dalam sistem. Contohnya, dengan menambahkan suatu record ke dalam file Serangan Pada Sistem Kriptografi Pada dasarnya serangan terhadap sistem kriptografi dapat dibedakan menjadi dua jenis yaitu: a) Serangan pasif adalah serangan dimana penyerang hanya memonitor saluran komunikasi. Penyerang pasif hanya mengancam kerahasiaan data. b) Serangan aktif adalah serangan dimana penyerang mencoba untuk menghapus, menambahkan, atau dengan cara yang lain mengubah transmisi pada saluran. Penyerang aktif mengancam integritas data dan otentikasi, juga kerahasiaan Kualitas Keamanan Algoritma Suatu algoritma dikatakan aman, bila tidak ada cara menemukan plaintextnya, berapapun banyaknya ciphertext yang dimiliki cryptanalyst. Sampai saat ini hanya OTP (one-time-pad) yang dinyatakan tidak dapat dipecahkan meskipun diberikan sumber daya yang tidak terbatas. Seluruh algoritma lainnya selalu dapat dipecahkan dengan Ciphertext only attack, dan dengan teknik brute-force attack (memeriksa satu-

13 persatu seluruh kemungkinan kunci dan memeriksa apakah plaintext yang dihasilkan memiliki arti yang sesuai). Komputer DNA yang sedang diteliti sekarang memiliki kemampuan yang mampu melakukan perhitungan milyaran kali lebih cepat daripada komputer yang ada sekarang ini. Dengan peningkatan kecepatan komputasi, maka keamanan algoritma kriptografi akan semakin terancam tentunya. 2.8 Algoritma ElGamal Algoritma ElGamal dibuat oleh Taher ElGamal pada tahun Algoritma ini pada mulanya digunakan untuk digital signature, namun kemudian dimodifikasi sehingga juga bisa digunakan untuk enkripsi dan dekripsi. ElGamal digunakan di dalam perangkat lunak sekuriti yang dikembangkan oleh GNU, program PGP dan pada sistem sekuriti lainnya. Keamanan algoritma ini terletak pada sulitnya menghitung logaritma diskrit (Munir, 2006). Logaritma ini disebut logaritma diskret karena nilainya berhingga dan bergantung pada bilangan prima yang digunakan. Karena bilangan prima yang digunakan adalah bilangan prima yang besar, maka sangat sulit bahkan tidak mungkin menurunkan kunci privat dari kunci publik yang diketahui walaupun serangan dilakukan dengan menggunakan sumberdaya komputer yang sangat besar. Algoritma ElGamal terdiri dari tiga proses, yaitu proses pembentukan kunci, proses enkripsi dan proses dekripsi. Plainteks yang akan dienkripsi dipecah menjadi blok-blok plainteks, selanjutnya proses enkripsi pada blok-blok plainteks dan menghasilkan blok-blok cipherteks yang kemudian dilakukan proses dekripsi dan hasilnya digabungkan kembali menjadi pesan yang utuh dan dapat dimengerti Kelebihan Algoritma ElGamal Algoritma ElGamal juga dikenal sebagai kriptografi digital signature karena dapat difungsikan secara baik untuk mengirimkan sebuah tanda tangan digital pada sebuah

14 pesan dan lebih sempurna dibandingkan kriptografi Diffie-Hellman. Kelebihan dari algoritma ElGamal yaitu: a) Sebuah plainteks yang sama dapat diubah menjadi chiperteks yang berbeda karena dalam algoritma ElGamal, kita dapat memilih secara acak bilangan bulat untuk membuat sebuah kunci. b) Dalam algoritma ElGamal sama seperti beberapa jenis kriptografi kunci yang lain. Hanya kunci privat yang perlu dijamin kerahasiannya. Tetapi, autentikasi kunci publik juga harus tetap dijaga. c) Pasangan kunci publik dan kunci privat pada algoritma ElGamal tidak perlu diubah dalam periode waktu yang panjang. d) Algoritma ElGamal bisa dimanfaatkan untuk mengirimkan sebuah pesan rahasia yang sangat rahasia, yaitu kunci dari sebuah kriptografi simetris Logaritma Diskret Misalkan G adalah grup siklik dengan order n, adalah pembangun G dan 1 adalah elemen identitas G. Diberikan β G. Permasalahan yang dimunculkan adalah bagaimana menentukan suatu bilangan bulat nonnegatif terkecil a sedemikian hingga : β = α a (2.3) Bilangan bulat a seperti ini disebut dengan logaritma diskret (discrete logarithm) dari de β dengan basis α. Selanjutnya, masalah bagaimana menentukan bilangan bulat a seperti ini disebut dengan masalah logaritma diskret (discrete logarithm problem). Masalah logaritma diskret ini menjadi sulit apabila digunakan grup dengan order yang besar (Buchmann, 2000).

15 2.8.3 Proses Pembentukan Kunci Proses pertama pada algoritma ElGamal adalah pembentukan kunci yang terdiri dari kunci rahasia dan kunci publik. Pada proses ini dibutuhkan sebuah bilangan prima aman p yang digunakan untuk membentuk grup Z *, elemen primitif α yang p merupakan elemen pembangun grup dan sembarang a Є {0,1,..., p 2}. Kunci publik algoritma ElGamal berupa pasangan 3 bilangan, yaitu (p, α, β), dengan: β = α a (mod p), (2.4) dimana a merupakan kunci rahasia. Langkah-langkah dalam pembentukan kunci sebagai berikut: a) Input bilangan prima aman p > 255 b) Input sebuah bilangan α yang merupakan elemen primitif dimana α Є Z * p c) Input sebuah bilangan a Є {0,1,..., p 2} d) Hitung β = α a (mod p) e) Publikasikan nilai p, α, dan β, serta rahasiakan nilai a. Pihak yang membuat kunci publik dan kunci rahasia adalah penerima, sedangkan pihak pengirim hanya mengetahui kunci publik yang diberikan oleh penerima, dan kunci publik tersebut digunakan untuk mengenkripsi pesan. Jadi, kentungan menggunakan algoritma kriptografi kunci publik adalah tidak ada permasalahan pada distribusi kunci apabila jumlah pengirim sangat banyak serta tidak ada kepastian keamanan jalur yang digunakan Proses Enkripsi Karena pada algoritma ElGamal menggunakan bilangan bulat dalam proses perhitungannya, maka pesan harus dikonversi ke dalam suatu bilangan bulat. Untuk mengubah pesan menjadi bilangan bulat, digunakan kode ASCII (American Standard for Information Interchange). Kode ASCII merupakan representasi numerik dari karakter-karakter yang digunakan pada komputer, serta mempunyai nilai minimal 0

