BAB 2 LANDASAN TEORI

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB 2 LANDASAN TEORI"

Transkripsi

1 8 BAB 2 LANDASAN TEORI Bab ini akan membahas tinjauan teoritis yang berkaitan dengan algoritma kriptografi ElGamal dan algoritma kompresi Elias Gamma Code. 2.1 Kriptografi Kriptografi mempunyai peranan penting dalam dunia komputer. Hal ini disebabkan karena banyaknya informasi rahasia yang disimpan dan dikirim melalui media-media komputer. Informasi- informasi ini biasanya berisikan dokumen-dokumen penting dan data keuangan dari suatu instansi yang tidak ingin dibaca oleh orang yang tidak berhak atas informasi tersebut. Oleh karena itu ilmu kriptografi setiap saat selalu dikembangkan oleh orang untuk dapat menjaga fasilitas fasilitas tersebut Defenisi Kriptografi Menurut Rinaldi Munir dalam skripsi Yuli Andri, 2009 : Kriptografi (cryptography) berasal dari Bahasa Yunani: cryptós artinya secret (rahasia), sedangkan gráphein artinya writing (tulisan). Jadi, kriptografi berarti secret writing (tulisan rahasia). Kriptografi adalah ilmu mengenai teknik enkripsi dimana data diacak menggunakan suatu kunci enkripsi menjadi sesuatu yang sulit dibaca oleh seseorang yang tidak memiliki kunci dekripsi (Kromodimoeljo, 2009). Secara umum, kriptografi merupakan teknik pengamanan informasi yang dilakukan dengan cara mengolah informasi awal (plainteks) dengan suatu kunci tertentu menggunakan suatu metode enkripsi tertentu sehingga menghasilkan suatu informasi

2 9 baru (cipherteks) yang tidak dapat dibaca secara langsung. Cipherteks tersebut dapat dikembalikan menjadi informasi awal (plainteks) melalui proses dekripsi. Urutan proses kriptografi secara umum dapat dilihat pada Gambar 2.1. Plaintext Ciphertext Plaintext Enkripsi Dekripsi Gambar 2.1. Urutan proses kriptografi (Widyartono, A. 2011) Sejarah Kriptografi Sebagian besar sejarah kriptografi merupakan bagian dari kriptografi klasik, yaitu metode kriptografi yang menggunakan kertas dan pensil atau menggunakan alat bantu mekanik yang sederhana. Kriptografi klasik secara umum dikelompokkan menjadi dua kategori, yaitu algoritma transposisi (transposition cipher) dan algoritma substitusi (substitution cipher). Algoritma transposisi adalah algoritma yang mengubah susunan-susunan huruf di dalam pesan, sedangkan algoritma substitusi yaitu mengganti setiap huruf atau kelompok huruf dengan sebuah huruf atau kelompok huruf yang lain. Algoritma substitusi paling awal dan paling sederhana adalah Caesar Cipher, yang digunakan oleh raja Yunani kuno, Julius Caesar. Disaat Julius Caesar ingin mengirimkan sebuah pesan rahasia kepada seorang jenderal di medan perang. Pesan tersebut akan dikirimkan melalui seorang kurir. Karena tingkat kerahasiaan pesan yang tinggi, maka Julius Caesar tidak mau mengambil resiko jika pesan tersebut sampai ke tangan musuh. Maka Caesar mensubstitusi pesan tersebut dengan cara mengganti hurufhuruf alfabet a menjadi d, b menjadi e, c menjadi f dan seterusnya. Sebelumnya kunci dari pesan tersebut telah diberitahu oleh Julius Caesar kepada jenderal yang akan menerima pesan tersebut. Dengan demikian, walaupun pesan tersebut jatuh ke pihak musuh, maka musuh tersebut tidak akan dapat membaca pesan tersebut.

3 10 Pada abad ke-20, kriptografi lebih banyak digunakan oleh kalangan militer. Pada perang dunia ke II, Pemerintah Nazi Jerman membuat mesin enkripsi yang dinamakan dengan Enigma. Mesin ini menggunakan beberapa buah rotor (roda berputar), dan melakukan proses enkripsi yang sangat rumit. Jerman percaya pesan akan dikirim melalui enigma tidak akan terpecahkan kode enkripsinya. Tetapi anggapan Jerman tersebut salah, setelah mempelajari mesin enigma bertahun-tahun, sekutu berhasil memecahkan kode-kode tersebut. Setelah Jerman mengetahui kode-kode mereka telah terpecahkan, kemudian enigma mengalami beberapa kali perubahan. Mesin Enigma dapat dilihat pada Gambar 2.2. Gambar 2.2 Mesin enigma yang digunakan tentara Jerman ( Halim, A. 2013). Perkembangan peralatan komputer digital memicu terbentuknya kriptografi modern. Dengan komputer digital, akan sangat mungkin untuk menghasilkan cipher yang lebih kompleks dan rumit. Kriptografi klasik pada umumnya dienkripsi karakter per karakter (menggunakan alfabet tradisional), sedangkan kriptografi modern beroperasi pada string biner. Kriptografi modern tidak hanya berkaitan dengan teknik menjaga kerahasisaan pesan, tetapi juga menghasilkan tanda tangan digital dan sertifikat digital.

4 Tujuan Kriptografi Kriptografi bertujuan untuk memberikan layanan keamanan (Kurniawan, Y. 2004) sebagai berikut: 1. Kerahasiaan (Confidentiality) Layanan yang ditujukan untuk menjaga pesan tidak dapat dibaca oleh pihak-pihak yang tidak berhak. 2. Keutuhan Data (Integrity) Penerima harus dapat memeriksa apakah pesan telah dimodifikasi ditengah jalan atau tidak. Seorang penyusup seharusnya tidak dapat memasukkan tambahan ke dalam pesan, mengurangi atau mengubah pesan selama data berada diperjalanan. 3. Autentikasi (Message Authentication) Penerima pesan dapat memastikan keaslian pengirimnya. Penyerang tidak dapat berpura- pura sebagai orang lain. 4. Menolak Penyangkalan (Nonrepudiation) Pengirim seharusnya tidak dapat mengelak bahwa dialah pengirim pesan yang sesungguhnya. Tanpa kriptografi, seseorang dapat mengelak bahwa dialah pengirim yang sesungguhnya Terminologi dan Konsep Dasar Kriptografi Dalam bidang kriptografi akan ditemukan beberapa istilah atau terminologi. Isitilahistilah tersebut sangat penting untuk diketahui dalam memahami ilmu kriptografi. Oleh karena itu penulis akan menjelaskan beberapa istilah penting dalam bidang kriptografi yang akan sering penulis gunakan dalam tulisan penulis. Berikut merupakan istilah-istilah penting tersebut. a. Plainteks dan Cipherteks Pesan merupakan data atau informasi yang dimengerti maknanya. Nama lain dari pesan adalah plainteks. Pesan tersebut dapat dikirim (melalui kurir, saluran telekomunikasi, dan

5 12 lain-lain) dan dapat juga disimpan dalam media penyimpanan (kertas, storage, dan lainlain). Pesan dapat berupa teks, video, gambar, dan lain-lain. Agar pesan tersebut tidak dapat dimengerti maknanya bagi pihak lain, maka pesan perlu disandikan ke bentuk lain yang tidak dapat dipahami. Bentuk pesan yang telah tersandikan tersebut dinamakan dengan cipherteks (ciphertext). Perbandingan plainteks dan cipherteks dapat dilihat pada Gambar 2.3 (a). Plainteks (b). Cipherteks Gambar 2.3 Perbandingan plainteks dan cipherteks ( Halim, A. 2013). b. Peserta Komunikasi Komunikasi data melibatkan pertukaran pesan antara dua entitas. Entitas yang pertama adalah pengirim, yang berfungsi mengirim pesan kepada entitas lain. Entitas kedua adalah penerima, yang berfungsi menerima pesan yang dikirimkan. Entitas-entitas ini dapat berupa orang, mesin (komputer), kartu kredit dan sebagainya. Contohnya mesin ATM berkomunikasi dengan komputer server di bank. Pengirim ingin mengirimkan pesan dengan aman sampai ke penerima. Jadi solusinya adalah dilakukan penyandian terhadap pesan tersebut agar tidak diketahui pihak-pihak yang tidak berkepentingan terhadap pesan tersebut. c. Enkripsi dan Dekripsi Proses penyandian pesan, dari plainteks ke cipherteks dinamakan dengan enkripsi (encryption) atau enchipering (standard nama menurut ISO ). Sedangkan proses mengembalikan pesan dari cipherteks ke plainteks dinamakan dengan dekripsi

6 13 (descryption) atau dechipering (standard nama menurut ISO ). Proses enkripsi dan dekripsi dapat diterapkan pada pesan yang dikirim ataupun pesan yang disimpan. Encryption of data in motion mengacu pada enkripsi pesan yang ditransmisikan melalui saluran komunikasi, sedangkan istilah encryption of data at-rest mengacu pada enkripsi pesan yang tersimpan di dalam storage. d. Kriptanalis dan Kriptologi Kriptografi selalu memiliki perkembangan, karena kriptografi memiliki ilmu yang berlawan yang disebut dengan kriptanalisis. Kriptanalis (cryptanalysis) adalah ilmu dan seni untuk memecahkan cipherteks menjadi plainteks, tanpa memerlukan kunci yang digunakan. Pelakunya disebut dengan cryptanalyst. Jika seorang kriptopgrafer (istilah bagi pelaku kriptografi) mentransformasikan plainteks ke cipherteks dengan menggunakan kunci, maka sebaliknya seorang kriptanalis berusaha memecahkan cipherteks tersebut untuk menemukan plainteks atau kunci. Kriptologi (cryptology) adalah studi mengenai kriptografi dan kriptanalis. Hubungan antara kriptologi, kriptografi dan kriptanalis dapat dilihat pada Gambar 2.4. Kriptologi Kriptografi Kriptanalis Gambar 2.4 Hubungan antara kriptologi, kriptografi dan kriptografi (Kurniawan, Y. 2004) Jenis Kriptografi Berdasarkan kunci enkripsi dan dekripsinya algoritma kriptografi terbagi menjadi dua bagian yaitu :