16 dan maksimal 255. Oleh karena itu berdasarkan sistem kriptografi ElGamal di atas maka harus digunakan bilangan prima yang lebih besar dari 255 sehingga kode ASCII berkorespondensi 1-1 dengan karakter pesan. Pada proses enkripsi pesan dienkripsi menggunakan kunci publik (p, α, β) dan sembarang bilangan acak rahasia k Є {0,1,..., p 2}. Misalkan m adalah pesan yang akan dikirim. Selanjutnya, m diubah ke dalam blok-blok karakter dan setiap karakter dikonversikan ke dalam kode ASCII, sehingga diperoleh plainteks m 1, m 2, m 3,..., m n dengan m i Є {1, 2,..., p-1} dan i =1, 2,..., n. Proses enkripsi pada algoritma ElGamal dilakukan dengan menghitung γ i = α ki (mod p) (2.5) dan δ i = β ki m (mod p) (2.6) dengan k Є {0,1,..., p 2} acak, diperoleh cipherteks (γ, δ). Bilangan acak k ditentukan oleh pihak pengirim dan harus dirahasiakan, jadi hanya pengirim saja yang mengetahuinya, tetapi nilai k hanya digunakan saat melakukan enkripsi saja dan tidak perlu disimpan. Langkah-langkah proses enkripsi : a) Pesan dipotong-potong ke dalam bentuk blok-blok pesan dengan setiap blok adalah satu karakter pesan. b) Konversikan masing-masing karakter ke dalam kode ASCII, maka diperoleh plainteks sebanyak n bilangan, yaitu m 1, m 2,..., m n. c) Untuk i dari 1 sampai n kerjakan: - Pilih bilangan acak ki dimana 1 < k p-2 - Hitung γ i = α ki (mod p) - Hitung δ i = β ki m i (mod p) d) Diperoleh cipherteks (γi, δi), dimana i = 1,2,...,n.

17 2.8.5 Proses Dekripsi Setelah menerima cipherteks (γ, δ), proses selanjutnya adalah mendekripsikan cipherteks menggunakan kunci publik p dan kunci rahasia a. Dapat ditunjukkan bahwa plainteks m dapat diperoleh dari cipherteks menggunakan kunci rahasia a. Diberikan (p, α, β) sebagai kunci publik dan a sebagai kunci rahasia pada algoritma ElGamal. Jika diberikan cipherteks (γ, δ), maka: m = (γ a ) -1 (mod p) (2.7) dengan m adalah plainteks. 2.9 Konsep Dasar Perhitungan Matematis Teori Modulo Fast Eksponensial Modulo fast eksponensial adalah pemangkatan yang dilakukan bersamaan dengan operasi modulo. Modulo eksponensial sering digunakan dalam bidang kriptografi untuk menghitung hasil enkripsi maupun hasil dekripsi. Adapun yang dihitung dalam dalam modulo Fast eksponensial adalah sisa dimana bila sebuah bilangan x dipangkatkan y, kemudian dibagi dengan n, dengan bentuk umum x y mod n. Dalam proses enkripsi dan dekripsi, biasanya digunakan y ataupun pangkat yang cukup besar, sehingga apabila kita menghitung secara langsung x y dapat menyebabkan x y cukup besar hingga tidak bisa disimpan dalam variable yang ada dalam bahasa pemograman. Untuk menyelesaikan masalah ini digunakanlah algoritma big mod dimana untuk mencari nilai dari x y mod n, dilakukan proses membagi dan mengurangi pangkat yang ada. Contoh : Hitung hasil dari 4 30 mod 10

18 Bila pangkatnya genap, maka pangkatnya dibagi 2, jika pangkatnya ganjil, maka pangkat dikurangi 1, sampai dengan pangkatnya menjadi karena sama, yang dicari hanya salah satu saja Karena pangkat terbawah sudah 1 maka dihitung kembali ke atas sambil dimodulo 10, maka dilakukan perhitungan dari bawah ke atas, seperti yang bisa dilihat berikut ini : 4 30 = (4 15 x4 15 = 4 x 4 = 16 mod 10 = 6), jadi 4 30 = = (4 1 x4 14 = 4 x 6 = 24 mod 10 = 4), jadi 4 15 = = (4 7 x4 7 = 4 x 4 = 16 mod 10 = 6), jadi 4 14 = = (4 1 x4 6 = 4 x 6 = 24 mod 10 = 4), jadi 4 7 = = (4 3 x4 3 = 4 x 4 = 16 mod 10 = 6), jadi 4 6 = = (4 1 x4 2 = 4 x 6 = 24 mod 10 = 4), jadi 4 3 = = (4 1 x4 1 = 16 mod 10 = 6), jadi 4 2 = Sehingga didapat 4 30 mod 10 = 6.

19 2.9.2 Modulo Invers Modulo Invers untuk menghitung balikan dari modulo yang digunakan pada proses dekripsi. Jika a dan m relatif prima dan m > 1, maka kita dapat menemukan balikan (invers) dari a modulo m. Balikan dari a modulo m adalah bilangan bulat a sedemikian sehingga aa 1 (mod m) (2.8) Bukti: Dari definisi relatif prima diketahui bahwa PBB (a, m) = 1, dan terdapat bilangan bulat p dan q sedemikian sehingga: pa + qm = 1 (2.9) yang mengimplikasikan bahwa pa + qm 1 (mod m) (2.10) Karena qm 0 (mod m), maka pa 1 (mod m) (2.11) Kekongruenan yang terakhir ini berarti bahwa p adalah balikan dari a modulo m. Pembuktian di atas juga menceritakan bahwa untuk mencari balikan dari a modulo m, kita harus membuat kombinasi lanjar dari a dan m sama dengan 1. Koefisien a dari kombinasi lanjar tersebut merupakan balikan dari a modulo m. Contoh : Tentukan balikan dari 4 (mod 9), 17 (mod 7), dan 18 (mod 10).

20 Karena PBB(4, 9) = 1, maka balikan dari 4 (mod 9) ada. Dari algoritma Euclidean diperoleh bahwa : 9 = Susun persamaan di atas menjadi = 1 Dari persamaan terakhir ini kita peroleh 2 adalah balikan dari 4 modulo 9. Periksalah bahwa: (mod 9) (9 habis membagi = 9) Bilangan Prima Sebuah bilangan prima adalah bilangan bulat yang besar dari 1 yang hanya mempunyai faktor 1 dan bilangan itu sendiri. Tidak ada bilangan pembagi lainnya. 2 (dua) adalah bilangan prima (Schneier, 1996). Contoh : 73, 2521, , dan Kriptografi, khususnya kunci publik biasanya menggunakan bilangan prima yang besar (512 bits atau lebih besar). Bilangan selain bilangan bilangan prima disebut bilangan komposit. Misalnya, 20 adalah bilangan komposit karena 20 dapat dibagi oleh 2, 4, 5, 10, selain 1 dan 20 sendiri.

21 2.9.5 Algoritma Euclidean Algoritma ini digunakan untuk mencari nilai pembagi persekutuan terbesar (PBB) dari dua bilangan bulat (Munir, 2006). Algoritma ini didasarkan pada pernyataan bahwa ada dua buah bilangan bulat tak negatif yakni m dan n dimana nilai m n. Adapun tahap-tahap pada algoritma Euclidean adalah: 1. Jika n = 0 maka m adalah PBB (m, n); stop. Kalau tidak (yaitu n 0) lanjutkan ke langkah nomor Bagilah m dengan n dan misalkan sisanya adalah r. 3. Ganti nilai m dengan nilai n dan nilai n dengan nilai r, lalu ulang kembali ke langkah nomor 1. Algoritma Euclidean dapat digunakan untuk mencari dua buah bilangan bulat yang relatif prima. Contoh : Tentukan gcd (108, 360) Tentukan gcd (45, 13) 360 mod 108 = mod 13 = mod 36 = 0 (STOP) 13 mod 6 = 1 Jadi gcd (108, 360) = 36 6 mod 1 = 0 (STOP) Jadi gcd (45, 13) = Bilangan Relatif Prima Dua buah bilangan bulat a dan b dikatakan relatif prima jika PBB atau gcd (greatest common divisor) dari a dan b bernilai 1.

22 Contoh : 20 dan 3 relatif prima sebab PBB (20, 3) = 1. Begitu juga 7 dan 11 relatif prima karena PBB (7, 11) = 1. Tetapi 20 dan 5 tidak relatif prima sebab PBB (20, 5) = 5 1. Jika a dan b relatif prima, maka terdapat bilangan bulat m dan n sedemikian sehingga ma + nb = 1 (2.12) Contoh : Bilangan 20 dan 3 adalah relatif prima karena PBB (20, 3) =1, atau dapat ditulis ( 13). 3 = 1 dengan m = 2 dan n = 13. Tetapi 20 dan 5 tidak relatif prima karena PBB (20, 5) = 5 1 sehingga 20 dan 5 tidak dapat dinyatakan dalam m n. 5 = Kekongruenan (Congruence) Misalkan a dan b adalah bilangan bulat dan m adalah bilangan bulat > 0, maka a b (mod m) jika m habis membagi a b ditulis (m a b). Jika a tidak kongruen dengan b dalam modulus m, maka di tulis a / b (mod m) (Oppliger, 2005). Contoh : 17 2 (mod 3) (3 habis membagi 17-2 = 15) (mod 11) (11 habis membagi -7-15= -22) 12 / 2 (mod 7) (7 tidak habis membagi 12-2 = 10)

23 Kekongruenan a b (mod m) dapat juga di tuliskan hubungan a = b + km yang dalam hal ini k adalah bilangan bulat. Berdasarkan definisi aritmetika modulo, dapat dituliskan a b mod m. Contoh : 17 2 (mod 3), dapat ditulis sebagai 17 = (mod 11), dapat ditulis sebagai -7 = 15 + (-2).11. Persamaan kongruen modulo n merupakan relasi ekuivalensi pada bilangan bulat. Hal ini berarti untuk setiap n N dan a, b, c Z 1. a a (mod n) (relasi refleksif); 2. Jika a b (mod n), maka b a (mod n) (relasi simetris); 3. Jika a b (mod n) dan b c (mod n), maka a c (mod n) (relasi transitif) Penelitian Sebelumnya Mengenai Algoritma ElGamal Penelitian sebelumnya yang berkaitan dengan algoritma ElGamal dan aplikasi pembelajaran dapat dilihat pada tabel 1.1 berikut ini: Tabel 1.1 Penelitian Sebelumnya Mengenai Algoritma ElGamal No Peneliti / Tahun Judul Keterangan 1 Riyanto, Ariwibowo, 2008 Pengamanan Pesan Rahasia Menggunakan Algoritma Kriptografi Elgamalatas Grup Pergandaan ZP* Aplikasi Pengamanan Dokumen Office Dengan Algoritma Kriptografi Algoritma kriptografi asimetris, seperti algoritma ElGamal, sangat baik untuk mengatasi masalah distribusi kunci. Implementasi program ini menghasilkan suatu aplikasi yang mengubah isi

24 3 Ifanto, Massandy, 2009 Kunci Asimetris ElGamal Metode Enkripsi Dan Dekripsi Dengan Menggunakan Algoritma ElGamal Algoritma Elgamal Dalam Pengamanan Pesan Rahasia dokumen (plaintext) yang berupa text, table dan gambar menjadi kode-kode yang tidak dikenal (ciphertext). Algoritma ElGamal keamanannya terletak pada logaritma diskrit pada grup pergandaan bilangan bulat modulo prima, dengan mengambil nilai bilangan prima yang besar, maka upaya pemecahan pesan akan sangat sukar. Pada dasarnya, dari proses pembentukan kunci sampai proses dekripsi ini, digunakan aritmatika modulo. 5 Suyadi, 2008 Manfaat Komputer Dalam Pembelajaran Aplikasi komputer dalam bidang pembelajaran memungkinkan berlangsungnya proses belajar secara individual (individual learning). Pemakai komputer atau user dapat melakukan interaksi langsung dengan sumber informasi.

BAB 2 LANDASAN TEORI. 2.1 Kriptografi Berikut ini akan dijelaskan sejarah, pengertian, tujuan, dan jenis kriptografi.

BAB 2 LANDASAN TEORI. 2.1 Kriptografi Berikut ini akan dijelaskan sejarah, pengertian, tujuan, dan jenis kriptografi. BAB 2 LANDASAN TEORI 2.1 Kriptografi Berikut ini akan dijelaskan sejarah, pengertian, tujuan, dan jenis kriptografi. 2.1.1 Pengertian Kriptografi Kriptografi (cryptography) berasal dari bahasa yunani yaitu

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Kriptografi 2.1.1 Pengertian Kriptografi Kriptografi (cryptography) berasal dari Bahasa Yunani criptos yang artinya adalah rahasia, sedangkan graphein artinya tulisan. Jadi kriptografi

Lebih terperinci

ALGORITMA ELGAMAL DALAM PENGAMANAN PESAN RAHASIA

ALGORITMA ELGAMAL DALAM PENGAMANAN PESAN RAHASIA ABSTRAK ALGORITMA ELGAMAL DALAM PENGAMANAN PESAN RAHASIA Makalah ini membahas tentang pengamanan pesan rahasia dengan menggunakan salah satu algoritma Kryptografi, yaitu algoritma ElGamal. Tingkat keamanan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Kriptografi Kriptografi secara etimologi berasal dari bahasa Yunani kryptos yang artinya tersembunyi dan graphien yang artinya menulis, sehingga kriptografi merupakan metode

Lebih terperinci

BAB III PENGERTIAN DAN SEJARAH SINGKAT KRIPTOGRAFI

BAB III PENGERTIAN DAN SEJARAH SINGKAT KRIPTOGRAFI BAB III PENGERTIAN DAN SEJARAH SINGKAT KRIPTOGRAFI 3.1. Sejarah Kriptografi Kriptografi mempunyai sejarah yang panjang. Informasi yang lengkap mengenai sejarah kriptografi dapat ditemukan di dalam buku

Lebih terperinci

Perancangan Aplikasi Pembelajaran Kriptografi Kunci Publik ElGamal Untuk Mahasiswa

Perancangan Aplikasi Pembelajaran Kriptografi Kunci Publik ElGamal Untuk Mahasiswa JURNAL DUNIA TEKNOLOGI INFORMASI Vol. 1, No. 1, (2012) 56-62 56 Perancangan Aplikasi Pembelajaran Kriptografi Kunci Publik ElGamal Untuk Mahasiswa 1 Anandia Zelvina, 1 Syahril Efendi, 1 Dedy Arisandi 1

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Kriptografi Secara Umum Menurut Richard Mollin (2003), Kriptografi (cryptography) berasal dari bahasa Yunani, terdiri dari dua suku kata yaitu kripto dan graphia. Kripto artinya

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Kriptografi 2.1.1 Definisi Kriptografi Kata kriptografi berasal dari bahasa Yunani, kryptós yang berarti tersembunyi dan gráphein yang berarti tulisan. Sehingga kata kriptografi

Lebih terperinci

BAB 2 LANDASAN TEORI. Berikut ini akan dijelaskan pengertian, tujuan dan jenis kriptografi.