7 14 1. Kriptografi simetri Pada sistem algoritma simetris, kunci untuk proses enkripsi sama dengan kunci untuk proses dekripsi. Keamanan sistem algoritma simetris terletak pada kerahasiaan kunci. Istilah lain untuk algoritma simetris adalah kriptografi kunci privat (private key cryptography) atau kriptografi konvensional (conventional cryptography). Kriptografi simetri merupakan satu-satunya jenis kriptografi yang dikenal dalam catatan sejarah hingga tahun Semua algoritma kriptografi klasik termasuk ke dalam sistem kriptografi simetri. Skema Algoritma Simetri dapat dilihat pada Gambar 2.5 Kunci A Plainteks Cipherteks Plainteks Enkripsi Dekripsi B Gambar 2.5 Skema Algoritma Simetri (Halim, A. 2013) Kriptografi simetri adalah kunci enkripsi sama dengan kunci dekripsi, yaitu K. Sebelum melakukan pengiriman pesan, pengirim dan penerima harus memilih suatu kunci tertentu yang sama untuk dipakai bersama, dan kunci ini haruslah rahasia bagi pihak yang tidak berkepentingan sehingga algoritma ini disebut juga algoritma kunci rahasia (secret-key algorithm). a. Kelebihan Kriptografi Simetri : 1. Proses enkripsi atau dekripsi kriptografi simetri membutuhkan waktu yang singkat. 2. Ukuran kunci simetri relatif lebih pendek.

8 15 3. Otentikasi pengiriman pesan langsung diketahui dari cipherteks yang diterima, karena kunci hanya diketahui oleh penerima dan pengirim saja. b. Kekurangan Kriptografi Simetri: 1. Kunci simetri harus dikirim melalui saluran komunikasi yang aman, dan kedua entitas yang berkomunikasi harus menjaga kerahasiaan kunci. 2. Kunci harus sering diubah, setiap kali melakasanakan komunikasi. 2. Kriptografi asimetri Berbeda dengan kriptografi kunci simetri, kriptografi kunci publik memiliki dua buah kunci yang berbeda pada proses enkripsi dan dekripsinya. Nama lain dari kunci asimetri ini adalah kriptografi kunci-publik (public-key cryptography). Kunci untuk enkripsi pada kriptografi asimetri ini tidak rahasia (diketahui oleh publik), sedangkan kunci untuk dekripsi bersifat rahasia (kunci privat). Entitas pengirim akan mengenkripsi dengan menggunakan kunci publik, sedangkan entitas penerima mendekripsi menggunakan kunci privat. Skema dari kriptografi asimetri dapat dilihat pada Gambar 2.6. Gambar 2.6 Skema Algoritma Asimetri ( Halim, A. 2013) Kriptografi asimetri ini dapat dianalogikan seperti kotak surat yang terkunci dan memiliki lubang untuk memasukan surat. Setiap orang dapat memasukkan surat ke dalam kotak surat tersebut, tetapi hanya pemilik surat yang memiliki kunci dan yang dapat membuka kotak surat. Kunci publik dapat dikirim ke penerima melalui saluran yang sama dengan saluran yang digunakan untuk mengirim pesan, tidak perlu takut, karena

9 16 pihak yang tidak berkepentingan tidak akan dapat mendekripsi pesan tersebut, karena tidak memiliki kunci privat. a. Kelebihan kriptografi asimetri: 1. Hanya kunci privat yang perlu dijaga kerahasiaanya oleh setiap entitas yang berkomunikasi. Tidak ada kebutuhan mengirim kunci privat sebagaimana pada kunci simetri. 2. Pasangan kunci privat dan kunci publik tidak perlu diubah dalam jangka waktu yang sangat lama. 3. Dapat digunakan dalam pengaman pengiriman kunci simetri. 4. Beberapa algoritma kunci publik dapat digunakan untuk memberi tanda tangan digital pada pesan. b. Kelemahan kriptografi asimetri : 1. Proses enkripsi dan dekripsi umumnya lebih lambat dari algoritma simetri, karena menggunakan bilangan yang besar dan operasi bilangan yang besar. 2. Ukuran cipherteks lebih besar daripada plainteks. 3. Ukuran kunci relatif lebih besar daripada ukuran kunci simetri. 2.2 Algoritma ElGamal Algoritma ini merupakan salah satu algoritma kriptografi asimetri. Pada subbab ini penulis akan membahas dasar-dasar dan prinsip kerja dari algoritma ElGamal itu sendiri Sejarah Algoritma ElGamal Algoritma ElGamal merupakan algoritma enkripsi kunci asimetris yang berdasarkan pada pertukaran kunci Diffe-Hellman. Algoritma ini diusulkan Taher Elgamal pada tahun Keamanan algoritma ini didasarkan pada kesulitan memecahkan masalah logaritma diskrit dalam grup. Sampai akhir tahun 1970, hanya ada sistem kriptografi simetri.

10 17 Karena sistem kriptografi simetri menggunakan kunci yang sama untuk enkripsi dan dekripsi, maka hal ini mengimplikasikan dua pihak yang berkomunikasi saling mempercayai. Konsep sistem kriptografi kunci-publik ditemukan oleh Diffie dan Hellman yang mempresentasikan konsep ini pada Tahun Ide dasar dari sistem kriptografi kunci-publik adalah bahwa kunci kriptografi dibuat sepasang, satu kunci untuk enkripsi dan satu kunci untuk dekripsi. Kunci untuk enkripsi bersifat publik (tidak rahasia), sehingga dinamakan kunci publik (public-key). Sedangkan kunci dekripsi bersifat rahasia sehingga dinamakan kunci rahasia (private key atau secret key). Logaritma ini disebut logaritma diskrit karena nilainya berhingga dan bergantung pada bilangan prima yang digunakan. Karena bilangan prima yang digunakan adalah bilangan prima yang besar, maka sangat sulit bahkan tidak mungkin menurunkan kunci privat dari kunci publik yang diketahui walaupun serangan dilakukan dengan menggunakan sumberdaya komputer yang sangat besar. Algoritma ElGamal mempunyai kunci publik berupa tiga pasang bilangan dan kunci rahasia berupa satu bilangan. Algoritma ini mempunyai kerugian pada cipherteksnya yang mempunyai panjang dua kali lipat dari plainteksnya. Akan tetapi, algoritma ini mempunyai kelebihan pada enkripsi. Untuk plainteks yang sama, algoritma ini memberikan cipherteks yang berbeda setiap kali plainteks dienkripsi. Algoritma ElGamal terdiri dari tiga proses, yaitu proses pembentukan kunci, proses enkripsi dan proses dekripsi. Algoritma ini merupakan cipher blok, yaitu melakukan proses enkripsi pada blok-blok plainteks dan menghasilkan blok-blok cipherteks yang kemudian dilakukan proses dekripsi dan hasilnya digabungkan. Besaran-besaran yang digunakan dalam pembangkitan kunci publik algoritma ElGamal (Taufiq, M. 2010) : 1. Bilangan prima, p (tidak rahasia) 2. Bilangan acak α sebagai akar primitf ( α < p) (tidak rahasia) 3. Bilangan acak a (a < p) (rahasia) 4. Blok plainteks M (plainteks) (rahasia) 5. y dan c (cipherteks) (tidak rahasia)

11 Landasan Matematika Algoritma ElGamal Dalam mempelajari sebuah algoritma kriptografi, sebaiknya kita memahami terlebih dahulu konsep-konsep dasar perhitungan matematis yang akan digunakan dalam suatu algoritma kriptografi tersebut Modulo Exponensial Modulo eksponensial sering digunakan dalam bidang kriptografi untuk menghitung hasil enkripsi maupun hasil dekripsi. Permasalahan pada operasi modulo adalah bagaimana menghitung x y (mod n) dengan n yang sangat besar. Terdapat beberapa cara untuk menghitung modulo eksponensial, antara lain adalah dengan cara iteratif. Function mod exp (x, y, n){ z =1 for (i=1; i y; i++){ z = x * z mod n } return z } Contoh : Tentukan hasil dari 2 5 mod 30 dengan cara iterasi! Diketahui nilai x = 2, y = 5 dan n = 30. z = 1 i = 1 z = 2 * 1 mod 30 = 2 i = 2 z = 2 * 2 mod 30 = 4 i = 3 z = 2 * 4 mod 30 = 8 i = 4 z = 2 * 8 mod 30 = 16 i = 5 z = 2 * 16 mod 30 = 2 berhenti

12 19 Maka hasil dari 2 5 mod 30 adalah Algoritma Euclidean Algoritma ini digunakan untuk mencari nilai pembagi persekutuan terbesar (PBB) dari dua bilangan bulat. Algoritma ini didasarkan pada pernyataan bahwa ada dua buah bilangan bulat tak negatif yakni m dan n dimana nilai m n. Adapun tahap-tahap pada algoritma Euclidean adalah: 1. Jika n = 0 maka m adalah PBB (m, n); stop. Kalau tidak (yaitu n 0) lanjutkan ke langkah nomor Bagilah m dengan n dan misalkan sisanya adalah r. 3. Ganti nilai m dengan nilai n dan nilai n dengan nilai r, lalu ulang kembali ke langkah nomor 1. Algoritma Euclidean dapat digunakan untuk mencari dua buah bilangan bulat yang relatif prima. Contoh : Tentukan gcd (108, 360) 360 mod 108 = mod 36 = 0 (STOP) Jadi gcd (108, 360) = 36 Tentukan gcd (45, 13) 45 mod 13 = 6 13 mod 6 = 1 6 mod 1 = 0 (STOP) Jadi gcd (45, 13) = 1. Apabila GCD dari m & n = 1, maka m&n disebut Relatif prima Inversi Modulo Jika a dan n relatif prima dan n > 1, maka inversi dari a mod n dapat ditemukan. Inversi dari a (mod n), juga disebut inversi perkalian, dimana bilangan bulat a -1 sedemikian sehingga: aa -1 1 (mod n)

13 20 Pembuktian dari persamaan diatas dapat dilihat dari definisi relatif prima diketahui bahwa GCD(a, n) = 1. Contoh: untuk inversi dari 7 (mod 11), penyelesaiannya dapat dilihat pada Tabel 2.1. Tabel 2.1. Penyelesaian contoh soal inversi modulo. a -1 a -1 x 7(mod 11) 1 1 x7 (mod11) = x7 (mod11) = x7 (mod11) = x7 (mod11) = x7 (mod11) = x7 (mod11) = x7 (mod11) = x7 (mod11) = 1 Pada Tabel 2.1, iterasi berhenti ketika a -1 a 1 (mod n) dan diperoleh a -1 = Bilangan Prima Bilangan positif p (p>1) disebut bilangan prima jika pembaginya hanya 1 dan p. Sebagai contoh bilangan 23 adalah bilangan prima karena ia hanya habis dibagi 1 dan 23. Karena bilangan prima harus lebih besar dari satu, maka barisan bilangan prima dimulai dari 2, yaitu 2, 3, 5, 7, 11, 13,... Seluruh bilangan prima adalah bilangan ganjil, kecuali dua yang merupakan bilangan genap. Sebuah bilangan bulat p > 1 disebut bilangan prima, jika bilangan tersebut hanya memiliki pembagi positif 1 dan p. Bilangan bulat yang lebih dari 1 yang bukan bilangan prima disebut bilangan komposit (Putra, E. 2013).