BAB 2 LANDASAN TEORI. Berikut ini akan dijelaskan pengertian, tujuan dan jenis kriptografi. BAB 2 LANDASAN TEORI 2.1. Kriptografi Berikut ini akan dijelaskan pengertian, tujuan dan jenis kriptografi. 2.1.1. Pengertian Kriptografi Kriptografi (cryptography) berasal dari bahasa Yunani yang terdiri

Lebih terperinci

PENGAMANAN SQLITE DATABASE MENGGUNAKAN KRIPTOGRAFI ELGAMAL

PENGAMANAN SQLITE DATABASE MENGGUNAKAN KRIPTOGRAFI ELGAMAL PENGAMANAN SQLITE DATABASE MENGGUNAKAN KRIPTOGRAFI ELGAMAL Deny Adhar Teknik Informatika, STMIK Potensi Utama Medan Jln. Kol. Yos. Sudarso Km. 6,5 No. 3A Medan adhar_7@yahoo.com Abstrak SQLite database

Lebih terperinci

PENGAMANAN SQLITE DATABASE MENGGUNAKAN KRIPTOGRAFI ELGAMAL

PENGAMANAN SQLITE DATABASE MENGGUNAKAN KRIPTOGRAFI ELGAMAL PENGAMANAN SQLITE DATABASE MENGGUNAKAN KRIPTOGRAFI ELGAMAL Deny Adhar Teknik Informatika, STMIK Potensi Utama Medan Jln. Kol. Yos. Sudarso Km. 6,5 No. 3A Medan adhar_7@yahoo.com Abstrak SQLite database

Lebih terperinci

BAB II LANDASAN TEORI. yang mendasari pembahasan pada bab-bab berikutnya. Beberapa definisi yang

BAB II LANDASAN TEORI. yang mendasari pembahasan pada bab-bab berikutnya. Beberapa definisi yang BAB II LANDASAN TEORI Pada bab ini akan diberikan beberapa definisi, penjelasan, dan teorema yang mendasari pembahasan pada bab-bab berikutnya. Beberapa definisi yang diberikan diantaranya adalah definisi

Lebih terperinci

BAB Kriptografi

BAB Kriptografi BAB 2 LANDASAN TEORI 2.1 Kriptografi Kriptografi berasal dari bahasa Yunani, yakni kata kriptos dan graphia. Kriptos berarti secret (rahasia) dan graphia berarti writing (tulisan). Kriptografi merupakan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 7 BAB 2 LANDASAN TEORI 2.1 Kriptografi 2.1.1 Pengertian kriptografi Kriptografi (Cryptography) berasal dari Bahasa Yunani. Menurut bahasanya, istilah tersebut terdiri dari kata kripto dan graphia. Kripto

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Kriptografi Kriptografi berasal dari bahasa Yunani. Menurut bahasa tersebut kata kriptografi dibagi menjadi dua, yaitu kripto dan graphia. Kripto berarti secret (rahasia) dan

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Kriptografi (cryptography) berasal dari Bahasa Yunani: cryptós artinya

BAB II TINJAUAN PUSTAKA. Kriptografi (cryptography) berasal dari Bahasa Yunani: cryptós artinya BAB II TINJAUAN PUSTAKA 2.1 Kriptografi Kriptografi (cryptography) berasal dari Bahasa Yunani: cryptós artinya secret (rahasia), sedangkan gráphein artinya writing (tulisan), jadi kriptografi berarti secret

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Keamanan Data Keamanan merupakan salah satu aspek yang sangat penting dari sebuah sistem informasi. Masalah keamanan sering kurang mendapat perhatian dari para perancang dan

Lebih terperinci

BAB 2 LANDASAN TEORI. Universitas Sumatera Utara

BAB 2 LANDASAN TEORI. Universitas Sumatera Utara 5 BAB 2 LANDASAN TEORI 2.1 Kriptografi Kriptografi adalah ilmu yang mempelajari bagaimana mengirim pesan secara rahasia sehingga hanya orang yang dituju saja yang dapat membaca pesan rahasia tersebut.

Lebih terperinci

BAB 3 KRIPTOGRAFI RSA

BAB 3 KRIPTOGRAFI RSA BAB 3 KRIPTOGRAFI RSA 3.1 Sistem ASCII Sebelumnya, akan dijelaskan terlebih dahulu Sistem ASCII sebagai system standar pengkodean dalam pertukaran informasi yaitu Sistem ASCII. Plainteks yang akan dienkripsi

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA II.1 Pengenalan Kriptografi II.1.1 Sejarah Kriptografi Kriptografi mempunyai sejarah yang panjang. Informasi yang lengkap mengenai sejarah kriptografi dapat di temukan di dalam

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Teori Bilangan 2.1.1 Keterbagian Jika a dan b Z (Z = himpunan bilangan bulat) dimana b 0, maka dapat dikatakan b habis dibagi dengan a atau b mod a = 0 dan dinotasikan dengan

Lebih terperinci

PERANAN ARITMETIKA MODULO DAN BILANGAN PRIMA PADA ALGORITMA KRIPTOGRAFI RSA (Rivest-Shamir-Adleman)

PERANAN ARITMETIKA MODULO DAN BILANGAN PRIMA PADA ALGORITMA KRIPTOGRAFI RSA (Rivest-Shamir-Adleman) Media Informatika Vol. 9 No. 2 (2010) PERANAN ARITMETIKA MODULO DAN BILANGAN PRIMA PADA ALGORITMA KRIPTOGRAFI RSA (Rivest-Shamir-Adleman) Dahlia Br Ginting Sekolah Tinggi Manajemen Informatika dan Komputer

Lebih terperinci

Bab 2: Kriptografi. Landasan Matematika. Fungsi

Bab 2: Kriptografi. Landasan Matematika. Fungsi Bab 2: Kriptografi Landasan Matematika Fungsi Misalkan A dan B adalah himpunan. Relasi f dari A ke B adalah sebuah fungsi apabila tiap elemen di A dihubungkan dengan tepat satu elemen di B. Fungsi juga

Lebih terperinci

Bab 2 Tinjauan Pustaka 2.1 Penelitian Terdahulu

Bab 2 Tinjauan Pustaka 2.1 Penelitian Terdahulu Bab 2 Tinjauan Pustaka 2.1 Penelitian Terdahulu Penelitian sebelumnya yang terkait dengan penelitian ini adalah penelitian yang dilakukan oleh Syaukani, (2003) yang berjudul Implementasi Sistem Kriptografi

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Kriptografi Kriptografi berasal dari bahasa Yunani. Menurut bahasa tersebut kata kriptografi dibagi menjadi dua, yaitu kripto dan graphia. Kripto berarti secret (rahasia) dan

Lebih terperinci

BAB II DASAR TEORI. membahas tentang penerapan skema tanda tangan Schnorr pada pembuatan tanda

BAB II DASAR TEORI. membahas tentang penerapan skema tanda tangan Schnorr pada pembuatan tanda BAB II DASAR TEORI Pada Bab II ini akan disajikan beberapa teori yang akan digunakan untuk membahas tentang penerapan skema tanda tangan Schnorr pada pembuatan tanda tangan digital yang meliputi: keterbagian

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Kriptografi 2.1.1 Definisi Kriptografi Ditinjau dari terminologinya, kata kriptografi berasal dari bahasa Yunani yaitu cryptos yang berarti menyembunyikan, dan graphein yang artinya

Lebih terperinci

METODE ENKRIPSI DAN DEKRIPSI DENGAN MENGGUNAKAN ALGORITMA ELGAMAL

METODE ENKRIPSI DAN DEKRIPSI DENGAN MENGGUNAKAN ALGORITMA ELGAMAL METODE ENKRIPSI DAN DEKRIPSI DENGAN MENGGUNAKAN ALGORITMA ELGAMAL Mukhammad Ifanto (13508110) Program Studi Informatika Institut Teknolgi Bandung Jalan Ganesha 10 Bandung e-mail: ifuntoo@yahoo.om ABSTRAK

Lebih terperinci

BAB I PENDAHULUAN. diperhatikan, yaitu : kerahasiaan, integritas data, autentikasi dan non repudiasi.