14 Bilangan Relatif Prima Dua buah bilangan bulat a dan b dikatakan relatif prima jika PBB atau GCD (greatest common divisor) dari a dan b bernilai 1. Contoh : 20 dan 3 relatif prima sebab PBB (20, 3) = 1. Begitu juga 7 dan 11 relatif prima karena PBB (7, 11) = 1. Tetapi 20 dan 5 tidak relatif prima sebab PBB (20, 5) = Elemen Primitif Selain bilangan prima, dalam kriptografi ElGamal juga digunakan elemen primitif yang merupakan elemen pembangun dari grup Z p. Untuk mencari elemen ini digunakan p=2q+1, dimana q merupakan bilangan prima. Jika elemen α memenuhi α 2 mod p 1 dan α q mod p 1, maka α merupakan elemen primitif (Jeffrey dkk, 2008).). Untuk mengetahui suatu bilangan merupakan elemen primitif atau tidak dapat dilakukan langkah-langkah sebagai berikut : 1. Input bilangan prima aman p Hitung q= p Hitung α 2 mod p dan α q mod p. 4. Jika α 2 mod p= 1, maka α bukan elemen primitif. 5. Jika α q mod p= 1, maka α bukan elemen primitif. 6. Jika tidak terpenuhi dua persyaratan di atas maka q merupakan elemen primitif. Misalkan p = 2579 yang merupakan bilangan prima aman. Oleh karena itu, dapat ditentukan bilangan prima q = = Untuk menunjukkan bahwa suatu bilangan bulat a merupakan elemen primitif Z 2579 *, harus ditunjukkan bahwa α 2 mod dan α 1289 mod Berikut diberikan tabel perhitungan untuk beberapa nilai a yang diberikan.

15 22 Tabel 2.2. Perhitungan α 2 mod 2579 dan α 1289 mod 2579 a α 2 mod α 1289 mod Fermat s Little Theorem Fermat s little theorem adalah suatu metode yang digunakan untuk menguji keprimaan suatu bilangan bulat. Teorema Fermat ditemukan oleh Pierre De Fermat merupakan seorang matematikawan Perancis pada tahun Meskipun dapat digunakan untuk mempermudah kalkulasi dalam kriptografi, peran terpenting dari Fermat's little theorem adalah sebagai dasar dari berbagai teknik enkripsi asimetris. Salah satu perhitungan matematis yang digunakan untuk menghasilkan bilangan prima adalah metode Fermat yang dapat dirumuskan sebagai berikut: Untuk bilangan prima p dan bilangan bulat a, a p a (mod p) dan jika a tidak dapat dibagi oleh p, maka a p-1 1 (mod p) (Kromodimoeljo, S. 2010). Di mana p adalah bilangan bulat dan a adalah urutan bilangan yang lebih kecil dari p. Contoh penerapan metode Fermat adalah sebagai berikut: a. Bila p = 4 Maka 1 a< 4, didapat a = {1, 2, 3} a p-1 mod p mod 4 = 1 3 mod 4 = mod 4 = 2 3 mod 4 = mod 4 = 3 3 mod 4 = 3 Jadi, angka 4 bukan merupakan bilangan prima sebab dalam pengecekan menggunakan metode Fermat didapat semua hasil dari urutan bilangan yang lebih kecil dari 4 terdapat nilai yang 0.

16 23 b. Bila p = 5 Maka 1 a< 5, jadi didapat a = {1, 2, 3, 4} a p-1 mod p mod 5 = 1 4 mod 5 = mod 5 = 2 4 mod 5 = mod 5 = 3 4 mod 5 = mod 5 = 4 4 mod 5 = 1 Jadi, angka 5 merupakan bilangan prima sebab dalam pengecekan menggunakan metode Fermat didapat semua hasil dari urutan bilangan yang lebih kecil dari 5 adalah 1. Untuk angka yang besar dengan jumlah nilai a yang banyak, hanya diambil beberapa angka sebagai contoh untuk dilakukan pengujian dengan metode Fermat. 2.4 Prinsip Kerja Algoritma ElGamal Proses Pembangkitan Kunci Langkah-langkah dalam pembangkitan kunci 1. Pilih sembarang bilangan prima p ( disarankan bilangan prima yang bernilai besar agar aman dan uji bilangan prima tersebut dengan metode Fermat). Misalkan p = Ambil bilangan α sebagai akar primitive mod p Misalkan α = Ambil bilangan acak a dengan syarat a harus berada dalam rentang 2 a<p-1. Misalkan a = Hitung berapa x=α a mod p = mod 271 = 39 Hasil dari perhitungan didapat:

17 24 1. Kunci publik (p,α,x) = (271, 107, 39) 2. Kunci privat (p,a)= (271, 96) Proses Enkripsi Langkah-langkah dalam mengenkripsi pesan: 1. Terima kunci publik (p, α, x) = (271, 107, 39) 2. Plainteks m disusun menjadi blok-blok m1, m2,, mp-1 sedemikian sehingga setiap blok merepresentasikan nilai di dalam rentang 0 sampai p Ubah nilai blok pesan ke dalam nilai ASCII. Ekspresikan pesan m1 = c = 99 (kode ASCII) sebagai bilangan 4. Ambil sebuah bilangan asli b < p-1 b = Hitung y = α b mod p = mod 271 = 238 Hitung c = (m(x b mod p)) mod p = (99(39 50 mod 271) mod 271 = mod 271 = 200 Maka dari perhitungan di atas, kita mendapatkan nilai y dan c sebagai cipherteks nya yaitu (238, 200). Jadi, ukuran cipherteks dua kali ukuran plainteksnya. Proses diatas akan berulang untuk membaca semua blok pesan untuk menghasilkan cipherteks. 6. Kirim y = 238 dan c = 200 ke pemilik kunci publik Proses Dekripsi Langkah-langkah dalam mendekripsi pesan: 1. Terima (y,c) dari sender = ( 238, 200)

18 25 2. Hitung Z = y p-1-a mod p = mod 271 = mod 271 = 178 Hitung M = c.z mod p = mod 271 = 99. Karakter dalam ASCII adalah c. sesuai dengan plainteks yang dikirim sender, yang berarti bahwa plainteks ditemukan kembali dari pasangan cipherteks y dan c. Kemudian menggabungkan lagi blok m1, m2,.. menjadi plainteks yang utuh. 2.5 Defenisi Kompresi Kompresi data adalah ilmu atau seni yang merepresentasikan informasi dalam bentuk yang lebih compact. Istilah kompresi tersebut diterjemahkan dari kata bahasa Inggris compression yang berarti pemampatan. Dalam bidang teknik, kompresi berarti proses memampatkan sesuatu yang berukuran besar sehingga menjadi kecil. Dengan demikian, kompresi data berarti proses untuk memampatkan data agar ukurannya menjadi lebih kecil (Komputer, W. 2003). Definisi kompresi data adalah proses yang mengkonversi sebuah masukan berupa aliran data (the source atau data asli mentah) menjadi suatu aliran data lain (the Output, aliran bit, atau aliran sudah dikompres) yang memiliki ukuran lebih kecil. Aliran data (stream) dapat berupa sebuah file atau buffer pada memori. Data dalam konteks kompresi data melingkupi segala bentuk digital dari informasi, yang dapat diproses oleh sebuah program komputer. Bentuk dari informasi tersebut secara luas dapat diklasifikasikan sebagai teks, suara, gambar dan video (Salomon,D. 2007). Tujuan kompresi data adalah untuk mempercepat dan menghemat biaya pengiriman data atau informasi tersebut. Disamping itu kompresi data juga memiliki

19 26 tujuan untuk dapat mengurangi ukuran data dan dapat disimpan pada media penyimpanan yang memiliki ukuran relatif kecil Penggolongan Algoritma Kompresi Secara garis besar terdapat 2 buah penggolongan algoritma kompresi data yaitu kompresi lossy, dan kompresi lossless (Merdiyan, M. 2005). 1. Kompresi Lossless merupakan metoda kompresi data yang memungkinkan data asli dapat disusun kembali dari data hasil kompresi maka rasio kompresi pun tidak dapat terlalu besar untuk memastikan semua data dapat dikembalikan ke bentuk semula. Contoh metode ini adalah Elias Gamma Code, Shannon-Fano Coding, Huffman Coding, Arithmetic Coding, Run Length Encoding, dan lain-lain. 2. Kompresi Lossy adalah suatu metode untuk mengkompresi data dan mendekompresinya. Data yang diperoleh mungkin berbeda dari data aslinya, tetapi perbedaan itu cukup dekat. Metode ini paling sering digunakan untuk kompres data multimedia (Audio file dan gambar). Format kompresi Lossy mengalami generation loss yaitu jika mengalami prose kompresi-dekompresi berulang kali maka akan menyebabkan kehilangan kualitas secara progresif. Contoh metode ini adalah Transform Coding, Wavelet, dan lain-lain Algoritma Elias Gamma Code Elias Gamma Code adalah sebuah algoritma kompresi yang dibuat oleh Peter Elias. Untuk membuat tabel kode Elias Gamma, Elias menambah panjang kode dalam unary (u). Dalam kode berikutnya, Eγ ditambahkan pada panjang kode (M) dalam biner (β). Dengan demikian, Elias Gamma Code, yang juga untuk bilangan bulat positif, sedikit lebih kompleks untuk dibangun (Salomon, D. 2007). Adapun aturan untuk mengkodekan sebuah bilangan dengan menggunakan Elias Gamma (Sukiman & Chandra, 2013) adalah sebagai berikut: 1. Tulis bilangan (n) tersebut dalam bentuk biner (β), hitung jumlah bit (M).