BAB I PENDAHULUAN. diperhatikan, yaitu : kerahasiaan, integritas data, autentikasi dan non repudiasi. BAB I PENDAHULUAN 1.1 Latar Belakang Pada proses pengiriman data (pesan) terdapat beberapa hal yang harus diperhatikan, yaitu : kerahasiaan, integritas data, autentikasi dan non repudiasi. Oleh karenanya

Lebih terperinci

BAB I PENDAHULUAN. mempunyai makna. Dalam kriptografi dikenal dua penyandian, yakni enkripsi

BAB I PENDAHULUAN. mempunyai makna. Dalam kriptografi dikenal dua penyandian, yakni enkripsi BAB I PENDAHULUAN A. Latar Belakang Kemajuan dan perkembangan teknologi informasi dewasa ini telah berpengaruh pada seluruh aspek kehidupan manusia, termasuk bidang komunikasi. Pada saat yang sama keuntungan

Lebih terperinci

ANALISIS KEMAMPUAN ALGORITMA ELGAMAL UNTUK KRIPTOGRAFI CITRA

ANALISIS KEMAMPUAN ALGORITMA ELGAMAL UNTUK KRIPTOGRAFI CITRA 27 ANALISIS KEMAMPUAN ALGORITMA ELGAMAL UNTUK KRIPTOGRAFI CITRA Yo el Pieter Sumihar* 1 1,2,3 Jurusan Komputer, Teknik Informatika, Fakultas Sains dan Komputer, Universitas Kristen Immanuel Jalan Solo

Lebih terperinci

RANCANGAN KRIPTOGRAFI HYBRID KOMBINASI METODE VIGENERE CIPHER DAN ELGAMAL PADA PENGAMANAN PESAN RAHASIA

RANCANGAN KRIPTOGRAFI HYBRID KOMBINASI METODE VIGENERE CIPHER DAN ELGAMAL PADA PENGAMANAN PESAN RAHASIA RANCANGAN KRIPTOGRAFI HYBRID KOMBINASI METODE VIGENERE CIPHER DAN ELGAMAL PADA PENGAMANAN PESAN RAHASIA Bella Ariska 1), Suroso 2), Jon Endri 3) 1),2),3 ) Program Studi Teknik Telekomunikasi Jurusan Teknik

Lebih terperinci

Aplikasi Teori Bilangan dalam Algoritma Kriptografi

Aplikasi Teori Bilangan dalam Algoritma Kriptografi Aplikasi Teori Bilangan dalam Algoritma Kriptografi Veren Iliana Kurniadi 13515078 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Untuk mendukung penelitian ini diperlukan beberapa landasan teori dan konsepkonsep yang relevan. Landasan teori dalam penelitian ini meliputi pengertian kriptografi dan steganografi

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Kriptografi Kriptografi atau Cryptography berasal dari kata kryptos yang artinya tersembunyi dan grafia yang artinya sesuatu yang tertulis (bahasa Yunani) sehingga kriptografi

Lebih terperinci

Simulasi Pengamanan File Teks Menggunakan Algoritma Massey-Omura 1 Muhammad Reza, 1 Muhammad Andri Budiman, 1 Dedy Arisandi

Simulasi Pengamanan File Teks Menggunakan Algoritma Massey-Omura 1 Muhammad Reza, 1 Muhammad Andri Budiman, 1 Dedy Arisandi JURNAL DUNIA TEKNOLOGI INFORMASI Vol. 1, No. 1, (2012) 20-27 20 Simulasi Pengamanan File Teks Menggunakan Algoritma Massey-Omura 1 Muhammad Reza, 1 Muhammad Andri Budiman, 1 Dedy Arisandi 1 Program Studi

Lebih terperinci

Aplikasi Perkalian dan Invers Matriks dalam Kriptografi Hill Cipher

Aplikasi Perkalian dan Invers Matriks dalam Kriptografi Hill Cipher Aplikasi Perkalian dan Invers Matriks dalam Kriptografi Hill Cipher Catherine Pricilla-13514004 Program Studi Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha

Lebih terperinci

APLIKASI JAVA KRIPTOGRAFI MENGGUNAKAN ALGORITMA VIGENERE. Abstract

APLIKASI JAVA KRIPTOGRAFI MENGGUNAKAN ALGORITMA VIGENERE. Abstract APLIKASI JAVA KRIPTOGRAFI MENGGUNAKAN ALGORITMA VIGENERE Muhammad Fikry Teknik Informatika, Universitas Malikussaleh e-mail: muh.fikry@unimal.ac.id Abstract Data merupakan aset yang paling berharga untuk

Lebih terperinci

APLIKASI TEORI BILANGAN UNTUK AUTENTIKASI DOKUMEN

APLIKASI TEORI BILANGAN UNTUK AUTENTIKASI DOKUMEN APLIKASI TEORI BILANGAN UNTUK AUTENTIKASI DOKUMEN Mohamad Ray Rizaldy - 13505073 Program Studi Teknik Informatika, Institut Teknologi Bandung Jl. Ganesha 10, Bandung, Jawa Barat e-mail: if15073@students.if.itb.ac.id

Lebih terperinci

Analisis Penerapan Algoritma MD5 Untuk Pengamanan Password

Analisis Penerapan Algoritma MD5 Untuk Pengamanan Password Analisis Penerapan Algoritma MD5 Untuk Pengamanan Password Inayatullah STMIK MDP Palembang inayatullah@stmik-mdp.net Abstrak: Data password yang dimiliki oleh pengguna harus dapat dijaga keamanannya. Salah

Lebih terperinci

BAB 2 LANDASAN TEORI Keamanan Informasi

BAB 2 LANDASAN TEORI Keamanan Informasi BAB 2 LANDASAN TEORI 2.1. Keamanan Informasi Kriptografi sangat berkaitan dengan isu keamanan informasi. Sebelum mengenal kriptografi diperlukan pemahaman tentang isu-isu yang terkait dengan keamanan informasi

Lebih terperinci

Tanda Tangan Digital Majemuk dengan Kunci Publik Tunggal dengan Algoritma RSA dan El Gamal

Tanda Tangan Digital Majemuk dengan Kunci Publik Tunggal dengan Algoritma RSA dan El Gamal Tanda Tangan Digital Majemuk dengan Kunci Publik Tunggal dengan Algoritma RSA dan El Gamal Muhamad Fajrin Rasyid 1) 1) Program Studi Teknik Informatika ITB, Bandung 40132, email: if14055@students.if.itb.ac.id