20 27 2. Kurangkan 1 dari jumlah bit yang ditulis pada langkah pertama dan tambahkan sesuai dengan banyaknya bilangan nol (u) diikuti oleh angka Gabungkan bilangan dalam bentuk biner (β) dengan kode dalam bentuk unar (u) dengan menghilangkan angka 1 didepan sehingga menghasilkan Eγ (n). Contoh pada bilangan integer 4 (n=4), maka : β(4) = 100 M = 3 u (4) = 001 Eγ(4) = = Elias Gamma hanya dapat digunakan untuk mengkodekan bilangan bulat positif dan mengasumsikan bahwa pengkodeaan Gamma hanya efisien untuk integer kecil tetapi tidak cocok untuk integer yang besar, dimana kode terparameter dari Elias Code yang lain adalah Delta code lebih cocok digunakan. Tabel Elias Gamma Code dapat dilihat pada Tabel 2.3. Tabel 2.3. Tabel Elias Gamma Code n β M Unary (u) Eγ(n) hapus angka 1 disebelah kiri dari hasil Eγ(n) Lanjutan Tabel 2.3. Tabel Elias Gamma Code

21 28 n β M Unary (u) Eγ(n) hapus angka 1 disebelah kiri dari hasil Eγ(n) Konsep Kompresi Data Untuk proses kompresi menggunakan Elias Gamma Code kita merujuk pada Tabel2.3. Dimana Elias Gamma ini hanya cocok diterapkan untuk bilangan desimal 1 hingga 15 karena pengkodean kelima belas bilangan ini hanya memerlukan jumlah bit 1 hingga 7 bit sehingga efisiensi penyimpanan di dapat. Proses kompresi sendiri didasarkan pada bahwa isi file akan dibaca secara per byte (8 bit) sehingga menghasilkan nilai pembacaan antara 0 hingga 255. Suatu metode pada kompresi data akan menghasilkan bit-bit (satuan terkecil pembentuk data) data baru yang lebih pendek dibandingkan oleh bit-bit data sebelum dikompresi. Bit-bit data yang lebih pendek tersebut biasanya tidak akan bisa dibaca oleh komputer sebelum dilakukan proses encoding. Pada proses encoding bit-bit data tersebut di-encode setiap delapan bitnya sehingga membentuk satu karakter yang dapat dibaca oleh komputer. Begitu juga sebaliknya, pada saat dekompresi bit-bit data tersebut didecode kembali agar membentuk bit-bit data semula yang akan digunakan dalam proses dekompresi. Karena pada saat proses dekompresi dibutuhkan bit-bit data sebelum di- Encode untuk dapat dibaca kembali dalam proses dekompresi. Didalam komputer satu karakter direpresentasikan oleh bilangan ASCII (American Standard Code For Information Interchange) sebanyak delapan bit dalam bilangan biner. Jika ternyata jumlah bit-bit data tersebut bukan merupakan kelipatan delapan. Maka dibentuk variabel baru sebagai penambahan ke bit-bit data itu agar bit-bit data tersebut habis dibagi delapan. Variabel ini adalah padding dan flagging.

22 29 1. Padding Padding adalah penambahan bit 0 sebanyak kekurangan jumlah bit-bit data pada hasil proses kompresi sehingga jumlah keseluruhan bit-bit data tersebut merupakan kelipatan delapan (habis dibagi delapan). Contoh misalkan dihasilkan bit-bit data hasil kompresi yaitu Terdapat 7 bit data dalam bilangan biner. Maka dilakukan penambahan bit 0 sebanyak 1 kali agar jumlah bit-bit data tersebut habis dibagi delapan. Sehingga bit bit data itu menjadi setelah diberikan padding. 2. Flagging Flagging adalah penambahan bilangan biner sepanjang delapan bit setelah padding dimana flagging ini adalah sejumlah bilangan yang memberikan sebuah tanda bahwa terdapat n buah padding di dalam bit-bit data hasil dari kompresi. Penambahan flagging ini dimaksudkan untuk mempermudah dalam membaca bit-bit data hasil kompresi pada saat proses dekompresi. Contoh misalkan bit-bit data yang telah diberikan padding adalah Karena terdapat 1 bit penambahan padding maka flag nya adalah bilangan biner dari 1 dengan panjang 8 bit yaitu Sehingga bit-bit datanya menjadi setelah diberikan flagging. Contoh : Berikut ini adalah contoh proses kompresi file teks dengan metode Elias Gamma Code. Terdapat file teks yang berisikan string KUKU KAKI KAKAK KAKEKKU KAKU. Untuk ukuran String dapat dilihat pada Tabel 2.4. Tabel 2.4. String yang Belum Dikompresi char ASCII Code ASCII Code (Binary) Bit Frek Bit x Frek K A U Sp

23 30 Lanjutan Tabel 2.4. String yang Belum Dikompresi char ASCII Code ASCII Code (Binary) Bit Frek Bit x Frek I E Total 224 Berdasarkan kode ASCII, satu karakter bernilai delapan bit bilangan biner. Sehingga 35 karakter pada string mempunyai nilai biner sebanyak 224 bit. Sebelum melakukan proses kompresi, karakter tersebut diurutkan terlebih dahulu berdasarkan dari karakter yang memiliki frekuensi terbesar ke terkecil. Proses kompresi untuk Elias Gamma Code dapat dilihat pada Tabel 2.5 Tabel 2.5. String yang Sudah Dikompresi Dengan Elias Gamma Code char Elias Gamma Code Bit Frek Bit x Frek K A U Sp I E Total 70 Dapat dibentuk string bit dari string sebelum dikompresi yaitu KUKU KAKI KAKAK KAKEKKU KAKU menjadi string bit Sebelum ditulis ke sebuah file hasil kompresi dilakukan penambahan bit-bit padding dan flagging diakhir String bit. Bit-bit itu dihasilkan dari panjang String bit itu sendiri apakah habis dibagi delapan dan berapa sisanya jika dibagi delapan. Karena jumlah String bit 70 tidak habis dibagi delapan dan sisanya 6. Maka dapat dibuat padding 00

24 31 dan flaggingnya adalah menjadi Sehingga total bit seluruhnya setelah penambahan padding dan flagging adalah 80 bit Pengukuran Kinerja Kompresi Data Pada suatu teknik yang digunakan dalam proses kompresi data terdapat beberapa faktor atau variabel yang biasa digunakan untuk mengukur kualitas dari suatu teknik kompresi data tersebut, yaitu: 1. Ratio of compression (Rc) Ratio of compression (Rc) adalah perbandingan antara ukuran data sebelum dikompresi dengan ukuran data setelah dikompresi. Rc = ukuran data sebelum dikompresi ukuran data setelah dikompresi (Salomon dan Motta, 2010) Misalkan didapat sebuah nilai Ratio of compression sebesar Itu berarti besar data sebelum kompresi adalah 2.75 kali lipat dari besar data setelah dikompresi. 2. Compression ratio (Cr) Compression ratio (Cr) adalah persentasi besar data yang telah dikompresi yang didapat dari hasil perbandingan antara ukuran data setelah dikompresi dengan ukuran data sebelum dikompresi. Cr = ukuran data setelah dikompresi ukuran data sebelum dikompresi x 100% (Salomon dan Motta, 2010) Misalkan didapat sebuah nilai Compression ratio sebesar 35%. Itu berarti setelah dikompresi ukuran data adalah 35% dari data sebelum dikompresi.

25 32 3. Redundancy (Rd) Redundancy (Rd) adalah kelebihan yang terdapat di dalam data sebelum dikompresi. Jadi setelah data dikompresi dapat dihitung Redundancy data yaitu persentasi dari hasil selisih antara ukuran data sebelum dikompresi dengan data setelah dikompresi. Rd=100% Cr(Salomon dan Motta, 2010) Misalkan didapat sebuah nilai Redundancy sebesar 14%. Itu berarti besarnya kelebihan data sebelum dikompresi adalah 14%.

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Kriptografi 2.1.1 Pengertian Kriptografi Kriptografi (cryptography) berasal dari Bahasa Yunani criptos yang artinya adalah rahasia, sedangkan graphein artinya tulisan. Jadi kriptografi

Lebih terperinci

BAB 2 LANDASAN TEORI. Berikut ini akan dijelaskan pengertian, tujuan dan jenis kriptografi.

BAB 2 LANDASAN TEORI. Berikut ini akan dijelaskan pengertian, tujuan dan jenis kriptografi. BAB 2 LANDASAN TEORI 2.1. Kriptografi Berikut ini akan dijelaskan pengertian, tujuan dan jenis kriptografi. 2.1.1. Pengertian Kriptografi Kriptografi (cryptography) berasal dari bahasa Yunani yang terdiri

Lebih terperinci

BAB 2 LANDASAN TEORI. 2.1 Kriptografi Berikut ini akan dijelaskan sejarah, pengertian, tujuan, dan jenis kriptografi.

BAB 2 LANDASAN TEORI. 2.1 Kriptografi Berikut ini akan dijelaskan sejarah, pengertian, tujuan, dan jenis kriptografi. BAB 2 LANDASAN TEORI 2.1 Kriptografi Berikut ini akan dijelaskan sejarah, pengertian, tujuan, dan jenis kriptografi. 2.1.1 Pengertian Kriptografi Kriptografi (cryptography) berasal dari bahasa yunani yaitu

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 7 BAB 2 LANDASAN TEORI Bab 2 membahas tinjauan teoritis yang berkaitan dengan algoritma kriptografi LUC dan algoritma kompresi Goldbach Codes. 2.1 Kriptografi Informasi dalam sebuah data memiliki nilai

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Kriptografi Kriptografi berasal dari bahasa Yunani. Menurut bahasa tersebut kata kriptografi dibagi menjadi dua, yaitu kripto dan graphia. Kripto berarti secret (rahasia) dan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 7 BAB 2 LANDASAN TEORI 2.1 Kriptografi 2.1.1 Pengertian kriptografi Kriptografi (Cryptography) berasal dari Bahasa Yunani. Menurut bahasanya, istilah tersebut terdiri dari kata kripto dan graphia. Kripto

Lebih terperinci

ALGORITMA ELGAMAL DALAM PENGAMANAN PESAN RAHASIA

ALGORITMA ELGAMAL DALAM PENGAMANAN PESAN RAHASIA ABSTRAK ALGORITMA ELGAMAL DALAM PENGAMANAN PESAN RAHASIA Makalah ini membahas tentang pengamanan pesan rahasia dengan menggunakan salah satu algoritma Kryptografi, yaitu algoritma ElGamal. Tingkat keamanan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Teori Bilangan 2.1.1 Keterbagian Jika a dan b Z (Z = himpunan bilangan bulat) dimana b 0, maka dapat dikatakan b habis dibagi dengan a atau b mod a = 0 dan dinotasikan dengan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 6 BAB 2 LANDASAN TEORI 2.1 Kriptografi Kriptografi merupakan sebuah seni penyandian pesan dalam rangka mencapai tujuan keamanan dalam pertukaran informasi. 2.1.1. Definisi Kriptografi Kriptografi berasal

Lebih terperinci

BAB 2 LANDASAN TEORI. Universitas Sumatera Utara

BAB 2 LANDASAN TEORI. Universitas Sumatera Utara 5 BAB 2 LANDASAN TEORI 2.1 Kriptografi Kriptografi adalah ilmu yang mempelajari bagaimana mengirim pesan secara rahasia sehingga hanya orang yang dituju saja yang dapat membaca pesan rahasia tersebut.

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Kriptografi Kriptografi secara etimologi berasal dari bahasa Yunani kryptos yang artinya tersembunyi dan graphien yang artinya menulis, sehingga kriptografi merupakan metode

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Kriptografi Secara Umum Menurut Richard Mollin (2003), Kriptografi (cryptography) berasal dari bahasa Yunani, terdiri dari dua suku kata yaitu kripto dan graphia. Kripto artinya

Lebih terperinci

BAB III PENGERTIAN DAN SEJARAH SINGKAT KRIPTOGRAFI

BAB III PENGERTIAN DAN SEJARAH SINGKAT KRIPTOGRAFI BAB III PENGERTIAN DAN SEJARAH SINGKAT KRIPTOGRAFI 3.1. Sejarah Kriptografi Kriptografi mempunyai sejarah yang panjang. Informasi yang lengkap mengenai sejarah kriptografi dapat ditemukan di dalam buku

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Keamanan Data Keamanan merupakan salah satu aspek yang sangat penting dari sebuah sistem informasi. Masalah keamanan sering kurang mendapat perhatian dari para perancang dan

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Kriptografi (cryptography) berasal dari Bahasa Yunani: cryptós artinya

BAB II TINJAUAN PUSTAKA. Kriptografi (cryptography) berasal dari Bahasa Yunani: cryptós artinya BAB II TINJAUAN PUSTAKA 2.1 Kriptografi Kriptografi (cryptography) berasal dari Bahasa Yunani: cryptós artinya secret (rahasia), sedangkan gráphein artinya writing (tulisan), jadi kriptografi berarti secret

Lebih terperinci

Bab 2 Tinjauan Pustaka 2.1 Penelitian Terdahulu

Bab 2 Tinjauan Pustaka 2.1 Penelitian Terdahulu Bab 2 Tinjauan Pustaka 2.1 Penelitian Terdahulu Penelitian sebelumnya yang terkait dengan penelitian ini adalah penelitian yang dilakukan oleh Syaukani, (2003) yang berjudul Implementasi Sistem Kriptografi

Lebih terperinci

METODE ENKRIPSI DAN DEKRIPSI DENGAN MENGGUNAKAN ALGORITMA ELGAMAL

METODE ENKRIPSI DAN DEKRIPSI DENGAN MENGGUNAKAN ALGORITMA ELGAMAL METODE ENKRIPSI DAN DEKRIPSI DENGAN MENGGUNAKAN ALGORITMA ELGAMAL Mukhammad Ifanto (13508110) Program Studi Informatika Institut Teknolgi Bandung Jalan Ganesha 10 Bandung e-mail: ifuntoo@yahoo.om ABSTRAK

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA Pada bab ini penulis memaparkan teori-teori ilmiah yang didapat dari metode pencarian fakta yang digunakan untuk mendukung penulisan skripsi ini dan sebagai dasar pengembangan sistem

Lebih terperinci

Bab 2: Kriptografi. Landasan Matematika. Fungsi

Bab 2: Kriptografi. Landasan Matematika. Fungsi Bab 2: Kriptografi Landasan Matematika Fungsi Misalkan A dan B adalah himpunan. Relasi f dari A ke B adalah sebuah fungsi apabila tiap elemen di A dihubungkan dengan tepat satu elemen di B. Fungsi juga

Lebih terperinci

BAB 2 TINJAUAN TEORITIS

BAB 2 TINJAUAN TEORITIS BAB 2 TINJAUAN TEORITIS 2.1 Kriptografi Kemajuan teknologi di bidang komputer memungkinkan ribuan orang dan komputer di seluruh dunia terhubung dalam satu dunia maya yang dikenal sebagai Internet. Begitu

Lebih terperinci

BAB II LANDASAN TEORI. yang mendasari pembahasan pada bab-bab berikutnya. Beberapa definisi yang

BAB II LANDASAN TEORI. yang mendasari pembahasan pada bab-bab berikutnya. Beberapa definisi yang BAB II LANDASAN TEORI Pada bab ini akan diberikan beberapa definisi, penjelasan, dan teorema yang mendasari pembahasan pada bab-bab berikutnya. Beberapa definisi yang diberikan diantaranya adalah definisi

Lebih terperinci

BAB 2 LANDASAN TEORI. 2.1 Kriptografi Definisi Kriptografi

BAB 2 LANDASAN TEORI. 2.1 Kriptografi Definisi Kriptografi BAB 2 LANDASAN TEORI 2. Kriptografi 2.. Definisi Kriptografi Kriptografi adalah ilmu mengenai teknik enkripsi di mana data diacak menggunakan suatu kunci enkripsi menjadi sesuatu yang sulit dibaca oleh

Lebih terperinci

Reference. William Stallings Cryptography and Network Security : Principles and Practie 6 th Edition (2014)

Reference. William Stallings Cryptography and Network Security : Principles and Practie 6 th Edition (2014) KRIPTOGRAFI Reference William Stallings Cryptography and Network Security : Principles and Practie 6 th Edition (2014) Bruce Schneier Applied Cryptography 2 nd Edition (2006) Mengapa Belajar Kriptografi

Lebih terperinci

Pengenalan Kriptografi

Pengenalan Kriptografi Pengenalan Kriptografi (Week 1) Aisyatul Karima www.themegallery.com Standar kompetensi Pada akhir semester, mahasiswa menguasai pengetahuan, pengertian, & pemahaman tentang teknik-teknik kriptografi.

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Kompresi 2.1.1 Sejarah kompresi Kompresi data merupakan cabang ilmu komputer yang bersumber dari Teori Informasi. Teori Informasi sendiri adalah salah satu cabang Matematika yang

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Kriptografi Kriptografi berasal dari bahasa Yunani. Menurut bahasa tersebut kata kriptografi dibagi menjadi dua, yaitu kripto dan graphia. Kripto berarti secret (rahasia) dan

Lebih terperinci

BAB 1 PENDAHULUAN. Universitas Sumatera Utara

BAB 1 PENDAHULUAN. Universitas Sumatera Utara 17 BAB 1 PENDAHULUAN Bab ini akan menjelaskan mengenai latar belakang masalah yang dibahas dalam skripsi ini, rumusan masalah, ruang lingkup penelitian, tujuan penelitian, manfaat penelitian, penelitian

Lebih terperinci

DASAR-DASAR KEAMANAN SISTEM INFORMASI Kriptografi, Steganografi. Gentisya Tri Mardiani, S.Kom.,M.Kom

DASAR-DASAR KEAMANAN SISTEM INFORMASI Kriptografi, Steganografi. Gentisya Tri Mardiani, S.Kom.,M.Kom DASAR-DASAR KEAMANAN SISTEM INFORMASI Kriptografi, Steganografi Gentisya Tri Mardiani, S.Kom.,M.Kom KRIPTOGRAFI Kriptografi (cryptography) merupakan ilmu dan seni untuk menjaga pesan agar aman. Para pelaku

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Kriptografi 2.1.1 Definisi Kriptografi Kriptografi berasal dari bahasa Yunani, crypto dan graphia. Crypto berarti secret (rahasia) dan graphia berarti writing (tulisan)[10]. Beberapa

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Kriptografi Kriptografi telah menjadi bagian penting dalam dunia teknologi informasi saat ini terutama dalam bidang komputer. Hampir semua penerapan teknologi informasi menggunakan

Lebih terperinci

Aplikasi Perkalian dan Invers Matriks dalam Kriptografi Hill Cipher

Aplikasi Perkalian dan Invers Matriks dalam Kriptografi Hill Cipher Aplikasi Perkalian dan Invers Matriks dalam Kriptografi Hill Cipher Catherine Pricilla-13514004 Program Studi Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1. Citra Digital Citra adalah suatu representasi (gambaran), kemiripan, atau imitasi dari suatu objek. Citra terbagi 2 yaitu ada citra yang bersifat analog dan ada citra yang bersifat

Lebih terperinci

BAB I PENDAHULUAN. diperhatikan, yaitu : kerahasiaan, integritas data, autentikasi dan non repudiasi.