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 8 BAB 2 LANDASAN TEORI Bab ini akan membahas tinjauan teoritis yang berkaitan dengan algoritma kriptografi ElGamal dan algoritma kompresi Elias Gamma Code. 2.1 Kriptografi Kriptografi mempunyai peranan

Lebih terperinci

BAB 1 PENDAHULUAN. Universitas Sumatera Utara

BAB 1 PENDAHULUAN. Universitas Sumatera Utara 17 BAB 1 PENDAHULUAN Bab ini akan menjelaskan mengenai latar belakang masalah yang dibahas dalam skripsi ini, rumusan masalah, ruang lingkup penelitian, tujuan penelitian, manfaat penelitian, penelitian

Lebih terperinci

Perbandingan Penggunaan Bilangan Prima Aman Dan Tidak Aman Pada Proses Pembentukan Kunci Algoritma Elgamal

Perbandingan Penggunaan Bilangan Prima Aman Dan Tidak Aman Pada Proses Pembentukan Kunci Algoritma Elgamal 194 ISSN: 2354-5771 Perbandingan Penggunaan Bilangan Prima Aman Dan Tidak Aman Pada Proses Pembentukan Kunci Algoritma Elgamal Yudhi Andrian STMIK Potensi Utama E-mail: yudhi.andrian@gmail.com Abstrak

Lebih terperinci

DASAR-DASAR KEAMANAN SISTEM INFORMASI Kriptografi, Steganografi. Gentisya Tri Mardiani, S.Kom.,M.Kom

DASAR-DASAR KEAMANAN SISTEM INFORMASI Kriptografi, Steganografi. Gentisya Tri Mardiani, S.Kom.,M.Kom DASAR-DASAR KEAMANAN SISTEM INFORMASI Kriptografi, Steganografi Gentisya Tri Mardiani, S.Kom.,M.Kom KRIPTOGRAFI Kriptografi (cryptography) merupakan ilmu dan seni untuk menjaga pesan agar aman. Para pelaku

Lebih terperinci

BAB III ANALISIS DAN PERANCANGAN

BAB III ANALISIS DAN PERANCANGAN BAB III ANALISIS DAN PERANCANGAN III.1. Analisis Masalah Secara umum data dikategorikan menjadi dua, yaitu data yang bersifat rahasia dan data yang bersifat tidak rahasia. Data yang bersifat tidak rahasia

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Kriptografi Ditinjau dari segi terminologinya, kata kriptografi berasal dari bahasa Yunani yaitu crypto yang berarti secret (rahasia) dan graphia yang berarti writing (tulisan).

Lebih terperinci

Reference. William Stallings Cryptography and Network Security : Principles and Practie 6 th Edition (2014)

Reference. William Stallings Cryptography and Network Security : Principles and Practie 6 th Edition (2014) KRIPTOGRAFI Reference William Stallings Cryptography and Network Security : Principles and Practie 6 th Edition (2014) Bruce Schneier Applied Cryptography 2 nd Edition (2006) Mengapa Belajar Kriptografi

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Kriptografi Kriptografi (cryptography) berasal dari Bahasa Yunani: cryptós artinya secret (rahasia), sedangkan gráphein artinya writing (tulisan). Jadi, kriptografi berarti secret

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Kriptografi Kriptografi adalah ilmu mengenai teknik enkripsi dimana data diacak menggunakan suatu kunci enkripsi menjadi sesuatu yang sulit dibaca oleh seseorang yang tidak

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Kriptografi Kriptografi digunakan sebagai alat untuk menjamin keamanan dan kerahasiaan informasi. Karena itu kriptografi menjadi ilmu yang berkembang pesat, terbukti dengan banyaknya

Lebih terperinci

Pengenalan Kriptografi

Pengenalan Kriptografi Pengenalan Kriptografi (Week 1) Aisyatul Karima www.themegallery.com Standar kompetensi Pada akhir semester, mahasiswa menguasai pengetahuan, pengertian, & pemahaman tentang teknik-teknik kriptografi.

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Pada bab ini, akan dibahas landasan teori mengenai teori-teori yang digunakan dan konsep yang mendukung pembahasan, serta penjelasan mengenai metode yang digunakan. 2.1. Pengenalan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Definisi Kriptografi Kata kriptografi berasal dari bahasa Yunani, kryptós yang berarti tersembunyi dan gráphein yang berarti tulisan.sehingga kata kriptografi dapat diartikan

Lebih terperinci

BAB 2 LANDASAN TEORI. 2.1 Kriptografi

BAB 2 LANDASAN TEORI. 2.1 Kriptografi BAB 2 LANDASAN TEORI 2.1 Kriptografi Kriptografi berasal dari bahasa Yunani, yaitu kryptos yang berarti tersembunyi dan graphein yang berarti menulis. Kriptografi adalah bidang ilmu yang mempelajari teknik

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah keamanan dan kerahasiaan data merupakan salah satu aspek penting dari suatu sistem informasi. Dalam hal ini, sangat terkait dengan betapa pentingnya informasi

Lebih terperinci

BAB II LANDASAN TEORI. Kriptografi mempunyai peranan penting dalam dunia komputer. Hal ini

BAB II LANDASAN TEORI. Kriptografi mempunyai peranan penting dalam dunia komputer. Hal ini BAB II LANDASAN TEORI 2.1 Kriptografi Kriptografi mempunyai peranan penting dalam dunia komputer. Hal ini disebabkan karena banyaknya informasi rahasia yang disimpan dan dikirimkan melalui media-media

Lebih terperinci

BAB 2 TINJAUAN TEORITIS

BAB 2 TINJAUAN TEORITIS BAB 2 TINJAUAN TEORITIS 2.1 Kriptografi Kemajuan teknologi di bidang komputer memungkinkan ribuan orang dan komputer di seluruh dunia terhubung dalam satu dunia maya yang dikenal sebagai Internet. Begitu

Lebih terperinci

Bab 2 Tinjauan Pustaka

Bab 2 Tinjauan Pustaka Bab 2 Tinjauan Pustaka 2.1 Penelitian Sebelumnya Pada penelitian sebelumnya, yang berjudul Pembelajaran Berbantu komputer Algoritma Word Auto Key Encryption (WAKE). Didalamnya memuat mengenai langkah-langkah

Lebih terperinci

Pengantar Kriptografi

Pengantar Kriptografi Pengantar Kriptografi Bahan Kuliah ke-9 Keamanan Komputer FTSI Unipdu 1 Pesan: data atau informasi yang dapat dibaca dan dimengerti maknanya. Nama lain: plainteks (plaintext) teks-jelas (cleartext) Rupa

Lebih terperinci

ALGORITMA ELGAMAL UNTUK KEAMANAN APLIKASI

ALGORITMA ELGAMAL UNTUK KEAMANAN APLIKASI ALGORITMA ELGAMAL UNTUK KEAMANAN APLIKASI E-MAIL Satya Fajar Pratama NIM : 13506021 Program Studi Teknik Informatika, Institut Teknologi Bandung Jl. Ganesha 10, Bandung E-mail : if16021@students.if.itb.ac.id

Lebih terperinci

I. PENDAHULUAN. Key Words Tanda Tangan Digital, , Steganografi, SHA1, RSA

I. PENDAHULUAN. Key Words Tanda Tangan Digital,  , Steganografi, SHA1, RSA Analisis dan Implementasi Tanda Tangan Digital dengan Memanfaatkan Steganografi pada E-Mail Filman Ferdian - 13507091 1 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut

Lebih terperinci

Tandatangan Digital. Yus Jayusman STMIK BANDUNG

Tandatangan Digital. Yus Jayusman STMIK BANDUNG Tandatangan Digital Yus Jayusman STMIK BANDUNG 1 Review materi awal Aspek keamanan yang disediakan oleh kriptografi: 1. Kerahasiaan pesan (confidentiality/secrecy) 2. Otentikasi (authentication). 3. Keaslian

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Kriptografi adalah ilmu sekaligus seni untuk menjaga keamanan pesan (message).