BAB I PENDAHULUAN. diperhatikan, yaitu : kerahasiaan, integritas data, autentikasi dan non repudiasi. BAB I PENDAHULUAN 1.1 Latar Belakang Pada proses pengiriman data (pesan) terdapat beberapa hal yang harus diperhatikan, yaitu : kerahasiaan, integritas data, autentikasi dan non repudiasi. Oleh karenanya

Lebih terperinci

BAB II LANDASAN TEORI. bilangan bulat dan mengandung berbagai masalah terbuka yang dapat dimengerti

BAB II LANDASAN TEORI. bilangan bulat dan mengandung berbagai masalah terbuka yang dapat dimengerti BAB II LANDASAN TEORI A. Teori Bilangan Teori bilangan adalah cabang dari matematika murni yang mempelajari sifat-sifat bilangan bulat dan mengandung berbagai masalah terbuka yang dapat dimengerti sekalipun

Lebih terperinci

DASAR-DASAR KEAMANAN SISTEM INFORMASI Kriptografi, Steganografi. Gentisya Tri Mardiani, S.Kom

DASAR-DASAR KEAMANAN SISTEM INFORMASI Kriptografi, Steganografi. Gentisya Tri Mardiani, S.Kom DASAR-DASAR KEAMANAN SISTEM INFORMASI Kriptografi, Steganografi Gentisya Tri Mardiani, S.Kom KRIPTOGRAFI Kriptografi (cryptography) merupakan ilmu dan seni untuk menjaga pesan agar aman. Para pelaku atau

Lebih terperinci

Teknik Konversi Berbagai Jenis Arsip ke Dalam bentuk Teks Terenkripsi

Teknik Konversi Berbagai Jenis Arsip ke Dalam bentuk Teks Terenkripsi Teknik Konversi Berbagai Jenis Arsip ke Dalam bentuk Teks Terenkripsi Dadan Ramdan Mangunpraja 1) 1) Jurusan Teknik Informatika, STEI ITB, Bandung, email: if14087@if.itb.ac.id Abstract Konversi berbagai

Lebih terperinci

PENGGUNAAN ALGORITMA KRIPTOGRAFI POHLIG HELLMAN DALAM MENGAMANKAN DATA

PENGGUNAAN ALGORITMA KRIPTOGRAFI POHLIG HELLMAN DALAM MENGAMANKAN DATA PENGGUNAAN ALGORITMA KRIPTOGRAFI POHLIG HELLMAN DALAM MENGAMANKAN DATA Rita Novita Sari Teknik Informatika, Universitas Potensi Utama Jalan K.L. Yos Sudarso KM. 6,5 No. 3A Tanjung Mulia Medan rita.ns89@gmail.com

Lebih terperinci

PERANCANGAN APLIKASI KOMPRESI CITRA DENGAN METODE RUN LENGTH ENCODING UNTUK KEAMANAN FILE CITRA MENGGUNAKAN CAESAR CHIPER

PERANCANGAN APLIKASI KOMPRESI CITRA DENGAN METODE RUN LENGTH ENCODING UNTUK KEAMANAN FILE CITRA MENGGUNAKAN CAESAR CHIPER PERANCANGAN APLIKASI KOMPRESI CITRA DENGAN METODE RUN LENGTH ENCODING UNTUK KEAMANAN FILE CITRA MENGGUNAKAN CAESAR CHIPER Dwi Indah Sari (12110425) Mahasiswa Program Studi Teknik Informatika, Stmik Budidarma

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Kriptografi 2.1.1 Definisi Kriptografi Ditinjau dari terminologinya, kata kriptografi berasal dari bahasa Yunani yaitu cryptos yang berarti menyembunyikan, dan graphein yang artinya

Lebih terperinci

(pencurian, penyadapan) data. Pengamanan data dapat dilakukan dengan dua cara, yaitu steganography dan cryptography.

(pencurian, penyadapan) data. Pengamanan data dapat dilakukan dengan dua cara, yaitu steganography dan cryptography. Dasar-dasar keamanan Sistem Informasi Pertemuan II Pengamanan Informasi David Khan dalam bukunya The Code-breakers membagi masalah pengamanan informasi menjadi dua kelompok; security dan intelligence.

Lebih terperinci

Simulasi Pengamanan File Teks Menggunakan Algoritma Massey-Omura 1 Muhammad Reza, 1 Muhammad Andri Budiman, 1 Dedy Arisandi

Simulasi Pengamanan File Teks Menggunakan Algoritma Massey-Omura 1 Muhammad Reza, 1 Muhammad Andri Budiman, 1 Dedy Arisandi JURNAL DUNIA TEKNOLOGI INFORMASI Vol. 1, No. 1, (2012) 20-27 20 Simulasi Pengamanan File Teks Menggunakan Algoritma Massey-Omura 1 Muhammad Reza, 1 Muhammad Andri Budiman, 1 Dedy Arisandi 1 Program Studi

Lebih terperinci

PERANAN ARITMETIKA MODULO DAN BILANGAN PRIMA PADA ALGORITMA KRIPTOGRAFI RSA (Rivest-Shamir-Adleman)

PERANAN ARITMETIKA MODULO DAN BILANGAN PRIMA PADA ALGORITMA KRIPTOGRAFI RSA (Rivest-Shamir-Adleman) Media Informatika Vol. 9 No. 2 (2010) PERANAN ARITMETIKA MODULO DAN BILANGAN PRIMA PADA ALGORITMA KRIPTOGRAFI RSA (Rivest-Shamir-Adleman) Dahlia Br Ginting Sekolah Tinggi Manajemen Informatika dan Komputer

Lebih terperinci

BAB Kriptografi

BAB Kriptografi BAB 2 LANDASAN TEORI 2.1 Kriptografi Kriptografi berasal dari bahasa Yunani, yakni kata kriptos dan graphia. Kriptos berarti secret (rahasia) dan graphia berarti writing (tulisan). Kriptografi merupakan

Lebih terperinci

PENGAMANAN SQLITE DATABASE MENGGUNAKAN KRIPTOGRAFI ELGAMAL

PENGAMANAN SQLITE DATABASE MENGGUNAKAN KRIPTOGRAFI ELGAMAL PENGAMANAN SQLITE DATABASE MENGGUNAKAN KRIPTOGRAFI ELGAMAL Deny Adhar Teknik Informatika, STMIK Potensi Utama Medan Jln. Kol. Yos. Sudarso Km. 6,5 No. 3A Medan adhar_7@yahoo.com Abstrak SQLite database

Lebih terperinci

Security Sistem Informasi.

Security Sistem Informasi. Security Sistem Informasi TANTRI HIDAYATI S, M.KOM PROFIL Nama S1 S2 EMAIL BLOG : TANTRI HIDAYATI S, M.KOM : UNIVERSITAS PGRI YOGYAKARTA : UNIVERSITAS PUTRA INDONESIA PADANG : tantri.study@yahoo.com :

Lebih terperinci

ANALISA DAN IMPLEMENTASI ALGORITMA TRIANGLE CHAIN PADA PENYANDIAN RECORD DATABASE

ANALISA DAN IMPLEMENTASI ALGORITMA TRIANGLE CHAIN PADA PENYANDIAN RECORD DATABASE Pelita Informatika Budi Darma, Volume III Nomor : 2, April 2013 ISSN : 2301-9425 ANALISA DAN IMPLEMENTASI ALGORITMA TRIANGLE CHAIN PADA PENYANDIAN RECORD DATABASE Taronisokhi Zebua Staf Pengajar Program

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Kriptografi Kriptografi (cryptography) merupakan ilmu dan seni untuk menjaga pesan agar aman. (Cryptography is the art and science of keeping messages secure) Crypto berarti secret

Lebih terperinci

Modifikasi Affine Cipher Dan Vigènere Cipher Dengan Menggunakan N Bit

Modifikasi Affine Cipher Dan Vigènere Cipher Dengan Menggunakan N Bit Modifikasi Affine Cipher Dan Vigènere Cipher Dengan Menggunakan N Bit Nur Fadilah, EntikInsannudin Jurusan Teknik Informatika Fakultas Sains dan Teknologi UIN Sunan Gunung Djati Bandung Jln. A.H.Nasution

Lebih terperinci

PENGAMANAN SQLITE DATABASE MENGGUNAKAN KRIPTOGRAFI ELGAMAL

PENGAMANAN SQLITE DATABASE MENGGUNAKAN KRIPTOGRAFI ELGAMAL PENGAMANAN SQLITE DATABASE MENGGUNAKAN KRIPTOGRAFI ELGAMAL Deny Adhar Teknik Informatika, STMIK Potensi Utama Medan Jln. Kol. Yos. Sudarso Km. 6,5 No. 3A Medan adhar_7@yahoo.com Abstrak SQLite database

Lebih terperinci

Analisis Penerapan Algoritma MD5 Untuk Pengamanan Password

Analisis Penerapan Algoritma MD5 Untuk Pengamanan Password Analisis Penerapan Algoritma MD5 Untuk Pengamanan Password Inayatullah STMIK MDP Palembang inayatullah@stmik-mdp.net Abstrak: Data password yang dimiliki oleh pengguna harus dapat dijaga keamanannya. Salah

Lebih terperinci

Aplikasi Teori Bilangan dalam Algoritma Kriptografi

Aplikasi Teori Bilangan dalam Algoritma Kriptografi Aplikasi Teori Bilangan dalam Algoritma Kriptografi Veren Iliana Kurniadi 13515078 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung

Lebih terperinci

BAB 2 LANDASAN TEORI. 2.1 Kriptografi

BAB 2 LANDASAN TEORI. 2.1 Kriptografi BAB 2 LANDASAN TEORI 2.1 Kriptografi Kriptografi berasal dari bahasa Yunani, yaitu kryptos yang berarti tersembunyi dan graphein yang berarti menulis. Kriptografi adalah bidang ilmu yang mempelajari teknik

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Kriptografi Kriptografi adalah ilmu mengenai teknik enkripsi dimana data diacak menggunakan suatu kunci enkripsi menjadi sesuatu yang sulit dibaca oleh seseorang yang tidak

Lebih terperinci

APLIKASI TEORI BILANGAN UNTUK AUTENTIKASI DOKUMEN

APLIKASI TEORI BILANGAN UNTUK AUTENTIKASI DOKUMEN APLIKASI TEORI BILANGAN UNTUK AUTENTIKASI DOKUMEN Mohamad Ray Rizaldy - 13505073 Program Studi Teknik Informatika, Institut Teknologi Bandung Jl. Ganesha 10, Bandung, Jawa Barat e-mail: if15073@students.if.itb.ac.id

Lebih terperinci

Optimasi Enkripsi Teks Menggunakan AES dengan Algoritma Kompresi Huffman

Optimasi Enkripsi Teks Menggunakan AES dengan Algoritma Kompresi Huffman Optimasi Enkripsi Teks Menggunakan AES dengan Algoritma Kompresi Huffman Edmund Ophie - 13512095 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl.

Lebih terperinci

RANCANGAN KRIPTOGRAFI HYBRID KOMBINASI METODE VIGENERE CIPHER DAN ELGAMAL PADA PENGAMANAN PESAN RAHASIA

RANCANGAN KRIPTOGRAFI HYBRID KOMBINASI METODE VIGENERE CIPHER DAN ELGAMAL PADA PENGAMANAN PESAN RAHASIA RANCANGAN KRIPTOGRAFI HYBRID KOMBINASI METODE VIGENERE CIPHER DAN ELGAMAL PADA PENGAMANAN PESAN RAHASIA Bella Ariska 1), Suroso 2), Jon Endri 3) 1),2),3 ) Program Studi Teknik Telekomunikasi Jurusan Teknik

Lebih terperinci

BAB II DASAR TEORI. membahas tentang penerapan skema tanda tangan Schnorr pada pembuatan tanda

BAB II DASAR TEORI. membahas tentang penerapan skema tanda tangan Schnorr pada pembuatan tanda BAB II DASAR TEORI Pada Bab II ini akan disajikan beberapa teori yang akan digunakan untuk membahas tentang penerapan skema tanda tangan Schnorr pada pembuatan tanda tangan digital yang meliputi: keterbagian

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Kriptografi Kriptografi berasal dari bahasa Yunani, yaitu crypto dan graphia. Crypto berarti secret atau rahasia dan graphia berarti writing (tulisan). Terminologinya, kriptografi

Lebih terperinci

RANCANGAN,IMPLEMENTASI DAN PENGUJIAN ZENARC SUPER CIPHER SEBAGAI IMPLEMENTASI ALGORITMA KUNCI SIMETRI

RANCANGAN,IMPLEMENTASI DAN PENGUJIAN ZENARC SUPER CIPHER SEBAGAI IMPLEMENTASI ALGORITMA KUNCI SIMETRI RANCANGAN,IMPLEMENTASI DAN PENGUJIAN ZENARC SUPER CIPHER SEBAGAI IMPLEMENTASI ALGORITMA KUNCI SIMETRI Ozzi Oriza Sardjito NIM 13503050 Program Studi Teknik Informatika, STEI Institut Teknologi Bandung

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 5 BAB 2 LANDASAN TEORI 2.1 Kriptografi 2.1.1 Pengertian Kriptografi Kriptografi pada awalnya dijabarkan sebagai ilmu yang mempelajari bagaimana menyembunyikan pesan. Pada kriptografi klasik umumnya merupakan

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Perkembangan jaringan komputer di masa kini memungkinan kita untuk melakukan pengiriman pesan melalui jaringan komputer. Untuk menjaga kerahasiaan dan keutuhan pesan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA II.1 Pengenalan Kriptografi II.1.1 Sejarah Kriptografi Kriptografi mempunyai sejarah yang panjang. Informasi yang lengkap mengenai sejarah kriptografi dapat di temukan di dalam

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Kriptografi Ditinjau dari segi terminologinya, kata kriptografi berasal dari bahasa Yunani yaitu crypto yang berarti secret (rahasia) dan graphia yang berarti writing (tulisan).

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 8.1. Kriptografi Kriptografi memiliki arti sebagai suatu bidang ilmu yang mempelajari metodemetode pengiriman pesan dalam bentuk rahasia sehingga hanya pihak yang dituju saja yang

Lebih terperinci

Bab 2 Tinjauan Pustaka

Bab 2 Tinjauan Pustaka Bab 2 Tinjauan Pustaka 2.1 Penelitian Sebelumnya Pada penelitian sebelumnya, yang berjudul Pembelajaran Berbantu komputer Algoritma Word Auto Key Encryption (WAKE). Didalamnya memuat mengenai langkah-langkah

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Kriptografi Kriptografi digunakan sebagai alat untuk menjamin keamanan dan kerahasiaan informasi. Karena itu kriptografi menjadi ilmu yang berkembang pesat, terbukti dengan banyaknya

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 2 BAB 2 LANDASAN TEORI 2.1. Kriptografi 2.1.1. Definisi Kriptografi Kriptografi berasal dari bahasa Yunani yang terdiri dari dua kata yaitu cryto dan graphia. Crypto berarti rahasia dan graphia berarti

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA 6 BAB 2 TINJAUAN PUSTAKA 2.1. Kompresi Data Dalam ilmu komputer, pemampatan data atau kompresi data adalah sebuah cara untuk memadatkan data sehingga hanya memerlukan ruangan penyimpanan lebih kecil sehingga

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 6 BAB 2 LANDASAN TEORI 2.1. Kompresi Data Kompresi adalah mengecilkan/ memampatkan ukuran. Kompresi Data adalah teknik untuk mengecilkan data sehingga dapat diperoleh file dengan ukuran yang lebih kecil

Lebih terperinci

+ Basic Cryptography

+ Basic Cryptography + Basic Cryptography + Terminologi n Kriptografi (cryptography) merupakan ilmu dan seni untuk menjaga pesan agar aman. Crypto berarti secret (rahasia) dan graphy berarti writing (tulisan). n Para pelaku

Lebih terperinci

MODUL PERKULIAHAN EDISI 1 MATEMATIKA DISKRIT

MODUL PERKULIAHAN EDISI 1 MATEMATIKA DISKRIT MODUL PERKULIAHAN EDISI 1 MATEMATIKA DISKRIT Penulis : Nelly Indriani Widiastuti S.Si., M.T. JURUSAN TEKNIK INFORMATIKA UNIVERSITAS KOMPUTER INDONESIA BANDUNG 2011 7 TEORI BILANGAN JUMLAH PERTEMUAN : 1

Lebih terperinci

Bab 2 Tinjauan Pustaka 2.1 Penelitian Terdahulu

Bab 2 Tinjauan Pustaka 2.1 Penelitian Terdahulu Bab 2 Tinjauan Pustaka 2.1 Penelitian Terdahulu Penelitian sebelumnya terkait dengan penelitian ini, Perancangan Kriptografi Kunci Simetris Menggunakan Fungsi Bessel dan Fungsi Legendre membahas penggunaan

Lebih terperinci

BAB III ANALISIS DAN PERANCANGAN

BAB III ANALISIS DAN PERANCANGAN BAB III ANALISIS DAN PERANCANGAN III.1. Analisa Masalah Kebutuhan manusia akan perangkat informasi dan komunikasi seakan menjadi kebutuhan yang tidak terpisahkan dalam kehidupan. Dengan banyaknya aplikasi

Lebih terperinci

Kriptografi, Enkripsi dan Dekripsi. Ana Kurniawati Kemal Ade Sekarwati

Kriptografi, Enkripsi dan Dekripsi. Ana Kurniawati Kemal Ade Sekarwati Kriptografi, Enkripsi dan Dekripsi Ana Kurniawati Kemal Ade Sekarwati Terminologi Kriptografi (cryptography) merupakan ilmu dan seni untuk menjaga pesan agar aman. Crypto berarti secret (rahasia) dan graphy

Lebih terperinci

BAB 1 PENDAHULUAN Latar Belakang

BAB 1 PENDAHULUAN Latar Belakang 1 BAB 1 PENDAHULUAN 1.1. Latar Belakang Kompresi data adalah suatu proses untuk mengubah sebuah input data stream (stream sumber atau data mentah asli) ke dalam aliran data yang lain yang berupa output

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Pada bab ini, akan dibahas landasan teori, penelitian terdahulu, kerangka pikir dan hipotesis yang mendasari penyelesaian permasalahan pengamanan data file dengan kombinasi algoritma

Lebih terperinci

PENYANDIAN DATA TEKS DENGAN ALGORITMA ELGAMAL DAN ALGORITMA KOMPRESI DATA DENGAN ALGORITMA ELIAS GAMMA CODE SKRIPSI WIWIN AGUSTINI LUBIS

PENYANDIAN DATA TEKS DENGAN ALGORITMA ELGAMAL DAN ALGORITMA KOMPRESI DATA DENGAN ALGORITMA ELIAS GAMMA CODE SKRIPSI WIWIN AGUSTINI LUBIS PENYANDIAN DATA TEKS DENGAN ALGORITMA ELGAMAL DAN ALGORITMA KOMPRESI DATA DENGAN ALGORITMA ELIAS GAMMA CODE SKRIPSI WIWIN AGUSTINI LUBIS 131421061 PROGRAM STUDI EKSTENSI S1 ILMU KOMPUTER FAKULTAS ILMU

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA 5 BAB 2 TINJAUAN PUSTAKA 2.1. Kompresi Data Kompresi data adalah proses mengubah sebuah aliran data input menjadi aliran data baru yang memiliki ukuran lebih kecil. Aliran yang dimaksud adalah berupa file