BAB II TINJAUAN PUSTAKA. Kriptografi adalah ilmu sekaligus seni untuk menjaga keamanan pesan (message). BAB II TINJAUAN PUSTAKA 2.1 Kriptografi Kriptografi adalah ilmu sekaligus seni untuk menjaga keamanan pesan (message). Kata cryptography berasal dari kata Yunani yaitu kryptos yang artinya tersembunyi

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Teknologi informasi berkembang semakin pesat dan mempengaruhi hampir seluruh aspek kehidupan manusia. Perkembangan tersebut secara langsung maupun tidak langsung mempengaruhi

Lebih terperinci

MODEL KEAMANAN INFORMASI BERBASIS DIGITAL SIGNATURE DENGAN ALGORITMA RSA

MODEL KEAMANAN INFORMASI BERBASIS DIGITAL SIGNATURE DENGAN ALGORITMA RSA MODEL KEAMANAN INFORMASI BERBASIS DIGITAL SIGNATURE DENGAN ALGORITMA RSA Mohamad Ihwani Universitas Negeri Medan Jl. Willem Iskandar Pasar v Medan Estate, Medan 20221 mohamadihwani@unimed.ac.id ABSTRAK

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1. Citra Digital Citra adalah suatu representasi (gambaran), kemiripan, atau imitasi dari suatu objek. Citra terbagi 2 yaitu ada citra yang bersifat analog dan ada citra yang bersifat

Lebih terperinci

Algoritma Kriptografi Kunci Publik. Dengan Menggunakan Prinsip Binary tree. Dan Implementasinya

Algoritma Kriptografi Kunci Publik. Dengan Menggunakan Prinsip Binary tree. Dan Implementasinya Algoritma Kriptografi Kunci Publik Dengan Menggunakan Prinsip Binary tree Dan Implementasinya Hengky Budiman NIM : 13505122 Program Studi Teknik Informatika, Institut Teknologi Bandung Jl. Ganesha 10,

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 2 BAB 2 LANDASAN TEORI 2.1. Kriptografi 2.1.1. Definisi Kriptografi Kriptografi berasal dari bahasa Yunani yang terdiri dari dua kata yaitu cryto dan graphia. Crypto berarti rahasia dan graphia berarti

Lebih terperinci

Perhitungan dan Implementasi Algoritma RSA pada PHP

Perhitungan dan Implementasi Algoritma RSA pada PHP Perhitungan dan Implementasi Algoritma RSA pada PHP Rini Amelia Program Studi Teknik Informatika, Fakultas Sains dan Teknologi, Universitas Islam Negeri Sunan Gunung Djati Bandung. Jalan A.H Nasution No.

Lebih terperinci

Otentikasi dan Tandatangan Digital (Authentication and Digital Signature)

Otentikasi dan Tandatangan Digital (Authentication and Digital Signature) Bahan Kuliah ke-18 IF5054 Kriptografi Otentikasi dan Tandatangan Digital (Authentication and Digital Signature) Disusun oleh: Ir. Rinaldi Munir, M.T. Departemen Teknik Informatika Institut Teknologi Bandung

Lebih terperinci

MODEL KEAMANAN INFORMASI BERBASIS DIGITAL SIGNATURE DENGAN ALGORITMA RSA

MODEL KEAMANAN INFORMASI BERBASIS DIGITAL SIGNATURE DENGAN ALGORITMA RSA CESS (Journal Of Computer Engineering System And Science) p-issn :2502-7131 MODEL KEAMANAN INFORMASI BERBASIS DIGITAL SIGNATURE DENGAN ALGORITMA RSA Mohamad Ihwani Universitas Negeri Medan Jl. Willem Iskandar

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Kriptografi Kriptografi telah menjadi bagian penting dalam dunia teknologi informasi saat ini terutama dalam bidang komputer. Hampir semua penerapan teknologi informasi menggunakan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Sejarah Kriptografi Kriptografi (cryptography) berasal dari bahasa yunani: cryptos yang artinya secret (rahasia) dan graphein yang artinya writing (tulisan). Jadi kriptografi

Lebih terperinci

Perbandingan Sistem Kriptografi Kunci Publik RSA dan ECC

Perbandingan Sistem Kriptografi Kunci Publik RSA dan ECC Perbandingan Sistem Kriptografi Publik RSA dan ECC Abu Bakar Gadi NIM : 13506040 1) 1) Jurusan Teknik Informatika ITB, Bandung, email: abu_gadi@students.itb.ac.id Abstrak Makalah ini akan membahas topik

Lebih terperinci

DASAR-DASAR KEAMANAN SISTEM INFORMASI Kriptografi, Steganografi. Gentisya Tri Mardiani, S.Kom

DASAR-DASAR KEAMANAN SISTEM INFORMASI Kriptografi, Steganografi. Gentisya Tri Mardiani, S.Kom DASAR-DASAR KEAMANAN SISTEM INFORMASI Kriptografi, Steganografi Gentisya Tri Mardiani, S.Kom KRIPTOGRAFI Kriptografi (cryptography) merupakan ilmu dan seni untuk menjaga pesan agar aman. Para pelaku atau

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB TINJAUAN PUSTAKA.1 Kriptografi Kriptografi pada awalnya dijabarkan sebagai ilmu yang mempelajari bagaimana menyembunyikan pesan. Namun pada pengertian modern kriptografi adalah ilmu yang bersandarkan

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Saat ini keamanan terhadap data yang tersimpan dalam komputer sudah menjadi persyaratan mutlak. Dalam hal ini, sangat terkait dengan betapa pentingnya data tersebut

Lebih terperinci

Penerapan algoritma RSA dan Rabin dalam Digital Signature

Penerapan algoritma RSA dan Rabin dalam Digital Signature Penerapan algoritma RSA dan Rabin dalam Digital Signature Gilang Laksana Laba / 13510028 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha

Lebih terperinci

Protokol Kriptografi

Protokol Kriptografi Bahan Kuliah ke-22 IF5054 Kriptografi Protokol Kriptografi Disusun oleh: Ir. Rinaldi Munir, M.T. Departemen Teknik Informatika Institut Teknologi Bandung 2004 22. Protokol Kriptografi 22.1 Protokol Protokol:

Lebih terperinci

BAB 2 LANDASAN TEORI. 2.1 Kriptografi Definisi Kriptografi

BAB 2 LANDASAN TEORI. 2.1 Kriptografi Definisi Kriptografi BAB 2 LANDASAN TEORI 2. Kriptografi 2.. Definisi Kriptografi Kriptografi adalah ilmu mengenai teknik enkripsi di mana data diacak menggunakan suatu kunci enkripsi menjadi sesuatu yang sulit dibaca oleh

Lebih terperinci

Bab 1 PENDAHULUAN Latar Belakang

Bab 1 PENDAHULUAN Latar Belakang Bab 1 PENDAHULUAN 1.1. Latar Belakang Sistem keamanan pengiriman data (komunikasi data yang aman) dipasang untuk mencegah pencurian, kerusakan, dan penyalahgunaan data yang terkirim melalui jaringan komputer.