Lebih terperinci

BAB I PENDAHULUAN. mempunyai makna. Dalam kriptografi dikenal dua penyandian, yakni enkripsi

BAB I PENDAHULUAN. mempunyai makna. Dalam kriptografi dikenal dua penyandian, yakni enkripsi BAB I PENDAHULUAN A. Latar Belakang Kemajuan dan perkembangan teknologi informasi dewasa ini telah berpengaruh pada seluruh aspek kehidupan manusia, termasuk bidang komunikasi. Pada saat yang sama keuntungan

Lebih terperinci

Perbandingan Penggunaan Bilangan Prima Aman Dan Tidak Aman Pada Proses Pembentukan Kunci Algoritma Elgamal

Perbandingan Penggunaan Bilangan Prima Aman Dan Tidak Aman Pada Proses Pembentukan Kunci Algoritma Elgamal 194 ISSN: 2354-5771 Perbandingan Penggunaan Bilangan Prima Aman Dan Tidak Aman Pada Proses Pembentukan Kunci Algoritma Elgamal Yudhi Andrian STMIK Potensi Utama E-mail: yudhi.andrian@gmail.com Abstrak

Lebih terperinci

Penggabungan Algoritma Kriptografi Simetris dan Kriptografi Asimetris untuk Pengamanan Pesan

Penggabungan Algoritma Kriptografi Simetris dan Kriptografi Asimetris untuk Pengamanan Pesan Penggabungan Algoritma Kriptografi Simetris dan Kriptografi Asimetris untuk Pengamanan Pesan Andreas Dwi Nugroho (13511051) 1 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Sejarah Kriptografi Kriptografi (cryptography) berasal dari bahasa yunani: cryptos yang artinya secret (rahasia) dan graphein yang artinya writing (tulisan). Jadi kriptografi

Lebih terperinci

PENGGUNAAN KRIPTOGRAFI DAN STEGANOGRAFI BERDASARKAN KEBUTUHAN DAN KARAKTERISTIK KEDUANYA

PENGGUNAAN KRIPTOGRAFI DAN STEGANOGRAFI BERDASARKAN KEBUTUHAN DAN KARAKTERISTIK KEDUANYA PENGGUNAAN KRIPTOGRAFI DAN STEGANOGRAFI BERDASARKAN KEBUTUHAN DAN KARAKTERISTIK KEDUANYA Rachmansyah Budi Setiawan NIM : 13507014 Program Studi Teknik Informatika, Institut Teknologi Bandung Jl. Ganesha

Lebih terperinci

Perhitungan dan Implementasi Algoritma RSA pada PHP

Perhitungan dan Implementasi Algoritma RSA pada PHP Perhitungan dan Implementasi Algoritma RSA pada PHP Rini Amelia Program Studi Teknik Informatika, Fakultas Sains dan Teknologi, Universitas Islam Negeri Sunan Gunung Djati Bandung. Jalan A.H Nasution No.

Lebih terperinci

Elliptic Curve Cryptography (Ecc) Pada Proses Pertukaran Kunci Publik Diffie-Hellman. Metrilitna Br Sembiring 1

Elliptic Curve Cryptography (Ecc) Pada Proses Pertukaran Kunci Publik Diffie-Hellman. Metrilitna Br Sembiring 1 Elliptic Curve Cryptography (Ecc) Pada Proses Pertukaran Kunci Publik Diffie-Hellman Metrilitna Br Sembiring 1 Abstrak Elliptic Curve Cryptography (ECC) pada Proses Pertukaran Kunci Publik Diffie-Hellman.

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Latar Belakang Kriptografi Menurut Pandiangan dalam jurnalnya yang berjudul Aplikasi Kriptografi untuk Sistem Keamanan Penyimpanan Data atau Informasi (Tahun 2005), menerangkan

Lebih terperinci

BAB 2 LANDASAN TEORI. 2.1 Pengertian Kriptografi

BAB 2 LANDASAN TEORI. 2.1 Pengertian Kriptografi BAB 2 LANDASAN TEORI 2.1 Pengertian Kriptografi Kriptografi (cryptography) berasal dari bahasa Yunani yang terdiri atas kata cryptos yang artinya rahasia, dan graphein yang artinya tulisan. Berdasarkan

Lebih terperinci

BAB 3 KRIPTOGRAFI RSA

BAB 3 KRIPTOGRAFI RSA BAB 3 KRIPTOGRAFI RSA 3.1 Sistem ASCII Sebelumnya, akan dijelaskan terlebih dahulu Sistem ASCII sebagai system standar pengkodean dalam pertukaran informasi yaitu Sistem ASCII. Plainteks yang akan dienkripsi

Lebih terperinci

SISTEM KRIPTOGRAFI. Mata kuliah Jaringan Komputer Iskandar Ikbal, S.T., M.Kom

SISTEM KRIPTOGRAFI. Mata kuliah Jaringan Komputer Iskandar Ikbal, S.T., M.Kom SISTEM KRIPTOGRAFI Mata kuliah Jaringan Komputer Iskandar Ikbal, S.T., M.Kom Materi : Kriptografi Kriptografi dan Sistem Informasi Mekanisme Kriptografi Keamanan Sistem Kriptografi Kriptografi Keamanan

Lebih terperinci

STUDI DAN MODIFIKASI ALGORITMA BLOCK CHIPER MODE ECB DALAM PENGAMANAN SISTEM BASIS DATA. Arief Latu Suseno NIM:

STUDI DAN MODIFIKASI ALGORITMA BLOCK CHIPER MODE ECB DALAM PENGAMANAN SISTEM BASIS DATA. Arief Latu Suseno NIM: STUDI DAN MODIFIKASI ALGORITMA BLOCK CHIPER MODE ECB DALAM PENGAMANAN SISTEM BASIS DATA Arief Latu Suseno NIM: 13505019 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut

Lebih terperinci

PENGGUNAAN KRIPTOGRAFI DAN STEGANOGRAFI BERDASARKAN KEBUTUHAN DAN KARAKTERISTIK KEDUANYA

PENGGUNAAN KRIPTOGRAFI DAN STEGANOGRAFI BERDASARKAN KEBUTUHAN DAN KARAKTERISTIK KEDUANYA PENGGUNAAN KRIPTOGRAFI DAN STEGANOGRAFI BERDASARKAN KEBUTUHAN DAN KARAKTERISTIK KEDUANYA Rachmansyah Budi Setiawan NIM : 13507014 Program Studi Teknik Informatika, Institut Teknologi Bandung Jl. Ganesha

Lebih terperinci

BAB III PERANCANGAN SISTEM

BAB III PERANCANGAN SISTEM BAB III PERANCANGAN SISTEM 3.1. Analisis Sistem Analisis sistem adalah salah satu tahap perancangan sebuah sistem yang bertujuan agar sistem yang dirancang menjadi tepat guna dan ketahanan sistem tersebut

Lebih terperinci

Oleh: Benfano Soewito Faculty member Graduate Program Universitas Bina Nusantara

Oleh: Benfano Soewito Faculty member Graduate Program Universitas Bina Nusantara Konsep Enkripsi dan Dekripsi Berdasarkan Kunci Tidak Simetris Oleh: Benfano Soewito Faculty member Graduate Program Universitas Bina Nusantara Dalam tulisan saya pada bulan Agustus lalu telah dijelaskan

Lebih terperinci

Pemampatan Data Sebagai Bagian Dari Kriptografi

Pemampatan Data Sebagai Bagian Dari Kriptografi Pemampatan Data Sebagai Bagian Dari Kriptografi Muhammad Ismail Faruqi, Adriansyah Ekaputra, Widya Saseno Laboratorium Ilmu dan Rekayasa Komputasi Departemen Teknik Informatika, Institut Teknologi Bandung

Lebih terperinci

BAB III ANALISIS. Pada tahap analisis, dilakukan penguraian terhadap topik penelitian untuk

BAB III ANALISIS. Pada tahap analisis, dilakukan penguraian terhadap topik penelitian untuk BAB III ANALISIS Pada tahap analisis, dilakukan penguraian terhadap topik penelitian untuk mengidentifikasi dan mengevaluasi proses-prosesnya serta kebutuhan yang diperlukan agar dapat diusulkan suatu

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI 6 BAB II LANDASAN TEORI 2.1 Kriptografi 2.1.1 Definisi Kriptografi Kriptografi (cryptography) berasal dari Bahasa Yunani cprytos artinya secret atau hidden (rahasia), dan graphein artinya writing (tulisan).

Lebih terperinci

BAB III ANALISIS DAN PERANCANGAN

BAB III ANALISIS DAN PERANCANGAN BAB III ANALISIS DAN PERANCANGAN III.1. Analisa Masalah Kebutuhan manusia akan perangkat informasi dan komunikasi seakan menjadi kebutuhan yang tidak terpisahkan dalam kehidupan. Dengan banyaknya aplikasi

Lebih terperinci

Pembangkit Kunci Acak pada One-Time Pad Menggunakan Fungsi Hash Satu-Arah

Pembangkit Kunci Acak pada One-Time Pad Menggunakan Fungsi Hash Satu-Arah Pembangkit Kunci Acak pada One-Time Pad Menggunakan Fungsi Hash Satu-Arah Junita Sinambela (13512023) Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung,

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Kriptografi Kriptografi atau Cryptography berasal dari kata kryptos yang artinya tersembunyi dan grafia yang artinya sesuatu yang tertulis (bahasa Yunani) sehingga kriptografi

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang. Seiring perkembangan teknologi, berbagai macam dokumen kini tidak lagi dalam

BAB 1 PENDAHULUAN. 1.1 Latar Belakang. Seiring perkembangan teknologi, berbagai macam dokumen kini tidak lagi dalam BAB 1 PENDAHULUAN 1.1 Latar Belakang Seiring perkembangan teknologi, berbagai macam dokumen kini tidak lagi dalam bentuknya yang konvensional di atas kertas. Dokumen-dokumen kini sudah disimpan sebagai

Lebih terperinci