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 2.1 Tinjauan Pustaka BAB II TINJAUAN PUSTAKA Penelitian tentang implementasi Kriptografi dengan algoritma one time pad pernah dilakukan dan memuat teori-teori dari penelitian sejenis. Di bawah ini adalah

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Perkembangan teknologi memberi pengaruh besar bagi segala aspek kehidupan. Begitu banyak manfaat teknologi tersebut yang dapat diimplementasikan dalam kehidupan. Teknologi

Lebih terperinci

Kriptografi Dan Algoritma RSA

Kriptografi Dan Algoritma RSA Kriptografi Dan Algoritma RSA Wico Chandra (13509094) Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia wicochandra@yahoo.com

Lebih terperinci

BAB III ANALISIS. Pada tahap analisis, dilakukan penguraian terhadap topik penelitian untuk

BAB III ANALISIS. Pada tahap analisis, dilakukan penguraian terhadap topik penelitian untuk BAB III ANALISIS Pada tahap analisis, dilakukan penguraian terhadap topik penelitian untuk mengidentifikasi dan mengevaluasi proses-prosesnya serta kebutuhan yang diperlukan agar dapat diusulkan suatu

Lebih terperinci

+ Basic Cryptography

+ Basic Cryptography + Basic Cryptography + Terminologi n Kriptografi (cryptography) merupakan ilmu dan seni untuk menjaga pesan agar aman. Crypto berarti secret (rahasia) dan graphy berarti writing (tulisan). n Para pelaku

Lebih terperinci

Pengantar Kriptografi

Pengantar Kriptografi Pengantar Kriptografi Muhammad Sholeh Teknik Informatika Institut Sains & Teknologi AKPRIND Kata kriptografi (cryptography) berasal dari 2 buah kata kuno yaitu kripto (cryptic) dan grafi (grafein) yang

Lebih terperinci

IMPLEMENTASI ALGORITMA HILL CIPHER DALAM PENYANDIAN DATA

IMPLEMENTASI ALGORITMA HILL CIPHER DALAM PENYANDIAN DATA IMPLEMENTASI ALGORITMA HILL CIPHER DALAM PENYANDIAN DATA Abdul Halim Hasugian Dosen Tetap STMIK Budi Darma Medan Jl. Sisingamangaraja No. 338 Sp. Pos Medan http://www. stmik-budidarma.ac.id // Email :

Lebih terperinci

PERANCANGAN PEMBANGKIT TANDA TANGAN DIGITAL MENGGUNAKAN DIGITAL SIGNATURE STANDARD (DSS) Sudimanto

PERANCANGAN PEMBANGKIT TANDA TANGAN DIGITAL MENGGUNAKAN DIGITAL SIGNATURE STANDARD (DSS) Sudimanto Media Informatika Vol. 14 No. 2 (2015) PERANCANGAN PEMBANGKIT TANDA TANGAN DIGITAL MENGGUNAKAN DIGITAL SIGNATURE STANDARD (DSS) Abstrak Sudimanto Sekolah Tinggi Manajemen Informatika dan Komputer LIKMI

Lebih terperinci

BAB 2 TINJAUAN TEORETIS

BAB 2 TINJAUAN TEORETIS BAB 2 TINJAUAN TEORETIS 2.1 Kriptografi Kriptografi berasal dari bahasa Yunani, yaitu cryptos yang berarti rahasia dan graphein yang berarti tulisan. Jadi, kriptografi adalah tulisan rahasia. Namun, menurut

Lebih terperinci

SISTEM KRIPTOGRAFI. Mata kuliah Jaringan Komputer Iskandar Ikbal, S.T., M.Kom

SISTEM KRIPTOGRAFI. Mata kuliah Jaringan Komputer Iskandar Ikbal, S.T., M.Kom SISTEM KRIPTOGRAFI Mata kuliah Jaringan Komputer Iskandar Ikbal, S.T., M.Kom Materi : Kriptografi Kriptografi dan Sistem Informasi Mekanisme Kriptografi Keamanan Sistem Kriptografi Kriptografi Keamanan

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Seiring dengan perkembangan teknologi informasi secara tidak langsung dunia komunikasi juga ikut terpengaruh. Dengan adanya internet, komunikasi jarak jauh dapat dilakukan

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang. Seiring perkembangan teknologi, berbagai macam dokumen kini tidak lagi dalam

BAB 1 PENDAHULUAN. 1.1 Latar Belakang. Seiring perkembangan teknologi, berbagai macam dokumen kini tidak lagi dalam BAB 1 PENDAHULUAN 1.1 Latar Belakang Seiring perkembangan teknologi, berbagai macam dokumen kini tidak lagi dalam bentuknya yang konvensional di atas kertas. Dokumen-dokumen kini sudah disimpan sebagai

Lebih terperinci

Sistem Kriptografi Kunci Publik Multivariat

Sistem Kriptografi Kunci Publik Multivariat Sistem riptografi unci Publik Multivariat Oleh : Pendidikan Matematika, FIP, Universitas Ahmad Dahlan, Yogyakarta S Matematika (Aljabar, FMIPA, Universitas Gadjah Mada, Yogyakarta E-mail: zaki@mailugmacid

Lebih terperinci

Modifikasi Algoritma RSA dengan Chinese Reamainder Theorem dan Hensel Lifting

Modifikasi Algoritma RSA dengan Chinese Reamainder Theorem dan Hensel Lifting Modifikasi Algoritma RSA dengan Chinese Reamainder Theorem dan Hensel Lifting Reyhan Yuanza Pohan 1) 1) Jurusan Teknik Informatika ITB, Bandung 40132, email: if14126@students.if.itb.ac.id Abstract Masalah

Lebih terperinci

VISUALISASI ALGORITMA RSA DENGAN MENGGUNAKAN BAHASA PEMROGRAMAN JAVA

VISUALISASI ALGORITMA RSA DENGAN MENGGUNAKAN BAHASA PEMROGRAMAN JAVA VISUALISASI ALGORITMA RSA DENGAN MENGGUNAKAN BAHASA PEMROGRAMAN JAVA Abstraksi Adriani Putri, Entik Insannudin, MT. Jurusan Teknik Informatika Fakultas Sains dan Teknologi UIN Sunan Gunung Djati Bandung

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 7 BAB 2 LANDASAN TEORI Bab 2 membahas tinjauan teoritis yang berkaitan dengan algoritma kriptografi LUC dan algoritma kompresi Goldbach Codes. 2.1 Kriptografi Informasi dalam sebuah data memiliki nilai

Lebih terperinci

Algoritma RSA dan ElGamal

Algoritma RSA dan ElGamal Bahan Kuliah ke-15 IF5054 Kriptografi Algoritma RSA dan ElGamal Disusun oleh: Ir. Rinaldi Munir, M.T. Departemen Teknik Informatika Institut Teknologi Bandung 2004 15.1 Pendahuluan 15. Algoritma RSA dan

Lebih terperinci